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Abstract

It is well known that the size distribution of cities is surprisingly well described
by Zipf’s law. It is considered the criterion for the local growth model. The purpose of
this paper is to explain Zipf’s law through the use of a dynamic process based on a
spatial interaction model derived from entropy. Empirical findings show that: (1) the
purposed dynamic process can generate both stable and unstable patterns in
accordance with the value of the parameters, (2) in the stable evolution, the model can
generate both deterministic and stochastic growth processes, (3) both deterministic
and stochastic growth processes converge in Zipf’s pattern, and (4) evidence from
cities in Taiwan shows a diminishing estimated intercept and slope as the proposed

model predicted. Size distribution in Taiwan converges to Zipf's pattern.
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Zipf’s Law and the Spatial Interaction Models

1.Introduction

It is widely recognized that the size distribution of cities is surprisingly well described by
Zipf’s law across countries with various economic structures and histories. Its use of robust
empirical evidence and its significant regularity in economics makes Zipf’s law the minimal
criterion for any urban growth model. However, there is a lack of plausible theoretical models
for explaining this empirically robust distribution,

The expression of Zipf's law can be visualized by taking cross sectional data on city size and
rank and drawing a graph with the log of rank along the y-axis, and the log of the population
along the x-axis. The resulting graph, based on the regression, will most likely show a straight
line with the slope very close to —1. The linear relation between the log of size and the log of rank
is explained as the famous Zipf’s law. This amazing result is shown in various data sets: it is
demonstrated in most modern countries by Rosen and Resnick (1980); in India in 1911 by Zipf
(1949); in U.S. history by Dobkins and Ioannides (1998), Krugman (1996) and Zipf (1949); and
in mid-nineteenth century China by Rozman (1990). Empirical evidence from different countries
and periods shows the general explanatory power of Zipf's law. The following are some of the
important attempts at trying to explain or resolve the puzzle of the rank-size rule: Losch(1954),
Hoover (1954) and Beckman (1958) who make use of it in the economic model; spatial model in
Fujita, Krugman and Venables (1999); and Simon’s random-growth model (1955). Although
these efforts do provide different ways to analyze the possible theoretical foundation, the
essential puzzle remains.

Gabaix (1999) proposed Gibrat’s law as an explanation of Zipf's law. He found that
homogeneous growth processes in cities could lead the distribution to converge into a Zipf
pattern. Homogeneity of growth processes refers to the common mean and common variance of

city growth rate. Regardless of the driving forces behind the growth of cities and the economic

—127—



BB AR REE =

structures of countries, as long as they satisfy Gibrat’s law, Zipf distribution will appear.
According to Gibrat’s law, both mean and variance of growth rate are independent of the size of
the city. Thus, randomly growing cities with the same expected growth rate and the same
variance will comply to a Zipf pattern.

Gabaix’s work proposes a general and neat interpretation for explaining that puzzling
regularity in city distribution known as Zipf’s law. Gabaix uses Eeaton and Eckstein’s data to
show that the variance of the growth rate does not seem to differ across city sizes. Eaton and
Eckstein (1997) find that there is no correlation between the initial size and the growth rate in
both Japanese and French cities. These empirical results show some evidence in support of
Gabaix’s finding. However, the interaction behavior among cities, that is the essential driving
force of agglomeration, in the region is not expressed in Gabaix’s work.

The purpose of this paper is to try to explain Zipf’s law by a growth process, oriented from
a spatial interaction model, which is theoretically derived from the concept of entropy in physics.
Furthermore, this paper will elucidate the following questions regarding Zipf’s law: What are the
implications of Zipf’s law in the distribution of cities? What is the significance of the slope of the
curve consistently being close to —1? Is it possible to effect a change in this “law” in terms of the
timing and the slope?

