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Abstract

Vertification of concurrent systems faces complexity problem. Synthesis
relieves this by avoiding verification. Most existing synthesis techniques do not
deal with CAD tool. Few tools are able to integrate analysis, reduction, simulation,
query, and synthesis in one software package as ours. Petri nets are used for
modelling and analyzing concurrent systems. A set of synthesis rules were
developed earlier!-3 for incrementally generating new processes without incurring
logical incorrectness. This paper shows that the synthesized nets form a new class
of nets and presents the concept of temporal matrix which records relationship
(concurrent, exclusive, sequential, ... etc.) among processes. Based on this concept,
we develop an algorithm to determinie the applicable rules, detect rule violations,
and update the matrix. The complexity for the algorithm is O (K?) where K is
the total number of processes. This algorithm has been incorporated int our X-
Window based tool for the design, analysis, simulation, testing, and synthesis for
communication protocols and others.
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I. INTRODUCTION

Many authors*® have proposed Petri nets (PNs) to model concurrent software.
As the system grows in complexity, this modeling process and the reachability
analysis become complicated. To address this issue, researchers proposed two
directions: synthesis’? 3042 Synthesis focuses on establishing
conditions of augmenting existing PNs to form larger nets so that (1) the system
specification can be correctly modelled and (2) the resulting net will retain the well-
behaved properties such as reversibility, liveness, and boundedness. Reduction, on
the other hand, emphasizes on reducing the size of a given PN while preserving
properties.

According to Jeng®, two dominant synthesis approaches are bottom-up and
top-down. Bottom-up approaches start with decomposition of systems into subsystems,
construct subnets for subsystems, and merge these subnets to reach a final PN by
sharing places''® transitions*, and/or elementary paths'*''® or by linking
subnets®. Top-down approaches begin with a first level PN and refiine it to satisfy
system specifications until a certain level is reached. The sptewise refinement

and reduction

technique by Vallerte®® is a top-down approach where transitions are replaced by
well-formed blocks. Suzuki and Murata® generalizd this technique with the
disadvantage of the need to analyze the blocks. Our knitting technique supplements
this approach by synthesizing the blocks without analysis.

Based on top-down refinement of activities and bottom-up modeling of shared
resources, Zhou er al**** have recently formulated a hybrid synthesis approach.
Parallel and sequential mutual exclusions are used for resource-sharing modeling.
The design of first-level Petri nets is also discussed. However, the validation for
mutual exclusions can be a formidable task for large systems.

To automate the synthesis, rules must be developed as in Esparza and Silva®
and Datta and Ghosh™ to synthesize free-choice (FO) and extended FC (EFC). But
they are unable to synthesize assymetric-choice nets (AC) and one needs to
analyze®® whether the subnet is reducible. Further, they do not have explicit
algorithms and the associated complexity. Thus, most techniques do not deal with
computer aided design (CAD) explicitly. We devise some simple and yet effective
rules to guide synthesis, e.g., for communication protocol' and automated
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manufacturing systems®. It requires no analysis and the synthesized nets constitute
a new class of nets that are more generall than FC, EFC and AC®. This new
class of nets is referred to as the synchronized-choice nets* with the special
property that any pair of concurrent (exclusive) processes must spring from and
join at transitions (places).

The knitting technique expands PN in a structural fashion. While it takes
exponential time to determine marking propoerties; it may take polynomial time
to determine structural properties. It aims to find the fundamental constructions
for building any PNs. There are two advantages: (1) reduction of the complexity
of synthesis as an interactive tool and (2) providing knowledge of which construction
building which class of nets. It therefore opens a novel avenue to PN analysis.

Rather than refining transitions, it adds new paths to a PN, N', producing
a larger N* . The generations are performed in such a fashion that all reachable
markings in N' remain unaffected in N?; hence all transitions and places in N!
stay live and bounded, respectively. N? is live and bounded by making the new
paths (NP) live and bounded. This notion is novel compared with other approaches.

Designers start with a basic process modeled by a set of closed-loop
sequentially-connected places and transitions with a home-place marked with some
tokens representing resources. Then they can add parallel and exclusive processes
according to the system specification or semantics or add closed loops for the
operations according to the resources required. The knitting technique is so called
because expansions are conducted among the nodes in a global way. The synthesis
rules guarantee incremental correctness at each generation step. Analysis can be
avoided while designers can still build up a PN model for a complicated system.
Due to the simplicity of the rules, it is easily adapted to computer implementation
for rendering the synthesis of PNs performed in a user-friendly fashion.

