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Abstract

This dissertation has provided a systematic analysis on the growth and
welfare effects of capital taxation within distinct R&D-based growth models.
In Chapter 2, we employ a first-generation R&D-based growth model to
examine the effcts of capital taxation on innovation and economic growth,
and find that capital taxation has drastically different effects in the short run
and in the long run. In Chapter 3, we set up a semi-endogenous growth
model, and examine whether the Chamley-Judd result of a zero optimal
capital income tax is valid. We find that the optimal capital income tax is
positive, and this result is robust with respect to varying the degrees of
various types of R&D externalities. In Chapter 4, we build up a
second-generation R&D-based growth model which features endogenous
market structure. In line with Chapter 2, we also find that capital taxation has

drastically different effects in the short run and in the long run.
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CHAPTER 1
INTRODUCTION

The linkage among capital taxation, economic growth, and social welfare has
been one of the central issues in the literature on growth economics. As far as
we know, in the real world the estimated effective average tax rates on capital
income are around 40% in the United States and 30% in EU countries. In some
countries, such as the United Kingdom and Japan, the capital income tax rates
are even up to near 60%. However, how much should the capital income be taxed
is another important issue that will never cease being debated by economists and

policymakers.

One of the major topics in the literature on growth economics is whether capi-
tal taxation boosts or impedes economic growth. The answer is hardly conclusive
from both empirical and theoretical perspectives. On the empirical side, a number
of studies have found that capital taxation, such as corporate profit tax and capital
gains tax, is harmful to economic growth (see e.g., Lee and Gordon, 2005; Hunger-
ford, 2010; Arnold et al., 2011; Dahlby and Ferede, 2012), whereas other studies
have found a neutral or positive growth effect of capital taxation (see e.g., Men-
doza et al., 1997; Angelopoulos et al., 2007; ten Kate and Milionis, 2015). On the
theoretical side, earlier studies employing an AK-type endogenous growth model
show that the impact of raising the capital tax rate on long-run economic growth
is negative (Judd, 1985; Chamley, 1986; King and Rebelo, 1990; Rebelo, 1991;
Jones et al.,1993; Pecorino, 1993, 1994; Devereux and Love, 1994; Milesi-Ferretti
and Roubini, 1998), although the quantitative magnitude could be negligibly small
(Lucas, 1990; Stokey and Rebelo, 1995). However, the point to observe is that these

theoretical studies are unanimously centering on capital taxation in capital-driven



growth models.

Another one of the major topics is optimal capital taxation. The pioneering
work by Judd (1985) and Chamley (1986) proposes that the government should
only tax labor income and leave capital income untaxed in the long run. The idea
of a zero optimal capital tax has then been dubbed the Chamley-Judd result, which
turns out to be one of the most well-established and important benchmarks in the
optimal taxation literature. A number of subsequent studies, including Chari et
al. (1994), Jones et al. (1997), Atkinson et al. (1999), and Chari and Kehoe
(1999), relax key assumptions in Judd (1985) and Chamley (1986), and find that
their result to be quite robust. A common fact in these studies is that they focus

on AK-type (capital-based) growth models.

In general, the existing studies on the linkage among capital taxation, economic
growth, and social welfare can be classified into two strands of literature. The first
strand emphasizes the growth engine of capital accumulation. The relevant litera-
ture in this strand includes Judd (1985), Chamley (1986), King and Rebelo (1990),
Jones et al. (1993), Devereux and Love (1994), and Milesi-Ferretti and Roubini
(1998), just to mention a few. The second strand instead highlights the growth
engine of R&D investment. Up till now, to the best of our knowledge, only a few
studies including Lin and Russo (1999), Zeng and Zhang (2002), Haruyama and
Itaya (2006), Aghion et al. (2013), Yilmaz (2013), and Chen et al. (2016) falls
into this strand. As a consequence, it is obvious that, within the context of Ré€D-
based growth models, the issue on the growth and welfare effects of capital taxation
is still an area that is less discussed. Moreover, as reported by Aghion and Howitt
(2009), technological progress driven by innovation and R&D acts as a more im-

portant engine of economic growth compared to capital accumulation.! In view of

! Aghion and Howitt (2009, p.108) report that “TFP growth accounts for about two-thirds of



the fact that innovation is a crucial factor to drive up economic growth, overlook-
ing this facet may lead to inadequate design of tax policies. This dissertation thus

aims to fill this gap.

The dissertation provides a systematic analysis regarding the growth and wel-
fare effects of capital taxation with distinct R&D-based growth models. The mod-
els this dissertation deal with include the first-generation R&D-based growth model
developed by Romer (1990), the semi-endogenous growth model developed by Jones
and Williams (2000), and the second-generation R&D-based growth model devel-
oped by Dinopoulos and Thompson (1998) and Peretto (1998). This dissertation is
composed of five chapters, including this Introduction. The main content of each

chapter can be briefly described as follows.

Chapter 2 makes an extension of the seminal workhorse R&D-based growth
model developed by Romer (1990), and discusses how capital taxation affects eco-
nomic growth in the short run and in the long run. We find that an increase in
the capital income tax rate has both a consumption effect and a tax-shifting effect
on the equilibrium growth rates of technology and output. In the long run, the
tax-shifting effect dominates the consumption effect, thereby yielding an overall
positive effect of capital taxation on steady-state economic growth. However, in
the short run, the consumption effect becomes the dominant force causing an initial
negative effect of capital taxation on the equilibrium growth rates. These contrast-
ing effects of capital taxation at different time horizons may provide a plausible
explanation for the mixed evidence in the empirical literature on capital taxation

and economic growth.

Chapter 3 sets up an innovation-based growth model (semi-endogenous growth

economic growth in OECD countries, while capital deepening accounts for one third.”



model) developed by Jones and Williams (2000), and uses it to examine whether
the Chamley-Judd result of a zero optimal capital income tax is valid. It is found
that the optimal capital income tax is more likely to be positive if labor supply is
endogenous and the government size is relatively large. Moreover, by calibrating
our model to the US economy, it is also found that the result of a positive optimal
capital income tax is robust with respect to varying the degrees of various types

of R&D externalities.

Chapter 4 constructs a second-generation R&D-based growth model developed
by Dinopoulos and Thompson (1998) and Peretto (1998). The main salient feature
of the second-generation R&D-based growth model is that both vertical and hor-
izontal innovations are present simultaneously. In the vertical dimension, each of
incumbent firms engages in in-house R&D to improve the quality of their specific
product. In the horizontal dimension, firms enter the market through the creation
of new products. It is found that, in response to a change in the capital tax rate,
the long-run and short-run responses of the economic growth rate exhibit distinct
patterns. In the short run where the number of firms is fixed, a higher capital
income tax rate is harmful to economic growth. During the transitional process,
with the number of firms adjust endogenously, economic growth keeps on rising as
each of the in-house R&D firms continues to expand its market size. In the long
run, with the equal counteracting strength between the short run and the tran-
sition period, capital taxation is neutral with economic growth. As a result, the
same as Chapter 2, this provides a plausible explanation for the mixed empirical

observations between capital taxation and economic growth.

Finally, some concluding remarks are provided in Chapter 5.



CHAPTER 2
SHORT-RUN AND LONG-RUN EFFECTS OF CAPITAL
TAXATION ON INNOVATION AND ECONOMIC GROWTH

2.1 Introduction

In this chapter, we examine the effects of capital taxation on innovation and eco-
nomic growth. In the literature of endogenous growth, one of the major issues is
whether capital taxation stimulates or impedes growth. Earlier studies employ-
ing an AK-type endogenous growth model show that the impact of raising the
capital tax rate on long-run economic growth is negative (Judd, 1985; Chamley,
1986; King and Rebelo, 1990; Rebelo, 1991; Jones et al., 1993; Pecorino, 1993,
1994; Devereux and Love, 1994; Milesi-Ferretti and Roubini, 1998), although the
quantitative magnitude could be negligibly small (Lucas, 1990; Stokey and Re-
belo, 1995).1 The intuition of this negative growth effect of capital taxation is that
a higher capital tax rate discourages the accumulation of physical capital and is

therefore detrimental to economic growth.

On the empirical side, the results are rather inconclusive. A number of empirical
studies have found that capital taxation, such as corporate profit tax and capital
gains tax, can be harmful to economic growth (see e.g., Lee and Gordon, 2005;
Hungerford, 2010; Arnold et al., 2011; Dahlby and Ferede, 2012), whereas other
empirical studies have found a neutral or even positive effect of capital taxation
on growth (see e.g., Mendoza et al., 1997; Angelopoulos et al., 2007; ten Kate and

Milionis, 2015). Therefore, although the abovementioned theoretical prediction is

!Other than focusing on the long-run growth effect, Frankel (1998) studies the dynamics of
capital taxation during the transition process.



consistent with some of the empirical studies, it seems to contrast other empirical

findings in the literature.

While capital accumulation is undoubtedly an important engine of economic
growth, technological progress driven by innovation and R&D also acts as an im-
portant driver for growth; see Aghion and Howitt (2009, p.109) for a discussion
on data from OECD countries.? Recently, R&D-based growth models pioneered
by Romer (1990) and Aghion and Howitt (1992) have been used to explore the
interrelation between capital taxation, innovation and economic growth; see e.g.,
Lin and Russo (1999), Zeng and Zhang (2002), Haruyama and Itaya (2006) and
Aghion et al. (2013). This chapter contributes to the literature by providing an
analysis of both the short-run and long-run effects of capital taxation on innova-
tion and economic growth within the seminal innovation-driven growth model in
Romer (1990), which is a workhorse model in R&D-based growth theory. In our
analysis, we consider different tax-shifting schemes. Specifically, we examine the
growth effects of capital taxation with tax shifting from lump-sum tax and also

labor income tax to capital income tax.

In the case of tax shifting from lump-sum tax to capital income tax, an increase
in the capital tax rate leads to a decrease in the steady-state equilibrium growth
rate via a consumption effect of capital taxation. Intuitively, a higher capital tax
rate causes households to decrease their saving rate and increase their consumption
rate, which in turn leads to an increase in leisure and a decrease in labor supply.
Given that labor is a factor input for R&D, a smaller labor supply gives rise to
a lower growth rate of technology, which in turn determines the long-run growth

rates of output and capital.

2 Aghion and Howitt (2009, p.108) report that “TFP growth accounts for about two-thirds of
economic growth in OECD countries, while capital deepening accounts for one third.”



In the case of tax shifting from labor income tax to capital income tax, an
increase in the capital tax rate leads to an increase in the steady-state equilibrium
growth rate via a tax-shifting effect of capital taxation. Intuitively, an increase in
the capital income tax rate allows the labor income tax rate to decrease, which
in turn leads to a decrease in leisure and an increase in labor supply. The larger
labor supply gives rise to higher growth rates of technology, output and even
capital despite the lower capital-investment rate caused by the higher capital tax
rate. Although the previously mentioned consumption effect of capital taxation is
also present, it is dominated by the tax-shifting effect in the long run. However,
we find that the relative magnitude of these two effects becomes very different in

the short run.

We calibrate the model to aggregate data in the US to provide a quantita-
tive analysis on the dynamic effects of capital taxation on economic growth. We
consider the case of tax shifting from labor income tax to capital income tax
and find that an increase in the capital tax rate leads to a short-run decrease
in the equilibrium growth rates of technology and output and a gradual conver-
gence to the higher long-run growth rates of technology and output. The reason
for these contrasting short-run and long-run effects is that the consumption effect
of capital taxation is relatively strong in the short run. Intuitively, an increase
in the capital income tax rate leads to a decrease in the steady-state equilibrium
capital-technology ratio. Before the economy reaches this new steady-state capital-
technology ratio, households drastically cut down their saving rate below its new
steady-state level, which in turn increases their consumption rate substantially.
This substantial increase in consumption leads to a substantial increase in leisure
and a substantial decrease in labor supply, which in turn reduces temporarily the

equilibrium growth rates of technology and output. In the long run, the effect of



a lower wage-income tax rate becomes the dominant force and instead raises the
supply of labor, which in turn increases the steady-state equilibrium growth rates

of technology and output.

Our paper is most closely related to recent studies on taxation and economic
growth in the R&D-based growth model. Zeng and Zhang (2002) show that the
long-run growth rate is independent of labor income tax and consumption tax
but decreasing in capital income tax. In contrast, Lin and Russo (1999) analyze
how the taxation of different sources of capital income affects long-run growth and
find that a higher capital income tax rate for innovative firms could be growth-
enhancing if the tax system permits tax credits for R&D spending. Moreover, by
focusing on the stability analysis of equilibria, Haruyama and Itaya (2006) also
show that the growth effect of taxing capital income is positive when the economy
exhibits indeterminacy. Although these two papers find that capital taxation and
economic growth may exhibit a positive relationship, our paper departs from them
in highlighting the contrasting dynamic effects of capital taxation on economic
growth. More recently, Aghion et al. (2013) and Hong (2014) adopt a quality-
ladder R&D-based growth model to investigate optimal capital taxation. Their
primary focus, however, is on the normative analysis with respect to the Chamley-
Judd (Chamley 1986; Judd 1985) result (i.e., the optimal capital tax is zero), while
the present paper focuses on the positive analysis regarding the growth effect of
capital taxation. Furthermore, their analysis does not deal with the case in which
innovation is driven by R&D labor (e.g., scientists and engineers). When R&D
uses labor as the factor input, we find that the effects of capital taxation are
drastically different at different time horizons. This finding may provide a plausible
explanation for the mixed evidence in the empirical literature on capital taxation

and economic growth.



The remainder of this chapter is organized as follows. In Section 2.2, we describe
the basic model structure. In Section 2.3, we investigate the growth effects of
capital taxation. In Section 2.4, we calibrate the model to provide a quantitative
analysis of capital taxation. Finally, some concluding remarks are discussed in

Section 2.5.

2.2 The model

The model that we consider is an extension of the seminal workhorse R&D-based
growth model from Romer (1990).* In the Romer model, R&D investment creates
new varieties of intermediate goods. We extend the model by introducing endoge-
nous labor supply and distortionary income taxes. In what follows, we describe

the model structure in turn.

2.2.1 Household

The economy is inhabited by a representative household. Population is stationary
and normalized to unity. The household has one unit of time that can be allocated
between leisure and production. The representative household’s lifetime utility is

given as:!
(1— L)l

ol 1

U:/ e MInC + 6
0

31n the case of extending the model into a scale-invariant semi-endogenous growth model as
in Jones (1995), the long-run growth effect of capital taxation simply becomes a level effect. In
other words, instead of increasing (decreasing) the growth rate of technology, capital taxation
increases (decreases) the level of technology in the long run.

4For notational simplicity, we drop the time subscript.



where the parameter p > 0 is the household’s subjective discount rate and the
parameter # > 0 determines the disutility of labor supply. n > 0 determines the
Frisch elasticity of labor supply. The utility is increasing in consumption C' and

decreasing in labor supply L € (0, 1).

Two points regarding the utility function in eq. (1) should be noted. First,
to make our analysis tractable, the household is specified to have a quasi-linear
utility function. In the quantitative analysis in Section 2.4, we will consider a more
general utility function in order to examine the robustness of our results. Second,
as pointed out by Hansen (1985) and Rogerson (1988), the linearity in work hours

in the utility function can be justified as capturing indivisible labor.

The representative household maximizes its lifetime utility subject to the bud-

get constraint:

K4a=ra+V/V)a+(l—7x)rgK + (1 —7)wl —C - Z. (2)

The variable K denotes the stock of physical capital. The variable a (= V A)
denotes the value of equity shares of monopolistic firms, in which A is the number
of monopolistic firms and V' is the market value of an invented variety, w is the
wage rate. r4 is the rate of dividends, V /V is the rate of gain or loss of an invented
variety, and rg is the capital rental rate.” The policy instrument Z is a lump-sum
tax. The other policy instruments {77, Tx} < 1 are respectively the labor and

capital income tax rates.”

For simplicity, we assume zero capital depreciation rate.

6We allow for the presence of a lump tax simply to explore the implications of different
tax-shifting schemes. Our main results focus on the more realistic case of Z = 0.

"In our analysis, we focus on the case in which 7x > 0; see for example Zeng and Zhang
(2007) and Chu et al. (2016), who examine the effects of subsidy policies in the R&D-based
growth model.

10



The rates of return on the two assets, physical capital and equity shares, must

follow a no-arbitrage condition at any time:

TA+V/VI(1—TK)TK (3a)

We denote the common net return on both assets as r, i.e., r = ry + V/V =

(1 — TK)TK.

By solving the household’s optimization problem, we can easily derive the typ-

ical Keynes-Ramsey rules:

=1 —7x)rx — p, (3b)

Ql Q-

and also the optimality condition for labor supply, which is in the form of a hori-

zontal labor supply curve given the quasi-linear utility function in eq. (1):

(1 —L)""= X1 —71p)w. (4)

2.2.2 Final goods

There is a single final good Y, which is produced by combining labor and a con-

tinuum of intermediate goods, according to the following aggregator:

A
y = [l / 22 di, (5)
0

where Ly is the labor input in final goods production, x; for i € [0, A] is the
intermediate good of type ¢, and A is the number of varieties of intermediate
goods. The final good is treated as the numeraire, and hence in what follows its

price is normalized to unity. We assume that the final goods sector is perfectly

11



competitive. Profit maximization of the final goods firms yields the following

conditional demand functions for labor input and intermediate goods:
Ly = (1 —a)Y/w, (6)

i = Ly (a/p) ™7, (7)

where p; is the price of x; relative to final goods.