Central to the concept of entropy is the derivation of the maximum uncertainty estimator
when faced with limited information. This feature has been widely applied in urban and regional
modeling for commuting patterns and the location choice probability in transportation and
location models. These urban and regional models focus primarily on the static solution derived
from entropy, such as, probability distribution and the implied spatial interaction model.
Nijkamp and Reggiani (1991) have derived a dynamic process for determining the location
choice probability distribution derived from entropy, nevertheless, the evolution property and the
size distribution have yet to be investigated. The legitimacy of the static probability estimator in

explaining regional modeling, makes it essential to the investigation of the properties of the

—128—



Zipf’s Law and the Spatial Interaction Models

followed dynamic process and the converged distribution. Due to the overwhelming regularity
of Zipf's law, in regard to the empirical size distribution of cities in a large number of countries
over long periods of time, there is a strong impetus for examining the evolution process and the:
limiting size distribution from the perspective of entropy, and the possible relation between it and
Zipf's law.

In section 2 the theoretical background of the proposed dynamic Logit model is explained.
While section 3 investigates the properties of the proposed model through simulations, and

examines the size distribution of cities in Taiwan. Section 4 presents the conclusion.
2 Residential location and the spatial interaction model

2.1 Entropy in a spatial interaction model

Wilson (1967) discusses the application of entropy-maximizing methods in trip distribution.
The major concept is to maximize the “uncertainty” in terms of possible assignment, subject to
all prior information, with respect to the trip distribution. The entropy theory, applied to this
topic, aims to derive the most probable trip or migrant distribution given additivity conditions
and transport cost budget constraints.

Let T.. be the number of trips (or migrants) and ¢ the travel cost between zones i and j; let O;
be the total outflows from zone i, and D; be the total inflows to zone j. The entropy W(Tj)
measures the uncertainty of assignments of individual units to an origin-destination matrix.
Maximizing logarithm of W(Tj;) , subject to the additivity conditions (1) and (2), and transport
cost budget constraints (4) derive the most probable arrangement of spatial distribution of trips in

the system.

Tij=0i
zj: N
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Tl 2)
T!
wW(T) = =5
T,
H H ’ (3)
The travel budget C is expressed as follows:
e -c
i
The solved optimal trip estimator is: 4)
T; = A;B;0,Dexp(—fc;) (5)

Where Ai and B: are balancing factors, and eX(—%;) is the distance friction function.
Parameter #, in the distance friction function, is the marginal possible state (the objective
function in an entropy problem) per unit of transport cost. And the parameter, C; , represents the
general transport cost between location i and j. The function of this optimal flow corresponds to
the gravity theory. (Please refer to the appendix for details on the deriving process and
explanation of the variables). The probability of transport or migration from location i to j,

derived from the gravity type migrant flow (equation (5)), is:

o

ij = B.B‘exp(—ﬂci.) W.exp(-fc,)
P, === AB, Diexp(-fo;) =i Lw) TPy

= = 6
"o 2.BDiexp(=fe;) D Wiexp(-/x;) (©

Ol

Where W, =B jD_j is the weight. This derived probability is similar to the qualitative

choice model introduced in the following.
2.2 Qualitative choice model

Traditional location theory assumes that households maximize their utility, subject to
budget constraints, in residential location decisions. Assuming V, as the systematic household

utility and ¢, as the error term, the household utility function is as follows:
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U,=V, +¢,. @)
Under the consideration of household utility maximization, and given the distribution for
the unsystematic part of utility (&£, )', the probability that the household will migrate from city i

to city j is

Py =Prob(U, >U,,for all I, 1=#j)= ®)

e

!

