
MIS Review Vol. 20, No. 1, September (2014), pp. 45-58
DOI: 10.6131/MISR.2014.2001.03
© 2014 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

A Discrete Formulation of Successive Software Releases
Based on Imperfect Debugging

Jagvinder Singh1, Adarsh Anand2, Avneesh Kumar3, Sunil Kumar Khatri4

1Maharaja Agrasen College, University of Delhi, India
2Department of Operational Research, University of Delhi, India

3Integrated Academy of Managment Technology, MTU, India
4Amity Institute of Information Technology, Amity University Uttar Pradesh, India

ABSTRACT: Software reliability is the major dynamic attribute of the software quality, so
gaining reliability of software product is a vital issue for software products. Due to
intense competition the software companies are coming with multiple add-ons to
survive in the pure competitive environment by keeping an eye on existing system
i.e. system in operational phase. Software reliability engineering is focused on
engineering techniques for timely add-ons/Up-gradations and maintaining software
systems whose reliability can be quantitatively evaluated. In order to estimate
as well as to predict the reliability of software systems, failure data need to be
properly measured by various means during software development and operational
phases. Although software reliability has remained an active research subject over
the past 35 years, challenges and open questions still exist. This paper presents a
discrete software reliability growth modeling framework for multi-up gradations
including the concept of two types of imperfect debugging during software fault
removal phenomenon. The Proposed model has been validated on real data set and
provides fairly good results.

KEYWORDS: Software Reliability, Non-Homogeneous Poisson Process (NHPP), Software
Testing, Successive Software Releases, Imperfect Debugging.

1. Introduction

The Computer systems now pervade every aspect of our daily lives. While this has
benefited society and increased our productivity, it has also made our lives more critically
dependent on their correct functioning. Software reliability assessment is important to
evaluate and predict the reliability and performance of software system. Several SRGMs
have been developed in the literature to estimate the fault content and fault removal rate
per fault in software. Goel and Okumoto (1979) have proposed NHPP based SRGM
assuming that the failure intensity is proportional to the number of faults remaining in
the software. The model is very simple and can describe exponential failure curves. Ohba
(1984) refined the Goel-Okumoto model by assuming that the fault detection / removal

07-Anand.indd 45 2015/4/1 下午 02:08:14

46 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

rate increases with time and that there are two types of faults in the software. SRGM
proposed by Bittanti et al. (1988) and Kapur and Garg (1992) have similar forms as that
of Ohba (1984) but are developed under different set of assumptions. Bittanti et al. (1988)
proposed an SRGM exploiting the fault removal (exposure) rate during the initial and final
time epochs of testing.

Kapur and Garg (1992) described a fault removal phenomenon, where they have
assumed that during a removal process of a fault some of the remaining faults may also be
removed. These models can describe both exponential and S-shaped growth curves and
hence are termed as flexible models.

NHPP based SRGMs are generally classified into two groups. The first group
contains models, which use the execution time (i.e., CPU time) or calendar time. Such
models are called continuous time models. The second group contains models, which
use the test cases as a unit of fault removal period. Such models are called discrete time
models, since the unit of software fault removal period is countable (Kapur & Garg, 1999;
Kapur et al., 2011; Musa, Iannino & Okumoto, 1987; Pham, 2006; Yamada, Ohba &
Osaki, 1984). A test case can be a single computer test run executed in an hour, day, week
or even month. Therefore, it includes the computer test run and length of time spent to
visually inspect the software source code. A large number of models have been developed
in the first group while fewer are there in the second group due to the difficulties in terms
of mathematical complexity involved.

The utility of discrete reliability growth models cannot be under estimated. As the
software failure data sets are discrete, these models many times provide better fit than their
continuous time counterparts. Therefore, in spite of difficulties in terms of mathematical
complexity involved, discrete models are proposed regularly. Most of discrete models
discussed in the literature seldom differentiate between the failure observation and fault
removal processes. In real software development scene, the number of failure observed
can be less than or more than the number of error removed. Kapur and Garg (1992) has
discussed the first case in their Error removal phenomenon flexible model which shows
as the testing grows and testing team gain experience, additional number of faults are
removed without them causing any failure. But if the number of failure observed is more
than the number of error removed then we are having the case of imperfect debugging.
Due to the complexity of the software system and the incomplete understanding of the
software requirements, specifications and structure, the testing team may not be able
to remove the fault perfectly on the detection of the failure and the original fault may
remain or replaced by another fault. While the first phenomenon is known as imperfect
debugging, the second is called fault generation (Kapur et al., 2011; Kapur, Singh, et al.,
2010; Pham, 2006). In case of imperfect debugging the fault content of the software is not

07-Anand.indd 46 2015/4/1 下午 02:08:14

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 47

changed, but because of incomplete understanding of the software, the detected fault is
not removed completely. But in case of error generation the fault content increases as the
testing progresses and removal results in introduction of new faults while removing old
ones.

