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ABSTRACT

Suppose (X;;,X51), .. ., (X1m,X2m) and Y11,Yn), ..., (Y1n,Y2,) are
two independent random samples from populations with continuous dis-
tribution functions F x“xz(x,,xz) and GYl Y, (y1.y2) respectively. We
assume that the two populations have a common median v = (vy ,), which is
either known or unknown, and Gy, (V1.¥2) =Fy (0,y: 8, ¥,) for all 1,y2)
and for some 6, >0, 6, > 0. In this paper, two nonparametric tests R and
R* are suggested to detect differences in variability or dispersion for the two
populations. Both tests are shown to be distribution-free and consistent for
testing H: 6, =6, =1 against A: min(@,8,)>1o0rH: 0, = 8, =1 against A:
max(8,, 6,) <1. In addition, the Pitman’s Asymptotic Relative Efficiency
(ARE) of the nonparametric tests R and R* with respect to the parametric
competitors is studied for bivariate normal and bivariate uniform distribu-
tions.
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WERSH: 0, =06,=1, ShERBSA :min (8,,8,) >1H
 RBEEERSH: 0, =0, =1, HIBERBA :max (6,,6,
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I. INTRODUCTION

A familiar problem is to test whether two samples have come from identical
populations. A frequently considered alternative is that the populations differ in
scale. If the observations are univariate and we suppose that the parent populations
are governed by a continuous distribution function, then tests proposed by Mood
(1954), Sukhatme (1957), Ansari-Bradley (1960), Siegel-Tukey (1960), Klotz
(1962), Raghavachari (1965), Fligner (1974), and others are applicable nonpara-
metric analogues of the F-test. In this paper, we are interested in the bivariate case.

Consider a bivariate two-sample problem: Suppose that (Xi1,X21)s - -+, Xim,
X,m) and (Y41,Y21), . -, (Y1a,Y25) are two independent bivariate random samples
from populations with continuous distribution functions Fxl,x,(xl,xz) and GY“
Y 2(yl,yz) respectively such that

GY.E(YI’Y2) = F)_(.B(O 1V1,02y2) for all (v4,y2)
and for some 6, > 0,0, >0,
where X =(X,,X;), Y= (Y,,Y,), and v = (v,,v,) is the common median. We would
like to detect differences in variability or dispersion for the two populations.

Two nonparametric tests R and R* are suggested; the former being applicable
when the common median is known, the latter when the common median is un-
known. We show that both tests are distribution—free and consistent for testing H:
8,=6,=1 against min(6,,6,)>1 or H: 6,=6,= 1 against A: max(9,0,) <1.
Also, we investigate the Pitman’s Asymptotic Relative Efficiency (ARE) of the
nonparametric tests R and R* with respect to the parametric competitors for
bivariate normal and bivariate uniform distributions.

Il. DISTRIBUTION-FREE TEST STATISTICS R, , and R, ,

Let (X1, X21), -+, (Xim,X2m) and S £T1 £70 NN (Y1n,Y 2n) be two inde-
pendent bivariate random samples from populations with continuous distribution
functions (d.f.’s) FX‘ ,Xz(xl,x2) and GY1 ,Y,(Yx,h) respectively. We assume that F
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and G differ only in scale, i.e.,
GY‘E(yl ¥2) = F)_(-.:(el ¥1:02Y2)  for all ¥1,¥2)
and for some 6, >0, 6, >0,
where X =(X,,X,), Y=(Y,,Y;), and v =(v,»,) is the common median. The pro-
blem is to detect differences in variability or dispersion for the two populations.
If the common median v =(v,,r,) is known, we define Rm’n to be the Mann-
Whitney (1947) test statistic for the two independent random samples

Ul,Uz,...,UmandVl,V2,...,V

n

m
z I Dy,

ie., R
i=1 j

s

m,n

whereDij=l ifUi>Vj foralli=1,2,...,m,
=0 otherwise i=1,2,...,n,

U, = [(Xli-V1)2 "‘(Xﬁ—vz)z]y2 fori=1,2,...,m,and

Vi = 1(Yy5-00) 4 (Y -9)"1* forj=1,2,...,n.