This is the multinomial Logit model. The utility function serves as the location advantage.
The larger the observed utility a household is capable of achieving in city j, the more attractive it
is to the household. And, consequently, the higher the probability that the household would
choose to migrate to city j. The probability that the household would migrate from city i to city

j (equation (6)) is the relative location advantage.
2.3 Dynamic process of the discrete choice model

A simplified probability model with the time variable from equation (6) is:

exp(V;,)
e ) 9
P.l-t E exp(‘ yl‘l ) ( )

Where Z":B‘, =1. This is in a multinomial logit form based on the assumption that a
household chi:oses alternative j to achieve the maximized observed utility V;. The negative term,
- f; (in equation (6)), represents the major criterion on which location choice is based on in this
simplified model. It indicates the reduction of the possible number of states due to city i’s
location in the region. The shorter the distance between city i and other cities, the higher its

location accessibility will be; and consequently, the higher its selection advantage. In an

extended model, the location endowment, as well as the location differences, will be included in

! Assume that eact & ; is distributed independently, identically in accordance with the extreme value distribution.
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this location advantage term. The discrete dynamic Logit model derived by Nijkamp and

Reggiani (1991) is as follows:

P,,=(W,+YP, -V ,P > -P, v,
i (10)

The first two terms, on the right-hand side, is the logistic growth of choice probability P;.
The third term is the interaction effects within the region. This dynamic spatial interaction
process, derived from entropy, expresses that the change of choice probability for city j is not
only influenced by its current choice probability, in a decreasing rate, but that other cities’ choice
probabilities also play competitive roles in city j’s growth.

The variable V; is the observed utility, or location benefit, in city j. This systematic
location benefit is assumed to consist of two parts according to the time variable: (n
Geographical advantage, ¥, a non-temporal location advantage caused by known geographical
endowments and benefits. It is the source of the deterministic force in the dynamic process. (2)
Agglomeration advantage is defined by function A( ¥..), where y, denote the size of city i at
time t. It is a temporal location advantage caused by external effects from population and
employment congregation. It is historically dependent and the source of possible stochastic
forces in the growth of cities. Geographical advantage does not vary through time; it is the given
endowment. On the contrary, agglomeration advantage depends on the city size or the scale of the
industry in the city; it is not constant through time.

Vie=Y¥:+h(y,,) (1

In general, entropy solves gravity type optimal flow estimator which generates a logit
probability model. According to the logit probability model, a corresponding dynamic discrete
logit probability model is derived. The growth of city size based on the proposed dynamic
discrete logit probability model could generate certain growth process of each cities in the region.
Consequently, the size distribution of the cities in the region in the steady state could be analyzed.

The model proposed in the following section is the dynamic discrete logit probability model from
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the entropy.

3. The long-term location pattern of the
spatial interaction model

3.1 The model

The discreste dynamic Logit model is simulated by assuming a region with “n” number of
cities, where each city grows as a result of the inward immigration of industry and migrants from
outside regions: assuming that there is no inter-city immigration. The growth process is based on
the discrete dynamic location choice probability as in equation (10). This discrete logit choice
model is derived from the gravity type flow estimator solved from entropy. We simulate the
spatial interaction model to exam the property of the evolution process by varying the variables
and the initial conditions in the following way: number of the city’s rank (n), length of the time
frame (t), change of utility (a), and the initial value of location choice probability (&).

Households choose residential locations where utility is maximized, and industries choose
location where their profits are maximized. Both utility and profit, in corresponding locations,
reflect the location advantage to the decision-makers. The location advantages are the major
concern behind the decisions of the respective decision-makers, in this model. It is assumed that
the location advantage breaks down into fixed and time varying parts, which correspond to the
determined and stochastic forces of the growth process. The determined location advantage,
called the geographical advantage, affects the growth of the city through the initial location
choice probability, which in turn reflects upon the relative geographical advantage. Furthermore,
the time varying location advantage influences the growth of the city through the change of
utility in the model. The change of utility through time is the change of the time-dependent

advantage (agglomeration benefit).
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In the simple case, assuming the change of utility as a constant Qa;:

P

S+l

= (aj +1)Pj,l _aij,tz —Pj.zzalpl,t (12)

