
MIS Review Vol. 19, No. 2, March (2014), pp. 39-56
DOI: 10.6131/MISR.2014.1902.03
© 2014 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Detection and Analysis of Security Vulnerabilities in Java

Ch. Aswani Kumar, M. Sai Charitha
School of Information Technology & Engineering, VIT University, India

ABSTRACT: There are several tools that use techniques like static analysis, lexical analysis
etc to detect the vulnerabilities in Java based programs. However still there are
vulnerabilities which are not traceable by the available tools. The objective of this
paper is twofold. We develop a method to detect vulnerabilities in Java programs.
Further we analyze the dependencies among the vulnerabilities using mathematical
lattice theory based formal concept analysis. Our experimental result show that the
proposed model is able to detect the untraceable vulnerabilities and the dependency
analysis is in good agreement with the literature.

KEYWORDS: Formal Concept Analysis, Java Programs, Static Analysis, Vulnerability Detection.

1. Introduction

Vulnerabilities within the program language constructs can inject the vulnerabilities
in the applications as well. Poor coding practices also introduce risks into the programs.
Generally programs are verified and tested to ensure that they meet the requirement
specifications with regard to functionality, quality and performance. However verification
of these programs for potential security vulnerabilities is also an equal and major concern.
If left undetected, these vulnerabilities would be exploited by the adversaries. Also it
is essential to analyze these vulnerabilities to better understand the threats and risks.
Dependencies among the vulnerabilities provide insight into occurrence of security
attacks. Vulnerabilities are broadly categorized as either implementation bugs or design
flaws (Austin, Holmgreen & Williams, 2013).

The primary advantage of Java language lies in its ability in developing and
deploying applications in heterogeneous platforms. Java includes several security
features like cryptography, authentication, PKI, etc. Despite of these features, Java has
several vulnerabilities that enable adversaries to cause potential attacks. Since several
vulnerabilities are specific to Java language, traditional detection and mitigation methods
does not work (Garber, 2012). Some of the vulnerability analysis tools like FinBugs, PMD
and Jlint detect the vulnerabilities in Java programs. These tools implement the techniques
like static analysis on the byte code of the program. Hence they could not detect some
vulnerabilities like zero length array, empty for loop, probable infinite loop etc. In this
paper we aim to address this issue. The main contribution of this paper is to provide an

07-Kumar.indd 39 2015/1/19 下午 01:20:47

40 Ch. Aswani Kumar, M. Sai Charitha

analysis on the Java program vulnerabilities, attacks. To understand their dependencies we
use lattice theory based FCA approach. Rest of the paper is organized as follows. Section
2 provides a brief background on FCA. Also it summarizes the literature related to the
scope of the current paper. Section 3 provides the model for Java programs vulnerabilities
detection. Experiment results are given in Section 4. Analysis of the results is provided in
Section 5.

2. Background

2.1 Related work

There is an intensive research in analyzing the source code of the applications for
identifying the potential vulnerabilities (Rawat & Saxena, 2009). Though Java language
has features with much emphasis on security, programs and applications developed using
Java are not free from vulnerabilities. A detailed summary of the Java vulnerabilities
can be found in (Long, 2005). Program vulnerability detection and mitigation is well
discussed in the literature. A detailed survey on these techniques can be found in (Shahriar
& Zulkernine, 2012). Also authors have this article have summarized different patching
approaches for mitigating security vulnerabilities and provided a mapping between
different mitigation techniques, addressed vulnerabilities and programming languages.

There are several tools to detect the vulnerabilities in the source code. Rutan,
Almazan and Foster (2004) have analyzed five different tools for finding vulnerabilities
in Java language. Their analysis has revealed that the tools: Bandera, FindBugs, JLint,
PMD and ESC/Java2 produces uncorrelated results. Different techniques that are used to
develop these tools are summarized in (Shahriar & Zulkernine, 2012). Among the different
techniques, static analysis is the most prominent one (Ying et al., 2012). Tools based on
the static analysis find the vulnerabilities without executing the code. Parrend (2009) has
analyzed three types of classes in the Java components for exploitable vulnerabilities.