If the common median v = (v;,v,) is unknown, we define R;,n to be the
Mann-Whitney test statistic for the two samples,

.V

%* *
UIN’ U nN

* * *
o> Uy and Vi, vV

1IN’ "2N? "¢

* m n *
ie., R =% DI,
mn - y=1 =1 U

where Dj=1 ifUj >V foralli=1,2,...,m,

=0 otherwise i=1,2,...,n,
*  _ 2 2,%
Uiy = X - M) + Xy - M) 17,
* 2 2.%
Vin = [ = M) + (Y - My ) 17,

N=m+n, and

My = M, .M, ) is the combined sample median.

A large value of R or R:‘n n Wwould imply that the X's are more widely

ot
dispersed and vice versa.
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We now show that the proposed test R has the property that, under H: 6, =0,
= 1, the distribution of R | = does not depend on the underlying population.
Theorem 2.1: Under H: 01 =8, = 1, the test statistic R is completely distribu-
tion-free for any underlying bivariate continuous populat1on and its null distribution
is the same as that of the Mann-Whitney test statistic.

Proof: Under H: 8, =6, =1, the two independent random samples (X;;, X21),
, KXymsXam) and (Y43,Y21), ..., (Y1n,Y2,) come from a common
bivariate continuous population. It implies that U,,...,U_and Vy,...,
Vv, are two independent random samples from a common univariate
continuous population. Hence, Rm’ n,which is defined as the Mann-Whitney
test statistic for the two independent random samples U,(i=1, ... m) and
V G=1, ..., n),is distribution-free and its null distribution is the same as
that of the Mann-Whitney test statistic (see { Mann and Whitney (1947)}).
This completes the proof.

Note that, under H: 6, =6, =1, U;N e e e U;N, V;N, R V;N are identical-
ly distributed random variables, but they are not independent. However, we can
still show that the test statistic R .18 distribution-free.

Theorem 2.2: Under H: 8, = 02 1 the test statistic R a 18 completely distribu-
tion free for any underlying b1var1ate continuous populatlon and its null distribution
is the same as that of the Mann—Whltney test statistic.

Proof: Since, under H: 8, =6, =1, the random vectors (X;1,X3), ..., Xim,
Xom)s (Y11,Y21), oo, (Y1n,Yaq) are interchangeable, the vectors (X;; -
M, Xar - My)s o Ky - M, Xom - M), (Y =My, Yo - My,
, (Y- MlN’ Y 3n - 2N) are interchangeable.
Therefore each of the N! possible orderings of (UlN, UZN’ R U*mN, V’;N,
V2N’ cees nN) is equally probable,

* 2 2,1 o
where U,y = [(X}; - M) + (X, - M, ] fori=1,...,m,

* = 2 2.% _
Vin = 1Y = M) + (Vg = My) ] ji=1,...,n

Hence, the test statistic Rm a 1S completely distribution-free (see{Héjek
and Siddk (1967), p. 38}) and its null distribution is the same as that of
the Mann-Whitney test statistics (see { Mann and Whitney (1947)}). This

concludes the proof.
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Il. CONSISTENCY OF THE TEST R

Let us define the consistency of a test T. Suppose ¥™*" is the sample space
and {P |60 € Q }is the class of probability measures over ¥ ™™ Also, for the hy-
pothesis testing problem, H: 6 €w against A: 8 € Q-w, let e (Xl Y G £

Y,) be a test of size o, which is based on a statistic T (X,, o X Yi, o Yn),
and let P (0) be the power of <I> for 0 €2~w. Then the sequence of size «
tests { 2 } (or simply the test T) is sald to be consistent for ¢ C 2-w
1fm’r111m N P,,,m’n(o) =]1for0€¢.