There are four types of path generations: transition-transition (TT), place-
place (PP), transition-place (TP), and place-transition (PT); namely from a
transition or place to a transition or place. One of the following three actions are
taken depending on the type of generation: (1) forbidden, (2) permitted, (3) permitted
but need more generations. For instance, a 7T (PP) generation is permitted between
two sequential or concurrent (exclusive) processes; while TP (PT) generations are
forbidden since they may create unbounded (nonlive) nets. The rules are complete
in the sense that all possible generations have been considered.

Recently, we have upgraded the knitting technique by relaxing some forbidden
rules. For instance, we allow 7T generations between exclusive process** and
permit 7P and PT generations”® to generate more complicated classes of nets.
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Thus, we can continuously enhance the rules by allowing new generations formerly
forbidden. Ideally, if all possible generations are allowed, we then could synthesize
all classes of nets.

A Temporal Matrix (T-Matrix) is proposed in this paper to record the
relationships (concurrent, exclusive, sequential, ... etc.) among the modeled processes.
Tracking all the process and the relationships among processes in large PNs is a
difficult task and thus makes desirable the automatic tracking of rule applicability
upon generation and the automatic updating of the T-matrix.

This paper develops such an algorithm and its X-Windows implementation. In
addition, the T-Matrix can record self-loops and find maximum concurrency with
linear time complexity which helps for processor assignments.

The knitting rules are useful for analysis and reduction®. For a given PN,
we construct its T-Matrix and check mutual relationships among PSPs against the
rules. Any violation spots potential ill-designs. The reverse process of removing
PSPs — reduction, according to the rules should preserve the properties of the PN.
Rather than reducing modules to transitions, we remove paths to reduce the PN.

The distinct point of this approach is, besides the possibility of continuous
enhancement, that while reducing, it can discover wrong designs and suggest how to
fix the problem based on the knitting rules. Other enhancements are as follows. We

® extend the rules for synthesizing General Petri Nets (GPN2's);

e find invariants of synthesized nets®;

¢ show that the synthesized nets is a new class of nets®;

® apply the knitting technique to reduction and incorporate it into the tool; and

® add more semantics in addition to ““concurrency’’, ‘‘exclusiveness’’,

“‘iteration”, ‘‘message exchange’, and ‘‘process switching’’ by allowing
the designer to assign statements in *‘C’’ language to each transition®.
They can be compiled for simulation and allow automatic source code
generation. This enhances the semenatic power of the tool.
In short, this work overcomes some drawbacks of most existing synthesis approaches;
i.e., they do not

® deal with the algorithm and CAD tool using graphical user interface for

synthesis explicitly;

® show how to continuously update their synthesis techniques;

* indicate how to extend the synthesis for analysis;

* show temporal relationships among processes after synthesis;

® find the maximum concurrency of the synthesized net; and

® they synthesize very limited classes of nets;
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Most important, none of the current synthesis approach employs the notions
of relationships of concurrent, exclusive, sequential, ... etc. and path generations
which mark the most distinct features of the knitting technique. Notations are
provided in Appendix XIV.

1I. PRELIMINARIES
(A). Terminology

A Petri ner’®™' is a directed bipartite graph consisting of two types of nodes:
places (represented by circles) and transitions (repressented by bars). Places represent
conditions or the presence of raw materials and transitions represent events. Each
transition has a certain number of input and output places indicating the preconditions
and postconditions of the event. The holding of the condition or a raw material
in a place is indicated by a token (represented by a dot) in the place. The system
status is represented by the holding of a pattern of tokens in places which is called
a marking.

Definition 1: Let
P=[pl, p2, ..., pa], T=[tl, t2, ..., tb], with PUT = ¢ and P N T # ¢;
I: PxT — {0, 1};
O: TxP — {0, 1};
My P - {0,1,2, ..},
then N=(P, T, I, O, M) is an ordinary marked Petri net.

In this definition, pi (1 <i<a) is called a place, ti (1 <i{=<b) a transition, I an input
function defining the set of directed arcs from P to T, O an output function defining
the set of directed arcs from T to P, and M, an initial marking whose ith component '
represents the number of tokens in place pi. Note the functional values of both I and
O are restricted to 0 and 1. If other positive ineger values are allowed, then the N is
a General PN.

Definition 2: The firing rules are:

e A transition t € T is enabled if and only if the marking at p, m(p)>0,
V p € P such that I(p,t)=1;
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® An enabled transition t fires at marking M’ (with components m(p), yielding
the new marking M (with components m'(p),

mp) = m'(p) + O, — I(p.), V p € P.