FindBugs uses static analysis technique to detect the Java vulnerabilities. It also uses
lexical analysis, data flow analysis and syntactic technique to find out the vulnerabilities.
It works on analyzing Java class files at bytecode level. However this tool It focuses less
on low-level bugs such as memory allocation and dereferencing errors and more on higher
level concerns such as API use. PMD detects the Java vulnerabilities with the help of rule
set containing more than 140 built- in rules. PMD uses intra-procedural dataflow analysis
and lexical analysis techniques. Further PMD detects even duplicate code which is hard to
detect. JLint is also an open source tool which performs syntax and semantic analysis to
detect the vulnerabilities.

07-Kumar.indd 40 2015/1/19 下午 01:20:47

Detection and Analysis of Security Vulnerabilities in Java 41

Even though the above mentioned tools can detect many vulnerabilities there are
some vulnerabilities that they cannot detect such as zero length array, negative length
array, never executed loop, unexpected behavior of the loop etc. These are addressed in
the current paper and are discussed in the proposed model.

2.2 Formal concept analysis

Formal concept analysis (FCA) is a method of data analysis with growing popularity
across various domains. FCA analyzes data which describe relationship between a
particular set of objects and a particular set of attributes in mathematical definition of a
formal context. A formal context is a triple k = (G, M, I) where G is a set of objects, M a
set of attributes (or items), a binary relation I ⊆ G × M (Wille, 2005). Two operators ↑ and
↓ are defined for every X ∈ G and Y ∈ M where

X ↑ = {m ∈ M | for each g ∈ G: (g, m) ∈ I} (1)

Y ↓ = {g ∈ G | for each m ∈ M: (g, m) ∈ I} (2)

The two operators ↑ and ↓ are called Concept forming operators. The set (X, Y) is
called a Formal concept (C). X is called Extension of the concept, and Y is called Intension
of the concept. In the standard formal context, the constraint for a formal concept is that
all objects in the extent must have all properties in the intent and all properties in the
intent must be possessed by all objects in the extent. The concepts can be visualized in
a hierarchical order called Concept lattice. Partial order relation that exists between the
formal concepts is known as subconcept-superconcept relation (Singh & Aswani Kumar,
2012). Interested readers can read extensive introductory information on FCA in (Aswani
Kumar & Srinivas, 2010; Kuznetsov & Poelmans, 2013; Priss, 2007).

Association rules can be generated using formal concepts. The extent of the
concept is mapped onto the closed frequent itemset and the length of the corresponding
intent denotes the support of the itemset. The rules with 100% confidence are called
implications. Attribute implications are closely related to functional dependencies in the
database field and hence made their way into Association Rules Mining (ARM) problem
in data mining (Aswani Kumar, 2011a, 2011b, 2012; Aswani Kumar & Srinivas, 2010a; Li
et al., 2013).

Poelmans et al. (2013) have provided an exhaustive review on the FCA applications.
Recently FCA has found a prominent role to detect security related trends. Priss (2011)
demonstrated the use of FCA for analyzing UNIX system data with respect to IT security
monitoring. Breier and Hudec (2012) have used FCA for describing the metrics for
security evaluation. Becker et al. (2000) have described a tool that uses FCA methods to
model dependencies among security guidelines. Neuhaus and Zimmermann (2009) have
used FCA to find the dependencies that increase or decrease the risk of vulnerabilities in

07-Kumar.indd 41 2015/1/19 下午 01:20:47

42 Ch. Aswani Kumar, M. Sai Charitha

Linux packages. Ganapathy et al. (2007) have used Lindig and Snelting’s approach for
identifying security sensitive operations in legacy code. FCA is also used to design Role
Based Access Control (RBAC) (2013), to model access permissions in RBAC (2012),
to model role hierarchy structure in RBAC (Sobieski & Zielinski, 2010). Very recently
Sharma et al. (2013) have analyzed the cyber attacks in social dimensions and developed
a threat model with FCA as a reasoning engine. In this paper we use FCA to analyze the
Java program vulnerabilities and security attacks.