I

If change of the utility (@; ) equals zero, the choice probability will be fixed through time

and will converge with the real size proportion in the long run. The growth process reaches a
steady state when the choice probability converges with the real size proportion. Equation (12) is
the proposed dynamic discrete logit probability model from entropy concept. This model will be
simulated to examine its limiting static size distribution feature by changing the parameter values

in the following.
3.2 Simulation

The proposed dynamic logit probability model is simulated in this section to examine the
property of the proposed growth process. The purpose of the simulation is not to calibrate the
parameter by the true data; it is to examine the feature of the proposed dynamic discrete
probability model through the change of parameter values. We assume the simulated cities in the
region have the same initial population, and all cities grow based on the dynamic discrete model
proposed in the previous section. The static size distribution of the region is observed after a
given time periods. To sum up, the static limiting size distribution of cities in the region based on
the dynamic growth process oriented from entropy concept is observed and examined in the
simulation.

The evolution process, based on the dynamic spatial interaction model, may lead to two

different kinds of dynamic pattern processes. Depending on the parameter values a stable or

unstable process will arise.

(1) Stable process

Assuming that there are 50 cities in the region, and all are of a uniform initial size; and that

the change of the utility is a constant ‘a’, which is generated from a random number within range
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(0, 0.04), then the dynamic probabilities and city sizes are converging in a stable trajectory. The

simulated time path for cities in the region is presented in Fig. 1 and Fig. 2.

0.1,

city 00

Fig. 1 The dynamic probability path of all cities in the region
(n=50, t=100, a=0.04)

0.1

— pimd

0.08t

0.06

0.04+

probability (P)

0.02 iR PRI

period (t)

Fig. 2 The dynamic probability path of four cities in the region
(Including the cities with highest (pma) and lowest (pmi) choice probability)
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(2) Oscillating process
Let us look at another experiment based on the same assumptions and initial conditions. The
range of the random number, generated as the change of utility, becomes (0,2.7). The simulated
time path for all 50 cities is presented in Fig. 3 and Fig.4. The dynamic probabilities and city
sizes are oscillating with the unstable trajectories. These two experiments show that the same
dynamic interaction rule would lead to two essentially different evolution processes, due to the

value of the parameter (scale of time varying location advantage).

1.5,

200

City 0 0 time

Fig. 3 The dynamic probability path of all cities in the region
(n=50, =100, a=2.7)
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1.5

Probability (P)

50 100 1580
period (1)

Fig. 4 The dynamic probability path of four cities in the region
(Including the cities with highest (pma) and lowest (pmi) choice probability)

(3) Features in stable evolution
Assume the same numbers of cities, (n=50), evolution time, (t =100), and the scale of time
varying location advantage, (a =0.04), are all the same as in experiment (1). The simulated
distribution of city size and rank is presented in Fig. 5. The Zipf plot that shows the distribution

of log size versus log rank, is presented in Fig. 6. We run the regression of Zipf’s law.

50 - —

40+
<
§ 30+
Pl o
9 20t G%J%

10} 2

%o
)
Cb o,
0 . Q
o] 200 400 600 800
city size

Fig. 5 City size versus rank. (n=50, t=100, a=0.04)
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log (rank)

% X

B3

o " A -
2 4 6 8

log (size)

Fig. 6 Log size versus log rank

In (Rank) = A ~ B In (Size),
The result is

In (Rank) =6.17 - 0.67 In (Size),

(0.77 0.57)

Where the 95% confidence interval of the estimated slope is in parentheses, and R?is 0.787.
The estimated slope in the Zipf plot is different from 1, which is consistent with Zipf’s law. The
experiment results are in Table 1 and Table 2. The low value of the standard deviation, of both the
estimated intercept and the slope, imply that a negative slope Zipf plot will invariably be
generated from a dynamic Logit model. Also, given the same conditions and randomly generated

change of utility parameters, different growth processes have similar estimated values for both

intercepts and slopes in the Zipf plot.
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Table 1
Simulation result of 'rank-size' regression (n=50) *
In (Rank) = A - B In (Size)