The marking M is said to be reachable from M’. Given N and its initial marking
M,, the reachability set R(N,M;) (abbreviated as R) is the set of all markings
reachable from M,.

Definition 3: A marked Petri net N is B-bounded if and only if m(p) < B,
V pePand M ¢ R(N,M,) where B is a positive ineger. If B=1, N is safe.
N is live if and only if Vt e T, and ¥V M ¢ R(N,M,), 3 a firing sequence ¢ of
transitions to lead to a marking which enables t. N is reversible if and only if
M, e RINM), V M ¢ R(N,My). N is well-behaved if N is live, bounded, and
reversible. M, = M(A) — M B) is defined as: V p ¢ A, if - (p ¢ B), then
myp)=mJp), else m(p)=mLp)—m p). The operation ‘+’ is defined similarly. The
synchronic distance between tl and t2 in N is defined as d;,, = Max {o(t;)) —
o(t)), 0 ¢ L(N,M)}, where o(f) is the number of times s appears in ¢ and L(N,M)
is the set of all firing sequences from M. d(W,V) is the maximum number of firings
of transitions in set W without any transition firing in set V. O

The synchronic distance is a measure of dependence between transitions®:.

Definition 4: A node x in N=(P,T,I[,O,M,) is either a p ¢ P or at ¢ T. The post-set
of node x is xe={yl3 an arc (x, y)} and its pre-set «x={yl3 an arc (y, x)}.
An directed elementary path (DEP) in N is a sequence of nodes: [nn,...n;], such
that n; € *n;.; 1<i<k if k>1, and n;=n; implies that i=j, V1<i, j<k. An
elementary cycle in N is [nn,...n], k>1 such that n,=n;, 1<i<j<k, implies that
i=1 and j=k.

Definition 5: An A-path is a DEP whose places initially have no tokens.

Definition 6: A basic process is defined as elementary cycle [nn,...n] in a PN
where n, is a place holding tokens.

Definition 7: Let 7, ¢ T be enabled in M,, Vp, € *t,, p, is a home place. The
set of home places is denoted as H = {p,lp, is a home place}.
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Definition 8: A pseudoprocess (PSP) in a PN is a DEP [nn,...n,], k=2 such that
lenl==Inel=1, 2=<i=<k—1, or
k=2. The PSP is termed a virtual PSP (VP).
nn)=ny(n) is defined as the generation point (joint). n,(n)=nx(n;_,) is defined
as the next generation point (next joint) ]

Fig. 1 shows a basic process with pl as a home place. In Fig. 2(3), [t p2
2 p3 3] (Ipl tl p2]) is a PSP whose n, = tl (pl) and n; = 3 (p2) respectively.
Note the VP in Fig. 3 (II)) contains only n, and n;.

n n

o N, 1 are also used in new-path generations.

ol ®  Token
t1

o
T
B
Q:

2
p3

t3

Fig. 1. A basic process.

(@) p1
+t\ _
L 4T
Q”

t3

Fig. 2. Create a Pure-Generation (dashed line) by using TT rule.
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Fig. 3. New Interaction-Generation (IG) connecting II1 and IH.

Definition 9: Let NP be a set of new paths generated from a set of nodes called
generation points (n,) in N' to another set of nodes called joints (1) in N' to
produce M. n, (n) is a node n, ¢ NP and n; € nge (*n). O

Definition 10: If IT, and II, in a PN are in the same elementary cycle, then
e II, « II,, i.e., they are sequential (SQ) to each other, if the cycle has
tokens,
if the DEP from II, to I, is an A-path, then II, — II,; i.e., II; is
sequential earlier (SE) than I1,; else II; « II; i.e., II; is sequential
later (SL) than IIP,. A special case of ‘“‘SE” (“*SL’) is “‘SP”’
(‘“*'SN”’) if the n; (n,) of I, equals n, (n) of II,.
¢ else if the cycle contains no tokens, then II; o I,; i.e., they are cyclic
(CL) to each other.