3. Proposed model

Figure 1 shows the architecture of the proposed system. The proposed system
receives a Java program as an input from the user. The system checks the existence of the
chosen vulnerability in the program. It verifies the vulnerability pattern for its detection. If
such vulnerability exists then the system prompts the user about the vulnerability and asks
the user whether to verify another vulnerability in that program or in any other program
or to exit. Finally detected vulnerabilities in the chosen set of programs can be analyzed
using FCA. The proposed model is aimed at detecting the following vulnerabilities:

1. Probable out of bound array indexing vulnerability
 When array length function is used in the initialization or in any condition checking

of a loop, then the probability arises to use the value of length of an array as the
index inside the loop. This may lead to out of bound array indexing. This case of
vulnerability leads to buffer overflow and leads to the following breaches. Due to
buffer overflow the Java applets gain elevated privileges. Attackers escape Java
sandbox and access arbitrary files via unknown attack vectors.

2. Blocks without braces vulnerability
 This vulnerability occurs when the condition blocks like if, else, while, try, catch are

not within the curly braces. Generally this situation arises when the condition blocks
have single line statements. If we consider if else blocks the attacker may create a
situation such that instead of executing the content inside if block, the content in the
else block gets executed. This leads to attack called resource tampering attack.

3. Never executed for loop vulnerability
 This vulnerability arises when a programmer declares for loop and leaves it empty.

This may lead to cross site scripting attack. The attacker may find out the empty for
loop and try to insert malicious code or malicious URL.

4. Unexpected behavior of for loop
 This vulnerability is due to unexpected execution of for loop. This leads to infinite

execution of for loop. This type of vulnerability is found using pattern matching.

07-Kumar.indd 42 2015/1/19 下午 01:20:47

Detection and Analysis of Security Vulnerabilities in Java 43

5. Abstract class without abstract method vulnerability
 The abstract class without abstract method vulnerability occurs when the abstract class

has no abstract methods in it and may lead to denial of service attacks.

6. Zero length array vulnerability
 The zero length array vulnerability arises when an empty array is declared in the

program i.e., an array with zero length size is executed. This leads to unreleased
resources attacks.

Insert Program as
Input

Select the type of vulnerability to be
detected

If
vulnerabilit

y exists

Display the
vulnerabilities
detected

Find different
vulnerability

Find vulnerabilities
for another program

yes

Yes

no

yes

no

Conclusion
No

Figure 1 Architecture of the Proposed System

07-Kumar.indd 43 2015/1/19 下午 01:20:48

44 Ch. Aswani Kumar, M. Sai Charitha

7. Negative length array vulnerability
 Negative length array vulnerability might occur when the user initialize the array

with a negative value or the array length goes to negative value because of some
computations in the program. If the array length is negative then it leads to buffer
overflow or integer overflow and leads to denial of service attacks.

8. Vulnerabilities related to switch statements
 The vulnerabilities related to switch statements include empty switch statement, too

few branches in the switch statement and no default case in the switch statement.
If any one of the above three cases are present in the program then the program is
vulnerable. The empty switch block allows the attacker to insert some malicious code
or URL which contains malicious code.

9. Empty blocks vulnerability
 The empty blocks can be if, while, for, try, catch, and finally loops. The programmer

may unintentionally write a loop and leave it empty. This gives the attacker a chance
to insert malicious code or data inside the empty loop.

10. Printing exception details
 Printing the exception details is one of the bad practices in Java. Printing the details

gives the attacker the information about the exception occurred. Based on the
exception details displayed they lead to information disclosure attacks and resource
tampering attacks.

11. Unnecessary constructor vulnerability
 The unnecessary constructor vulnerability arises when there is an empty constructor

declared in the program. These type of unnecessary constructors results in memory
consumption. This kind of vulnerability leads to unreleased resource attacks.

12. Exception related vulnerabilities
 The exception related vulnerabilities include the vulnerabilities like avoid catching

null pointer exception, avoid catching throwable exception and avoid throwing null
pointer exception.

13. Rethrowing exceptions vulnerability
 Rethrowing an exception is not a good Java practice. Rethrowing the exception again

and again leads to denial of service attacks.