The concept of imperfect debugging was first introduced by Goel (1985). He
introduced the probability of imperfect debugging in Jelinski and Moranda (1972). Kapur,
Garg and Kumar (1999) and Kapur et al. (2011) introduced the imperfect debugging in
Goel and Okumoto (1979). They assumed that the FRR per remaining faults is reduced
due to imperfect debugging. Thus the number of failures observed by time infinity is
more than the initial fault content. Although these two models describe the imperfect
debugging phenomenon yet the software reliability growth curve of these models is
always exponential. Moreover, they assume that the probability of imperfect debugging
is independent of the testing time. Thus, they ignore the role of the learning process
during the testing phase by not accounting for the experience gained with the progress of
software testing. All these models are continuous time models. Kapur, Singh, et al. (2010)
and Kapur, Tandon and Kaur (2010) have proposed three discrete models taking into
account imperfect fault debugging and fault generation phenomena separately. But even
that framework was restricted to single release of the software. Overcoming this, Kapur,
Singh, et al. (2010) and Kapur, Tandon, et al. (2010) developed many multi release models
but they were formulated in continuous time framework. In this paper, a general discrete
SRGM for multi releases incorporating fault generation and imperfect debugging with
learning has been proposed.

2. Multi up-gradation of software

The present software development environment is very competitive and advanced.
Many independent and well established developing organizations are competing in
the market with similar products and capabilities to attain the maximum market share
and brand value. As such software delivered with full functionalities and very high
reliability built over a period of time may turn out to be unsuccessful due to technological
obsolescence. Therefore now a day’s the software are rather developed in multiple releases
where the latest releases might be developed by improving the existing functionality and
revisions, increasing the functionality, a combination of both or improving the quality of
the software in terms of reliability etc. (Kapur, Singh, et al., 2010; Kapur, Tandon, et al.,
2010). For example we can see the various software in the market named as Windows 98,
Windows 2000, Windows ME, Windows XP, Windows Vista, Windows 7 etc. For another
illustration consider a development firm developing antivirus software. Such a firm can
begin with releasing the product that detects and remove viruses and spywares from

07-Anand.indd 47 2015/4/1 下午 02:08:14

48 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

the computer system. In their second release they can provide the feature of protecting
the system from virus infected emails. Next, they can add the trait of blocking spyware
automatically for the next release. Finally, the fourth release can provide the root kit
protection along with removing hidden threats in the operating system.

This step by step release (base software with features enhancement) is advantageous
for the developing firms in various contexts. Firstly, if a firm implements the complete
characteristic capabilities in first release, than that would delay the product release in the
market in the desired time window. Secondly, launching of new software product may
bring the developing firm in limelight, but the stream of subsequent product releases is
the source of their bread and butter. Moreover releasing different versions of the product
lengthen the market life of product, protect competitive advantages and sustain crucial
maintenance revenue streams.

Software products aren’t static and each release has a limited existence. As soon
as a software product reaches the market, a variety of factors begin creating demand
for changes (Figure 1). Defects require repairs. Competitors offer software with added
features and functions. Evolving technology requires upgrades to support new hardware
and updated versions of operating software. Sales demands new features to win over
prospects. Customers want new functionality to justify maintenance expenditures. These
demands accumulate over time, eventually reaching the point when the software product
must be upgraded with a new version to remain viable in the market. As soon as the new
version is released, the cycle begins again.