Definition 11: Let DEP1={[n,n,...n,I1}] and DEP2={n,n,....n;I1,], where DEP1
N DEP2={n,}, I, and II, are two PSPs, and there are no DEPs (called bridges)
from a node (#n,) DEPI1 to a node (+#n,,) of DEP2 and vice versa. nps is
called a prime start node n,. If n,; € P, then ILIIL,. IT,IITL, if none of IIIIL,,
I1,<~I1,, and II, o I, hold.
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Note ITII, implies n, ¢ T or II, and II, are in two separate components
of a non-strongly-connected PN. Also in any synthesized PN using the TT and PP
rules, II, cannot be both concurrent and exclusive to II, using the above
definition. This is, however, not true for PNs that cannot be synthesized using the
TT and PP rules.

The above definitions of sequential earlier and later seem to be also marking
related. However, in the synthesized net, any cycle contains at most a place marked
with tokens; thus the marked place can be considered as a structure. In Fig. 3,
the new PSP IT" is II, and ILIIT". In Fig. 4(a) IL,IIT1,. II; and Il4 are on an
elementary cycle containing IT;, IT;, and Il hence II; o Il in Fig. 4(a).

Fig. 4(a). Generate a new IG using PP rule.

1 CN CN CN CN CN  CN: CoNcurrent
2 CN EX glg gl:' CL EX: EXclusive

3 | CN  EX &k & cL SE SEzczlL;ee:tial
4 CN gt gt EX CL SL: Sequential
5| CN & EOEX cL Later

6 CN CL CL CL CL CL: Cyclic

Fig. 4(b). An example of the matrix to record to the relationships between PSPs.
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The structural relationship between any two PSPs is recorded in a matrix. An
entry A, corresponding to row i and column k represents the relationship between
II; and II,. For example, if II; is concurrent to I1;, then Ay = A, = CN, where
CN stands for concurrent. Such a matrix is termed a Temporal-Matrix (T-Matrix)
because the structural relationship between two PSPs resembles their temporal
relationship as explained below; see also Lemma 1.

It is easy to see that if we execute a PN starting from the initial marking
involving I1,, then II, — II, implies that II, is executed earlier than Il,; II, I,
implies that there is no need to execute II, to proceed; and II IITI, implies that
both of them need to be executed to proceed. Intuitively, IT, < II,, if they are
subject to an intra-iteration precedence relationship; II,III1,, if they can proceed in
parallel. IT,ITI, if it can return to its initial marking with only one of them being
executed.

Complementing the prime start node is the prime end node defined as follows:

Definition 12: Let DEPI1=[IIn,...n;n,] and DEP2=[ILn,....n,n,], where
DEP1 N DEP2={n,} I1, and II, are two PSPs, and there are no DEPs (called
bridges) from a node (#n,) DEPIl to a node (#n,) of DEP2 and vice versa.
is called a prime end node n,,.

A new class of nets called Synchronized-Choice (SC) nets is defined to be
the set of nets satisfying the SC condition: the n, and n, of any pair of PSPs
must be both transitions or both places. That is if IT,li(I)II,, then both 7, and
n, are transitions (places). Our synthesized nets belong to this class of nets.

Mpe

Definition 13: If 3 I1, n, ¢ IT and n, € Il, then n; & n,. If n; € I, and n, ¢
IT,, I1,#11,; the structural relationship between n, and n, is A,. O

Independent, uncoordinated action may cause a N to be unbounded and nonlive.
A single generation may thus necessitate additional generations to maintain
coordination and the associated searching of additional n, and n; as in Rules TT.4
and PP.2. This searching motivates the following two definitions.

Definition 14: A local exclusive set (LEX) of II; with respect to Il,, X, is the
maximal set of all PSPs which are exclusive to each other and are equal to or
exclusive to IT, but not to II,. That is, X; = LEX(ILIL) = {ILITL. = II; or
ILITL, — (ILITL, VII,, I, e X, IL,IIL,}. O

Definition 15: A local concurrent set (LCN) of II; with respect to II,, Cj, is
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the maximal set of all PSPs which are concurrent to each other and are equal to
or concurrent to IT, but not to IT;, i.e., Cx = LCN(ILIL) = {ILIIIL, = IL; or
HZ“Hia 1 (H:”Hk)v v H:l’ HZZ € Cik’ H:lnnzl}' 0

Examples of LEX and LCN appear in Figs. 5 and 6 and Rules TT.4 and
PP.2 employ them respectively. '

e

"'\_Virtua
path

Fig. 5(a). An Example of the application of Completeness rule 1.

| 2 3 4 5 6
| EX EX CN CN CN
2| EX EX CN CN  CN
3| EX  EX CN  CN CN
4l CN  CN  CN EX €
S| CN  CN  CN  EX EX
6| CN  CN CN  EX  EX