14. Unnecessary parenthesis vulnerability
 The unnecessary parenthesis vulnerability is because of the unnecessary use of

parenthesis in the return statement. This kind of vulnerability confuses the user and
leads to information disclosure attacks.

07-Kumar.indd 44 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 45

15. Explicit calling of garbage collector
 This vulnerability occurs when the garbage collector is called explicitly. This kind of

vulnerability allows remote attackers to execute arbitrary code.

16. Abrupt program termination vulnerability
 This kind of vulnerability occurs when the user uses the function System.exit().

Access to a function that can shut down the application is an avenue of DOS attacks.

17. Drop table vulnerability
 This vulnerability occurs when a table is dropped from the database abruptly. This

kind of vulnerabilities occurs due to SQL statements and leads to SQL injection
attacks.

18. Empty array rather than null vulnerability
 This vulnerability occurs when null is used in the return statement. When a null is

returned in the return statement it leads to vulnerability when the client code does
not handle null properly. This can result in abnormal program termination when the
calling function performs operations on null. One of the vulnerability that is related to
this is the vulnerability in adobe flash. This leads to Denial of Service security attack.

19. Printing absolute path vulnerability
 The function getAbsolutePath() gives the complete path of the file. The path may

contain sensitive data which should not be disclosed. The attackers try to get the path
and access the files that are not intended to them. This vulnerability leads to path
traversal attacks and resource tampering attacks.

20. Or condition in SQL statement vulnerability
 Exploiting the Or condition in SQL statements the attackers give the input SQL

statement such that the condition mentioned in it is always true.

The system used pattern matching approach to detect the vulnerability. The system
verifies each line of the program for chosen vulnerability pattern. For each of the
vulnerability chosen for analysis we have defined the pattern based on the type of the
vulnerability. The defined patterns are matched against the given Java program. If there is
a match then that particular input program is having the vulnerability. In detecting some
vulnerabilities string matching method is used in which a particular string is matched
with the input. For better understanding we provide some of the vulnerabilities patterns as
follows:

● Zero length arrays: This vulnerability is caused when a zero length array is
defined or it is passed as an argument.

int [] num = new int [0];

07-Kumar.indd 45 2015/1/19 下午 01:20:48

46 Ch. Aswani Kumar, M. Sai Charitha

● Negative length array: This vulnerability is caused when the array is defined with
a negative length.

int [] zero = new int [-4];

● Probable Out of bound array indexing: this vulnerability arises when there is a
possibility of out of bound exception in an array.

int [] array2 = new int [5];
int b7;
for (int i = 0; i < = array2.length; i++)
{
//statements
}
The third statement leads to out of bound array indexing vulnerability.

● Never executed for loop: In some programs there are loops that cannot be
executed. Such loops are said to be vulnerable to the attacks.

for (int i = 2; i <1; i++)
{
//statements
}
The statements inside for loop cannot be executed as the condition in for
loop can never be true.

● Unexpected behavior of the loop: some loops in Java program behave
unexpectedly because of the condition in the loop. This may lead to infinite
execution of the loop.

for (int i = 1; i < = 1;i--)
{
//statements
}
for (int i = 2; i > = 2;i++)
{
//statements
}
Both for loops lead to infinite execution.

● Braces for if else blocks: some programmers do not use braces for if else blocks
when the blocks have single line statements. This may create a problem of
resulting in one value instead of other value.

int x = 5, y = 3;
if (x = = y)

07-Kumar.indd 46 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 47

if (y = = 3)
x = 3;
else
x = 4;
These are the vulnerabilities that are not detected by any of the tools.

4. Experimental results

This section summarizes the experiments we have conducted. We have collected
a total of 73 Java programs from different sources. Some of the programs are from
applications developed by the students of VIT University as a part of their academic
projects. Also some of the programs were taken from web based applications like irctc.
co.in, apsrtc.com, vit.ac.in. All these programs are verified for the 20 vulnerabilities listed
in the following Table 1. Along with vulnerabilities, Table 1 also summarizes potential
attacks that these vulnerabilities cause.