We now consider a well-known criteria for consistency. Let g(0) be a real-
valued parameter defined over §2 such that g(d) = g, f 0Ew, g(0)> (g, if
0 £ ¢, where 8, is some constant.

Theorem 3.1:
IfT, K., XYy, ...,Y,) is a real-valued statistic defined over ¥ ™*®

for each m and each n, and if for all 8 € €2, Tm,n(X, e X Y1,0..,Y))

m,n — o
g(8) provided this convergence is uniform for 6 € ), then the sequence of tests e
of size «,

@, Kis XYY =

ime,n(Xl, co s X Yis Y )-8, > (<) Conn’
@m,n(Xl, cos XYy, Y )=0

ime,n(X,, cos XYY )-8, <) Conn’

is consistent for { .

Proof: See { Fraser (1957), p. 267}.

Since (X;1,X31), . .- » X1im,X;m) is a random sample from a population with
a continuous d.f., U,,..., U, constitutes a random sample from a population
with a univariate continuous d.f., say S(u). Similarly, V,,..., V, constitutes a

random sample from a population with a univariate continuous d.f., say T(v). In
order to prove the consistency of the test R, we establish the following theorem
concerning S(u).
Theorem 3.2: Under the assumption
Gy (v1,¥2)=Fx (0,y,,0,y,) forall(y,,y,)
o o and for some 6, >0, 6, >0,
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where v = (v,,v,) is the true common median, we have
(1) T@)=S([min(6,,6,)Iu) forallu,

(2) T@) < S([max(6,,0,)lu) forallu,and

3) PUKO)=PV<0)=0.

Proof: (1) Since Gy _(v,,¥2) =P(Y;-v, <y;,Y,-v, <y2),
Fx_v(91Y1 0:Y2) =P(X;-v; < 0.y, Xy-v, < 0,y,)

=P((X;-1)/0, <y, (Xy-1,)/0, < y,),

and the assumption Gy _ (y,,y2) = Fx_(0,y,,0,Yy,) forall

(y,,¥2) and for some 60, > 0, 8, > 0, it follows that

Y,-v,,Y,-v,)and ((X,-v,)/8,, (X;-v,)/0,) have the same
distribution.

Thus, T(u) = P(V < u)
= P[(Y;-2y)" + (Y;-1,)" 1% <w)
= P (X, -9,)/0,17 + [(X,-2,)/8,1° }* < w),

since (Y;-v;, Y,-v,) and ((X,~v,)/6, (X,-»;)/0,) have the same

distribution,
> P({[(X,-»,)/min(8,,6,)] > +
[(X,-v;)/min(8,,6,)1°}* <)
= P([(X; ;)" + (X,-»2)" 1" < [min(0,,0,)1u)
= P(U < [min(6,,0,)] u)
= S([min(8,,6,)]u) forall u.
Therefore, T(u) > S([min(6,,8,)1u) for all u.
(2) The proof of T(u) < S(max(8,,0,)1u) for all u is similar to (1).
(3) Since U = [(X;-7,) + (X;-7,)"1% > 0 and

V= [(Y,-2,) +(Y,-1,)21% >0, then P(U < 0) = P(V < 0) = 0, as
was to be proved. This completes the proof of Theorem 3.2.
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Lemma 3.1:
For any two random variables X and Y, we have
P(X+Y|=E)<P(X|=E/2)+P(]Y|>=€/2) forevery £E>0.
Proof: See{ Tucker (1967), p. 102}.
Theorem 3.3:
Forevery 6, > 0, 6, > 0, we have
8] E(Rm’n/mn) =P(U>V),

where U = [(X,-v, )2 + (X2—V2)2]1/z and V = [(Yl—v,)2 + (Y2—v2)2]%,
and

2) lim  Var (Rm’n/mn) =0.