2.2.3 Intermediate goods

Each intermediate good is produced by a monopolist who owns a perpetually
protected patent for that good. Following Romer (1990), capital is the factor input
for producing intermediate goods, and the technology is simply a linear one-to-one
function. That is, the production function is expressed as x; = k;, where k; is the
capital input used by intermediate firm 7. Accordingly, the profit of intermediate
goods firm 7 is:

T = Pilli — Tick;. (8)

Profit maximization subject to the conditional demand function for intermediate

goods firm ¢ yields the following markup-pricing rule:

K
= — > Tg. 9
pi= > (9)

Equation (9) implies that the level of price is the same across intermediate goods
firms. Based on eq. (7) and the production function x; = k;, we have a symmetric
equilibrium among intermediate firms; i.e., z; = x and k; = k. Then, we can

obtain the following profit function of intermediate goods firms:

(1 —a)aY
—

’ﬂ'i:’ﬂ':

12



2.2.4 REé&D

In the R&D sector, the familiar no-arbitrage condition for the value of a variety V/
is:

rV =m+V. (11)
Equation (11) states that, for each variety, the rate of return on an invention must
be equal to the sum of the monopolistic profit and capital gain (or loss) . As in
Romer (1990), labor is the factor input of R&D. The innovation function of new
varieties is given by:

A= @ALy,, (12)

where ¢ > 0 is the R&D productivity parameter and L, denotes R&D labor.

Given free entry into the R&D sector, the zero-profit condition of R&D is

AV =wL, & ¢AV = w. (13)

2.2.5 Government

The government collects taxes, including capital income tax, labor income tax,
and lump-sum tax, to finance its public spending. At any instant of time, the

government budget constraint can be expressed as:
Trrgk K + 1wl + 7 = G. (14)

The variable G' denotes government spending, which is assumed to be a fixed

proportion 3 € (0,1) of final output such that

G =BY. (15)

13



2.2.6 Aggregation

Since the intermediate firms are symmetric, the total amount of capital is K =
Ak; = Ak. Given x; = k;, v; = x, k; = k, and K = Ak, the final output production

function in eq. (5) can then be expressed as:
Y = AV KL (16)

After some calculations using egs (2), (6), (7), (11)-(14), and (16), we can derive

the resource constraint in this economy:

K=Y -C-G. (17)

2.2.7 Decentralized equilibrium and the balanced-growth path

The decentralized equilibrium is a sequence of allocations {C, K, A, Y, L, Ly, Ly,
z, G}.2,, prices {w, 7, i, pi, V}i2, and policies {7k, Tz, Z}, such that at any

instant of time:

a. households maximize lifetime utility (1) taking prices and policies as given;

b. competitive final goods firms choose {x, Ly } to maximize profit taking prices

as given;

c. monopolistic intermediate firms i € [0, A] choose {k;, p;} to maximize profit

taking rx as given;
d. R&D firms choose L4 to maximize profit taking {V,w} as given;
e. the market for final goods clears, i.e., K =Y — C — G;

f. the labor market clears, i.e., L = L4 + Ly;

14



g. the government budget constraint is balanced, i.e., Txrx K +7,wL+ 7 = G.

The balanced growth path is characterized by a set of constant growth rates
of all economic variables. Let v denote the growth rate of technology and a “~”
over the variable denote its steady-state value. Along the balanced growth path,

we have

¢ AL
E: :Z:'y,L:Ly:LA:VZO. (17&)

2.3 Long-run growth effects of capital taxation

We now turn to examine the long-run growth effects of the capital tax rate. In
this section to obtain analytical solutions, we assume that n = 0. As a result, to
maintain a constant proportion of government spending, raising the capital tax
must be accompanied by a reduction in another tax. As revealed in eq. (14), this
can be either a reduction in the lump-sum tax (if it is available) or a reduction in
the labor income tax (if the lump-sum tax is not available). In the analysis that

follows, we deal with each of the two scenarios in turn.

2.3.1 Tax shifting from lump-sum tax to capital income tax

Equipped with the definition of the decentralized equilibrium in Section 2.2.7,and

defining w = w/A, ¢ = C/A, and z = Z/A, we can express the steady-state

15



equilibrium conditions as follows:

¥ = (1=7x)Tx —p, (18a)
O = 0¢/(1—7p), (18b)
Ly = (1-a)i°Li /o, (18c)
i = Ly(a®/ig)Y1, (18d)
7 = ¢aLy, (18e)
Fo= (1=7x)k, (18f)
¥ = o6La, (18g)
L = Ly+ Ly, (18h)
¥o= (=P Ly ¢/, (181)
TrTKE + Tl + 7 = BroLie, (18))

in which ten equations are used to solve ten unknowns 7, 7, Ly, La, L, @, ¢,
Z, 7 and Z. We briefly discuss how we obtain egs (18). Equation (18a) is derived
from the usual Keynes-Ramsey rule (3b). Equation (18b) is derived from the opti-
mality condition for labor supply (4). Equations (18c) and (18d) are respectively
the demand functions for final-goods labor and intermediate goods, (6) and (7).
Equation (18¢) is derived from inserting V' = 0 into the no-arbitrage condition
in the R&D sector (11), and by using egs (6), (10) and (13). Equation (18f) is
the no-arbitrage condition of asset. Equation (18g) is derived from the innovation
function of varieties (12). Equation (18h) is the labor-market clearing condition.
Equation (18i) is derived from dividing both sides of the resource constraint (17)
by A and using the condition Ax = K. Equation (18j) is derived from dividing

both sides of the government constraint (14) by A and using the condition G = Y.

We first use egs (18a), (18e) and (18f)-(18h) to eliminate {7, 7, 7k } and express
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{Ly, L4} as functions of L given by

7 _I/“‘/O/Q25

y = —/—,
1+«

i ZQE—P/é
1+«

These two equations indicate a positive relationship between {L4, Ly} and L.
Moreover, from the previous condition for L4, we can derive the condition g =
(aL — p)/(1 + @), which shows that the steady-state equilibrium growth rate of

technology is increasing in L. Thus, we have

snﬁ—sn@—snﬁ (19)
g aTK P aTK ~4 87’[( i

Accordingly, to investigate the growth effect of the capital tax rate, it is convenient

to draw an inference from examining the effect of the capital tax rate on labor L.

We now derive an equilibrium expression of labor L. By using eqs (8) and (9),
we have m = (£ — 1)FxK/A. This expression together with eq. (10) implies that

rg K = o?Y. Then, dividing both sides of eq. (17) by Y yields

K C
SR R B
Ty -y

By inserting C/Y = (1 —7.)(1 —a)/(6Ly), which is derived from eqs (4) and (6),
and g K = o?Y into the above equation and using eqgs (18e), (18f), and (18g)
along with the conditions for Ly and L4, we can obtain the following equation

with one unknown L:

__p+a)
ad(L +p/d)

Simplifying this equation yields

(1-— TL)SI —a)(1+ 04).

Jota=r=1-0- B

i 1 {1—71 a(l—71x)p (20)

_ rr_r
1—®(rg) | 0 1-a) ¢] ¢
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where (1) = (8 — a?7k)/(1 — a?) is a composite parameter and 7, is an ex-

ogenous policy parameter. Then, from eq. (20), we can obtain the following

relationship:
oL a? l—7, al—7k)p Il+ap
g _ P _n_a r
S T %) A ey A e
which can be further simplified to®
oL a1+ a)La+2ap/¢| <o (21)

Otk (I—a?)[l— (k)|

From eqgs (19) and (21), we have established the following proposition:

Proposition 1 In the case of tax shifting from lump-sum tax to capital income
tax, raising the capital income tax rate reduces the steady-state equilibrium growth

rate.

Equation (19) is the key to understanding Proposition 1. It essentially says
that the effect of the capital tax rate on long-run growth hinges on its effect on
labor L. When the capital tax rate is higher, households tend to reduce their
investment rate and increase their consumption rate. The increase in consumption
raises leisure and reduces labor supply (by shifting up the horizontal labor supply
curve). Therefore, a higher capital tax rate reduces the equilibrium levels of labor

input, R&D labor and economic growth.

8The following reasoning ensures that 1 — ®(7x) = [1 — 8 — a?(1 — 7x)]/(1 — a?) > 0. The
steady-state consumption-output ratio is C/Y = 1— 8 — a?(1 — 1) + &*(1 — 7x)p/(F + p).
Therefore, lim, .o C/Y = 1— 8 —a?*(1 —7k). In other words, one can restrict 1 — ®(7x) > 0 by
appealing to the fact that C'/Y > 0 for all values of p.
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2.3.2 Tax shifting from labor income tax to capital income

tax

A lump-sum tax is not a realistic description in most economies. In this subsection,
we therefore set aside the possibility of a lump-sum tax and deal with the more
realistic case in which a rise in the capital tax rate is coupled with a reduction in
another distortionary tax. This kind of tax shifting has been extensively investi-
gated in the literature on factor taxation; see e.g., Judd (1985), Chamley (1986),
Niepelt (2004), Aghion et al. (2013) and Chen and Lu (2013). Under such a sit-
uation we drop Z from the model in this subsection. Thus, eq. (18j) is rewritten
as:

TRTRE + 7ol = BE%Ly . (22)
It is useful to note that in eq. (22) the labor income tax rate 7, becomes an
endogenous variable because it needs to adjust in response to a change in the

capital tax rate.

The macroeconomy is now described by eqs (18a)-(18i) and (22) from which
we solve for ten unknowns %, 7x, Ly, La, L, @, ¢, &, 7 and 71. By arranging eq.
(22) with eqgs (6), (16), (18¢c), and the condition rx K = o*Y’, we can obtain

p— 2 [
= Ol (14 2 o),

where the second equality uses Ly = (L+p/¢)/(1+a). Using the above condition
and eq. (20), we can solve the two unknowns {L,7;} and obtain the following
quadratic equation:

?l?— i—l— a(l —7g)

p po (1=a)[1 = P(7k)]

This quadratic equation has two solutions, denoted as L; and Lo, which are given

d(7k)

T

}m

by:
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B(tk) + v/ B(tk)? — 4®0(1x)9/{[1 — ®(7K)|p0}

b= 20/p

(23a)

7 _ Blrx) = VB(k)* — 48(7)0/{[L - (7x)]p0}
: 20/p ’
whete B(rx) = ¢/(pf) =1 = o(1 = 71)/{(1 = @)[1 = @(7x)]} is a composite

(23b)

parameter.’

To ensure that L is positive, we assume that the set of parameters jointly

satisfies the condition B > /4®¢/[(1 — ®)pd]. Moreover, we restrict our analysis
to the case where an increase in the capital tax rate is coupled with a decrease in
the labor tax rate. By doing so, we can show that L; is the only possible solution

to this system.!® From eq. (23a), we can derive the relationship:

0Ly  p | OB | BIB/O7ik +2¢*/[(1 = a®)(1 — ®)*pf]
ok 20 {8n< - VB2 — 10¢/[(1 — @) ph)] } >0 3

where 0B/ = a[l = ® +a*(1 — 7x)/(1 — )] /{(1 — a)(1 — ®)?} > 0. The

result in eq. (24) leads us to establish the following proposition:

Proposition 2 In the case of tax shifting from labor income tax to capital income
tax, raising the capital income tax rate increases the steady-state equilibrium growth

rate.

It would not be difficult to understand the intuition underlying the positive

growth effect given that we have already shown the importance of equilibrium

9For notational simplicity, we suppress the argument of ®(7) and B(7f) in the following
equations.

19Based on the definition of tax shifting, an increase in one tax rate should be coupled with a
fall in another tax rate. In Appendix 2.A, we will show that when L = Lo, to hold a constant
proportion of the government spending, the labor tax rate actually increases in response to an
increase in the capital tax rate. In this paper, we rule out this unrealistic case and only focus on
the solution L = L.
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labor input on economic growth from previous discussion. In the present case,
there are two conflicting effects on labor supply. The first is the consumption
effect that we discussed in Proposition 1; i.e., raising the capital tax rate induces
the households to lower the investment rate and increase the consumption rate,
which in turn reduces labor supply. The second effect emerges from the channel
of shifting taxes from labor income to capital income. A rise in the capital income
tax rate leads to a reduction in the labor income tax rate, which tends to boost
labor supply. In particular, this latter tax-shifting effect has a more powerful direct
impact on the labor market so that it dominates the former one. As a result, the
net effect is positive such that a higher capital income tax rate stimulates economic

growth in the long run.

2.4 Quantitative analysis

To examine the robustness of our results, we generalize the utility function as

follows:

00 1—1T1 1-n
U = / |:1Il C —I— 9<1—) e_ptdt, (25)
0 -1

where > 0 determines the Frisch elasticity of labor supply. Equation (25)
nests eq. (1) as a special case when = 0. The model features 7 parameters:
{p,a,n,B,0,6,Tk}. We consider the following standard parameter values or em-
pirical moments in the literature. First, we set the discount rate to p = 0.04 and
the capital share to a = 0.30. Second, we set 7 = 1.67, which implies a Frisch
elasticity of 1.2; see Chetty et al. (2011). Third, in line with Belo et al. (2013),
the government spending ratio is set to § = 0.20. Fourth, to obtain a leisure time
of two-thirds (i.e., L = 1/3), we set § = 1.17. Fifth, to generate a steady-state

output growth rate of 1.92%, which is the per capita long-run growth rate of the
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US economy, we set ¢ = 0.65. Finally, the benchmark value of the capital tax
rate is set to 7 = 0.36; see for example Lucas (1990). The parameter values are

summarized below.

Table 2.1: Calibrated parameter values

p 0 n o 10) 6] TK
0.04 1.17 1.67 0.30 0.65 0.20 0.36

Figure 2.1 presents the growth effects of varying the capital income tax rate
from 0 to 0.6. We can clearly see that, as the capital tax rate increases, the steady-
state equilibrium growth rate increases. From this illustrative numerical exercise,
we find that if the government raises the capital tax rate from the benchmark
value of 36% to a hypothetical value of 50%, the steady-state equilibrium growth
rate increases from 1.92% to 2.02%. The intuition can be explained as follows.
Although an increase in the capital tax rate exerts a negative effect on economic
growth by depressing capital accumulation, it also causes a fall in the labor income
tax rate, which boosts labor supply and thus is beneficial to R&D and economic
growth. In the long run, the latter effect dominates. Consequently, the steady-
state equilibrium growth rate increases in response to a rise in the capital income

tax rate.!!

In the rest of this section, we simulate the transition dynamics of an increase in
the capital income tax rate. The dynamic system is presented in Appendix 2.B. We
consider the case of an increase in the capital income tax rate by one percentage

point (i.e., from 36% to 37%).!? First of all, the higher rate of capital taxation

HOur simulation result is robust if we introduce dividend income taxes into our model, see
Appendix 2.C.

12In the case of a larger increase in the capital income tax rate, the qualitative pattern of the
transitional paths of variables remains the same. Results are available upon request.
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Figure 2.1: Long-run growth effect of capital taxation

leads to a decrease in the investment rate and an increase in the consumption rate

as shown in Figures 2.2 and 2.3, where investment [ = K.
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Figure 2.2: Transition path of the investment rate
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Figure 2.3: Transition path of the consumption rate

The lower capital-investment rate gives rise to an initial fall in the capital
growth rate as shown in Figure 2.4, which contributes to an initial fall in the output
growth rate as we will show later. The rise in the consumption rate increases leisure
and decreases labor supply as shown in Figure 2.5. This decrease in labor supply
reduces the amount of factor input available for R&D. As a result, the growth rate

of technology also decreases initially as shown in Figure 2.6.
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Figure 2.5: Transition path of labor supply
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Figure 2.6: Transition path of the technology growth rate

Although tax shifting resulting from a higher capital income tax rate gives rise
to a lower labor income tax rate, this effect is weak in the short run. However, it
becomes a stronger force in the long run as shown in Figure 2.7. As a result, labor
supply eventually rises above the original level, which in turn leads to a higher
steady-state equilibrium growth rate of technology. Therefore, the initial drop in
the growth rates of output and capital is followed by a subsequent increase. In
the long run, the steady-state equilibrium growth rate of output is higher than the
initial steady-state equilibrium growth rate as shown in Figure 2.8. To sum up,
the reason for the contrasting short-run and long-run effects of capital taxation
on economic growth is that the consumption effect is stronger (weaker) than the

tax-shifting effect in the short (long) run.
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Figure 2.7: Transition path of the labor tax rate
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2.5 Conclusion

In this chapter, we have explored the short-run and long-run effects of capital
taxation on innovation and economic growth. Our results can be summarized as
follows. An increase in the capital income tax rate has both a positive tax-shifting
effect and a negative consumption effect on innovation and economic growth. In
the long run, increasing the capital tax rate has an unambiguously positive effect
on the steady-state equilibrium growth rate because the positive tax-shifting effect
strictly dominates the negative consumption effect. However, along the transitional
path, increasing the capital tax rate first decreases the equilibrium growth rates of
technology and output before these growth rates converge to a higher steady-state
equilibrium level. These contrasting implications of capital taxation on economic
growth suggest that a complete empirical analysis of capital taxation and economic
growth needs to take into consideration the possibility that the effects of capital

taxation change sign at different time horizons.
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Appendix 2.A

The system has ten equations, (18a)-(18i), and (22). After some calculations, we

can derive the following expressions for L and 7:

?~2_ ﬂ_ B a(l—TK) ~ ) _
T i ea-) e (59
Fo= 14 (oD, (42)

where ® = (8 — o®7x)/(1 — a?). Equation (A1) gives the two solutions for L:

p (B + /B —19/[(1 — )pf]

1= 2¢ ) (A3)

;|\ (B- VP - jj¢/[(1 — @)pf]) | "

where B = ¢/(pf) — 1 — (1 —7x)/[(1 — a)(1 — ®)].

As mentioned in the main text, our analysis focuses on the case where the
notion of tax shifting is sustained. That is, we impose the condition 97 /97k < 0.

We can then show that the condition 07, /07k < 0 does not hold if L = Lo.