A B
10.097 1.393
10.637 1.483
10.387 1.441
9.952 1.362
9.681 1.311
10.947 1.548
9.879 1.351
9.174 1.211
10.377 1.439
11.815 1.712
9.970 1.364
9.896 1.343
Mean 10.234 1.413
Standard deviation 0.678 0.122

* City size (n=50), evolution time (t=50), scale of location advantage (a=0.04)

Table 2
Simulation result of 'rank-size' regression (n=100) *
In (Rank) = A — B In (Size)

A B
6.221 0.679
5.943 0.634
6.192 0.679
6.143 0.679
6.636 0.761
6.867 0.800
5.946 0.633
5.945 0.646
6.535 0.757
6.467 0.735
5.899 0.639
Mean 6.295 0.702
Standard deviation 0.330 0.059

* City size (n=50), evolution time (t=100), scale of location advantage  (a=0.04)
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(3.1) Evolution time and region size

The simulations in this section are based on the same number of cities (n=50), and the scale
of time-varying location advantage of (a=0.04). The only difference is the evolution time path (t).
The regression result is in Table 3. The corresponding evolution graphs and the Zipf plots are in
Fig. 7 to Fig. 14. The simulation results of the region of 100 cities (n=100) are in Table 4.

The absolute value of the estimated slope in the Zipf relation gets smaller over a longer
evolution time. The longer the period of time the more divergence in the size of cities in the region
is seen. This 1s due to the cumulated effect of the location advantage. A longer evolution time
reduces the scale of the slope in the Zipf relation. At a certain time during evolution, the absolute
value of the slope will be close to 1. In Table 3, the number of cities is 50, and the estimated slope
is close to one at t=67; in Table 4, on the other hand, the number of cities is 100, and the estimated
slope is close to one at t=75. A larger region, with a greater number of cities, does not change the
fact that city sizes get less homogeneous over a longer evolution time. On the contrary, a larger

number of cities in the region reduce the speed of the interaction process.

Table 3
Simulation result of 'rank-size' regression (n=50)
In (Rank) = A - B In (Size)

Time A B
(Estimated constant) (Estimated slope)

50 3.62 1.28
60 8.69 1.13
65 8.36 1.07
67 7.96 0.998
70 7.73 0.96
75 7.54 0.93
80 7.13 0.85
100 3.09 0.70
200 2.54 0.34
300 2.28 0.26

Notes: Scale of location advantage (a=0.04)
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Table 4
Simulation result of 'rank-size' regression (n=100)
In (Rank) = A — B In (Size)

Time A B
(Estimated constant) (Estimated slope)

50 9.91 1.41
60 8.56 1.12
65 8.72 1.16
70 8.10 1.04
75 7.97 1.01
80 7.44 0.90
100 6.53 0.73
200 4.61 0.36
300 3.88 0.24

Notes: Scale of location advantage (a=0.04)

0.086,

100

City 0 0O time

Fig. 7 The dynamic probability path of all cities in the region
(n=50, t=50, a=0.04)
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0.04

0.03

0.02

probability (P)

C.01

0 20 40 60
period (t)

Fig. 8 The dynamic probability path of four cities in the region
(Including the ity with highest (pma) and lowest (pmi) choice probability)
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Fig. 9 Cities versus choice probability at t=50
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log (rank)

log (size)

Fig. 10 log size versus log rank

0.1

00s

8o

200

city c 0 tirme

Fig. 11 The dynamic probability path of all cities in the region
(n=50, t=150, a=0.04)
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Fig. 12 The dynamic probability path of some cities in the region
(Including the cities with highest (pma) and lowest (pmi) choice probability)
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Fig. 13 Cities versus choice probability at t=150
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Fig. 14 Log size versus log rank

(3.2) The scale of the time-varying location advantage
In equation (12), the change of the time-varying location advantage is assumed to be a
constant e, for each city through time. Table 5 lists simulation results given different values of

parameter @, : The larger the value of parameter ¢, , the smaller the absolute value of the slope.