Figure 2 shows the graphical interface of the system that receives the Java program
from the user as input and alert the user about the existence of the chosen vulnerability in
the code. From the experiments on all the programs we have observed that these programs
are either having multiple instances of same vulnerability or multiple vulnerabilities
or combination of both. From the experimental results we have observed that the
vulnerabilities in application might lead to more than one security attack. Next we analyze
the dependencies among the vulnerabilities so as to find occurrence of these vulnerabilities
together and similarly attacks. This analysis is performed using FCA.

4.1 Analysis using FCA

In this section we use FCA to analyze the detected vulnerabilities and possible
attacks from these vulnerabilities. For this purpose we have created two different formal
contexts from the experimental results obtained in the previous section. We have applied
FCA on the mapping between the input programs and vulnerabilities detected in each
of these programs. For this purpose we have considered the 73 programs as objects (1
to 73) and the 20 vulnerabilities listed above as attributes (a to t) in the formal context.
Existence of the vulnerabilities in the programs, detected in previous section, represented
the incidence relation between the objects (programs) and the attributes (vulnerabilities).
We have used object intersection algorithm (Aswani Kumar & Prem Kumar Singh,
2014; Wille, 2005) to find the concepts from this formal context. A total of 69 concepts
are generated. Next we have used Findimplications algorithm (Aswani Kumar & Prem
Kumar Singh, 2014) to find the attribute implications from these concepts. Table 2
summarizes the 26 attribute implication with support count 0 and confidence 100%.

07-Kumar.indd 47 2015/1/19 下午 01:20:48

48 Ch. Aswani Kumar, M. Sai Charitha

Table 1 List of Vulnerabilities and Attacks Analyzed
S. No Vulnerabilities Analyzed Attacks

1 a. Probable out of bound array vulnerability Denial of service attacks (a)
2 b. Blocks without braces vulnerability Cross site scripting attacks (b)
3 c. Empty for loops vulnerability Code injection attacks (c)
4 d. Unexpected loop vulnerability Information disclosure attacks (d)
5 e. Empty abstract method in an abstract class

vulnerability
Path traversal attacks (e)

6 f. Zero length array vulnerability Resource tampering attacks (f)
7 g. Negative length array vulnerability Unreleased resources attacks (g)
8 h. Switch branch related vulnerability SQL injection attacks (h)
9 i. Empty loops vulnerability
10 j. Printing exception details vulnerability
11 k. Unnecessary constructor vulnerability
12 l. Exception related vulnerabilities
13 m. Re-throwing exceptions vulnerability
14 n. Unnecessary parenthesis vulnerabilities
15 o. Explicit calling of garbage collector
16 p. Abrupt program termination
17 q. Drop table vulnerability
18 r. Returning null vulnerability
19 s. Printing absolute path vulnerability
20 t. SQL statement or condition vulnerability

Figure 2 Warning if Vulnerability Exists

07-Kumar.indd 48 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 49

These rules summarize the dependencies between the vulnerabilities. The rule abik → n
can be interpreted as the programs in which the vulnerabilities set {out of bound array,
blocks without braces, empty blocks, unnecessary constructor} exists, then unnecessary
parenthesis vulnerability also exists. Also we can observe that no program has all the
vulnerabilities in common and no single vulnerability was detected commonly in all the
programs.

Next we have analyzed the mapping between the vulnerabilities detected and
possible attacks each vulnerability causes. For this purpose, we have constructed a formal

Table 2 Rules for Support 0 and Confidence 100%
No Rules
1 abik → n
2 abjnp → r
3 aij → p
4 bdh → a
5 bik → an
6 bikn → a
7 bjnpr → a
8 bm → n
9 bnp → a
10 c → br
11 cr → b
12 djn → b
13 fk → a
14 hp → b
15 ik → abn
16 ikn → ab
17 in → a
18 jnpr → ab
19 jr → b
20 k → a
21 kn → abi
22 m → bn
23 mn → b
24 npr → abj
25 pr → abjn
26 r → b