For software developing organizations it is not an easy task to design software in
isolation. Developing reliable software is one of the most difficult problems faced by
them. Timely development, resource limitations, and unrealistic requirements can all
negatively impact software reliability. Moreover, there is some interdependence between
their developments. The interdependence between their developments exists in many

Figure 1 Need for Different Releases

07-Anand.indd 48 2015/4/1 下午 02:08:14

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 49

ways, which also affects their reliability. A new release (an upgraded version of the base
software) may come into existence even during its development, at the time of release
or during its operation. The code and other documents related to a release may be some
modification of the existing code and documents and/or addition of new modules and
related modification in the documents. The dependence of the development process of
successive releases necessitates considering this dependence in the reliability growth
analysis.

Kapur, Tandon, et al. (2010) developed multi up-gradation reliability model. In this
paper, the fault removal process for multiple releases is modeled with respect to testing
time (CPU time). This is a continuous time model. But in real life situations most of the
data is collected at discrete time instants so there arises a need for the modeling framework
which is also discrete in nature. The discrete models relate fault removal process to either
number of test cases executed or number of testing weeks etc. These models many a times
provide a better fit as compared to continuous time models. Recently, Kapur, Aggarwal
and Nijhwan (2014) have developed a modeling framework for multi up-gradations in
discrete environment. But they have considered the fault removal process to be depending
on all the previous releases. In the proposed model the fault removal process is related to
the number of testing periods. The assumption of fault removal process to be depending
on all the previous releases has been relaxed and we have considered the dependency
on just previous release. Furthermore, Due to complexity and incomplete understanding
of the software, the testing team may not be able to remove/correct the fault perfectly
on observation/detection of a failure and the original fault may remain resulting in the
phenomenon known as imperfect debugging, or get replaced by another fault causing
error generation. This paper develops a mathematical relationship between features
enhancement and software faults removal process incorporating the aforesaid concepts of
imperfect debugging. The model is developed for four software releases in the software.
It assumes that when the software is upgraded for the first time, some new functionality is
added to the software. The new code written for the software enhancement leads to some
new faults in the software which are detected during the testing of the software. During
the testing of the newly developed code, there is a possibility that the certain faults were
lying dormant in the software which were not removed or detected in the previously
released software version. The testing team also removes these faults before releasing the
up-graded version of software in the market.

The paper has been organized as follows: Section 3 provides the basic Structure for
single release of software which is also the framework for modeling multiple releases;
Section 4 contains the parameter estimation values along with the data description.

07-Anand.indd 49 2015/4/1 下午 02:08:14

50 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

3. Software reliability modelling for single release:
framework for multi-releases

3.1 Model development

During debugging process faults are identified and removed upon failures. In reality
this may not be always true. The corrections may themselves introduce new faults or
they may inadvertently create conditions, not previously experienced, that enable other
faults to cause failures. This results in situations where the actual fault removals are less
than the removal attempts. Therefore, the FRR is reduced by the probability of imperfect
debugging. Besides, there is a good chance that some new faults might be introduced
during the course of debugging (Kapur et al., 2011; Pham, 2006; Yamada et al., 1984).

3.2 Assumptions

The developed below is based upon the following basic assumptions:

(1) Failure observation / fault removal phenomenon is modeled by NHPP.

(2) Software is subject to failures during execution caused by faults remaining in the
software.

(3) Each time a failure is observed, an immediate effort takes place to decide the cause of
the failure in order to remove it.

(4) Failure rate is equally affected by faults remaining in the software.

(5) The debugging process is imperfect.

3.3 Notations

a : Initial Fault content of the software .

a(n) : Total fault content of the software dependent on the number of testing periods.

bi : Proportionality constant.

mi(n) : Mean number of faults removed by n number of testing periods.

Fi : Probability distribution function for the number of testing periods.

pi : The probability of fault removal on a failure (i.e., the probability of perfect
debugging).

αi : The rate at which the faults may be introduced during the debugging process per
detected fault.

In all the above notations, i = release 1 to 4.

07-Anand.indd 50 2015/4/1 下午 02:08:14

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 51

3.4 Formulation

The software testing phase a software system is executed with a sample of test cases
to detect and correct software faults, which cause failures. A discrete counting process
[N(n), n ≥ 0], (n = 0, 1, 2, ...) is said to be an NHPP with mean value function m(n), if it
satisfies the following conditions (Kapur et al., 2011):

There are no failures experienced at n = 0, that is, N(0) = 0.

The counting process has independent increments, that is, the number of failures
experienced during (n, n+1)th testing period is independent of the history and implies that
m(n+1) of the process depends only on the present state m(n) and is independent of its past
state m(n), for x < n.