By plugging L, into eq. (A2) and differentiating it with respect to 7x yields:

aTK

/2. (A5)

{a(l —a+a(l —pl/d)) N OA

1—a? Tk
— L2

where A = \/B2? — 49¢/[(1 — ®)pf] and
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oNn 1 0B 20%¢
( orr T T a?) (- q>)2p9> -0 (A6)

arg A
where 0B /01 > 0. It is clear from eq. (A5) that 07./07k|,_;, is positive,
which contradicts the assumption of tax shifting. Therefore, we should rule out

the possibility L = Ls.
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Appendix 2.B

This appendix solves the dynamic system of the model under tazx shifting from
labor income tazes to capital income taxes (Z = 0). The set of equations under

the model is expressed by:

1/C = )\ (B1)
01 —L)™" = A1 —7)w (B2)
ro= (1-71g)rg (B3)
C/C = (1—7x)rk —p (B4)
wly = (1—a)Y (B5)
z = Ly(a?/rg)"/t" (B6)
reK = oY (B7)
Ar—=—a(l — @)Y (BS)
ro= %—F% (B9)
G = Y (B10)
BY = 7grxK + tpwl (B11)
Y = K*(ALy)'"™™ (B12)
K =Y-C-G (B13)
A = ¢AL, (B14)
vV o= %A (B15)
L = Ly+La (B16)

in which 16 equations are used to solve 16 unknowns endogenous variables {C),

L, A K, Ly, z, rg, m, v, G, 7, Y, A, La, V, w}, where \ denotes the Hamil-
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tonian multiplier. Based on K = Az, eqs (B1), (B2), (B5), and (B12) and let

f = C/K be the ratio between consumption and capital, we can obtain:

L=1—[1/0f) 7)1~ a)(1/Ly)(Ly/z)" "], (B17)

Based on egs (B5), (B7), and (B11), we have:

Pk ly,

B18
11—« L ( )

T =

We now turn to deal with the transitional dynamics of the model. By using

x = K/A, egs (B16), (B17), and (B18), we can infer the following expression:

L:L(x7f7LY;TK)> (Blg)
where
oL (1—-a)
—_—_ = ) B20a
Ox (- + (1—TTLL)L) ( )
oL 1
— = , B20b
oF = Ft o) (200)
B—a’Tk Ly 1— +
oL _ ( 1-a LT])/( :-L) Oé’ (BQOC)
OLy Iy(=tz + a=z)
2Ly /(1 —a)(1 —
oL _ (@)/(1-a)-r) 5200
07K <_1T + (1,7-L)L)

vV o w A



From K = Az, egs (B5), and (B12), we can further obtain:

w/w=AJA - aLly/Ly + ai/z. (B20f)

Additionally, substituting eq. (B20f) into eq. (B20e) yields:

1% : :

v a(@/x — Ly /Ly). (B20g)
Combining eqs (B3), (B5), (B7), (B8), (B9), (B12), and (B15), we can obtain:
V

)17 = agLy + v (B21a)

(1~ ri)ad(2X

Substituting eq. (20g) into egs (B21a), (B21a) can be rearranged as:

Ly

Ly/Ly = QbLY + ZL’/:L' — (1 — TK)Oé(?)l_a. (leb)
Based on z = K /A, we have the result:
i/r=K/K — AJA. (B21c)

Substituting f = C/K, eqs (B10), (B13), (B14), and (B16) into eq. (B2lc), we

have:

b= (1= B)() "~ = o(L— L), (B21d)

From egs (B21b) and (B21d), we can obtain:

v /Ly = (1= 8 —a(l— TK))(L:U—Y)l—a = o(L - 2Ly). (B21e)
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Moreover, from egs (B3), (B4), (B5), (B7), and (B12) we can obtain:

Ly

C/C = (1-7g)a*( . ) — p. (22a)

Based on f = C'/K, we have the following expression:

f/f=C/C—K/K. (B22b)

Substituting eqs (B10), (B12), (B13), and (B22a) into eq. (B22b), we can derive:

, Ly .
/5 = (0= TR)a? = (1= D)D) ~p+ 1 (B22c)
Based on egs (B19), (B21d), (B2le), and (B22c), the dynamic system can be

expressed as:

i/ = (1= )Y = f = o(Ia f L Tr) — L), (B230)

f1F = (@ =ia® — (1= B
by/ly = (1=f—a(l = ) ED — f — (K, f, Lyis) — 2Ly).

(B23c)

) T =p+f (B23b)

Linearizing eqs (B23a), (B23b), and (B23c) around the steady-state equilibrium

yields:

x bir bz bis T —I bi4
f = | ba bao b3 f— f + | b | 9Tk (B24)
LY b3y b3y b33 Ly — EY by
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where

by = —(1—a)(1 = B)(£x)'=e — gp 2l

biz = w(—1 — p( RGP,

bis = (1= )(1 = B)(L0)~ — gu(2Lofloms) )

T

biy = —¢(—8L(x’f7LY;TK)>7

OTK

b = —(1—a)((1 =7x)a® — (1= B))(2) (L),

by = f,

byy = —a?(EX)=ef,

b = —(1= )(1 = = all = i) (L) 2 = 2ol

S ox

oL Ly;
b32 = —Ly — ¢WI’Y?

bos = (1= a)(1 — B —a(l —7y)) ()= — g(LeLlrmd [ op ),

bsa = oLy (Lr)imo — g(PHELLETA )

Let ¢, ¢35, and /3 be the three characteristic roots of the dynamic system.
We do not analytically prove the saddle-path stability of the dynamic system;
instead, we show that the dynamic system features two positive and one negative
characteristic roots numerically. For expository convenience, in what follows let
¢, be the negative root and /5, and /3 be the positive roots. From eq. (B24), the

general solutions for x;, f;, and Ly, can be described by:
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r;, = I+ D1t + Dye® 4 Dyest, (B25a)

ft = f~+ thleélt -+ thgebt -+ thgeESt, (B25b)

Ly, = Py + 01 — biy — biahy Dyt + Uy — b1y — bighy Dyelst + l3 — by — bighg Dyetat,
b13 b13 b13

(B25¢)

where h; = [(51 - b33)(€1 - bn) - b31b13]/[b32b13 + b12(€1 - 533)]7 he = [(52 - 533)(52 -
bi1) — bs1bis]/[bs2biz + bia(la — bs3)], hs = [(€5 — bss)(l3 — b11) — ba1bis]/[bs2bis +

bi2(l3 — bss)], and Dy, Dy and D3 are undetermined coefficients.

The government changes the capital tax rate 7y from 7 to 751 at t=0, based
on egs (B25a)-(B25c), we employ the following equations to capture the dynamic

adjustment of x;, f;, and Ly :

T(TKo); t=0"
o (Tico) (B26a)

T(Tx1) + D1ea! + Dyef? + Dgefst; t > 0F

o= A 77 (B26b)
f(Tr1) + hiDret + hyDgoe®t + hyDsetst; ¢ > 07F
-
Ly(Tko); t=0"
Ly; = B
k Ly(TKl) + 41_b151;b12h1 Dleélt + é2—b11;1—3b12h2 Dgebt + €3—b1gl—3b12h3 Dge&”t; t >0t
(B26¢)

where 0~ and 0" denote the instant before and after the policy implementation,

respectively. The values for Dy, D,, and D3 are determined by:
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To- = Lo+, (B27a)

Equation eq. (B27a) indicates that the level of intermediate goods remains
unchanged at the instant of the policy implementation. Equation (B27b) is the
stability condition which ensures that all x;, f;, and Ly, converge to their new

steady-state equilibrium. By using eqs (B27a) and (B27b), we can obtain:

Dy = &(7ko) — Z(TK1). (B28)

Inserting eqs (B27b) and (B28) into egs (B26a)-(B26¢) yields:

Z(TKo); t=0"

Ty = (B29a)
53(7'[(1) —+ (i‘(TKo) — ZZ’(TKl))Gelt, t > 0+
\
4
£ T ; t= O_
£ = f (Tx0) (B29b)
\ f(Tr1) + h(E(Tro) — B(Tr1))e™; > 0F
4
Ly (7 : t=0"
Ly, = | D) (B29¢)
Ly (Tk1) + —gl_blgl_sbmhl (Z(Tro) — T(Tr1))e™; ¢ >0F
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Appendix 2.C

In the case of tax shifting from labor income taxes to capital income taxes, raising
the capital income tax rate increases the steady-state equilibrium growth rate.
This result relies on some assumptions. In this appendix, we will relax them and
examine whether the Proposition 2 is still robust. Specifically, this appendix takes
into account dividend income taxes. We will use a quantitative analysis to show

that Proposition 2 still holds if we introduce dividend income taxes into our model.

In subsection 2.3.2 we deal with a tax-shifting from labor income taxes to
capital income taxes. In this appendix we relax this assumption by considering
tax-shifting from labor income taxes to both capital income taxes and divident
income taxes. with this consideration, household’s budget constraint reported in
eq. (2) and government’s budget constraint reported in eq.(22) can be respectively

modified as follows:

K4+a=(1-70ra+V/V)a+ (1 —7x)rgK + (1 —7,)wL - C, (C1)

TTk K + TATAVA+ 7w L = BY. (02)

where 74a is agent’s total dividend income. The rates of return on the two assets,
physical capital and equity shares, must follow a no-arbitrage condition at any

time:

TE(l—TA)TA+V/V:(1—TK)TK (C3)

Given that the government imposes the same tax rate on both capital income and

dividend income (7 = 74) and the long-run market value of an invented variety
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V is equal to constant since V' = w/(¢A), and eq. (17a) hold in the long run, we
then have:

TR =T4. (C4)

From egs (18a)-(18i), (C1), (C2), (C3), and (C4), after some tedious calculations

as well as defining L as the level of steady-state labor supply, we then have:

o1 — L)~ [1 =5 . iil? T P (1) —22 | (c3)

(1 —a)g
B —a*rg (1 =+ (1_a)TK) L+

a(l—TK)

(1—a?) L

-

P
- 1- 3

From eq. (18g), La = (aL — p/®)/(1 4+ «), eq. (C3), and the following standard
parameter values, we can obtain values of long-run growth rate with respect to
varying the capital income tax rate. The parameter values are summarized below

in Table 2.C.1

Table 2.C.1: Calibrated parameter values

p 0 n o o B Tk
0.04 1.17 1.67 0.30 065 0.20 0.36

Figure 2.C.1 presents the growth effects of varying the capital income tax rate
from 0 to 0.6. We can clearly see that, as the capital tax rate increases, the steady-
state labor supply increases (see Figure 2.C.2), and thus the growth rate increases
(see eq.(19)). The intuition can be explained as follows. Although an increase
in the capital tax rate and dividend income tax rate exerts a negative effect on
economic growth by depressing household’s saving, it causes dramatic fall in the
labor income taxes, which boosts labor supply and thus is beneficial to R&D and
economic growth. In the long run, the latter effect dominates. Compared with

tax-shifting from labor income taxes to capital income taxes, tax-shifting from

39



labor income taxes to both capital income taxes and dividend income taxes leads
to lower wage income taxes and hence results in higher labor supply (see Figure
2.C.2). However, our result is robust if we consider tax-shfiting from labor taxes

to both capital income taxes and dividend income taxes.
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CHAPTER 3
OPTIMAL CAPITAL TAXATION AND R&D EXTERNALITIES

3.1 Introduction

Capital income is taxed worldwide. The estimated effective average tax rates on
capital income are around 40% in the United States and 30% in EU countries. In
some countries, such as the United Kingdom and Japan, the capital income tax
rates are even up to near 60%. From the perspective of welfare maximization,
whether these capital tax rates are too high or too low is a question that will never

cease being debated by economists and policymakers.

Despite that capital taxes are commonly levied in the real world, a striking
theory put forth by Judd (1985) and Chamley (1986) suggests that the government
should only tax labor income and leave capital income untaxed in the long run. A
number of subsequent studies, including Chari et al. (1994), Jones et al. (1997),
Atkinson et al. (1999), and Chari and Kehoe (1999), relax key assumptions in
Judd (1985) and Chamley (1986), and find their result to be quite robust. The
idea of a zero optimal capital tax has then been dubbed the Chamley-Judd result,
which turns out to be one of the most well-established and important benchmarks

in the optimal taxation literature.

In this paper, we revisit the Chamley-Judd result in an innovation-based growth
model. There are several reasons with regard to why we choose this environment to
study optimal taxation. First, as stressed by Aghion et al. (2013), the considera-
tion of growth seems not to play much of a role in the debate of the Chamley-Judd

result. However, given that the recent empirical evidence suggests a significant
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impact of the tax structure on economic growth (e.g., Arnold et al., 2011), it is
more plausible to bring the role of growth into the picture. Second, along the line
of the optimal taxation literature, production technology is treated as exogenously
given. The role of endogenous technological change driven by R&D has thus been
neglected in previous models. In view of the fact that innovation is a crucial factor
in economic development as well as in the improvement of human well-being, over-
looking this facet could lead to inadequate design of tax policies. Our study thus
aims to fill this gap. Third, as pointed out by Domeij (2005), a key premise in early
contributions supporting the Chamley-Judd result is that there exist no inherent
distortions (externalities) in the economy. If incomplete markets are present, the
optimal capital income tax might be different from zero. Thus, we introduce an
innovation market featured with various R&D externalities put forth by Jones and
Williams (2000). Within this framework we can study how the optimal capital

taxation and R&D externalities interact in ways not, heretofore understood.

By calibrating the model to the US economy, our numerical analysis shows that
the optimal capital income tax is significantly positive at a rate of 12 percent. The
reason for a positive optimal capital income tax in our R&D-based growth model
can be briefly explained as follows. In essential, the Chamley-Judd result involves
a tax shift between capital income tax and labor income tax. The basic rationale
behind a zero optimal capital tax is that taxing capital generates more distortion
than taxing labor, because taxing capital creates a dynamic inefficiency for capital
accumulation. In our R&D-based growth model, by contrast, labor is considered
as the main input of innovation, as typically specified in standard R&D-based
growth models (e.g., Romer, 1990; Jones, 1995; Acemoglu, 1998). Under such a
framework, taxing labor has a detrimental effect on the incentives to innovation

and growth. This introduces a justification for taxing capital income instead of
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labor income. On this ground, it might be optimal to have a non-zero capital

income tax rate.

The main contribution of this study is to link optimal capital taxation to the
features of innovation process. We vary the parameters capturing important R&D
externalities and see how the optimal capital income tax changes in response.
Our main findings can be briefly summarized as follows. First, under most cir-
cumstances, the positive optimal capital income tax still holds. Second, when
knowledge spillovers are strong and/or the duplication externalities are small (in
which cases the underinvestment of R&D is more likely), it is more likely to have
a positive optimal capital income tax rate. Third, when creative destruction is
more important during the R&D process, the optimal capital income tax should
be higher (smaller) if the monopolistic markup is constrained (unconstrained) by
the parameter of creative destruction. Fourth, a higher government spending ratio

pushes toward a positive optimal capital income tax.

Finally, it is well-known in the existing studies (e.g., Aiyagari, 1995; Judd,
1997, 2002; Coto-Martinez et al, 2007) that when the intermediate firms are im-
perfectly competitive, the production level is too low compared to social optimum.
Accordingly, the government should subsidize capital to induce a higher level of
production. This means that the optimal capital income tax tends to be negative,
in particular when the monopolistic markup is higher. However, our results show
that the optimal capital income tax and the markup display an inverse-U shaped
relationship, meaning that there is another effect of the markup on the optimal
capital tax, which we call the R&D effect. To be more precise, in an R&D-based
growth model, the monopolistic rents go to the upstream R&D sector. A higher

markup means that the R&D sector is more important. Under such a situation,
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subsidizing capital financed by taxing labor has a detrimental effect on the in-
centives to innovation, which reduces growth and welfare. Considering this R&D
effect, an increase in the monopolistic markup does not necessarily result in a lower

optimal capital income tax.

Our study related to a vast literature attempting to overturn the Chamley-
Judd result and obtaining a positive optimal capital income tax (e.g., among
others, Chamley, 2001; Erosa and Gervais, 2002; Domeij, 2005; Golosov et al.,
2006; Conesa et al., 2009; Aghion et al., 2013; Chen and Lu, 2013; Piketty and
Saez, 2013). This paper contributes to the literature by introducing the role of
endogenous technological change. Two papers studying optimal factor tax within
the framework of an endogenous growth model are closely related to the present
paper. Chen and Lu (2013) consider a human capital-based endogenous growth
model developed by Lucas (1988). They find that a switch from labor income
taxes to capital income taxes always enhances growth and welfare. Thus, the gov-
ernment should tax capital income to a maximum level of 99%. Aghion et al.
(2013) also introduce R&D-based growth into the debate of the Chamley-Judd
result. However, our paper differs from Aghion et al. (2013) in the following ways.
First, Aghion et al. (2013) consider a Schumpeterian quality-ladder growth model,
while we adopt an expanding-variety R&D model (Romer, 1990) incorporating the
feature of creative destruction by following Jones and Williams (2000). Second,
Aghion et al. (2013) consider a lab-equipment innovation process (i.e., R&D uses
final goods as inputs), while we assume a knowledge-driven innovation process (i.e.,
R&D uses labor as inputs). Under our setting, therefore, the welfare costs of tax-
ing labor would be larger than that in their model. Third, in Aghion et al. (2013),
the positive optimal capital income tax sustains when the government spending of

output ratio exceeds about 38%, which is much larger than the empirical value.
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In our analysis, by contrast, the optimal capital income tax is positive even if the
government spending ratio is quite small (around 14%). Finally, Aghion et al.
(2013) do not examine how the optimal capital income tax responds to various

R&D externalities, which is the main focus of our analysis.

The remaining of the paper proceeds as follows. In Section 3.2 we describe the
R&D-based growth model featuring creative destruction and various types of R&D
externalities elucidated by Jones and Williams (2000). In Section 3.3 we analyze
in the long run how capital tax changes affect the economy. In Section 3.4 we
quantify the optimal capital income tax and examine how it interacts with R&D

externalities. Section 3.5 provides concluding remarks.