07-Kumar.indd 49 2015/1/19 下午 01:20:48

50 Ch. Aswani Kumar, M. Sai Charitha

context with detected vulnerabilities as objects (1 to 20) of the context and security
attacks as attributes (a to h). Table 3 shows the formal context mapping vulnerabilities and
attacks. Table 4 lists the 12 concepts obtained from this context. These concepts are listed
as vulnerability (object) and attack (attribute) pairs. Table 5 summarizes 26 implication
rules obtained at support count 0 and confidence level 100%. From these rules we can
understand that whenever cross site scripting attack occurs, there is a possibility that code
injection attack also occurs. Similarly whenever unreleased resource attacks occurs, denial
of service attack also occur. We can infer all the other rules similarly. Also this implies
the occurrence of the corresponding vulnerabilities jointly together in the programs. We
can also observe that no single vulnerability leads to all the security attacks and also no
security attack has all the vulnerabilities.

Similarly we have produced are the rules and concepts for support count of 10and
confidence level 50%. Table 6 summarizes the rules. It is observed that the cross site
scripting attack and code injection attack occur together. Resource tampering attacks

Table 3 Mapping between Vulnerabilities and Security Attacks
a b c D e f g h

1 X
2 X X X
3 X X
4 X
5 X X
6 X X
7 X X
8 X X X
9 X X
10 X X
11 X X
12 X
13 X
14 X X
15 X
16 X
17 X
18 X
19 X X
20 X

07-Kumar.indd 50 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 51

Table 4 List of Concepts Obtained
No Formal Concepts
C1 (ø, a b c d e f g h)
C2 (1 4 5 6 7 8 11 12 13 14 15 16 18, a)
C3 (2, d e f)
C4 (3 8 9, b c)
C5 (5 6 7 11, a g)
C6 (8, a b c)
C7 (2 10, d f)
C8 (14, a d)
C9 (2 10 14, d)
C10 (17 20, h)
C11 (2 19, e f)
C12 (2 10 19, f)
C13 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20, ø)

Table 5 Rules for Support 0 and Confidence 100%
Rules

1 ab → c
2 b → c
3 c → b
4 de → f
5 e → f
6 g → a

Table 6 Rules for Support Count 10 and Confidence Level 50%
S. No Rules

1 b → c
2 c → b
3 d → f
4 e → f
5 f → d
6 f → e
7 g → a

07-Kumar.indd 51 2015/1/19 下午 01:20:48

52 Ch. Aswani Kumar, M. Sai Charitha

occur whenever path traversal attacks occur but the vice versa is not true. In this case also
the unreleased resource attacks leads to denial of service attacks. Table 7 summarizes the
rules. We have further generated the concepts and rules for vulnerabilities and security
attacks with support count of 10 at confidence level 10%. Among the concepts generated
the possibility of the attributes that occur at least 10% in common are considered for rule
generation. In this case also it is observed that cross site scripting attacks occur when
code injection attacks occur and vice versa. Resource tampering attacks occur whenever
path traversal attacks occur but the vice versa is not true. The unreleased resources attacks
leads to denial of service attacks with but the vice versa is not true.

Theodoor, Davide and Engin (2012) have mentioned that the occurrence of cross site
scripting is correlated with the absence of SQL injection in an application. In the above
generated rules and concepts also it is observed that there are no vulnerabilities that are
common in both SQL injection and cross site scripting attacks. Similarly no vulnerability
leads to both SQL injection and cross site scripting attack. This above observation from
the literature (Theodoor et al., 2012) confirms the inference of our analysis.

5. Conclusions

Despite of its security related features, Java has several vulnerabilities. Though there
are tools to detect the vulnerabilities in Java programs, they are not successful in detecting
several vulnerabilities. This paper has concentrated on detecting such vulnerabilities
in Java programs based on their token patterns in the code. Further we have analyzed
dependencies in the vulnerabilities using Formal Concept Analysis. Inference of our
analysis is in good agreement with the previous observations in the literature.

Table 7 rules for Support Count 10 and Confidence Level 10%
S. No Rules

1 a → g
2 b → c
3 c → b
4 d → f
5 e → f
6 f → d
7 f → e
8 g → a

07-Kumar.indd 52 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 53

Acknowledgements

Authors acknowledge the financial support from National Board of Higher
Mathematics, Dept. of Atomic Energy, Govt. of India for the grant number 2/48(11)/21-
R&D II/186.