Table 5

Change of scale of location advantage (a)*

a A B
0.004 68.723 12.415
0.04 9.762 1.324
0.4 2.765 0.115
0.9 2.318 0.030

* Number of cities (n=50), evolution time (t=50)
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This implies that the more significant the difference of each city’s change of utility, which affects
migrants’ choices, the more divergent the city sizes are within the region.

(3.3) Test of lock-in effect

In this experiment, we change the value of parameter ¢, of city 3 into three times the
original scale at time equals fifty (t=50), and examine whether the final choice probability
distribution (t=100) will change. The correlation coefficient of the final distribution, both with
and without the change of the parameter, is 0.86. The dominant city will maintain its dominance
even if city 3 has relatively higher time varying location advantage than it did in the middle of the
evolution. This result implies the possible “lock-in” property of the dynamic process. This
property is one of the essential features of the self-organization system.

(3.4) The average and variance of the growth rate across city sizes

The criteria required by Gibrat’s law are examined using the initial arbitrary probability

distribution. Fig. 15 and Fig. 16 show the plot of growth rate versus normalized population size.

0.03

0.021 * *
3 ot Tk K
= L ¥ % ;K¥
s 001 %
2 XX * Tk
o ¥
(<] 0 tﬁ *9}5 ¥
c *
g * %, % x
e * ¥ ¥ Ty Xk

0.01F *¢ * ¥ ¥

X e %
-0.02 : LN
0 001 0.02 003 004 005

city size

Fig. 15 Mean growth rates versus city sizes at t=1
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< . * x % *
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-0.02

-0.03

© W Ty

002 004 006 008 0.

city size

Fig. 16 Mean growth rates versus cities size at t =100

The mean growth rates in the first period are clearly independent of city sizes; and the mean
growth rates at period 100 show no significant relation to the city sizes. Eeaton and Eckstein
(1997) provide empirical evidence in support of this feature. The mean and variance of the

average growth rates are in Table 6. The variance of growth rate across city sizes is the same. The

Table 6

Means and variances of the average and variance of growth rates

Average growth rate Variance of growth rate
Mean -0.0042 8.8277¢-006
Variance 0.000132 1.1357e-039
Minimum -0.0242 8.8277e-006
Maximum 0.0149 8.8277¢-006
Observations 50 50
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average growth rate across city sizes, on the other hand, does not appear to be the same.>
However, the differences between average growth rates across cities are within 0.0391.

(3.5) Determinism versus chance

Distinguishing the time-dependent property in the location advantage V;, ,as in equation
(11), allows for the introduction of both deterministic and stochastic features into the growth
process. The geographical advantage is determined by the given location benefit, which is fixed
across time. A city with a higher geographical advantage has a selection advantage.
Agglomeration advantage depends on the current size of the population and the employment rate,
and it changes through time and is historically independent.

Allowing only known geographical advantage in the location advantage (utility or profit),
without time-varying location advantage, will cause the regional growth patterns to become
deterministic. The dominant city will always be the one with highest geographical advantage.
The inclusion of the time-varying location advantage, while assuming constant value (constant
change of agglomeration and other time-dependent advantage through time), will also lead to a
deterministic long-term pattern. The long-term distribution is based on the initial known location
advantage in conjunction with the known effect from agglomeration.