3.2 The model

Our framework builds on the non-scale R&D-based growth model of the seminal
work developed by Jones and Williams (2000). The main novelty of the Jones and
Williams model is that it removes the scale effects and introduces several impor-
tant dimensions of R&D into the original variety-expending R&D-based model of
Romer (1990). In this paper, we extend their model by incorporating (i) elastic
labor supply and (ii) factor taxes, namely the capital and labor income taxes. To
conserve space, the familiar components of Romer’s variety-based model will be

briefly described, while the new features will be described in more detail.
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3.2.1 Households

We consider a continuous-time economy that is inhabited by a unit continuum
of identical infinitely-lived households. At time ¢, the population size of each
household is N;, which grows at an exogenous constant rate n. Each member
of households is endowed with one unit of time that he/she can supply labor to a
competitive market or enjoy leisure. The lifetime utility function of a representative

household is given as:!

U - / e e+ yIn(l = 1) d, >0, x>0, (1)
0

where ¢; is per capita consumption and [; is the supply of labor per capita. The
parameters [ and y denote respectively the subjective rate of time preference
and leisure preference. The representative household maximizes (1) subject to the

following budget constraint:
kt + ét = [(1 — TK)TK,t —n — (5]]@5 + (Tt — n) €t + (1 N TL,t)wtlt — Cy, (2)

where a dot hereafter denotes the rate of change with respect to time, k; is phys-
ical capital per capita, ¢ is physical capital depreciation rate, e; is the value of
equity shares of R&D owned by each member, 7k, is the capital rental rate, r;
is real interest rate, w; is the wage rate. The policy parameters 7x,; and 7, are

respectively the capital and labor income tax rate.

Solving the dynamic optimization problem yields the following first-order con-

ditions:
1
C_t = Qt, (3)
(1 — TL}t)'wt(l — lt) = X, (4)

'In line with Chu and Cozzi (2014) we assume that the utility function is based on per capital
utility function.
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re=(1—7Tg)rg: — 0. (5)

where ¢, is the Hamiltonian co-state variable on eq. (2). Equations (3) and (4)
are respectively the optimality conditions for consumption and labor supply, and
eq. (b) is a no-arbitrage condition which states that the net returns on physical
capital and equity shares must be equalized. We denote the common net return
on both assets as r; (i.e., 7t = (1 — 7x)rx: — J). The typical Keynes-Ramsey rules
is:

&

—=r,—n—0. (6)

Ct

3.2.2 The final-goods sector

A perfectly-competitive final-good sector produces a single final output Y; (treated
as the numeéraire) by using labor and a continuum of intermediate capital goods,
according to the CES technology:

E:L§;a<§éxfp(i)>p,l>a>0, 1/a>p >0, (7)
i=1

where Ly, is the labor input employed in final goods production, x,() (i € [0, A])
is the ith intermediate capital good, and A; is the number of varieties of the
intermediate goods. As will be introduced later, intermediate goods and capital has
a one-to-one relation. Therefore, in eq. (7) we have followed Jones and Williams
(2000) and Comin (2004) to separate the capital share («) and the elasticity of

substitution across varieties (ap).

Profit maximization yields the following conditional demand functions for the

labor input and intermediate goods:

wy = (1—a)— (8)



P

pe(i) = aL;a (i xgﬂ(@)) ;,;?Pfl(z'), (9)

where p;(7) is the price of the ith intermediate good.

3.2.3 The intermediate-goods sector

Each intermediate good is produced by a monopolistic producer who owns a per-
petually protected patent for that good. The producer needs to use one unit of
physical capital to produce one unit of intermediate goods. Thus, the production
function is x;(i) = wv(i), where vy(i) denotes the capital input employed by mo-
nopolistic intermediate firm 7. Accordingly, the profit of intermediate goods firm ¢
is:

T 1(1) = pe(0)2e(i) — 7404 (3). (10)
Profit maximization subject to the production function x;(i) = v,(¢) and eq. (9)
yields the pricing rule:

1

pi(i) = oo Kt (11)

Let n,(i) denote the gross markup that the ith intermediate firm can charge

over its marginal cost. Then, we have:

pe(2) = 0, (0T - (12)
By some manipulations, the profit of the ith intermediate firm can be obtained as:

N 77t<i) - 1@&
TLt(Z) B m(i) Ay

It follows from eqs (11) and (12) that if the monopolistic intermediate firm freely

(13)

sets the price, the markup would be equal to the elasticity of substitution be-

tween intermediate capital goods, i.e., n,(i) = 1/(pa). This is the case of an
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“unconstrained” markup (Jones and Williams, 2000). Another scenario is that the
markup is subject to an adoption constraint, which may happen if the new designs
are linked together in the innovation cluster. This involves the property of the

research process, which we will discuss in more detail in the next subsection.

3.2.4 The RED sector

R&D creates new varieties of intermediate goods for final-good production. In line
with Romer (1990) and Jones (1995), we assume that new varieties are developed

by labor input (scientists). The production technology is given as:
(]' + w)At = GtLA,t7 w Z 07 (14)

where L, is the labor input used in the R&D sector, <, is the productivity of
R&D which the innovators take as given. The meaning of the parameter ) will be

explained later.

We follow Jones (1995) to specify that the productivity takes the following

function form:
G=cLiAY, ¢>0, 1>A>0, 1>¢>0, (15)

where ¢ is a constant productivity parameter. In addition to ¢, eqs (14) and (15)
contain three parameters A\, ¢ and 1. These parameters capture salient features

of R&D proposed by Jones and Williams (1998). We then discuss each of them.

First, the parameter 1 > A > 0 reflects a (negative) duplication externality or
a congestion effect of R&D. It implies that the social marginal product of research
labor can be less than the private marginal product. This may happen because of,

for example, a patent race, or if two researchers accidentally work out a similar
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idea. Jones and Williams (1998) coin this negative duplication externality as the
stepping on toes effect. Notice that this effect is stronger with a smaller A\, and it

vanishes when A\ = 1.

Second, the parameter 1 > ¢ > 0 reflects a (positive) knowledge spillover effect
due to the fact that richer existing ideas are helpful to the development of new
ideas. A higher ¢ means that the spillover effect is greater. In his pioneering
article, Romer (1990) specifies ¢ = 1; however, Jones (1995) argues that ¢ = 1
exhibits a scale effect which is inconsistent with the empirical evidence. We thus
follow Jones (1995) to assume that ¢ < 1 to escape from the scale effect. The
knowledge spillover effect is dubbed by Jones and Williams (1998) as the standing

on shoulders effect.

Finally, the parameter ¢ > 0 measures the size of innovation clusters, which is
associated with the concept of creative destruction pointed out by Grossman and
Helpman (1991) and Aghion and Howitt (1992). The basic idea is that innovations
must come together in clusters, some of which are new, while others simply build on
old fashions. More specifically, suppose that an innovation cluster, which contains
(1 4 ¢) varieties, has been invented. Out of these (1 + 1) varieties, only one unit
of variety is entirely new and thus increases the mass of the variety of intermediate
goods. The remaining portion, of size v, simply replaces the old versions. This
portion captures the spirit of creative destruction since new versions are created
with the elimination of old versions. However this part does not contribute to
the increase of existing varieties. In other words, for (1 + 1) intermediate goods

invented, the actual augmented variety is 1, while the repackaged varieties are 1.

As we have mentioned earlier, it is possible that the markup of the monopolistic

intermediate firms is constrained by the size of innovation clusters. The intuition
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underlying this result can be understood as follows. Consider that the current
number of varieties is A;. Now an innovation cluster with size (14 1) is developed.
This increases the mass of varieties to A;+1; at the same time it also replaces old-
version varieties by 1 units. Subsequently, the final-good firm faces two choices.
It can either adopt the new innovation cluster and then use A;+1 intermediate
goods priced at a markup, or part with the new innovation cluster and still use
Ay intermediate goods to produce. If the final-good firm chooses the latter, since
now 1) varieties have been displaced, the final-good firm needs only to purchase
Ay — 1 units of intermediate goods at a markup price, and purchase v units of
displaced intermediate goods at a lower (competitive) price. When the size of
innovation cluster is high (a larger value of 1), the final-good firm tends not to
adopt the new innovation cluster because sticking to old clusters is cheaper. As a
result, the intermediate-good firms have to decrease the markup so as to attract
the final-good firm to adopt the new innovation cluster. This adoption constraint

explains why an increase in the size of innovation clusters reduces the markup.

Jones and Williams (2000) show that the constrained markup is negatively
related to both the size of innovation clusters and the elasticity of substitution be-
tween capital goods. Specifically, they demonstrate that the constrained markup is
limited not to exceed the value [(141)/1]*/?*~1. Together with the unconstrained

markup we discussed in subsection 3.2.3., the finally realized markup is:

[ 1 1) 7!
n:mm{p—a, <1+E) }7 (16)

which is independent of i and ¢. Combining eqs (10) and (16) implies that all
intermediate-good firms are symmetric. Therefore, notation i in subsection 3.2.3

can be dropped from here.
Given ¢, the R&D sector hires L4, to create (1+41)) varieties. Thus, the profit
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function is w4, = Pas(1 + ¢)At — w¢L ;. By assuming free entry in the R&D
sector, we can obtain:

s (1—a)Y;
1-— St <1+w)At’

where s; = L4/ Ly is the ratio of research labor to total labor supply L;. Moreover,

PA,t — (17)

the no-arbitrage condition for the value of a variety is:

: A
TePay =Ty + Pay — ¢XtPA,t- (18a)

t

Without creative destruction (i) = 0), the familiar no-arbitrage condition reports
that, for each variety, the return of the equity shares 7, P4, will be equal to the
sum of the flow of the monopolistic profit m,, plus the capital gain or loss PAyt.
When creative destruction is present, existing goods are replaced. Accompanied
with new varieties A; being invented, the amount of ¢ A, existing varieties will be
replaced. Therefore, for each variety, the expected probability of being replaced is
VA, /A, which gives rise to the expected capital loss expressed by the last term in
eq. (18a).

3.2.5 The government and aggregation

The government collects capital income taxes and labor income tax to finance its

public spending. The balanced budget constraint faced by the government is:
N7kt + T owdy) = Gy, (18b)

where G, is the total government spending. We assume that government spending
is a fixed proportion of final output, i.e., G; = (Y;, where ( is the government
size and 1 > ¢ > 0. Now let us define the aggregate capital stock as K; = Nk,
aggregate consumption C; = N,¢;, and total labor supply L; = Ny;. After some

algebra, we can obtain the resource constraint in the economy K, =Y,—C,—G,.
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3.2.6 The decentralized equilibrium

The decentralized equilibrium in this economy is an infinite sequence of allocations

. o0 .« .
{Ct7 Kt7 At7 }/ta Lt7 LYJ, LA,ta L, Ut}?iO? prices {wta 7ﬂl(,ifa Tty Pty PAJ}t:O: and pOhCleS

{7kt TrLt}, such that at each instant of time:

&

3.3

households choose {¢;, ki, e, I;} to maximize lifetime utility eq. (1) taking

prices and policies as given;

competitive final-good firms choose {z;, Ly} to maximize profit taking prices

as given;

monopolistic intermediate firms i € [0, A;] choose {v;, p;} to maximize profit

taking rg,; as given;

. the R&D sector chooses L; to maximize profit taking {Pa;, w;} and the

productivity ¢; as given;

. the labor market clears, i.e., Nyl = La; + Ly ;

the capital market clears, i.e., N;k; = Ay,
the stock market for variety clears, i.e., Nie;, = Py, A,

the resource constraint is satisfied, i.e., K; =Y, — C, — G, — 6 Ky;

. the government budget constraint is balanced, i.e., Ni(7 g ¢7k 1kt + 71 wily) =

G.

Steady-state properties

We focus our analysis on the steady state along the balanced growth path where all

variables grow constantly. We denote by g, the growth rate of any generic variable
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7, and drop the time subscript to denote for any variables in the steady state. The
steady-state growth rates of varieties and output are given by (see Appendix 3.A):

1 1

)
=7 =—— (= — . 19
ga=1_" =1, P algatmn (19a)

Moreover, in order to obtain stationary endogenous variables, it is necessary to

define the following transformed variables:

- K Cy Y: Ay
ki=—5 =<5 U=~y = oo (19Db)
N¢ N N; NtA/(lfeb)
where 0 =1 + % > () is a composite parameter. For ease of exposition, in

line with Eicher and Turnovsky (2001), k, ¢, 9, and G are dubbed scale-adjusted
capital, consumption, output, R&D varieties, respectively. Based on the trans-
formed variables and the macro equilibrium defined in subsection 3.2.6, the macro

economy in the steady state can be described by the following set of equations:

ro= (=Tx)rk =0 =5+ gy, (20a)
e (14
s = o a4 , (20b)
r— gy + (1+ 522 (1 v)ga
k a
== —, 20c
Y nri (200)
i c
1-()5 = =+gv+9, 20d
1-0% = T+ov (204
g o= alreEe (=)', (20e)
B 1 g(sl)A
ga = m FYRra (20f)
X! 1-—7mp)(1-a)y
= - 2
11— 1-s) @& (20g)
1—s «
_ L@ 20h
TL 1_a(C TKn)a (20h)

in which eight endogenous variables r, s, ¢, k, a, 1, [, 71, are determined.
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Of particular note, our main focus is on the examination of the capital tax.
By holding the proportion of the government spending constant, an increase in
the capital income tax must be coupled with a reduction in the labor income tax.
Therefore, we follow the literature on the Chamley-Judd result to assume that the
labor income tax endogenously adjusts to balance the government budget. This

approach has been dubbed “tax shifting” or “tax swap” in the literature.

3.3.1 Comparative static analysis

In this section, we analyze the effects of the capital taxation on the R&D share,
the endogenous labor income tax rate, labour supply, and scale-adjusted variables:

a, k. ¢, and 4.2
The long run R&D labour share, s, is given by
l_a(144))ga

g
r=gr+ (1+ 25255 (+d)ga

It follows from the above equation that, in the steady state, a change in the capital

s = (21a)

income tax rate (21a) does not affect the R&D labor share (i,e.,0s/0Tx = 0). The
intuition underlying 0s/07x = 0 can be grasped as follows. The non-arbitrage
condition between physical capital and R&D equity reported in (20a) requires
that the return of physical capital should be equal to the return of R&D equity.
Given that the return of R&D equity, r = 6—I—ﬁ <% — a) ga + n, is independent

of the capital tax rate, it is clear that the capital income tax rate is impotent to

affect the return of R&D equity and hence the R&D labor share.

2We solve the dynamic system in Appendix 3.B, and a detailed derivation of the comparative
static analysis is presented in Appendix 3.C.
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From (20h), we have:

1—s Q
_ @ 21b
TL 1—a (C— TKU) ) ( )
Based on (21a), we have:
87L o
—=—(1- u 0. 21
aTK ( 8)1 — < ( C)

Under the tax-shifting scheme, an increase in the capital income tax rate must be

coupled with a reduction in the labor income tax rate.

Given a constant capital income tax rate 7, labor supply in the steady state

is given by:

X .
1— - I ) SR x>0
1— 1—s
[== [0-O~(5+9y) (55 raery] (22a)

1

;o x=0

It is straightforward from eq.(22a) to infer the following result:

aB(A=2)[1—¢+ 251 2201y

T—a n_ B+A+v¥)ga .
>0 ; >0
O _ ) oo 0mr )=~y oL X (221)
aTK
0 ; x=0

Equation (22b) indicates that, when the tax shifts form a labor income tax to a
capital income tax, a rise in the capital income tax rate leads to an increase in labor
supply. The rationale for this result can be understood intuitively. In response to
a rise in the capital income tax rate, two conflicting effects would emerge. First,
raising the capital tax rate induces the households to lower the investment-output
ratio and increase the consumption-out ratio, which in turn reduces labor supply.

Second, it reduces the labor income tax rate (see eq. (21b)) and raises the after-tax
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wage income, thereby leading to an increase in labor supply. The latter positive
effect dominates the former negative effect, and hence a rise in the capital income

tax rate is accompanied with an increase in labor supply.

Moreover, scale-adjusted R&D varieties a is given by:

S q1/(-¢) ()M (1)
e P U (23a)

where s and [ are reported in eqgs (21a) and (22a). With 0s/07x = 0, it is quite

easy to derive from eq. (23a) that:

da Aol

aTK . (1 — ¢)alaTK

Equation (23b) indicates that a rise in the capital income tax rate tends to boost

> 0. (23b)

scale-adjusted R&D varieties. The intuition behind this result is not hard to
understand. Following a rise in the capital income tax rate coupled with a decline
in the labor income tax rate, the household is motivated to raise its labor supply.
This in turn increases labor input allocated to the R&D sector (L4 = Nsl). Then,
as reported in eq. (23a), given that scale-adjusted R&D varieties a is positively

with R&D labor input sNI, a will increase in response following a rise in 7.

From egs (20a), (20c), (20d),(23a), and (20e), we can infer that:

S Yp—a 2 a(l—=7Tg) | a

1/p—a —
j = [————]0-a)0-9) (g]) T-a 0-0) [ ——— L _]T-a (1 — s)l, 24a,
7= [ g ) T rra T ()
where
oy o o .. >
el A ~0. 24
il e s R e (24b)



Equation (24b) indicates that a rise in the capital income tax rate has ambiguous
effect on scale-adjusted output 7. As exhibited in eq. (24b), two conflicting effects
emerge following a rise in the capital income tax rate. First, a rise in the capital
income tax rate shrinks capital investment, which in turn generates a negative
impact on output. Second, a rise in the capital income tax rate is accompanied
with a fall in the labor income tax rate, which motivates the household to provide
more labor supply. This leads more labor input to be allocated to the R&D sector
and in turn boosts R&D varieties, thereby contributing to a positive effect on
output. If labor supply is exogenous (x = 0), the second positive effect is absent
(0l/0T = 0), and a higher capital income tax rate lowers output. However,
if labor supply is endogenous (x > 0), both conflicting effects are present, and
the output effect of capital income taxation depends upon the relative strength

between these two effects.