m,n —> o

Proof: Since R is the Mann-Whitney test statistic for the two independent
random samples Ui. (i=1,...,m) and Vj (=1, ..., n) from populations
with univariate continuous d.f.’s S(u) and T(v) respectively, (1) and (2)

follow immediately (see { Gibbons (1971), p. 141-142 ).
Now, we are ready to prove the consistency of the test R.
Theorem 3.4:

Let (Xll ,le ), ce ey (le,sz) and (Yll’YZI ), ey (Yln ,an) be two in-
dependent bivariate random samples from populations with continuous d.f’s
FXl X, (x4,X,) and GY, Y, (vy,y,) rtespectively, such that Gy_, (y,,¥2)=

Fx.,(0,y,,0,y,) forall (y,,y,) and forsome 8, > 0,60, > 0,

where X=(X;,X2), Y=(Y,,Y;)and v =(», ,V, ) is the known common median.

Then the test R is consistent in the following cases:

Subclass of Alternatives Rejection Region
A: min(8,,0,)>1 R -mn/2>d,
A: max(6,,0,)<1 Rmn—mn/2<d2

Proof: Let us define 2 ={(6,,6,)10,>0,6,>0},w={(1,D},
g, = 1/2 and g(8,,0,)=P(U>YV) for(6,,0,)EQ,
where U = [(Xl-—v,)2 +(X2—V2)2]1/2 and
V= [(Y-0) +(Y,-0)" 1%

Thus, g(6,,9,) = P(U> V)

= _)( P(V < u|U = u)dS(u), where S(u) is the d.f. of U,

=J‘ P(V < u)dS(u), since U and V are independent,
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= f P(V < u)dS(u) by Theorem 3.2(3),
o

=f T(u)dS(u), where T(u) is the d.f. of V.
o]

By Theorem 3.2(1) and (2), g(8,,0,) distinguishes between H and A in the
following manner:

g(0,,0,) = fT(u)dS(u) = L S(u)dS(w) =Y =g if (6,.0,) Ew,

g(0,,0,) = j:T(u)dS(u) >f:5( [min(0,,0,)] wdS(u)
>J‘:S(u)dS(u) =lh=g_  ifmin(0,,0,)> 1,and

28,,0,) = J‘:T(u)dS(u) < _[:S([max(el ,0,)] u)dS(u)
<f:5(u)dS(u) =l4=g  ifmax (6,,0,)<I.

To show the consistency of the test R, it is sufficient to show that
Rm,n/mnm—’nl%:,v‘g(ﬁ1 ,02) for all (0,,0,) €Q and its convergence is
uniform for (6,,60,) € w. Let £€> 0 be given and (9, ,0,) €Q. Then
P(IR, /mn-g(0,,0,)| =€)

= P( [R, /mn-E(R | /mn)] + [E(R_ /mn)-g(0,,0,)]|>¢)

<P(|Rm’n/mn—E(Rm,n/mn)| = £/2)

+ P(IE(Rm’n/mn)—g(t‘)1 ,02)1 = €/2) by Lemma 3.1,

< [Var(Rm’n/mn)/( 8/2)2] + 0 by Chebyshev’s inequality

and Theorem 3.3(1),
= Var(Rm,n/mn)/( 8/2)2 ——— Oasm,n —— oo

by Theorem 3.3(2).

Therefore, we have Rm n/mn—~P——~»g(t91,02) for all (6,,6,) and, of
) m,n — oo

course, this convergence is uniform for (6,,6,) € w = {(1,nH}
By Theorem 3.1, we complete the proof.

- 32 _



On the Large Sample Properties of Certain Nonparametric Tests for Dispersion

IV. CONSISTENCY OF THE TEST R*

Let us consider the case when the common median » = (v;,v;) is unknown.

In that case, we can define the test statistic by using the combined sample median
My = (M, .M, ) instead of v = (v} ,v,).