References

Aswani Kumar, Ch. (2011a), ‘Knowledge discovery in data using formal concept analysis and
random projections’, International Journal of Applied Mathematics and Computer Science,
Vol. 21, No. 4, pp. 745-756.

Aswani Kumar, Ch. (2011b). ‘Mining association rules using non-negative matrix factorization
and formal concept analysis’, Communications in Computer and Information Science, Vol.
157, pp. 31-39.

Aswani Kumar, Ch. (2012), ‘Modeling access permissions in role based access control using
formal concept analysis’, in Venugopal, K.R. and Patnaik, L.M. (Eds.), Wireless Networks
and Computational Intelligence, Springer, Berlin, Germany, pp. 578-583.

Aswani Kumar, Ch. (2012a), ‘Fuzzy clustering based formal concept analysis for association
rules mining’, Applied Artificial Intelligence, Vol. 26, No. 3, pp. 274-301.

Aswani Kumar, Ch. (2013), ‘Designing role based access control using formal concept analysis’,
Security and Communication Networks, Vol. 6, No. 3, pp. 373-383.

Aswani Kumar, Ch. and Prem Kumar Singh, (2014), ‘Knowledge representation using formal
concept analysis: a study on concept generation’, in Tripathy, B. and Acharjya, D. (Eds.),
Global Trends in Intelligent Computing Research and Development, Information Science
Reference, Hershey, PA, pp. 306-336.

Aswani Kumar, Ch. and Srinivas, S. (2010a), ‘Concept lattice reduction using fuzzy k-means
clustering’, Expert Systems with Applications, Vol. 37, No. 3, pp. 2696-2704.

Aswani Kumar, Ch. and Srinivas, S. (2010b), ‘Mining associations in health care data using
formal concept analysis and singular value decomposition’, Journal of Biological Systems,
Vol. 18, No. 4, pp. 787-807.

Austin, A., Holmgreen, C. and Williams, L. (2013), ‘A comparison of the efficiency and
effectiveness of vulnerability discovery techniques’, Information and Software Technology,
Vol. 55, No. 7, pp. 1279-1288.

07-Kumar.indd 53 2015/1/19 下午 01:20:48

54 Ch. Aswani Kumar, M. Sai Charitha

Becker, K., Stumme, G., Wille, R., Wille, U. and Zickwolff, M. (2000), ‘Conceptual information
systems discussed through an IT-security tool’, in Dieng, R. and CorbyKnowledge O.
(Eds.), Engineering and Knowledge Management Methods, Models, and Tools, Springer,
New York, NY, pp. 352-365.

Breier, J. and Hudec, L. (2012), ‘Towards a security evaluation model based on security metrics,’
Proceedings of 13th International Conference on Computer System and Technologies,
Ruse, Bulgaria, pp. 87-94.

Ganapathy, V., King, D., Jaeger, T. and Jha, S. (2007), ‘Mining security-sensitive operations in
legacy code using concept analysis,’ Proceedings of the 29th International Conference on
Software Engineering, Minneapolis, MN, pp. 458-467.

Garber, L. (2012), ‘Have Java’s security issues gotten out of hand?’, IEEE Computer, Vol. 45,
No. 12, pp. 18-21.

Kuznetsov, S.O. and Poelmans, J. (2013), ‘Knowledge representation and processing with
formal concept analysis’, WIREs Data Mining and Knowledge Discovery, Vol. 3, No. 3, pp.
200-215.

Li, J., Mei, C., Aswani Kumar, Ch. and Zhang, X. (2013), ‘On rule acquisition in decision
formal contexts’, Machine Learning and Cybernetics, Vol. 4, No. 6, pp. 721-731.

Long, F.W. (2005), Software Vulnerabilities in Java, Carnegie Mellon University, Pittsburgh,
PA.

Neuhaus, S. and Zimmermann, T. (2009), ‘The beauty and the beast: vulnerabilities in red hat’s
packages’, Proceedings of the 29 USENIX Annual Technical Conference, San Diego, CA,
Article No. 30.