In other words, for any collection of the numbers of testing periods n1, n2, ..., nk (0
< n1 < n2 < ... < nk) the k random variables N(n1), N(n2) – N(n1), ..., N(nk) – N(nk–1) are
statistically independent.

For any of two numbers of test cases ni and nj where (0 ≤ ni ≤ nj), we have:

 (1)

The mean value function m(n) which is a non-decreasing in n represents the expected
cumulative number of faults detected by n testing periods. Then the NHPP model with
m(n) is formulated by:

 (2)

Therefore, under the above assumptions, the expected cumulative number of faults
removed between the nth and (n+1)th testing period is proportional to the number of faults
remaining after the execution nth test run, satisfies the following difference equation

m(n+1) – m(n) = bp(a(n) – m(n)) (3)

where an increasing a(n) implies an increasing total number of faults expressed as

a(n) = a + αm(n) (4)

Substituting Equation (4) in Equation (3) we have

m(n+1) – m(n) = bp(a + αm(n) – m(n)) (5)

Solving Equation (5) under the initial condition m(n = 0) = 0 we get

 (6)

07-Anand.indd 51 2015/4/1 下午 02:08:15

52 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

This Equation (6) can be rewritten as:

m(n) = a * F(n) (7)

where,

 (8)

Release 1:

A primary purpose of testing is to detect software failures so that defects may be
discovered and corrected. Testing starts once the code of software is written. Before the
release of the software in the market the software testing team tests the software rigorously
to make sure that they remove maximum number of bugs in the software. The first release
is the foundation of the software so testing team are bound to give their best effort.
Although it is not possible to remove all the bugs in the software practically. Therefore,
when the software is tested by the testing team, there are chances that they may detect a
finite number (less than the total content of the faults) of bugs in the code developed.

So finite numbers of bugs are then removed and mathematical equation for it is
given as under:

m1(n) = a1 * F1(n) 0 < n ≤ n1 (9)

where,

 (10)

Release 2:

After first release, the company has information about the reported bugs from the
users; hence in order to attract more customers, a company adds some new functionality
to the existing software system. Adding some new functionality to the software leads
to change in the code. These new specifications in the code lead to increase in the fault
content. Now the testing team starts testing the upgraded system, besides this the testing
team considers dependency and effect of adding new functionalities with existing system.
In this period when there are two versions of the software, a1 * (1 – F1(n1)) is the leftover
fault content of the first version which interacts with new portion of detected faults i.e.,

07-Anand.indd 52 2015/4/1 下午 02:08:15

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 53

F2(n – n1). In addition a fraction of faults generated due to enhancement of the features are
removed with new rate. Here it may be noted that there is a change in the fault detection
rate. This change in the fault detection may be due to change in time, change in the fault
complexity due to new features or change in testing strategies etc. The mathematical
equation of these finite numbers of faults removed can be given by:

m2(n) = a2 * F2(n – n1) + a1 * (1 – F1(n1))F2(n – n1) n1 < n ≤ n2 (11)

where,

 (12)

Release 3:

The modeling for release 3 is done on the basis of the arguments similar to given in
second release along with taking into consideration the fact that the next release will not
contain the remaining faults of all previous releases, rather it will be dependent on the just
previous release. A proportion of faults get removed when the testing team tests the new
code and these faults are removed with the detection proportion F3(n – n2). During the
testing of newly integrated code, apart from the faults lying in the new code, a number of
bugs which have remained undetected i.e., a2 * (1 – F2(n2 – n1)) are also removed with the
detection proportion F3(n – n2). The resulting equation is as following:

m3(n) = a3 * F3(n – n2) + a2 * (1 – F2(n2 – n1))F3(n – n2) n2 < n ≤ n3 (13)

where,

 (14)

Similarly for release 4, the corresponding mathematical expression can be given by:

m4(n) = a4 * F4(n – n3) + a3 * (1 – F3(n3 – n2))F4(n – n3) n3 < n ≤ n4 (15)

where, a4 * and F4(n – n3) can be defined as done in previous steps.