Lemma 4.1: If X, X,,X,,...and Y,Y,,Y,,... are two sequences of random

. . P o o .

variables, if Xy ﬁ——*x and Yy —P—>Y, and if f is a measurable function defined
- > N - o

over E( such that P((X,Y) € Cont f) =1, where Cont f is a set of points in E(?) at

which f is continuous, then f(XN , YN ) N—P——rf(X, Y).

Proof: See {Tucker (1967),p. 104}.

Lemma 4.2: Assume the marginals of F and G are increasing in some neighborhoods
about their medians. For every 6, > 0, §, > 0, we have
P e .
(N U;N ————U, for every fixed positive integer i, and
m,n — o
P

2) Vf'N —— V. for every fixed positive integer j.
J m,n —> o )

Proof: (1) Letibe a fixed positive integer. By the definition,
x 2 2.%
Uiy = (X - M) + (X =My 17,
where M = (M, ,M,) is the combined sample median.
The assumption that the marginals of F and G are increasing in some

neighborhood about their medians insures that \/ﬁ(MlN—vl) and
\/I_\I-(MzN—vz) are bounded in probability as N —>oo (see { Fligner

P P
(1974) } ). Hence M].N m—,n—:::?VI and MZNm Vy.

By Lemma 4.1, we have

* P
iN

u U, for every fixed positive integer i.

m,n —> oo

(2) The proof is similar to (1).

Lemma 4.3: If X, X, X,, ... is a sequence of random variables, and
if Xy ——> X, then Xy ——X.
N —» o N = o

Proof: See { Tucker (1967), p. 105 }.
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Define my =P(Ujy > Vi), 7 =PU; > V),
ay = P(Viy < Uy 0 Vg <UR), a=P(V; <U NV, <U)
forj #k,
by = P(Upy > Viy VU > Vi), b=P(U; >V, N1 > V)
fori#h,
oy =P(Ujy > Viy N U > Vi), e=PU; >V, N T, >V, )

fori#h, and j #Kk.

Lemma 4.4: Under the same assumption as in Lemma 4.2, we have

ey

(2)
(3)
'(4)

* —

TrN ﬂo’
*

aN = a,

lim bN =b, and

NT G

forevery 8, > 0,6, > 0.

Proof: (1) my =P(Uj > V;N)

=P(Ujy - Viy > 0)
m, =P(U; > V)

=P(U, - Vj >0)
To show that lim ”;I =, it is sufficient to show that
m,n — o
U -vi— L LU -V
iN "~ i) e
* * P

By Lemma 4.2, we have U p— U, and VJ.N T — Vj .

* * P
Thus, U, - VjN — U, - Vj by Lemma 4.1.

Accordingly, Ui’; -V L

jN m,n —> oo

U, - VJ. by Lemma 4.3.
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3)

This completes the proof of (1): lim 71; =T, .
m,n — oo

* _ * * * *
ay = P(VjN <Upny NVin <Uy)

= P(max(Vjy, Vi) < Uj)
= P(max(V;y, Vi) - Uiy < 0).

a =P(V,<U;nV, <U)
= P(max(V;,V,) < U,
= P(max(V,,V,) - U; < 0)

To show that lim a; = a, it is sufficient to show that

mn o
max(Viy, Vi) = Uy ——> max(V;,V,) - Uy

By Lemma 4.2, we have Vj"‘N rﬂi—: Vj, V;N;;P;—;» V., and
Uy s Up- Thus,

max(Viy, Vi) = Uy ———> max(V;,V,) - U, by Lemma 4.1.

Accordingly,

max(Vfk

* * L
iN ,VkN) - UiN mT_: max(Vj,Vk) - Ui by Lemma 4.3.