From eqgs (20a), (20c), and (20d), we have:

~ (]_ — TK)(D R
k —1, 2ba
Gt ! (25a)
¢ = [1=¢—1-7x)07, (25b)
where ¢ = % is a composite parameter.

Based on eqs (25a) and (25b), the effects of 7x on k and ¢ can be expressed as:
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0ty (1—a)1—71x) (6+ gy) y< ’
oc 9
= -0 - (- TPl (26b)
ol « >

= {2+[1-¢ -1 —-7x)%]

Jl@TK S (1—-a)(l—Tg) v

The economic intuition behind eqs (26a) and (26b) can be explained as follows.

It is clear in eq. (25a) that capital income taxation affects scale-adjusted capital k

through two channels. The first channel is the capital-output ratio (l% /Y = (1;;; );I’ ),

and the second channel is the level of scale-adjusted output . The first term after
the first equality in eq. (26a) indicates the first channel definitely lowers the level
of k. Moreover, as shown in eq. (24b), the second channel may either raise or
lower the level of k since capital taxation leads to an ambiguous effect on 7. As
a consequence, the net effect of capital taxation on the sale-adjusted capital stock
k is still uncertain. Similarly, as indicated in eq. (25b), capital income taxation
affects ¢ also through two channels. The first channel is the consumption-output
ratio (¢/y = [(1 — ¢) — (1 — 7x)®]), and the second channel is the level of scale-
adjusted output . As exhibited in eq. (24b), the first channel definitely boosts
the level of ¢, while the second channel may either raise or lower the level of ¢
since capital taxation leads to an ambiguous effect on 3. As a consequence, the

net effect of capital taxation on scale-adjusted consumption ¢ remains ambiguous.
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3.3.2 Optimal capital income tax

In this section, we analyze the optimal capital income tax that maximizes the
steady-state level of social welfare. Using (1) and the previously defined trans-
formed variables, the steady-state level of the life-time utility, denoted by U®*, can

be expressed as:
~ Iné+ xIn(1 1) Lo —n

v 3 7

(27)

By differentiating U** with respect to 7x, we derive:

aa(j: - % { {(1 —0) —(121 )0 (1- a)((ll > nd] X [U - <1X—l l)] laaTlK} |
(28)

To clearly understand the intuition, we first consider the case of exogenous
labor supply, which corresponds to Y = 0 and af—lK = 0. Then, by setting %g—: =0,
we can obtain the optimal capital income tax rate in the case of exogenous labor

supply, which we denote as 77, given by:

T’;{:1_<1_g)n<1+5fgy>. (29)

The following proposition is established from eq. (29):

Proposition 3 In the case of exogenous labor supply, if ( = 0, the optimal capital
income tax is always negative; if ¢ > 0, the sign of the optimal capital income taz
18 ambiguous.

Proof. Directly inferred by using eq. (29) and the condition n > 1. m
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Many existing studies supporting a positive optimal capital tax rely on the
assumption of endogenous choice of labor supply; see, e.g., Domeij (2005), Aghion
et al. (2013), and Chen and Lu, (2013). The intuition is that, to have taxing
capital more favorable than taxing labor, an important premise is that taxing
labor results in large distortion. This premise can be true only in the case of an
endogenous labor supply. In the case of an exogenous labor supply, by contrast,
a labor income tax is equivalent to a lump-sum tax that will not distort any
households’ decision. In this case, the government should tax labor income as much
as possible while leaving capital income untaxed. Therefore, it is unlikely to derive
a positive optimal capital tax. Nonetheless, Proposition 3 surprisingly shows that
a positive capital income tax could be optimal even when households supply labor
inelastically. The intuition underlying Proposition 3 can be explained as follows.
In the model where the intermediate goods sector is imperfectly competitive, the
production level is too low. If there is no need for government spending (¢ = 0), the
government tends to subsidize capital (the input of intermediate goods) to correct
this distortion by inducing a higher level of production. Thus, the optimal capital
tax is negative. However, if the need for government spending is present (¢ > 0),
such wasteful government spending crowds out consumption, causing the level of
consumption too low. In this case, subsidizing capital worsens the suboptimally low
level of consumption because the subsidy encourages the accumulation of capital
and further reduces consumption. Accordingly, the government tends to tax capital
to restore the level of consumption. If the wasteful government spending is large,
the motivation to restore consumption outweighs the motivation to correct the low

level of production. As a consequence, the optimal capital tax turns to be positive.

In the case of an endogenous labor supply, a closed-form solution of the optimal

capital income tax is not available. Intuitively, when the households supply labor
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elastically, labor income should be taxed less because the labor tax distorts the
choice between labor and leisure. This gives a stronger rationale for taxing capital.
Therefore, in an economy of endogenous labor supply, the optimal capital tax will
be higher than that in the economy of exogenous labor supply. To carry out this
intuition, let us denote 737 as the optimal capital tax in the case of endogenous
labor supply. Then, by inserting 7% and eqs (22a), (22b) into eq. (28), we can

demonstrate that:

U™ 1 N
o = = 5 T Tl 7

which proves that 73 > 77.. Accordingly, we can establish the following proposi-

(30)

tion:

Proposition 4 In the case of endogenous labor supply, the optimal capital income
tax is higher than that in the case of exogenous labor supply, which implies that the

optimal capital income tax s more likely to be positive.

Proof. Proven in the text. m

3.4 Quantitative results

In Section 3.3, we only focus on the long-run welfare effect of capital taxation. In
this section, we take into account the welfare effects including transitional dynamics
of capital taxation by performing a quantitative analysis to quantify the optimal
capital tax. We calibrate the parameters of our theoretical model based on the US
data. In particular, we explore how the optimal capital tax responds to important

parameters that feature R&D externalities and the government size.
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The life-time utility of a representative household reported in eq. (1) can be

expressed as:
gy —n
.

in which ¢; and [; are functions of 7. The optimal capital tax that takes into

U= / e P né, + xIn(1 —1,)] dt + (31)
0

account the welfare effects including transitional dynamics is the one maximizes

eq. (31).

3.4.1 Calibration

To carry out a numerical analysis, we first need to choose a baseline parameteriza-
tion, reported in Table 3.1. Our model has eleven parameter values to be assigned.
These parameters are either tied to a commonly used value in the existing literature
or calibrated to match the empirical evidence in the US economy. We now describe
each of them in detail. In line with Andolfatto et. al. (2008) and Acemoglu and
Akcigit (2012), the labor income share 1 — « and the discount rate 3 are set to the
standard values 0.4 and 0.05, respectively. The population growth rate n is set to
0.011 as used by Conesa et al. (2009). Based on Lucas (1990), the physical capital
depreciation rate is given as 0.0318 such that the initial capital-output ratio of 2.5.
The initial capital tax rate 7x is set to 0.3 based on the average US effective tax
rate estimated by Carey and Tchilingurian (2000). A similar value of the capital
income tax rate has been adopted in Domeij (2005) and Chen and Lu (2013). As
for the government size (the ratio of government spending to output), data of US
exhibits around 20 percent (Gali, 1994), and has slightly increased in recent years.
We therefore set ¢ to be 0.22, which is the average level during 2001-2013, to reflect
its increasing trend. The parameter for leisure preference y is chosen as 1.5901 to

make hours worked to be around one third.
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Table 3.1. Benchmark Parameterization

Definition Parameter Value Source/Target

Labour income share l—a 0.6 Andolfatto et. al. (2008)
Discount rate I6] 0.05 Acemoglu and Akcigit (2012)
Population growth rate n 0.011  Conesa et al. (2009)

Initial capital tax rate TK 0.3 Carey and Tchilingurian (2000)
Government size ¢ 0.22 Data

Leisure preference X 1.5901 Total hours worked = 1/3
R&D productivity S 1 Normalized

Standing on toes effect A 0.5 Assumption

Substitution parameter 2.2727 Monopolistic markup = 1.1

Standing on shoulders effect 0.9593 Output growth rate = 2%

Size of innovation cluster 0.25 Comin (2004)

ST S S

Physical capital depreciation rate 0.0318 Capital-output ratio = 2.5

Our parameterization regarding the R&D process basically follows the approach
in Jones and Williams (2000). First, we normalize the R&D productivity < to unity.
The value of the parameter for standing on toes effect A is somewhat difficult to
calibrate because, as argued by Stokey (1995), the empirical literature does not
provide much guidance on such a parameter. In our analysis, thus, we choose
a middle value A = 0.5 as a benchmark, but we will allow it to vary over the
whole interval from 0 to 0.564.> The substitution parameter p relates closely to
the markup of the intermediate firms. We set p to be 2.2727 such that, given
1 — a, the (unconstrained) markup in our economy is 1.1, which lies within the

reasonable range estimated for US industries (e.g., Norrbin, 1993 and Laitner and

3If the value of X is over 0.564, the second-order condition of the government’s maximization
with respect to 7x would not be satisfied.
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Stolyarov, 2004). Moreover, we use the output growth rate to calibrate the extent

of the standing on shoulders effect ¢. in our model we have:
1
gy = (; —a)ga +n.

Given that g4 = ¢n/(1 — A) and that we have already assigned values to 1 — a, p,
n and A\, we can then choose ¢ to target the empirical level of the output growth
rate in the US, which is around 2%. This results in ¢ = 0.9593 as our baseline
value. Finally, as a benchmark we choose the size of innovation cluster ¢ = 0.25
by following Comin (2004). In this case the markup is not bound by the adoption
constraint. If the value of v is relatively large, the markup will be constrained
(determined) by this parameter. Later in subsection 3.4.3 we will run ¢ from 0 to

0.515 for a robustness check.

3.4.2 The optimal capital tax with transitional dynamics

Under our benchmark parameterization, Figure 3.1 plots the relationship between
the level of welfare and the rate of capital income tax, which exhibits an inverse-U
shaped relationship. Noticeably, the optimal capital tax is positive, and its value
is around 11.9%. Thus, the Chamley-Judd result of zero capital tax does not hold

in our R&D-based growth model.

The intuition underlying this result can be explained as follows. Given that the
government is constrained to capital and labor taxation, to finance a fix amount
of the government expenditure, not taxing capital income implies that the labor
income must be taxed at a higher rate. Although a zero capital tax efficiently leaves
the capital market undistorted, a high labor tax distorts the labor market severely

by decreasing the after-tax wage income and thus reduces total labor supply. As
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Figure 3.1: The level of welfare and the rate of capital income tax

a consequence, there is less labor devoted to the production in the R&D sector,
which then results in fewer equilibrium varieties for the final-good production, and
ultimately depresses the level of consumption and welfare. In summary, to achieve
the social optimum, it is necessary to balance both distortions in capital and labor
market. Accordingly, an extreme case of the zero capital tax is unlikely to be

optimal.

3.4.3 Policy implications of RESD externalities

This subsection investigates how the optimal capital tax responds to relevant para-
meters, in particular those related to the features of innovation. More importantly,
we shed some light on the roles of R&D externalities in the design of optimal tax
policies. To this end, we provide a robustness check for whether the positive opti-
mal capital tax still survives under various scenarios. In what follows, we propose
some relevant parameters that need to be considered by the policymakers. The

results are depicted in Figures 3.2-3.6, and several important results emerge from
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our robustness analysis.
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Figure 3.2: The optimal capital tax rate and the stepping on toes effect

First, the optimal capital tax is increasing in A (the stepping on toes effect)
and ¢ (the standing on shoulders effect). With sufficiently small values of A and
¢, the optimal capital income tax can be negative (see Figures 3.2 and 3.3). The
underlying intuition behind the result can be explained as follows. Notice that a
higher A implies that the negative duplication externality is small, and a higher
¢ means that the positive spillover effect of R&D is relatively strong. Both cases
indicate a similar circumstance in which the innovation process is more productive,
and in which underinvestment in R&D is more likely. Under such a situation, the
welfare cost of depressing innovation by raising the labor income tax is larger.
Therefore, the government should increase the capital tax while reducing the labor

tax.

Second, the optimal capital income tax and the substitution parameter p dis-
play an inverse-U shaped relationship (see figure 3.4). A lower p is associated with
a higher monopolistic markup 7, regardless of whether the adoption constraint is
binding or not. The markup mainly affects the optimal capital tax in two oppo-

site ways. The first effect (the monopoly effect) is that, when 7 is large (when
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Figure 3.3: The optimal capital tax rate and the standing on shoulders effect

p is small), the degree of the intermediate firms’ monopoly power is strong. To
correct this distortion, the government tends to subsidize capital to offset the gaps
between price and marginal costs; see Judd (1997, 2002). The second effect (the
R&D effect) is that, a large n implies that the profits of intermediate firms are high,
so will be the value of a successful innovation. This means that the R&D sector
is crucial, and the welfare cost of slowing down innovation by raising the labor
income tax is bigger. Thus, the government tends to tax capital income instead of
taxing labor income. It is illustrated in Figure 3.2 that, with an initially very large
n (a very small p), the monopoly effect dominants, such that the optimal capital
tax is negative. As 7 becomes smaller (i.e., as p goes up), both effects decline.
However the monopoly effect diminishes more rapidly than the R&D effect. The
incentives to subsidize capital falls sharply, and thus the optimal capital income
tax begins to increase with a rise in p. Finally, when 7 is very small (a sufficiently
high value of p), there are few rents flowing to the R&D sector, rendering the R&D
effect to be irrelevant. As a result, the government turns to prefer taxing labor
again. Thus, the optimal capital income tax decreases with a rise of p when p is

sufficiently high.
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Figure 3.4: The optimal capital tax rate and the substitution parameter

Third, the optimal capital tax increases in response to a rise in the size of

innovation cluster (creative destruction). The intuition is as follows. Given our

baseline parameterization, the markup is not limited by the adoption constraint.

In this case, ¥ simply functions as a negative R&D externality, like the stepping

on toes effect A does. A higher ¢ means that the negative externality is larger,

thereby decreasing the importance of the R&D sector. Therefore, a higher 1) makes

taxing labor more favorable than taxing capital (see figure 3.5).
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Figure 3.5: The optimal capital tax rate and creative destruction

Finally, the optimal capital tax is increasing in the government spending ratio ¢
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(see figure 3.6). This result is in consistence with the Aghion et al. (2013) finding.
When the need for public expenditure is sufficiently small, the government can
collect labor tax revenues to finance the government spending and also to subsidize
capital. Note that in this case the monopoly effect dominants the R&D effect so
that the optimal capital tax is negative. As the size of government expenditure
increases, it is not promising to count solely on raising the labor tax, because the
distortion to the R&D sector would be sufficiently strong. Moreover, as we have
discussed in Section 3.3, when the wasteful government increases, the government
has an incentive to restore consumption by raising the capital tax. These effects

turn the optimal capital income tax rate to gradually become positive.
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Figure 3.6: The optimal capital tax and the government size

3.5 Conclusion

In this paper, we have set up a non-scale innovation-based growth model, and used

it to examine whether the the Chamley-Judd result of a zero optimal is vailid. By

calibrating our model to the US economy, we have found that the optimal capital

income tax is positive, at a rate of around 11.9 percent. We have also found that
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the result of a positive optimal capital income tax is robust with respect to varying

the degrees of various types of R&D externalities.

Some extensions for future research are worth noting. First, to reflect the em-
pirical reality, it would be useful to consider more complex optimal tax structures.
Second, since R&D investment usually has liquidity problems (see, e.g., Lach,
2002), it would be relevant to introduce credit constraint on R&D investment into
our model. Third, our model has assumed infinitely-lived agents. In the vein of
optimal capital taxation, however, an important issue concerns the intergenera-
tional consideration. Thus, it would be important to analyze the implications of
innovation in a model with finitely-lived individuals and bequests. These future

directions would generate new insights to the debate on the Chamley-Judd result.
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Appendix 3.A. Deriving the steady-state growth rate

To solve for the steady-state growth rate of the economy, from eqs (14) and (15)

we have:

A‘t < Lﬁlt
= L Al

where g4 = A, JA;. Let g7 denote gz = % the growth rate of any generic variable
7, and drop the time subscript to denote for any variables in the steady state. The

steady-state growth rate of varieties is given by:

-~
ga = 1—6°
1+ Al=¢

Moreover, The R&D labor share is s; = La¢/(N;l;). By doing so, eq. (A2) can

(A2)

alternatively written as:

¢ (sNI)
14y A9

ga (A3)

By taking logarithms of eq. (A3) and differentiating the resulting equation with

respect to time, we have the following steady-state expression:

qbn. (A4)

Equipped with the symmetric feature x(i) = z, the equilibrium condition for
the capital market K = Aw, and the production in the intermediate-good sector

x = v, the aggregate production function can be rewritten as:
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1_q
Y, = A; CLoK}e (A5)

Taking logarithms of eq. (A5) and differentiating the resulting equation with

respect to time, we can infer the following result:

o 94 +n. (A6)

Inserting eq. (A4) into eq. (A6) yields:

gy = 0n, (A7)

(%‘a)i 1S a composite parameter
I~a 1-¢ P 1% ;

where 0 = 1 +

We now turn to solve the steady-state R&D labor share. In the long run
substituting A, = gaA; and differentiating the resulting equation with respect to

time give rist to:

Py/Pr=gy — ga (AB)

From egs (13), (17), (18a), in the steady state we have:

- ”n;la% (A9)
s (1—a)Y/A

Py, = Al10

. 1—s (1+4)ga (410

——ﬂ+&—w (A1)

Subsituting eqs (A8), (A9), and (A10) into eq. (A1l) yields the result:
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Z7;—104Y/A A
)Y/A + 9y — (1 + ?/J)QA ( 12)

s (1—a)¥
1=s (1+1)ga

r =

Based on eq. (A12), we have the staionary R&D labor share s as follows:

(A13)
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Appendix 3.B. Transition dynamics

This appendix solves the dynamic system of the model under tazx shifting from

labor income taxes to capital income tares. The set of equations under the model

is expressed by:

’rt_n_67
Y,

1 —a)—-,

( )th

2y,

n

n—1Y

—a_,
n Ay

QO
N(Trrr ke + Trwdy),
AP LR,

Y, = Cy — Gy — 0Ky,
< Lg,t
se (1—a)Y;
L—s (1 —f-@/})At’
Lyt + Lay.
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The above 16 equations determine 16 unknown {c;, i, A, Ky, Ly, T, Tit, Tars Tt
Gt, Tots Ye, @, Lay, Pat, wi}, where ¢ is the Hamiltonian multiplier, C; = Ny,
Kt = Ntkt = Atﬂft, and St—= LA,t/Ntlt- Based on Kt = Ntkt = Ata:t, eqgs (Bl), (B2),

(B5), and (B12), we can obtain:

1 Y,
X=—(1—=70)1=a)—=(1—-1). (B17a)
Ct LY,t

From egs (B5), (B7), and (B11), we have:

C — %TK LY,t

) B17b
11— Ntlt ( 7 )

TLt —

Moreover, to solve the balanced growth rate, we define the following transformed

variables:

N K, . C, Y, . A,

kt = Ao Cy = EY>s) i = o) At = —7+— > lY,t = (1 == St)lt, St = L/.Lt/Ntlt.
Ny Nj N; Nt)‘/(l_(ﬁ)

(B18)

Based on eqs (B16), (17), (18a), and the above definitions, we can obtain:

X 1 C— 2Tk : Ao X
-1 @_t(l - #%)(1 — )" (ke ly4)" (B19a)

From eq. (B19a), we can infer the following expression:

ly = lt<]%t;dtaétle,t;TK)a (B19b)

where
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Based on (B3), (B4), (B7), (B12), (B18), and C; = N;c;, we have:

dét/dt (0% rovile/ 0% lYt A
et = — (1 —7x)— (@) VP~ () -5 — = gy.
et 3 ( TK)n(at) ( 7, ) B — gy

From egs (B10), (B12), (B13), and (B18), we can directly infer:

dky/dt 1 /o—a it Gt
P = = =(1-— a i - 1-a . — — 0 — .
G i (1= ¢)(ar) ( kt ) i gy

According to eqs (B14) and (B18), we can futher obtain:

0 :d&t/dt: s ek, G lys; Tic) = lya]
T w149 a=?