Fig. 5(b). Original T-Matrix (excluding the new IG).
LEX(I12, T1I5) = {I11, 12, 113}
LEX (I15, T2) = {114, IIS, 1I6}
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Virtual

path
(b)

12 3 435 6 7 8 9

EX SPSPEX EX SE EX SE-
EX EX EX SPSPEX SE SE
SN EX CNEX EX SPEX SE
SNEXCN  EX EX SPEX SE
EX SNEX EX CNEX SPSE
EX SNEXEX CN EX SPSE
SL SL SNSNEX EX EX SP
EX SLEX EX SN SN EX SP
SL SL SL SL SL SL SN SN

N e & ¥ B N O S

Fig. 6(a) An example of the completeness rule 2 involving interactions
between two exclusive PSP using PP rule.
LCN(I4,I15) = {I13,114}, LCN(II5,I16) = {II5,I16}
6(b) The T-Matrix of Fig. 6(a).

III. THE SYNTHESIS RULES

We first present possible types of generations followed by the definitions of
the rules.

In order for the rules to be complete, all possible generations must be
considered. The type of generations depend on n, and n; in two factors: (1)
whether they are transitions or places and (2) their structural relationship. For
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factor (1), there are four types: TT, PP, TP and PT generations defined as
follows:

Definition 16: The n, and n of a TT (PP, TP, and PT) generation are
transition (place, transition, place) and place (place, place, and transition)
respectively. ]

For factor (2), n, and n; can be in the same or different PSPs. For the latter case,
there are five possibilities: (1) sequential earlier (SE), (2) sequential later (SL), (3)
concurrent (CN), (4) exclusive (EX), and (5) cyclic (CL). The former case is
formalized as follows:

Definition 17: Let II, (Il) denotes the PSP which contains the generation point
(joint). Pure Generation (PG) generates paths within a single PSP (Fig. 2); i.e.,
1, = II,. Interactive Generation (IG generates paths between two PSPs (Fig. 4);
ie., I, = II. U

For the latter case, (1) and (2) are defined as:

Definition 18: If n, — n; prior to the generation, then it is a forward generation;
otherwisc it is a backward generation. U

In Fig. 2, [tl p4 t3] is a forward generation and 16 in Fig. 4(a) is a backward
generation. A backward TT generation needs the addition of tokens to the NP to
avoid the resulting N to be not live. This makes Rule TT.2.

The idea of constructing the rules is simple. An eligible generation upon
N' whenever the NP gets a token. This alters the marking behavior of N' and
the net is unbounded. A PT generation robs a token from N' and causes N'
to be nonlive; hence changing its firing behavior. To avoid this problem, add
more generations®*?> or forbid such generations. This paper does not deal with
TP and PT generations.

The following definitions for TT and PP rules have consiered all possible

structural relationships between n, and n;, Some generations are forbidden; some
require the addition of tokens and others require further generations.
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Definition: TT Rule:

For an NP from 1, ¢ I, to 1; ¢ II; generated by the designer,

(0) TT.0 If 7,1z or only one of them is in a cycle, which was solely
generated using Rule PP.1, then signal ‘‘forbidden, delete the
IT" and return.

(1) TT.1 If 1,

= 11, signal “‘a pure TT generation’’; otherwise signal

“an interactive TT generation’ .

() If 1, « 1,

signal ‘‘forming a new cycle”.

If, without firing #;, there does not exist a firing

sequence o to fire 7,, then insert a token in a place of
NP.

If 11, = 1I, return and the designer may start a new

generation.

(3) TT.3 If there was no path from 7, to f; prior to this generation or

each of 7, and # is in a cycle which was solely generated using

Rule PP.1,

(a) TT.3.1.

(b) T.3.2.

4) TT.4
(a) TT.4.1

(b) TT 4.2

then

Apply Rule TT.4.

Generate a new TT-path from 1, to ;' (on the cycles
containing ¢, and f; respectively) to synchronize t, with
respect to #; so that after (if necessary) Step 4, i,
cannot fire infinitely often without #; firing once.

Generate a TP-path from a transition t, of each II, in
X,; to a place p, in the NP.

Generate a virtual PSP, a PT-path, from the place i; to

a transition f; of each II; in X,
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Definition: PP Rule:

For an NP from p, ¢ Il, to p; € IT generated by the designer,
(0) PP.O If p,llp;, then signal ‘‘forbidden, delete the II*’’ and return.

(1) PP.1 If IT, = II, signal “‘a pure PP generation’’; otherwise signal
‘‘an interactive PP generation’’.