Parrend, P. (2009), ‘Enhancing automated detection of vulnerabilities in Java components’,
Proceedings of International Conference on Availability, Reliability and Security, Fukuoka,
Japan, pp. 216-223.

Poelmans, J., Ignatov, D.I., Kuznetsov, S.O. and Dedene, G. (2013), ‘Formal concept analysis in
knowledge processing: a survey on applications’, Expert systems with applications, Vol. 40,
No. 16, pp. 6538-6560.

Priss, U. (2007), ‘Formal concept analysis in information science,’ Annual Review of
Information Science and Technology, Vol. 40, No. 1, pp. 521-543.

Priss, U. (2011), ‘Unix systems monitoring with FCA’, Proceedings. of International Conference
on Conceptual Structures, Derby, UK, pp. 243-256.

07-Kumar.indd 54 2015/1/19 下午 01:20:48

Detection and Analysis of Security Vulnerabilities in Java 55

Rawat, S. and Saxena, A. (2009) ‘Application security code analysis: a step towards software
assurance’, International Journal of Information and Computer Security, Vol. 3, No. 1, pp.
86-110.

Rutan, N., Almazan, C.B. and Foster, J.S. (2004), ‘A comparison of bug finding tools in Java,’
Proceedings of 15th International Symposium on Software Reliability Engineering,
Bretagne, France, pp. 245-256.

Shahriar, H. and Zulkernine, M. (2012), ‘Mitigating program security vulnerabilities: approaches
and challenges’, ACM Computing surveys, Vol. 44, No.3. doi:10.1145/2187671.2187673

Sharma, A., Gandhi, R., Zhu, Q., Mahoney, W.R. and Sousan, W. (2013), ‘A social dimensional
cyber threat model with formal concept analysis and fact-proposition inference’,
International Journal of Information and Computer Security, Vol. 5, No 4, pp. 301-333.

Singh, P.K. and Aswani Kumar, Ch. (2012), ‘A method for reduction of fuzzy relation in fuzzy
formal context’, in Balasubramaniam, P. and Uthayakumar, R. (Eds.), Mathematical
Modelling and Scientific Computation, Springer, Berlin, Germany, pp. 343-350.

Sobieski, S. and Zieliński, B. (2010), ‘Modeling role hierarchy structure using the formal
concept analysis’, Annales UMCS Informatica, Vol. 10, No. 2, pp. 143-159.

Theodoor, S., Davide, B. and Engin, K. (2012), ‘Have things changed now? An empirical study
on input validation vulnerabilities in web applications’, Computers & Security, Vol. 31, No.
3, pp. 344-356.

Wille, R. (2005), ‘Formal concept analysis as mathematical theory of concepts and concept
hierarchies’ in Ganter, B., Stumme, G. and Wille, R. (Eds.), Formal Concept Analysis:
Foundations and Applications, Springer, Berlin, Germany, pp. 1-33.

Ying, K., Zhang, Y., Fang, Z., Liu, Q. (2012), ‘Static detection of logic vulnerabilities in Java
web applications,’ Proceedings of 1th International Conference on Trust, Security and
Privacy in Computing and Communications, Liverpool, UK, pp. 1083-1088.

About the authors

Ch. Aswani Kumar is Professor of Network and Information Security Division, School of
Information Technology and Engineering, VIT University, Vellore, India. His current
research interests are Formal Concept Analysis, Data Mining, Big data, Information
Security, and Machine Intelligence. He has published 75 refereed research papers so far in
reputed peer reviewed international journals and conferences.

07-Kumar.indd 55 2015/1/19 下午 01:20:48

56 Ch. Aswani Kumar, M. Sai Charitha

 Corresponding author. Network and Information Security Division, School of Information
Technology and Engineering, VIT University, Vellore, 632014 India. Tel: +91-416-
2202771. E-mail address: cherukuri@acm.org

M. Sai Charitha has received her Master’s in Information Technology with specialization in
Networking. Her research interests include information security and networking. E-mail
address: saicharitha_m@yahoo.com

07-Kumar.indd 56 2015/1/19 下午 01:20:48