— gA.

(B20a)

(B20b)

(B20c)

(B20d)

(B20e)

(B21)

(B22)

(B23)

In what follows, to simplify the notation we suppress those arguments of the laobr

supply function. From eq. (B18), taking logarithms of eqs (B19a) and (B12) and

differentiating the resulting equations with respect to time, we have:

930 = (1/p — a)gas + agy, + (1 — a)(iy /ly),
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I/l =1/[le/(1=1) =70/ A=T L) [{(1/ p— ) gautg;,,—gea—la+Tre/ (1=TL.)] (v /Ive) }-
(B25)
Taking logarithms of eq. (B15) differentiating the resulting equation with respect

to time, we obtain:

P j
B = (g5 gv) = An (1= X7

v
B — [+ (L= ) (/). (B26)

Ly — by

— Iy

Combinning eqgs (B9), (B15), (B18), (B21), (B24), (B25), and (B26) together, we

obtain:
. Da(1+9)l
dlyJdt _ lye Tt 9y =gertAnt 4o~ U (o + 94)
l = L, A=Nl/Ut=ly,D)latTr ¢/A=7L )] 1 ly,t
vt Yit { le/(1—=lt)—7p,e/(1—TL,1) o+ (1 )lt lyz}

1M /(11
L+ it it L/ = g + g4, — gedl

Q=X /(le=ly)|[a+7r ¢ /(A—TL +)] l
{ ltt/(lt*lt;/tTL t/(i 757'L t) =S o ( )lt Yl}t/z}

_|_

(B27)

Note that 7, — gy —gz+ = B. As aresult, In the steady state we have r—gy = .

Inserting eq. (B18) into eq. (B17b) yields:

8}
C TR b

: B2
11—« lt ( 8)

TLt =

Based on egs (B21), (B22), (B23),(B27), and (B28), the dynamic system can

be expressed as:
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dk, /dt l
S R G O Uy S (B29a)
k?t kt kt
day /dt ¢ (i —ly)
_ D B29b
i vy a—° (B29b)
dé, /dt O, ey
—tA/ = (1 — TK)—(CLt)l/p (ﬁ)l - 5 - 6 - gY7 (B29C)
Ct 77 kt
—1l)o l t
divfdt _ Bt Wto- Gyl o)
lys o {(1 A)lt (le—ly)ot+Tr,e/(1—71.4)] +a+( ) lyt } ( )
’ 1 lt) TLt/(l TLt) lt lYt

(1 Mie/(le—ly,t)
[1 + le/(1=ly)—7L t/(lY—tTL,t)][(l/'O ~ a)gdt + Akt — e, t]

(1 )\)lt/(lt lyt)[a-f—T 7,g/(l—’)’ 7,5)} l t
ey tat (1=N)g Y}Yt}

Linearizing eqs (B29a), (B29b), (B29c), and (B29d) around the steady-state

equilibrium yields:

dl%t/dt b1 bz bis bis fey — bis
da /dt b21 b22 b23 b24 a; — a b25
! - ! + drr, (B30)
deg/dt b31 b3y b33 bsy ¢ — ¢ bas
dly,/dt ba1 bya bag bas lAY,t —ly bas
where
by — O(dky /dt) _ O(dky/dt) — O(dk /dt) i — O(dk: /dt) bie — O(dky /dt)
- T ok 127 Toa, = 9 VT Taly, VST Targ o
d(day/dt) _ O(day/dt) _ 9(day/dt) _ 9(day/dt) _ 9(day/dt)
b 1= 6; ) b22 - aét ) bag = 3& ) by = 31;15 ) b25 - 8’:}( )
_9(déy/dt) _O(dey/dt) _9(déy/dt) _9(déy/dt) _9(déy/dt)
b31_8—2t7b32_3—2t7b3 _a—t@tvb _T;tab?f)_#?
by = dlgkt/dt bey — 8(dlgétt/dt)’ bys — 6(dlgéi/dt bay = 8(d(l9;l/tfdt) by — 8(d(l;;;/dt)

Due to the complicated calculations, we do not list the analytical results for

b;j, where i € {1, 2, 3, 4, 5} and j € {1, 2, 3, 4, 5}.
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Let ¢4, £y, ¢3, and ¢4 be the four characteristic roots of the dynamic system.

Due to the complexity calculations of the four characteristic roots, we do not try

to prove the saddle-point stability analytically. Instead, we show that the dynamic

system exists two positive and two negative characteristic roots via a numerical

simulation. For expository convenience, in what follows let /; and /5 be the negative

root as well as /3 and /4 be the positive roots. The general general solution is given

by:

ey k()
a | | alrk)
e ¢(Tk)
lY,t lY(TK)

1
ha
hs
ha

1
hao
hs2
haz

1
has
hs3
has

1
ha4
has
o

_D1 eflt
D2€€2t
D3€£3t

D4€€4t

where Dy, Dy, D3, and D, are undetermined coefficients and
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b12
Aj = bas — gj
bs2
l; — by
haj = —ba
_b3l
bl2
h3j 7 bgg — gj
bs2
b12
h4j = 622 = gj

b2

bl3
623
bas — (;
b13
bQ3
bz — £
—byy b
‘621 b24
_b31 b34
b13

bas

b33 — gj

b14

by | 3J€A{L, 2, 3, 4},

b34

b14

b24 /A] ;jE{l, 27 37 4}7

b34

ﬂj N bll
_b21

_b31

/Aj ;jE{l, 27 37 4}7

/A, el 2, 3, 4},

(B31b)

(B31c)

(B31d)

(B3le)

The government changes the capital tax rate 7 from 7 to 751 at t=0, based

on eqs (B3la)-(B3le), we employ the following equations to discribe the dynamic

adjustment of l%t, ag, ¢ and lyy:
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. k(r ; t=0"
- A( xo0) (B32a)
k(TKl) + Dleelt + Dgebt + D36€3t + D4€£4t; t Z 0+
\
X a(Tko); t=0"
ay —
a(Ti1) + ho1D1€" + hag Dae®' + hoz Dses' + hoyDyetst; ¢ > 0F
\
(B32b)
p
. &(TKo); t=0"
G =
é(TK1> + hngleflt + h32D26£2t + h33D3€Z3t + h34D4€€4t; t Z 0+
\
(B32c¢)
(
ly(TKo); t=0"
lyy =
ly (TKI) + h41D1€£1t == h42D2€€2t + h43D3€£3t R h44D4€€4t; t Z 0+
\
(B32d)

where 07 and 0" denote the instant before and after the policy implementation,

respectively. The values for Dy, D,, D3 and Dy are determined by:

]Afof = ]Af()Jr, (B33a)
&0— = o d0+, (B33b)
Dy = Dy=0. (B33c)

Equations (B33a) and (B33b) indicate that both k; (= f\f—t;) and a; (= W
) remain intact at the instant of policy implementation since K, A;, and N; are
predetermined variables. Equation (B33c) is the stability condition which ensures
that all /%t, at, ¢; and ly; converge to their new steady-state equilibrium. By using

egs (B33a) and (B33b), we can obtain:
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k(7 ko) — k(Tx1)]h22 — [a(T ko) — a(Tx1)]

D — , B34a

1 hog — hay ( )

D, — [a(T ko) — a(Tk1)] — [k(TKo) — k(TKl)]hﬂ' (B34b)
hag — hoy

Inserting eqgs (B33c), (B34a), and (B34b) into eqs (B32a)-(B32d) yields:

k(7 ko0); t=0"
]%t = ]%(TKl) + [];'(TKO)_]%(TKll)l]z};2_2]:2[(j(TK0)_d(TKl)] eht >0t
[a(r ko) —a(Tx1)]—[k(TK0)—k(Tx1)]h21 tot.
\ + KO th227h2i(0 1 elet:
y
a(Tko); t=0"
a; = 4 &<7K1) + {[E(TKO)*E(Txl)]hzi;[flggfo)*&(TK1)]}h21eelt t>0F
+ {[a(r ko) =a(rx1)]=[k(rK0) k(T K 1)|ho1 thase'2! |
\ ha2—ha1 ’
p
(T Ko); t=0"
¢y = { ¢(Tr1) + {[E(TKO)_’%(TKl)}h2]i2—2[il§;i<o)—@(TKl)]}hslezlt t> 0t
+ {[a(r ko) —a(Tk1)] = [k(T ko) — k(T rc1)] ho1 Y hsoel2t |
\ ho2—ha1 )
y
ly (Tko); t=0"
e = 4 Dyl + ity ten it > of

+ {[a(rx0)—a(r k1))~ [k(T K0)— k(T K1)]h21 Yhase?2? |
ho2—h21 )
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Appendix 3.C. Proof of comparative statics

From egs (B29a)-(B29d), we have:

dk,/dt T ¢
A N el Ry Sy (Cla)
kt kt kt
day /dt _ S [ (ke, g, 0, lyas Ti) — lya] B (C1b)
dt 1 + w A1,¢ ga,
déy/dt a,. sl
N (e [ S S (C1¢)
Ct n ky
(n=Da(1+9)ly,
dly/dt -~ B+~ a1+ g4) €14)
lYt - {(lfA)lt/(ltfly;t)[a+TL’t/(17TL7t)] + Oé+ (1 \ ) lYt }
’ le/(1=lt)—7p,e/(1—TL,t) le—ly
1=\ /(L1
1+ zt/(ifzt))jT/L(,:/(fitT)L’t)][(1/P — Q) gas + Qagp — gat]
(A=N)l/(e=ly)[otTr ¢ /(1=TL 1)) ly,
{ le/(1=l)=7r,¢/(A=TL,t) o+ ( )lt lYt}
In the steady state dkif L dd(f“/ i — dég{ dt — dl?jf L 0, we then have the following

steady-state results:

[ Vp—agly 1

- Q@ g, (Cle)
[ — Iy )

ga = 1‘ig"lp( dl_};) 3 (le)

5 = (1—w)%m)“f’-a(%)l—a—6—gy, (Clg)

(n—Da(l+9)ly
(1 —a)n(l —ly)

0 = B+ n+[p+¢— lga. (C1h)

Based on ly = (1 — s)l, we have:

ly (-5l  (1-5)

I~y 1—(1-s1 s (C2a)
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Inserting eq. (C2a) into eq. (C1h) yields:

n=1l_o 1+
5= 2 e Utdaa (C2b)
B (1452 ) (+0)ga
From egs (B3) and (Clg), we can obtain
r—gy =0. (C3)
Equation eq. (Clg) can be rearranged as:
it pagyia . N(B+ 0+ gv)
k= (a)ero(Xylra= LT - T IV Cda
ik = @pe-e(Coyine - LEL L ()
Substituting eq. (C4a) into eq. (Cle) gives rise to:
¢ n(B+ 0+ gv) k ol - 7x)

To ensure the steady-state consumption-output ratio ¢/y is positive, we impose

the restriction (1 — () — (6§ + gy)m > 0 for all values of the time preference

rate 8. As a consequence, limg_o ¢/9>0 implies:

1—
(1-¢)— % > 0. (C5h)
From ly = (1 — s)l and eq. (C1f), We can derive:
A S _ _
a4 = [—]1/(1 ¢)(31)A/(1 ). (C6)

(1+1)ga

Based on eq. (B28) and Iy = (1 — s)l , we can infer the following expression:
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C— 2Tk
=(1—-5)—21— C7
= (1) (CTa)
where
07L o
—=—(1- 1 <0. C7b
0Tk (1=s) 11—« (C7b)
Equipped with egs (B1), (B2), (B5), and Ly = N(1 — s)l, we can obtain:
l g(1l=7.)1—«)
= = C8
11" (1-s) (C8)
Inserting egs (Cha) and (C7a) into eq. (C8) yields
1— o W =i ; X >0
| = [(1-0=G+ay) sesrsriy] , (C9a)
1 ;o x=20
where
S Ut = = T N P
Ol _ ) abran) =i~y )iy~ 0 X (Cob)
aTK
0 ;7 x=20
Combinning egs (C2b), (C6), and (C9b) together, we can derive
o= [ /ae (M), C10a
e (C102)
where
da A ol
- G~ > 0. (C10b)

87’[{ (1 — gb) la’TK
Based on egs (C4a), (C9b), (B12), and (B18), we have:
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| — d I-a | ————————|T-a 1 — S l, Clla‘
= T (C11a)
where
ol ol o > 1/p—a A
— — - =1 — 11
0Tk [UZOTK (1—a)(1—TK)]y<O’ ? * l—a 1—9¢ (C11b)
According to egs (C4a), (Cha), and (C11b) yields:
~ all —7g)
k = —————1, Cl2a
nBEo+gr) (C122)
. a(l—7g) .
= (1=~ (6 +gy)— " TK) gy C12b
o= M- BraSa=TE (c120)

Inserting eq. (Clla) into (C12a) and (C12b), we can derive the following compar-

ative statics:

Ok ol -TK)y ol B 1 >
o T nBiot ) s A—a)i—r) <> (C12c)
¢ _  ol0tgy) gl
ol =71g)(0+gy), 0l o S
B+ +gy) UlarK_(l_a)(l—rK)]}yZO'

(C12d)
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CHAPTER 4
SHORT-RUN AND LONG-RUN EFFECTS OF CAPITAL
TAXATION ON ECONOMIC GROWTH IN A R&D-BASED
MODEL WITH ENDOGENOUS MARKET STRUCTURE

4.1 Introduction

The linkage between capital taxation and economic growth has been studied ex-
tensively in the field of macroeconomics. In general, the existing studies on this
topic can be classified into two strands of literature. The first strand emphasizes
the growth engine of capital accumulation, and finds that capital taxation stifle
economic growth. To be more specific, the tax imposed on capital income leads the
household to reduce its accumulation of physical capital, and hence is detrimental
to economic growth. The relevant literature in this strand includes Judd (1985),
Chamley (1986), King and Rebelo (1990), Jones et al. (1993), Devereux and Love
(1994), and Milesi-Ferretti and Roubini (1998).

The second strand instead highlights the growth engine of R&D investment,
and finds that mixed relationship between capital taxation and economic growth.
More specifically, a rise in the capital income tax rate motivates intermediate firms
to lower its demand for physical capital, thereby causing a decline in the profit of
intermediate firms. This in turn lowers R&D investment and economic growth.
However, if the government adopt a tax shifting scheme to balance its budget (i.e.,
a rise in the capital income tax rate is coupled with a fall in the labor income tax
rate), then an additional effect on the household’s labor supply is present. This

additional effect generates a stimulating effect on R&D investment and economic
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growth.! As a consequence, if this additional effect is taken into consideration,
capital taxation may either spur or stifle economic growth. The relevant literature
in this strand includes Lin and Russo (1999), Zeng and Zhang (2002), Aghion et
al. (2013), and Chen et al. (2016).>

With regard to the empirical studies on capital taxation and economic growth,
there is also lack of consensus within the existing literature. Lee and Gordon
(2005), Hungerford (2010), Arnold et al. (2011), and Mertens and Ravn (2013)
find that capital taxation, such as corporate profit tax, capital gains tax, dividends
tax, has an adverse effect on economic growth, while Mendoza et al. (1997),
Angelopoulos et al. (2007), and ten Kate and Milionis (2015) find that capital

taxation may be neutral with or even beneficial to economic growth.

The main purpose of this chapter is to explain these mixed observations from
the perspective of time horizon. To this end, we set up a second-generation R&D-
based growth model developed by Dinopoulos and Thompson (1998) and Peretto
(1998). As is well known, some salient features are exhibited in the second-
generation R&D-based growth model. The first feature is that both vertical and
horizontal innovations are present simultaneously. In the vertical dimension, each
of incumbent firms engages in in-house R&D to improve the quality of their specific
product. In the horizontal dimension, firms enter the market through the creation
new products. The second feature is that the economic growth rate is crucially

related to the rate of returns to the firm’s in-house R&D. The third feature is that

'With this additional reduction in the labor income tax rate, the household is inclined to
provide higher labor supply, causing the final-good firm to raise its production. Then, the final-
goods firm will increase its demand for intermediate goods, thereby resulting in a rise in the
profit of intermediate firms and boosting R&D investment and economic growth.