This completes the proof of (2): lim a; = a.

m,n — oo

*

_ * * * *
by = P(U; > VjN NU N> VjN)

P(min(Up , Uy ) > Vi)

= P(min(Upy , Upy) - Vi > 0).
b =PU;>V,NU, >V)

= P(min(U;,U;) > V))

= P(min(U,,U, ) - V; > 0).

To show that lim b; = b, it is sufficient to show that
m,n - o
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. * ] L .
min(Ujy,Upo) - Vix oo min(U,Uy) - V.

P P
By Lemma 4.2, we have Uy, ——— U, U;y— U, ,and
iNmno e i th’n_,o.,

P
vV ——  + V.. Thus,
iNmnoe

. * P .
min(U}y ,Upy) - Viy =——— min(U;,U;) - V; by Lemma 4.1.

m,n —> %

L .
Accordingly, min(U;'N ,U;N) - V;N — min(U,,U, ) - Vj by

m,n = o 1
Lemma 4.3.

This completes the proof of (3): lim b; =b.

mn - =
(4) ¢y =P(Ujy > Vi N UL > Vi)
=P(Ujy - Viy > 0N Upy = Vi >0)
= P(min(U}y - Viy» Uy = Vin) > 0)
c =P(U>V,NTU; >V,)
=P(U;-V,>0NU, -V, >0)
= P(min(U; - V;, U, - V,) >0)

*_

To show that lim o

m,n - o

¢, it is sufficient to show that

*

min(U;y - Vin, Upy = Vied)

-min(U; - Vj, U, - V).

m,n > o

P P
By Lemma 4.2, we have U}y, ——» U,, Vi, —— V.,
iN m,n - o 1 ]N m,n = o 1
P * P
uU; U ,and Vo, —— V, .
BN L . R KN W 'k

. P .
Hence, min(Ujy - Uy, Viy = Vix) oo min(U; - Uy, V- V)

by Lemma 4.1.
Accordingly, min(Ujy - Upy, Viy = Viy) ——> min(U; - U, ,
m,n - <

Vj -V, ) by Lemma 4.3.
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This completes the proof of (4): lim c; =c.

m,n - o

Therefore Lemma 4.4 is proved.

Theorem 4.1: Under the same assumption as in Lemma 4.2, we have

(1) lim E(R:n,n/mn) =m,,and

m,n - oo

(2) lim Var(R} /mn)=0,

m,n > o
for every 8, > 0,6, > 0.
Proof: (1) Since E(R:‘7n n/mn) =E(

1

D /mn)

A
s

j=1

= (1/mn)( %1; gl E(D)))
. 1 . 1 l]

i=1 j=
= (1/mn)(mnE(D},))
= E(D)

=P(Ujy > V)
=13,

wehave lim E(R /mn)= lim 7y =, by Lemma 4.4(1).

m,n > « m,n — o

(2) Since Var(R_  /mn)

m n
=(1/m2n%)Var(Z X D)
i=1 j=1 Y

—(1/m2n2)[2 2 Var(D )+ 2 X Z Cov(D D‘k)
= i=1 1< j#k<n

n
+ X 2 ECov(D, )+Z 2 2 2 Cov
j=l11<i#h<m 4 1<izh<m 1<j#k<n

(Dy;, Dy )]

= (1/m?n?) [mn(r}, - 752) + mn(n - 1)(ay - 7))

+ nm(m - 1)(b;1 - n;2 )+ mn(m - 1)(n - 1)(0; - 1r;2)]

= (/mn)[(x} - 732 ) + (n = Diay - Ty)
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+(m - Dby - my’ )+ (m - D(n - 1)(ch - mD)]

and Var(Rm’n/mn)
m n
= (1/m2n2)Var(.Z)1 '21 Dij)
i=1 i=

=(/mn)[(x -7 )+ -1)a-72)+(m-1)
“(b-m2)+(m-1)(n-1)(c-2),

we have lim [Var(R:‘n ,/mn) - Var(Rm’n/mn)] =0 by Lemma 4.4.

m,n — oo

By Theorem 3.3(2), lim Var(R _ /mn) = 0 implies that

m’n—>oo

lim Var(R;';l n/mn) = 0.

m,n = oo

Thus, the theorem is proved.