4. Parameter analysis

Parameters estimation is of primary concern in software reliability prediction. For
this, the failure data is collected and is recorded in either of the following two formats-

07-Anand.indd 53 2015/4/1 下午 02:08:15

54 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

the first approach is to record the time between successive failures while second way is to
collect the number of failures experienced at regular testing intervals. The mean number
of faults detected/removed by testing periods m(n) is mostly described by the non-linear
functions and once the analytical solution is known for a given model, the parameters in
the solution are required to be determined. Parameter estimation is done by Non-linear
Least Square (NLLS). For this nonlinear regression (NLR) module of SPSS has been used.

4.1 Model validation

To check the validity of the proposed model to describe the software reliability
growth, it has been tested on Tandem Computers (Wood, 1996). The data set includes
the failure data from 4 major releases of the software at Tandem Computers. In the First
Release, 100 faults were detected after testing for 20 weeks. The Second Release was
done after detecting 120 faults for 19 weeks. The Third and Forth Release were done after
testing for 12 and 19 weeks, removing 61 and 42 faults respectively. Table 1 gives the
value of the parameters and Table 2 provides the comparison criteria’s.

The performance of SRGM is judged by their ability to fit the past software failure
occurrence / fault removal data and to predict satisfactorily the future behavior of the
software failure occurrence / fault removal process. Figures 2 ~ 5 give the Goodness of Fit
curves for the four releases.

Table 1 Parameter Estimates
Release 1 Release 2 Release 3 Release 4

a1 109.24 a2 118.58 a3 62.187 a4 43.316
b1 0.3286 b2 0.2777 b3 0.3332 b4 0.0374
p1 0.7119 p2 0.7028 p3 0.6691 p4 0.6728
α1 0.1899 α2 0.1838 α3 0.1739 α4 0.0097

Table 2 Comparison Criteria
Criteria R2 Bias Variation MSE
Release 1 .990 0.403 2.81 7.71
Release 2 .995 0.214 2.159 7.065
Release 3 .995 0.050 1.490 1.909
Release 4 .992 0.075 1.106 1.163

07-Anand.indd 54 2015/4/1 下午 02:08:15

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 55

Figure 2 Goodness of Fit for Release 1

Figure 3 Goodness of Fit for Release 2

Figure 4 Goodness of Fit for Release 3

07-Anand.indd 55 2015/4/1 下午 02:08:15

56 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

5. Conclusion

Making reliable software is the need of an hour. Every customer needs a more
efficient and bug free software. Software products in general face a fierce competition
in the market and therefore have to come up with upgraded versions of the software. But
the matter of the fact is that up-gradation is a complex and difficult process. The add-
ons can result in distorting the fault removal rate and can cause change in the number of
fault contents. The software reliability multi up-gradation model developed in this paper
incorporates this concept of Imperfect Debugging and is based on the assumption that the
overall fault removal of the new release depends on the faults generated in that release and
on the leftover faults of just previous release (for each release). This helps us in removing
more and more faults in the software and produces highly reliable software. The proposed
multi up gradation model is estimated on a four release data set.

Acknowledgements

The work done in this paper is supported by grants to the second author via grant No
DRCH/R&D/2013-14/4155 and RC/2014/6820 from University of Delhi, India. Further,
we would like to acknowledge that this paper is an extended version of a paper titled “A
Discrete Formulation of Successive Software Releases Based on Imperfect Debugging”
presented at an International Conference on Reliability, Infocom Technologies and
Optimization, January 29 ~ 31, 2013

Figure 5 Goodness of Fit for Release 4

07-Anand.indd 56 2015/4/1 下午 02:08:15

A Discrete Formulation of Successive Software Releases Based on Imperfect Debugging 57

References

Bittanti, S., Bolzern, P., Pedrotti, E. and Scattolini, R. (1988), ‘A flexible modelling approach
for software reliability growth’, in Goos, G. and Hartmanis, J. (Eds.), Software Reliability
Modelling and Identification, Springer Verlag, Berlin, Germany, pp. 101-140.

Goel, A.L. (1985), ‘Software reliability models: assumptions, limitations and applicability’,
IEEE Transactions on Software Engineering, Vol. SE-11, pp. 1411-1423.

Goel, A.L. and Okumoto, K. (1979), ‘Time-dependent error-detection rate model for software
reliability and other performance measures’, IEEE Transactions on Reliability, Vol. 28, No.
3, pp. 206-211.

Jelinski, Z. and Moranda, P.B. (1972), ‘Software reliability research’, in Freiberger, W. (Ed.),
Statistical Computer Performance Evaluation, Academic Press, New York, NY, pp. 465-497.