?Yilmaz (2013) specifies that an increase in the capital income tax rate is coupled with a rise
in the subsidy on R&D to balance the government budget. Based on the fact that the additional
subsidy effect is beneficial to R&D investment and economic growth, his analysis also shows that
capital taxation may either boost or depress economic growth.
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the returns to the firm’s in-house R&D are determined by its market size rather
than aggregate market size. With the second and third features, an expansion in
the scale of the aggregate economy is completely fragmented by the proliferation of
endogenous product varieties, causing the second-generation R&D-based growth

model to be able to eliminate the undesirable scale effect.

Based on these features, our Schumpeterian growth model with endogenous
market structure (EMS) finds that, in response to a change in the capital tax
rate, the long-run and short-run responses of the economic growth rate exhibit
distinct patterns.® To be more precise, in the short run where the number of firms
is fixed, a higher capital income tax rate is harmful to economic growth. During
the transitional process, with the number of firms adjust endogenously, economic
growth keeps on rising as each of the in-house R&D firms continues to expand
its market size. In the long run, with the equal counteracting strength between
the short run and the transition period, capital taxation is neutral with economic
growth. This provides a plausible explanation for the mixed empirical observations

between capital taxation and economic growth.

Some empirical studies support the features exhibited in the second-generation
R&D-based growth model. As mentioned previously, a prominent advantage in this
strand of the literature is that an expansion in the scale of the aggregate economy
is perfectly fragmented by the proliferation of endogenous product varieties. This
makes the undesirable scale effect be eliminated. Laincz and Peretto (2006) use the
US data over the period 1964-2001, and find that the empirical evidence supports
this feature. Moreover, the empirical works of Cohen and Klepper (1996a; 1996b)
and Adams and Jaffe (1996) support that the plant-level productivity of the R&D

firms depends upon the firm’s market size (R&D per plant) rather than aggregate

3EMS is characterized by firm’s endogenous entry.
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market size (total amount of R&D), which is also the main feature of this strand

of the literature.

Several existing studies on taxation and economic growth in the R&D-based
growth model are closely related to our paper. By using a non-scale R&D growth
model developed by Howitt (1999), Zeng and Zhang (2002) show that the balanced
growth rate of per capita output is independent of labor income tax and consump-
tion tax, while it is negatively related to capital income tax. Conversely, Lin and
Russo (1999) analyze how the taxes imposed on distinct sources of capital income
affects the long-run growth rate, and find that a higher capital income tax rate
for innovative firms could stimulate economic growth if the tax system allows tax
credits for R&D spending. In departing from these two papers, this paper instead
highlights that the dynamic adjustment of the firm’s market size is crucial for de-
termining the effects of capital taxation on economic growth in both the short run
and the transition period. More recently, Aghion et al. (2013) and Hong (2014)
develop a quality-ladder R&D-based growth model to deal with optimal capital
taxation. More specifically, they turn their main focus to the normative analysis
to examine the validity of the Chamley-Judd (Chamley 1986; Judd 1985) result,
i.e., a zero optimal capital tax. This paper instead sets up a second-generation
R&D-based growth model, and focuses on the positive analysis regarding how

capital taxation affects economic growth in both the short run and the long run.

The rest of the paper is arranged as follows. Section 4.2 sets up a R&D-based
growth model featuring EMS. Section 4.3 analyzes the effects of capital taxation
on economic growth and market structure. Section 4.4 calibrates the parameters
and provides a quantitative analysis of capital taxation. Finally, some concluding

remarks are provided in Section 4.5.
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4.2 The model

4.2.1 Households

Households are homogenous, infinitely-lived, and endowed with one unit of time
which can be allocated between work and leisure. The representative household

maximizes the following lifetime utility:*
U:/ooe_pt InCy+x(1—Ly)| dt,p>0,x >0, (1)
0
subject to:
Ko+ Ay = ragAi+ (1 — T )rg Ko+ (1 — 7o0)w. Ly — C. (2)

In eq. (1), C; is consumption of final goods and L; is total labor supply so that
1 — L; is leisure time. The parameter p is time preference, and the parameter y
reflects the preference for leisure. In eq. (2), K; is physical capital and rx, is the
return on capital. A; is the value of equity shares issued by intermediate firms and
T4, is the return on equity shares. Physical capital and R&D stocks are perfectly
substitute, so that the returns on these two assets follow the no-arbitrage condition:
rat = (1—7k)ri:. Weassume perfectly mobile labor; accordingly a uniform wage
rate, denoted by w,, will hold across sectors. The government imposes the capital

income tax 7Tk ; and the labor income tax 7, on the households.

From standard dynamic optimization, we can derive the usual Keynes-Ramsey

rules:
C,
= =0 =TT — P (3)
Ci
4Our results are robust to a more general utility function given by In C; —l—x(lf# for x >0

and 1 > 0. However, when 7 > 0, the equilibrium allocations of labor do not have closed form
solutions. Therefore, we are centering on the special case of n= 0 for analytical tractability.
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and the optimality condition for labor supply determines the wage rate:

(1 — 7w = xCh. (4)

4.2.2 The final goods sector

There is a competitive representative firm producing a single final good Y; (nu-
meraire). Following Peretto (2007, 2011) and Chu and Ji (2016), the production

function is specified as:®
e L

vi-| Xf(j)(zta(j)ZS—aTYjﬁ—@dj, 0 €(0,1),a€(0,1), (5)
where X;(j) is intermediate goods of type j € [0, Vy], IV; is the number of in-
termediate goods, Z;(j) is the quality of good Xi(j), Z; = N% ONt Z1(j)dj is the
average quality of all intermediate goods, which represents the knowledge stock in
the economy. The productivity of intermediate good X;(j) is positively related to
its respective quality Z;(j) and also to the existing knowledge stock Z; because
of R&D spillovers. Ly, is labor used in final goods production. Notice that since
the final goods producer uses total N; types of intermediate goods, the amount of

labor input collocated with each type of intermediate good is Ly /V;.

The first-order conditions for the profit maximization problem of the final goods

producer yield conditional demand functions for labor and intermediate goods:

w = (1 e%jt, (6)
p(j) = 0X01()) [zmzsa%ﬂ - )

5Peretto (2013) considers a more general specification Ly /Nf, where 0 < o < 1 measures the
soical return to varieties. Under tax shifting from labor income taxes to capital income taxes, our
neutral result of capital taxation on long-run economic growth is robust to such a more general
setting.
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where p;(7) is the price of X;(j).

4.2.3 The intermediate goods sector

The intermediate goods sector is monopolistically competitive and comprised by
a continuum of mass N, of incumbent firms, each of which produces a single in-
termediate good X,(j), j € [0, Ny with a perpetually protected patent for that
good. Intermediate firms produce intermediate goods using capital as inputs with
the technology that one unit of capital is used to produce one unit of intermediate
goods, i.e., X;(j) = ki(7) where ki(j) is the amount of capital employed by firm j.
Intermediate firms also undertake in-house R&D that improves the quality of the
good they produce. In-house R&D (vertical R&D) requires labor as inputs. The
innovation technology is:

Zt<j) = ©Zi(j)12:(7), (8)
where ¢ reflects the productivity of in-house R&D, and [z;(j) is research labor

employed by intermediate firm j.

The profit function of incumbent intermediate firm j is given by:°

() = pe(7) Xe(J) — Trike(5) — wilz4 (7). (9)

The value of the jth monopolistic firm is:

Vi) = [ e (— | d) I1.(j)ds. (10)

where r; is the interest rate.

By solving the firm’s maximization problem, we obtain the following first-order

conditions:

5Our long-run growth effect of capital taxation is robust if we consider a sunk cost wl,., where
l; is a fixed labor input for intermediate firms to operate in the business.
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m(j) = g (11a)
v = NG)eZl), (11b)
—&U)+H&U)=:a[@&ﬁ—wKQ<MZ£yGZ?*Uﬂ?ﬂ%% T G)elza),

where A (7) is the co-state variable of Z;(j). eq. (11a) indicates that intermedi-
ate firms are symmetric. By taking log of eq. (11b) and total differentiating with
respect to time we can obtain w;/w; = Y A+ 7 /Z;. Then, inserting eqs (11a)
and (11c) into the above expression yields:

u—@mm(ii)géﬁ]+@ (12)

pt(]) Ny wt7

apZy

Tt =

Wy

in which we have used the symmetry condition.

4.2.4 Entrants

Following Peretto (1998), it is assumed that a (potential) entrepreneur can create
a new firm by running an R&D project. It hires labor to develop the blueprint that
creates new a type of intermediate good and simultaneously expands the number

of intermediate firms. The entry technology is specified as:
N = BLyy, (13a)

where 3 is the productivity in the variety R&D sector, and Ly, is the total amount
of labor used for variety R&D. Since the value of an incumbent is V; and the entry

cost for each potential entrant is w;/f, the no-arbitrage condition for entry is

V;t:wt/ﬁ-
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In the horizontal R&D secotr (entry), the familiar Bellman equation is:

_L v
ViV

Tt

(13b)

4.2.5 Government

The government levies capital income taxes, labor income taxes, and lump-sum
taxes to finance its public spending G;. The balanced government budget con-

straint can be expressed as:
Tk K + Tl = Gy (14)

The government spending is a fixed proportion ¢ € (0, 1) of final output, namely:

G, = (Y, (15)

4.2.6 Markets clearing and aggregation

Given that the intermediate firms are symmetric, the capital market clearing con-
dition is K; = N;k;. The stock market clearing conditions are A; = N;V; and
ry = T4 The labor market clearing condition is L; = Ly, + Ly + Lz,, in which
Ly, = fONt lz:(j)dj = Nilz, is the aggregate labor used for vertical R&D. By using
the market clearing conditions and the relative first-order conditions, we combine
the households’ budget constraint (2) and the government budget constraint (14)

to obtain the resource constraint in this economy: K =Y; — C, — G,. By applying
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the symmetric condition we can also obtain the aggregate production function for
final goods:
Y = KY(Zi Ly, ). (16)

4.2.7 Decentralized equilibrium

The decentralized equilibrium is defined as an infinite sequence of allocations {C},
Kt7 At7 }/ta Xt7 Lt7 LY,t7 LN,t7 LZ,t7 Gt}?i07 prices {wta T, rA,ta rK,ta pt(])? W<j)}§207

policies {7+, T1+}, such that at any instant of time:

&

. households choose {Cy, K;, A;, L;} to maximize lifetime utility (1) taking

prices and policies as given;

b. competitive final goods firms choose {X¢(j), Ly} to maximize profit taking

prices as given;

c. monopolistic intermediate firms j € [0, V;] choose {k:(j), p:(j), lz+(j)} to

maximize profit taking {ry, ris, wy, Tr1} as given;
d. entrants make entry decisions taking {V;, w;} as given;
e. the final goods market, capital market and labor market clear;

f. the government budget constraint is balanced: 7x 7k K, + 7w Ly = Gy.

4.3 Long-run effects of capital taxation

In this section, we examine the long-run effects of capital taxation on growth and

entry. Before doing so, we first characterize the balanced-growth path (BGP) in
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this model. In the steady-state, labor allocations are stationary. Accordingly,
from the resource constraint and egs (6), (13), and (16), we can easily derive the

properties of the BGP equilibrium:

K Z Y, C G u .
_t:_t:_t:_t:_tzﬁjj\ftzo_ (17)
Kt Zt }/t Ot Gt Wy

In the following analysis we denote v, , as the growth rate of any generic variables

x and denote 7 as the balanced growth rate of all growing variables.

This section focuses on the steady-state effects of capital taxation. For this
purpose, we define the transformed variables w = w/K, ¢ = C/K, z = Z/K,
y = Y/K, and drop the time subscript to denote the stationary levels of (trans-
formed) variables in the steady state. By using the property of eq. (17), the
BGP equilibrium of the macro economy can be described by the following set of

equations:
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v o= T—p (18a)

w = xc/(1—7g), (18b)
w = (1-0)y/Ly, (18¢)
1= (0/p)T 2Ly, (184)
p = rx/b, (18e)
(1—7r)rx = 1 (18f)
v = ¢plg, (18g)
. 0490(1—9)9y/N+% (18h)
/4 5[(1—°5>95/N—wzz]+% -
Y/ LN (15))
7 = (1=0y—q (18k)
y = (6/ri) I 2Ly, (181
L = Ly+Nly, (18m)

in which we solve for thirteen unknowns {v, r, w, ¢, 7, z, p, 7, y, L, Ly, I, N}.
The detailed derivation of eq. (18) is presented in Appendix A. It should be noted
that in this model the labor income tax 7 is treated as an endogenous variable
because it will endogenously adjust in order to balance the government constraint

as the capital income tax changes.

We are now ready to solve the balanced growth rate. By inserting eq. (18c)

into eq. (18h) we can obtain £ = o5 By inserting eq. (18c) into eq. (18i) we
can obtain [z = OLTY — % = ﬁ — %. Combining these two expressions and putting

into eq. (18g) yields the closed-form balanced growth rate:
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7:§<1—%>. (19)

In eq. (19) we have assumed that § > a to ensure that both [ and «y are positive.

It directly follows from eq. (19) that:

Oy

p— . 2
87’}( 0 ( 0)

Before explaining the result of eq. (20), it is useful to first discuss the long-
run effects of the capital income tax on labor allocations and entry. By inserting

Ly — o and [z = £ — £ into (18m), we can obtain the relation L = ©Ly where

ap B
O=1+60-— 0‘7@9 > ( is a composite parameter independent of 7. With L = © Ly,

we can directly infer from (18j) that 7, is a decreasing function of 7x:

1 C — 927'[(
= ———— 21
TL 6 (1-9) (21)
eq. (21) states that an increase in the capital tax is coupled with a decrease in the

labor tax. This result is termed as “tax shifting” in the literature.

Next, we put egs (18c)-(18e), (18k), and (18l) into eq. (18b) to eliminate w, ¢,
y, z and p, and then insert eqs (18a) and (18f) to eliminate r and rg; accordingly,

we attain the following expression:

O(1—71)(1-0)
X[Q=¢) =101 —7k)/(v+p)]

eq. (22) is a closed form solution of equilibrium labor force given eqs (19) and

L=0Ly = (22)

(21). Differentiating L with respect to 7 yields:

oL _ (1-0)6°Ey 2 ~0 (23)
Ok x[1=¢ - A =71x)0°v/(v+p)] (v+p)

To understand the intuition of eq. (23), let us first consider a hypothetical

case where the labor income tax 7 is fixed. This case could be thought of as
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the situation under which the government has another policy instrument such as
a lump-sum tax (or transfer). The lump-sum tax adjusts to balance the govern-
ment constraint as the capital tax increases, so that the labor income tax is left
unchanged. In this case, eq. (21) is absent, and thus in eq. (22) 7 is treated as
an exogenous variable. As such, we can easily see from eq. (22) that an increase
in the capital tax results in less labor supply. The intuition can be explained as
follows. A unilateral increase in the capital tax depresses the intermediate-goods
sector. Specifically, it increases the production costs of intermediate firms, and
in turn results in less intermediate goods for final goods production, leading to
a lower marginal product of final-goods labor. On the other hand, the profits of
intermediate firms decreases, which also depresses the returns of in-house R&D
labor. Both effects point to a lower labor supply because the returns on both
labor decrease. Now we turn to the case of tax shifting. In this case, to hold
the ratio of government spending to GDP constant, an increase in the capital tax
is accompanied with a decrease in the labor tax. The decrease of the labor tax
boosts the households’ labor supply. Although the abovementioned negative effect
is still present, the positive effect triggered by the lower labor tax is stronger. As a
consequence, the total labor supply increases in response to the rise of the capital

tax under the case of tax shifting.
Finally, from the expressions L = O Ly, LWY = QL;Q, and Ly = Nly = N(%— %),

we can also derive the effects of the capital tax on final-goods labor, in-house R&D

labor, and the number of intermediate firms:

8Ly>0’ 3Lz>07 ON >0, Ol _
87'K 67'K

87’K aTK

The following proposition highlights our findings in this section:

101



Proposition 5 In the long run, an increase in the capital income tax has a positive
effect on total labor force, final-goods labor, aggregate in-house RED labor, and the
number of intermediate firms, while it has a neutral effect on in-house RED labor

per firm and the growth rate.

We have explained above that the rise of the capital income tax boosts to-
tal labor force by reducing the labor income tax. However, this increase of the
labor force has no effect on long-run growth. This is the distinct feature of the
second-generation R&D-based growth model, in which the scale effect (of labor) is
removed. For example, Peretto (1998) demonstrates that the steady-state produc-
tivity growth does not depend on population size. Changes in population size have
only transitory effects on economic growth. Likewise, in our model, the long-run
growth rate is independent of the aggregate labor force. More important insights
into the effects of capital taxation can be obtained by carrying out a quantitative

analysis of the effects along the transition, which we present in the next section.