We are now in a position to prove the consistency of the test R*.
Theorem 4.2: Let (X;;,X;),..., Xim>Xom) and (Y,;,Y5), ..., Y4,,Y,,) be
two independent bivariate random samples from populations with continuous d.f.’s
FXl X, (x,,x,) and GYl Y, (y,,y2) respectively, such that GY‘E(y‘ ,¥V2) = F’S"z
(0,y1,0,y,) for all (v¥1,¥2) and for some 0,>0,6,>0, where X=(X,,X,),
Y=(Y,,Y,) and v=(vy,v;) is the unknown common median. Assume the mar-
ginals of F and G are increasing in some neighborhoods about their medians. Then

the test R* is consistent in the following cases:

Subclass of Alternatives Rejection Region
A: min(8,,0,)>1 R’ -mn/2>d;
A: max(6,,0,)<1 R’ -mn/2<d}

Proof:  Define Q = {(6,,6,)16,>0,0,>0},w={(1,1)}, g, =%,
and g(0,,6,)=P(U>V) for 0,,8,) € Q,
where U = [(X; -, )2 +(X, - vz)z]% and
V=10Y -9) + (Y, -0y)" 1%
In the proof of Theorem 3.4, we have obtained that
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£60,,0,) = g, if (0,,0,) Ew,

>g, if min(6,,6,) > 1,

<g, if max(6,,6,) <1.
To show the consistency of the test R*, it is sufficient to show that
R:n’n/mn m—’nzjg(ﬂl,(iz) for all (#,,9,) €8 and this convergence is
uniform for (0,,0,) € w. Let £> 0 be given and (8,,6,) £ 2. Then
P(IR, ,/mn~g(6,,6,)|>¢)
= P(|[R;, /mn-ER} /mn)] + [E(R} /mn)-g(0,;,0,)]]>€)
<P(IR}, /mn-ER_ /mn)|>€/2)
+ P(IE(R:‘n’n/mn) -g(8,,6,)!> €/2) by Lemma 3.1.

Since P(IR}  /mn-E(R’  /mn)|>€/2)<Var(R /mn)/(€/2)* >0 as
m,n—> o0 by Chebyshev’s inequality and Theorem 4.1(2); and
lim  P( IE(R;’n/mn) -2(0,,0,)i=€/2)=0 by Theorem 4.1(1), we

m,n —> oo
have lim P(|R} /mn-g(6,,6,)|>€)=0.
m,n - oo ’
Therefore, R:n n/mn LI g(0,,0,) forall (8,,8,) € £2, and, of course,
3 m,n — [

this convergence is uniform for (8,,6,) €w= {(1,1)}. By Theorem
3.1, we complete the proof.

V. EFFICIENCY OF THE TESTS R AND R®

First, let us consider the bivariate normal two-sample scale-model as follows:

Suppose (X;1,X51)s -+, Kym>Xom) and (Y41,Y21), - .., (Y4,,Y,,) are two
independent random samples from N,((&,,K,), (pfa p;a)) and N,((n,,m2),
(p}:b p ’bb )), respectively, where p, and p, are the known correlation coefficients,
p= (¥ ,12) and 5 =(n;,n,) are unknown means, a and b are unknown scale
parameters. Then Q= {(a,b,i;,1,,1,,72)|0<ab oo, oy, uy,my,m, <oo}.