Relaxing the assumption of the constant change of utility into a time-varying variable will
incorporate the stochastic features into the dynamic process. After the stochastic features have
been incorporated, assume that the agglomeration advantage is bounded. The simulation results
will now show possible multiple dominant cities in the steady state. These dominant cities are not
necessarily endowed with the highest geographical advantage or the largest time-varying
location advantage. In this case, the known geographical advantage dominates the historical

dependent force, which implies the defining feature of this model; that a deterministic rule may

? An F-test evaluates the equality of the average growth rate of N cities show significant differences across N cities in
both initial distributions. The F -statistic is F=1056 given initial uniform distribution, and F=1493 given initial
arbitrary distribution.
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lead to a stochastic long-term pattern. Experiment results indicate that the stochastic growth

process may generate Zipf’s pattern in the steady state.
3.3 Evidence on the size distribution of Cities in Taiwan

We collected data on the populations of 209 to 216 cities in Taiwan for the years 1971, 1974,
1977, 1980, 1983, 1986, 1989, 1992, 1995, and 1998, with the criterion for selection being a
population of at least 20,000 inhabitants. The regression results for all 10 years are in Table 7.
Data, from cities in Taiwan, shows that over time the absolute value of the estimated slope

decreased and converged at a value of 1. The adjusted R? was 0.96 in 1971 and increased over

Zipf’s Law and the Spatial Interaction Models

Table 7°

'Rank-size' regression of cities in Taiwan

In (Rank) = A - B In (Size)

Year Observation A B Adj- R
1971 216 21.138 1.478 0.96
1974 216 19.491 1.412 0.97
1977 216 18.932 1.355 0.97
1980 216 18.430 1.304 0.98
1983 216 18.055 1.265 0.98
1986 213 17.748 1.234 0.99
1989 210 17.351 1.196 0.99
1992 207 16.946 1.154 0.99
1995 207 17.060 1.163 0.99
1998 209 16.822 1.140 0.99

* Source: Statistics Annals by Ministry of Interior
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time, demonstrating that the size distribution of cities in Taiwan tends to converge with Zipf's law.
Similar to the results of previous simulations (see Table 3 and Table 4), both estimated intercept
and slope have diminishing absolute values over time. This indicates that the urban system in
Taiwan converges to a less homogeneous city size distribution. This may be due to the cumulated
effect of location advantage including both fixed geographical and time-varying location

advantages.

4.Conclusions

In this paper, we examined the properties and long-term distribution patterns of the growth
process derived from the concept of entropy. The proposed model suggested the generation of
both deterministic and stochastic growth processes. We determined that both deterministic and
stochastic processes comply with Zipf’s pattern over the long-run. Zipf’s law indicates certain
degrees of the combination of different sizes of cities. The decreasing absolute value of the slope
over time, demonstrated by both empirical data and simulation results, indicates that cities grow
from a more homogeneous state into a more heterogeneous distribution. Zipf’s law shows that, in
the evolution process, the region will not evolve beyond a certain degree of “heterogeneous
distribution”. That is to say that the absolute value of the slope will not decrease infinitely. The
level of convergence is at a certain distribution, which corresponds to slope equals —1. The
converged state is at the balance point of the two contradicting forces of positive and negative
agglomeration effects in cities. The timing of the convergence depends mainly on the following
conditions: the initial location differences and endowments, which affect decision makers’
perceived location advantage; and the change of the location advantage through time. The change
of the location advantage essentially indicates the change of the net agglomeration effects
(positive and negative agglomeration effects) in cities. A change of the interaction effect and the

structure of both positive and negative agglomeration effects may change the converging
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distribution (the slope).

Some findings about the properties of the growth process of this model are as follows: (1)
The purposed dynamic process possible generates both stable and unstable patterns according to
the value of the parameters. (2) In the stable evolution process, the purposed model possibly
generates both deterministic and stochastic growth processes. (3) The longer the evolution time
the less homogeneous are the cities in the region, and the smaller the absolute value of the slope
in Zipf’s plot. This is due to the accumulated effects of location advantages. (4) The number of
cities in the region affects the speed at which Zipf’s pattern is reached; the larger the size of the
region (number of cities) the slower the evolution process. (5) The larger the change of utility
through time the faster the speed of the evolution process. (6) Evidence from cities in Taiwan
shows the diminishing estimated intercept and slope, as the proposed model predicted. Size
distribution in Taiwan converges with Zipf's pattern.