4.4 Quantitative analysis

In this section, we provide a quantitative analysis to explore the effects of capital

taxation along the transition.” We generalize the utility function as follows:

o) 1—=1T1 1-n
U= / e {ln Cy —|—X(1—t) dt, (24)
0

where 1 > 0 determines the Frisch elasticity of labor supply. When n = 0, eq.(24)
reduces to the special case shown in eq. (1). Our model has nine parameters{p, 6,

n, a, ¢, X, Tk, B, ¢}. We choose the following benchmark parameter values that

"We solve the dynamic system in Appendix 4.A.
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are within the plausible ranges used in the literature. First, in line with Andolfatto
et. al. (2008) and Acemoglu and Akcigit (2012), the capital income share 6 and
the discount rate p are set to the values 0.4 and 0.05, respectively. Second, the
initial capital tax rate 7x is set to 0.3 based on the average US effective tax rate
estimated by Carey and Tchilingurian (2000). As for the government size (the
ratio of government spending to output), data of US exhibits around 20 percent
(Gali, 1994), and has slightly increased in recent years. We set ¢ to be 0.22, which
is the average level during 2001-2013. Third, the parameter for leisure preference
X is chosen as 0.9135 such that total hours worked is around one third of time
endowment. Moreover, we set n = 1.67, implying a Frisch elasticity of 1.2; see
Chetty et al. (2011). For the in-house R&D productivities, we choose ¢ = 8.94
to target the empirical level of the output growth rate in the US, which is around
2%. As for the R&D spillovers, we choose o = 0.2052 such that the ratio of R&D
to GDP is 1.97%; see King (2004). Lastly, we assume that an entrant incurs 0.5
units of labor as a setup cost, indicating the value g = 2. Table 4.1 reports our

calibrated parameter values.

Table 4.1: Calibrated parameter values

g p Tk ¢ X n 7 o B
0.4 0.05 0.3 0.22 09135 1.67 8.94 0.2052 2

We conduct a policy experiment of a small increase in the capital income tax
rate from its initial value 30% to 31%. Figures 4.1-4.8 depict the effects on the
growth rate and important variables along the transition path. As shown in Figure
4.1, in the short run where the number of intermediate firms is fixed, raising the

capital tax has a negative impact on economic growth.

103



0.0210 -

o
o
]
=)
5

O_OEOO‘------------

0.0195 -

output growth rate

0.0190 -

0.0185 L L L A A . L
0 20 40 60 80 100

time
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Figure 4.2: Transition path of total labor force

The intuition behind could be best understood by looking into the diverse ef-
fects of the capital tax on labor used in different sectors. Specifically, in the short

run, the increase in the capital tax reduces the labor income tax (tax shifting) and
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wage. The decreased wage has an immediate beneficial effect on three segments
that use labor as inputs: the final-goods sector, the in-house R&D sector of in-
termediate firms, and potential entrants. However, for the final-goods sector, the
higher capital tax decreases the supply of intermediate goods; for the intermedi-
ate firms, the higher capital tax increases their production costs. Only the entry
labor can enjoy the pure benefit of the lower wage without being directly (and
negatively) affected by the higher capital tax. Therefore, in the final-goods sector
and in-house R&D sector, the marginal product of labor is temporally less than
marginal product of labor used for entry. This subsequently causes labor to flow
out from these two sectors to the entrants as a sudden response. This is what we

see in Figures 4.3, 4.5 and 4.6.

0.01388

0.01386 |
2}
A L

0.01384

0.01382

0 20 40 60 g0 100

time

Figure 4.3: Transition path of aggregate in-house R&D labor

105



0.002237 |

0.002236 |

0.002235 ¢

- 0.002234}

ITITITIY e

0.002233

0.002232 ¢

0.002231

0 20 40 60 80 100

time

Figure 4.4: Transition path of in-house R&D labor per firm
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Figure 4.5: Transition path of final-goods labor

In second-generation R&D-based growth models, an important trait is that the
growth rate is highly related to the market size or, more specifically, the in-house
R&D researchers hired by each intermediate firm. As we have discussed above,

at the point when the capital income tax rises, the aggregate in-house R&D labor
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flows out. Furthermore, in the short-run, the number of intermediate firms is fixed.
This indicates that the in-house R&D labor per firm also decreases (Figure 4.4),
which then is associated with a lower growth rate. Thus we see in Figure 4.1 that

the growth rate immediately jumps down as the policy shock occurs.
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Figure 4.6: Transition path of labor used for entry
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Figrue 4.7: Transition path of firm number
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Along the transition process, new intermediate firms start to enter the market.
Thus the number of intermediate firms rises (Figure 4.7). The profits of intermedi-
ate firms declines, which reduces the gap between the value of intermediate firms
and entry cost, and therefore slows down the speed of entry. Moreover, because
the benefit of entry declines, labor gradually flows back to the final-goods sector
and in-house R&D sector. In particular, although during the transition process
both aggregate in-house R&D labor and firm number are increasing, it turns out
that the former exhibits a faster rate of growth. Therefore, the firm size gradually
increases, leading the growth rate eventually to return to its original value. Our
results with regard to the diverse growth effects of capital taxation in the short run
and in the long run may provide a possible explanation for the mixed empirical

observations between capital taxation and economic growth.
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Figure 4.8: Transition path of the investment rate
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4.5 Concluding remarks

In this Chapter, we examine the short-run and long-run effects of capital taxation
on economic growth in an R&D-based growth model with endogenous market
structure. In earlier traditional AK-type growth models, raising the capital tax
has a harmful long-run effect on growth. In our analysis, however, we show that
the negative growth effect sustains only in the short run. In the short run where
the number of intermediate firms is fixed, raising the capital tax depresses growth
because labor flows out from the in-house R&D sector. During the transitional
period, with the number of firms adjust endogenously, economic growth keeps on
rising as each of the in-house R&D firms continues to expand its market size. In
the long run, with the equal counteracting strength between the short run and
the transition period, capital taxation leads to a zero long-term effect on economic
growth. Our analytical results succeed in matching some empirical observations
that the negative growth effect of capital taxation may be neglectably small in the

long run (Lucas, 1990; Stokey and Rebelo, 1995).

109



Appendix 4.A

This appendix solves the dynamic system of the model under tax shifting from

labor income taxes to capital income taxes. The set of equations under the model

is expressed by:

C,
—_— — Ty —
Ct t P,
e = (1 - TK)TK,ty
7/ (1 — TLt)'U)
1—-L)™" = ————
x( t) C,

KK, = (1= QY/K, —Ci/K,,

TK,th = 92Yt>
0
ap {(1 —0)0 ()" (thy,t/Nt)}
re = w
t
Zy l
Zt = @ Zt
w B(-0)0% -
r = — +
Wt Wt
_ C — 927'[( Ly’t

Ly = Lyy+ Nlgzy+ Ly,

N, = Ly./B.

(A1)
(A2)
(A3)
(A4)
(A5)

(A6)

(A7)

(A8)

(A9)

(A10)
(A11)
(A12)

(A13)

The above 13 equations determine 13 unknown {C}, K3, Ly, rit, Ly, Zi, v, 174, N,

Trt, Yz, wy, Ly:}. Moreover, to solve the balanced growth rate, we deonte two

transformed variablesz; = Z;/K; and ¢; = C;/ K}, respectively. From eqs (A3),
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(A5), (A11), ¢ = Cy/ Ky, and z = Z;/ K;,we have:

(1 — 2 bty — §)(2Ly,)

x(1— L) = P . (A14)

From eq. (Al4), we can infer the folowing expression:

Ly = Lt(Zt, Ct, LY,t; TK)? (A15)
where
oL (1 -0,
0z 2t (NLy/(1 = Ly) = 7r4/(1 = 7TLy))’
oL _ L
dey e ML/ (1 —Le) = 70/(1 = 7L4))’
oL, N O+ 70/(1—7re)) Lt
aLY,t LY,t (77Lt/<1 - Lt) 7 7'L,t/(l - TL,t))’
8Lt gzLY,t

Ok (1=0)A—704) (Le/(L = Ly) —114/(1 = 714))

We now turn to deal with the transitional dynamics of the model. From eqs

(A12) and (A13) we can infer:

_ Ly Lys
N = BN, ( N, N th> (A16)
Based on eqgs (Ab), (A6), (A7), (A9), and (All), we can obtain:
_ (11— 29 gLy
e (1) o arm



Combining eqs (A15), (A16), and (A17) together yields:

N =B |Li(z, ¢, Ly i) — (1 +(1 - %W) Ly7t:| . (A18)

To simplify the notation, in what follows we suppress those arguments of the

laobr supply function. Substituting eq. (A17) into eq. (AS8) yields:

Z L
Z_, (1 < %) gLt (A19)
From eqs (Al), (A2), (A6), (A1l), ¢, = Cy/ Ky, and z, = Z;/ K;, we can infer:
G
Ct
Based on eqs (A2), (A4), (A6), (A11), ¢, = C;/ Ky, and z; = Z;/ K}, we can obtain:

= (1=7g)0*(zeLve) " ~p (A20)

% =(1- C)92(thy,t)1’9 — (A21)

From eqgs (A5) and (A11), we have:

_ 0 1-0
o = O=OKZiLy) A2
Ly,

Taking logarithms of eq. (A22) and differentiating the resulting equation with

respect to time yields:

'Li)t Kt Zt LYt
—=0—=4+1-0=-0—= A23
Wt K ( )Zt LY,t ( )

From eqs (A2), (A5), (A6), (A7), (A1l), and z; = Z;/ K, we have:
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Wy 9 19 apbLy
— =(1- 0“(z L —
w, ( 7i)0” (2 Ly) N,

Substituting eqs (A19), (A20), and (A21) into eq. (A23) and then combining the

(A24)

resulting equation with eq. (A24) together, we thus infer the following expression:

L Q Q L
L: [1—C—001—7x)] (zeLy) " =+ (1—0) Kl - 7@ - m) Tﬂ
(A25)
Equipped with the definition z; = Z;/K; and ¢, = C/ K}, we have:
Zt/Zt = Zt/Zt N Kt/Kt (A26)
ét/Ct = C’t/C’t =3 Kt/Kt (A27)

From eqs (A18), (A19),(A20), (A21), (A25), (A26), and (A27), the dynamic

system can be expressed as:

ilz = ¢ (1 — 7) GLTY; — (1= (zLy) "+, (A28a)
N = 8 [Lt(zt,ct,Ly,t;TK) - (1 +(1- %90)9) Lm} , (A28b)
afe = [A=r)0 = (1= 0] (2Lv)™ — p+cu, (A28c)

ﬁ—: 1= = 01— 7i)] (et L) — o+ (1= ) (1 -2+ &) LTY:
(A28d)

Linearizing eqs (A28a), (A28b), (A28c), and (A28d) around the steady-state

equilibrium yields:
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Zt b1 b2 b13 b14 2t — % b15
N, | b b Do b N,— N . bas e (A29)
Ct bsi bz bsz baa L —C bss
| Lve | | ba baz bus bua | | Lve—Ly || bas |
where
0% 0% 0% 0% 0%
0z 11, ON, 215 e, 315 8Ly¢ 14, 1w 15, ( a)
ON, N, ON, N, ON,
aZt 21, aNt 22, aCt 239 aLY’t 24, aTK 25, ( )
¢y ¢y ¢4 ¢y ¢4
0z 31, ON, 32, e, 33, 3LY,t 34, O 35, ( C)
OLy, OLy, OLy, OLy, OLy,
C o= by, ——— = by, ——— = by, — = byy, ——— = bys. (A30d
aZt 41, aNt 42 aCt 43 8LY7t 44, aTK 45 ( 30 )

Due to the complicated calculations, we do not list the analytical results for b;;,

where ¢ € {1, 2, 3,4, 5} and j € {1, 2, 3, 4, 5}.

Let gy, 19, 145, and p, be the four characteristic roots of the dynamic system.
Due to the complexity calculations of the four characteristic roots, we do not try
to prove the saddle-point stability analytically. Instead, we show that the dynamic
system exists two positive and two negative characteristic roots via a numerical
simulation. For expository convenience, in what follows let 1, and p, be the

negative root as well as p5 and i, be the positive roots.

The general general solution is given by:

Zt Z(TK) 1 1 1 1 Dlel‘lt
Ny _ N(tk) N ho1 has hos hay Dyet! (A31a)
Ct c(Tk) h3i hsa hss hag Dset'st

I Ly, | I Ly (Tk) | I har hag haz haa 1L Detat |



where Dy, D5, D3, and D, are undetermined coefficients and

b2

Aj = | byp— Hj
bs2

p; — b
hayj = | —by
—b3
bi2

hsj = bao — Mg
bs2
b1z

h4j = baa — e
b3z

U3

b23

b33 — K

b14
b24 ; je {17 2a 3a 4} (A31b)
bsa
b
bos | /D55 7 €11, 2, 3, 4} (A31b)
bsa
bia
boy | /D5 J €LY 2,3, 4} (A31c)
bsa
K — bi1
—byy |/ 5€{l, 2, 3,4} (A3le)
—b31

The government changes the capital tax rate 7y from 7x¢ to 71 at t = 0,

based on egs (A31a)-(A3le), we can employ the following equations to discribe the

dynamic adjustment of z;, Ny, ¢, and Ly :
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(
z(T it =07
- (7o) (A32a)
2(Ti1) + Diett 4 Doet2' + Dsetst + Dyetst ¢ >0
;
N(Tko) t=0"
Nt -
N(TKl) + D1h21€‘u1t + D2h22€M2t + D3h23€”3t + D4h24€‘u4t it > 0t
\
(A32b)
(
c(Tko) t=0"
C =
C(’TKl) + hngle“lt —+ h32D2€#2t + h33D3€'u3t + h34D4€‘u4t ;T > 0t
\
(A32c)
(
Ly(TKo) it = 0~
LY,t -
Ly(TKl) + h41D1€”1t = h42D2€“2t -+ h43D36M3t + h44D46M4t it > 0t
\
(A324)

where 07and 0" denote the instant before and after the policy implementation,

respectively. The values for Dy, Dy, D3 and Dy are determined by:

20- = 2o+, (A33a)
No— = ' Nos, (A33b)
Dy = 0, (A33c)
D, = o. (A33d)

Equation (A33a) and eq. (A33b) indicate that both z/(= Z;/K;) and N; intact
at the instant of policy implementation since Z;, K;, and N, are predetermined
variables. Equation (A33c) and eq. (A33d) are the stability conditions which
ensures that all z;, NV, ¢;, and Ly converge to their new steady-state equilibrium.

By using eqs (A33a)-(A33d), we can obtain:
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[2(Tr0) = 2(Tk1)]ho2 — [N(TKo) — N(7k1)]

Dy = o , (A34a)
~ [N(tko) = N(7k1)] — [2(7Kk0) — 2(TK1) |t
Dy — oy | (A34D)

Substituting eqs (A33c), (A33d), (A34a), and (A34b) into eqs (A32a)-(A32d), the

time path for z;, Vy, ¢; and Ly, can then be described as:

2(Txo) t=0"
ze = 2(Tx1) + [Z(TKO)*Z(TIG);1222:}1[;\17(7'1(0)*]\7(71{1)] et
+ N(rxo) =NTx]=[2(Tx0)=2(Tx1)lh21 pupt .4 > ()
§ ho2—ha1 \" =
(
N(7Tko) it=0"
N, = N(TKl) + [Z(TKO)_Z(TKl)1:;22__}5\1[(7}(0)_]\[(7'[(1)} hgle'ult
k +[N(TKO)7N(TK;L)2];7[;(27;K0)*Z(TKl)]hgl Rggetat t>0F
.
(T ko) ;=07
=4 o(Tn) gy BN (o) N o) gt
k +h32 [N(TKO)_N(TK;Z)Q]Q__[Z(;;KO)_Z(TKl)]h21 eﬂZt ’ t 2 0+
(
Ly (T ko) it =07
LY,t = Ly (TKl) + hay [Z(TKO)_Z(TKI)1:;222__}};\1[(71(0)_]\[(7—1(1)] eht
k +hyo [N(TKO)*N(TK;LE;JZ(;KO)*Z(Tkl)]h21 ehat it > 0+
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CHAPTER 5
CONCLUSION

This dissertation has provided a systematic analysis regarding the growth and
welfare effects of capital taxation with distinct R&D-based growth models. More
specifically, we have dealt with the growth and welfare effects of capital income
taxation in three different types of R&D models, namely, the first-generation R&D-
based growth model developed by Romer (1990), the semi-endogenous growth
model developed by Jones and Williams (2000), and the second-generation R&D-
based growth model developed by Dinopoulos and Thompson (1998) and Peretto

(1998). The main findings of each chapter can be summarized as follows.

In Chapter 2, we have constructed a first-generation R&D-based growth model
to examine the effcts of capital taxation on innovation and economic growth. We
have found that capital taxation has drastically diffrent effcts in the short run and
in the long run. An increase in the capital income tax rate has both a consump-
tion effct and a tax-shifting effct on the equilibrium growth rates of technology
and output. In the long run, the tax-shifting effct dominates the consumption ef-
fect, yielding an overall positive effct of capital taxation on steady-state economic
growth. However, in the short run the consumption effect becomes the dominant
force, causing an initial negative effct of capital taxation on the equilibrium growth
rates. These contrasting effcts of capital taxation at diffrent time horizons may
provide a plausible explanation for the mixed evidence in the empirical literature

on capital taxation and economic growth.

In Chapter 3, we have set up an innovation-based growth model, and examined
whether the Chamley-Judd result of a zero optimal capital income tax is valid in

it. By calibrating our model to the US economy, we have found that the optimal
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capital income tax is positive, at a rate of around 11.9 percent. We have also found
that the result of a positive optimal capital income tax is robust with respect to

varying the degrees of various types of R&D externalities.

In Chapter 4, we have built up a second-generation R&D-based growth model
which features endogenous market structure, and examined the short-run and long-
run effects of capital taxation on economic growth. In this chapter, we have shown
that the negative growth effect sustains only working in the short run. Specifically,
in the short run the number of intermediate firms is fixed, a rise in the capital tax
rate tends to lower the growth rate because labor flows out from the in-house
R&D sector. During the transitional period, with the number of firms adjust
endogenously, economic growth keeps on rising as each of the in-house R&D firms
continues to expand its market size. In the long run, with the equal counteracting
strength between the short run and the transition period, capital taxation leads to
a zero long-term effect on economic growth. Our analytical results have succeeded
in matching some empirical observations that the negative growth effect of capital
taxation may be neglectably small in the long run (Lucas, 1990; Stokey and Rebelo,
1995).
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