The hypothesis H': a=b, # and n unspecified, is to be tested against A': a#b,
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# and 7 unspecified. Then w = { (a,b,i;,82,1,,m210<a=b <oo, o<y, p, n,,
n,<eo}. The likelihood ratio test for testing H': a = b, p and 7 unspecified, against
A': a# b,y and 7 unspecified, can be based on F, _(see { Liu(1982) } ), where

X X1) 720, (5, X KX ) HXK, X)) /11,7 Ym-1)

u[vjE

Bt

’ (Y, ~Y, )2 -20,(Y =Y )Y, Y )H(Y, =Y )21 /[(1-p,2 Xn=1)]
1

NVE

i

Next, consider the bivariate uniform two-sample scale-model as follows:
Suppose (X;1,X21), .+ (Xim>Xom) and (Y,;,Y5), ..., (Y14,Y2,) are two
independent random samples from bivariate uniform populations with p.d.f.’s

f(xy,%x2) = 1/(mc,?), 0<(x,-m)* +(x2‘l~12) <c,?,
and g(y1,y2) = 1/(mc,?), 0<(y;-p)?+(y-1;)* <c,?,
where g = (u,,n,) is the known common mean, ¢, and c, are unknown scale
parameters. Set ¢ c,/c,. Then the problem is to test the hypothesis H': § = 1

against either one- or two-sided alternatives. Since the common correlation coef-
ficient p becomes O in this model, the test statistic F; o used in the normal-theory

m _ _
i=21 (X=X + (X, - X,)?1/(m-1)
model is reduced to be - . In order to simplify
n ~7 - .
20Tt + 0y - Y, )

our computation for ARE, we would like to compare the nonparametric test sta-

m
1§1 [(Xli_”l)2+(x2i —u2)2]/m
tistic Rm, n with the test statistic F:n*n if the

j§1 [(Ylj"lil )? + (Y,;~#2)*1/n

common mean (Y, ,i, ) is known.

By the fact that Roas Rm ns Wm’n, and W:n’ , have the same limiting distribu-
tion under both H' and A if the underlying populations satisfy some regular
conditions (see { Liu(1981)}), the tests R, R*, W, and W* have the same ARE with
respect to the test F* (or F**) (see { Liu(1982) }). We now summerize the results
in the following theorems.

Theorem 5.1: Let (X;;,X5),..., (Xim,X2m) and Y41,Y5), .., (Y, ,Y5) be

two independent random samples from bivariate normal populations with p.d.f.’s
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f(xl,x2)= _1_ exp {_ [(Xl_ﬂl)2‘2p(xl"”1)()(2-}12)'1'()(2—[.12)2] }'
2may/1-p? 2a(1-p?)
"°°<X1,X2<°°,
and (y1,¥2) = ——=—= exp {- [(v1-#0)*=20(y1=#1) (Ya-pta) + (Ya=#a) '
1552 27Tb 1_p2 2b(1—p2)

_OO<YI sY2<°°

respectively', where o is the known common correlation coefficient, #= (i, ,u,) is
the common mean (either known or unknown), a and b are unknown scale para-

meters. Set 0 = (a/b)”. For the hypothesis testing problem H': 8 = 1 against either
one- or two-sided alternatives, we have

. s, 3(1-p®»?% 2™ (2-psint
ARE(R,F*) = ARE(R* ,F*) = —(—2Q ([T 2esin e
m °[(2- psint)?- p?] 32
Particularly, if p = O then ARE(R,F*) = ARE(R*,F") = %.
Theorem 5.2: Let (X;1,X21), ..., KXim>Xam) and (Yq;,Y51), ..., (Y14, Y2,) be
two independent random samples from bivariate uniform populations with p.d.f.’s

f(xl’x2)= 1/("012), O<(Xl—ﬂ1)2+(x2—u2)2<cl2
and g(y,,y,) = 1/(mc,?), 0<(y;-;)? +(yp-H,)t <c,?

respectively, where 4 = (i, ,4,) is the known common mean, ¢; and ¢, are un-
known scale parameters. Set 8 = c,/c,. For the hypothesis testing problem H:6=1
against either one- or two-sided alternatives, we have ARE(R,F**) = ARE(R* ,F“) =
1.
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