Simulation findings correspond to the findings from previous studies that, for most modern
countries regardless of their economic and social structures, the distribution of city size tends to
follow Zipf’s law. Although, there are countries or urban systems that do not currently comply
with a Zipf pattern, they show tendencies of future convergence to Zipf distribution. Given the
assumption of the dynamic process of location choice probability and the randomly generated
geographical advantage, an urban system, with a certain parameter value, will evolve to a Zipf
pattern in the long run. The time required to reach the Zipf pattern depends on the number of
cities and the relative location advantage. The location advantage includes both fixed and
time-dependent advantages, which helps explain why most countries with different properties
converge to the same long-term Zipf pattern. The influence from the change of relative location
advantage (or related parameters) on the amount of time it takes to reach a steady state for Zipf

distribution is an important question for future research in policy implication.
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APPENDIX:

Entropy Theory in Spatial Interaction and the Dynamic Logit Model

Let T; be the number of trips (or migrants) and C;; the travel cost between zones i and j; let
O; be the total outflows from zone i, and D; be the total inflows to zone j. The entropy W(T;)
measures the uncertainty of assignments of individual units to an origin-destination matrix.
Maximizing logarithm of W(Tij), subject to the additivity conditions (2) and (3), and transport

cost budget constraints (4) derive the most probable arrangement of spatial distribution of trips in

the system.
w1 =7 %TU! (1)
ZTU =0, (2)
2. T;=D, (3)

The travel budget C is expressed as follows:

22T =C @)

i
The following consistency condition should also hold:

22T, =20,=3D=T )
i ] 1 )
The optimal flow T} is derived:
T; = A;B,O;Dexp(-fc;) (6)

where A, = {Z BijeXp(_ﬂcij)}‘l
and B = {3 A0 exp(~fx,)}" U

The term -,BCij represents the reduction in total numbers of possible states induced from
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transport cost between i and j, the term exp(—/c;) is the distance friction function, and A; and
B, are balancing factors. The function of this optimal flow appears corresponding to the idea of
gravity theory.
The derived gravity type migrant flow from i to j (Equ. (6)) gives the probability of a
destination choice from i to j as the following:
b =T A B Bexp(—fi,) = BDjexp(-fe;) _ Wexp(-fc;)
o gB,.Djexpeﬂcﬁ) ;Wjexp(—ﬂcij)

(8)

where W, = B jl—)7 is the weight. In considering the possible time varying probability, add

the time variable into equation (8):

W_(,!exp(_ﬂcij,t)
Pij,t = :
Z \Vj,:exP(‘ﬂcij,:)
J

9)

where ¢;;, represents the distance between i and j at time t.
This equation is transformed into a simpler form by omitting the symbol of the origin iand
assuming weight W, =1l,and - fc; =u,.

_exp(u;,)

P =
- Zexp(um)
1

(10)

Where u;, could be interpreted as a choice factor, which is the utility achieved by choosing
alternative j. The above probability is the formula of multinomial Logit models in discrete choice
models, which assume a household chooses alternative j to achieve the maximized utility U;.

The evolution of the dynamic multinomial Logit model is expressed by the change of

probability £, with respect to time t:

dP,, y d| exp(u) (1)

a @ > exp(u,,)
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P =u; B(1-P)= P} u.P, (12)

n#j
Where the symbol t is omitted for the sake of simplicity. The termu; represents the change
of utility through time; it is assumed to be a constant & ;- Expression (12) is a system of the
Lotka-Volterra type. The first term, on the right-hand side, is the logistic growth of probability
P

j» and the second term is the interaction effects among probabilities. Equation (12) is

approximate by discrete time and derives:

P/ R

Pw=(@,+DP, ~a,P,*~P > aP, (13)
. J#l
where @; =u;
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