Kapur, P.K., Aggarwal, A.G. and Nijhawan, N. (2014), ‘A discrete SRGM for multi release
software system’, International Journal Industrial and System Engineering, Vol. 16, No. 2,
pp. 143-155.

Kapur, P.K. and Garg, R.B. (1992), ‘A software reliability growth model for an fault removal
phenomenon’, Software Engineering Journal, Vol. 7, pp. 291-294.

Kapur, P.K., Garg, R.B. and Kumar, S. (1999), Contributions to Hardware and Software
Reliability, World Scientific, Singapore.

Kapur, P.K., Pham, H., Gupta, A. and Jha, P.C. (2011), Software Reliability Assessment with OR
Applications, Springer, London, UK.

Kapur, P.K., Singh, O., Garmabaki, A.S. and Singh, J. (2010), ‘Multi up-gradation software
reliability growth model with imperfect debugging’, International Journal of Systems
Assurance Engineering and Management, Vol. 1, pp. 299-306.

Kapur, P.K., Tandon, A. and Kaur, G. (2010) ‘Multi up-gradation software reliability model’,
Proceedings of the 2nd IEEE International Conference on Reliability, Safety & Hazard,
Mumbai, Indian, pp. 468-474.

Musa, J.D., Iannino, A. and Okumoto, K. (1987), Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, NY.

Ohba, M. (1984), ‘Software reliability analysis models’, IBM Journal of Research and
Development, Vol. 28, No. 4, pp. 428-443.

Pham, H. (2006), System Software Reliability, Springer, New York, NY.

Wood, A. (1996), ‘Predicting software reliability’, Computer, Vol. 29, pp. 69-77.

07-Anand.indd 57 2015/4/1 下午 02:08:15

58 Jagvinder Singh, Adarsh Anand, Avneesh Kumar, Sunil Kumar Khatri

Yamada, S., Ohba, M. and Osaki, S. (1984), ‘S-shaped software reliability growth models and
their applications’, IEEE Transactions on Reliability, Vol. 33, No. 4, pp. 289-292.

About the authors

Jagvinder Singh is working as Assistant Professor in Maharaja Agrasen College, University
of Delhi. He received his Doctoral Thesis in 2012 from Department of Operational
research, University of Delhi. His area of research is Software Reliability Modeling. He
has published several papers in International/National Journals and Proceedings. He is
a lifetime member of the Society for Reliability Engineering, Quality and Operations
Management (SREQOM). E-mail address: jagvinder.singh@gmail.com

Adarsh Anand is doing research in the area of Innovation Diffusion Modeling and Software
Reliability Assessment. Presently he is working as an Assistant Professor in the Department
of Operational Research, University of Delhi (INDIA). He did his PhD. And M Phil in
Operational Research in 2013 and 2010 respectively. He has published several papers in
International/National Journals and Proceedings. He is a lifetime member of the Society for
Reliability Engineering, Quality and Operations Management (SREQOM).

 Corresponding author. Room No. 208, 2nd Floor, Department of Operational Research,
University of Delhi, Delhi 110007, India. Tel: 011-27666960. E-mail address: adarsh.
anand86@gmail.com

Avneesh Kumar is pursuing his PhD from Jiwaji University, MP. Currently he holds the
position of a Lecturer in INMANTEC, UP. He has been active member of the Society for
Reliability Engineering, Quality and Operations Management (SREQOM). E-mail address:
avn119@rediffmail.com

Sunil Kumar Khatri is working as Director in Amity Institute of Information Technology,
Amity University, Noida, India. He is a Fellow of IETE, Sr. Member of IACSIT and of
Computer Society of India and Member of IEEE. He has been conferred “IT Innovation
& Excellence Award for Contribution in the field of IT and Computer Science Education”
by Knowledge Resource Development & Welfare Group Dec, 2012 and the award for
“Exceptional Leadership and Dedication in Research” during the 4th International
Conference on Quality, Reliability and Infocom Technology in the year 2009. He has edited
three books, two special issues and published several papers in international and national
journals and proceedings. His areas of research are Software Reliability, Modeling and
Optimization, Data Mining and Warehousing, Network Security, Soft Computing and
Pattern Recognition. E-mail address: sunilkkhatri@gmail.com

07-Anand.indd 58 2015/4/1 下午 02:08:15