(2) PP.2.
(a) PP.2.1 Generate a TP-path from a transition ¢, of NP to a place
p; of each II; in C,,.

(b) PP.2.2 Generate a virual PSP, a PT-path, from a place p, of
each II, in C,; to the transition n, of NP.

Note some generation may require the application of more than one rule. For
instance, a backward IG may need both Rules TT.2 and TT.4. Note also the partial
dual relationship between the 77 and PP rules. Replacing transitions with places
and vice versa, and reversing each arc in Rule TT.4, we obtain Rule PP.2. The
rules are summarized in Table 1.

Table 1. Summary of the Rules

Conditions of Generations PP Rule TT Rule
A. cycles created TT.2
B. no cycles created
B.1 only one of n, and n; in a cycle from PP.1 TT.O0
B.2 Exclusive PP.2 TT.O
B.3 Concurrent PP.O
B.3.1 neither n, nor n; in a cycle from PP.1 TT.4
B.3.2 both n, and n; in a cycle from PP.1 TT.3
B.4 Sequential or Cyclic PP.1 (PG) TT.1 (PG)

PP.2 (IG) TT.4 (IG)
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Section VI demonstrates the application of these rules to an automated manufacturing
system. Note that during each application of a rule, more than one new PSP may
be generated; we call such a generation a macro generation. Otherwise, it is a
singular generation.

In the remainder of this paper, all nets mentioned refer to nets synthesized
using the rules presented in the above.

In the sequel, we explain the rules starting with the rules that forbid generations.

Forbidden 7T and PP generations come from synchronic and concurrency
mismatches respectively which cause uncoordinated actions. For a TT generation,
a single parameter, the synchronic distance between 7, and f;, can unify all cases
of the structural relationships between n, and n,

Definition 19: Synchronic Mismatch: A 77 generation causes a synchronic mismatch
if d;, #* a';}, where d;,» (d;;-) denotes the synchronic distance between f, and 7 in
N' (NP).

Definition 20: Concurrency Mismatch: A PP generation causes a concurrency
mismatch if (pllp)) and S a p ¢ P, plip,, and - (plip)).

There are three possible synchronic distances: 1, o and the integers in between.
A TT generation should not alter the synchronic distance between t, and ;. But
a TT-path implies a synchronic distance of 1 between r, and t;. Thus, if the
synchronic distance between g, and ¢ is one prior to the generation, the 7T
generation will not alter the reachable markings of N'. If t, (t;) can fire infinitely
often without firing #; (¢,), then the NP will get unbounded tokens (become nonlive
due to deficiency of tokens).

In terms of structural relationship, d, = oo for the following cases: (1) tgltj,
(2) t, and/or ¢; is in a cycle generated earlier using the PP rule, (3) I, < 1 or
t\lt;, 3 ¢, such that 7,17, and/or 1z, and (4) t, and ¢, are in two separate PNs.
For cases (1) and part of (2) where only one of #, and 1, is in a cycle, the
generation is chosen to be forbidden to make Rule TT.0. The rest cases need
additional generations to make Rules TT.3 and TT.4.

Rule PP.0 forbids concurrent mismatch since IT,lITI;, they need to cooperate
to complete the task. But the NP diverts the token away to break the coordination
and induces a deadlock; hence Rule PP.0Q forbids a PP generation between concurrent
PSP.

Rules TT.4 and PP.2 model the messages exchange between two parties and
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the context switching between two processes respectively. To satisfy the completeness
requirement' in communication protocols, each PSP in X,; (X,), if executed, must
send (receive) a token by firing the relevant 7, (1).

In the context switching, all local contexts in C,; must switch to those in Cj.
See Figs. 5 and 6 for the application of these two rules.

The correctness of these rules is established in the sequel. We first show the
correctness for a synchtesized net where each home place holds exactly one token.
Let N denote such a net, N’ the net after adding tokens to N°, and N'“ a N :
and also a N°. We then show that the synthesized net is marking monotonic; that
is it remains well-behaved by adding tokens to places in the synthesized net.

Rules TT.1, TT.2 and PP.1 do not require further generations. They are simple
and have been dealt with in many literatures usinig the concept of reductions and
expansions.

Theorem 1: Any PN resulting from a singular application of Rules TT.1 and PP.1
respectively to a N ' synthesized from a basic process is well-behaved.

Proof: See Appendix I. (]

Theorem 2: Any PN resulting from a singular application of rules TT.2 to a N
synthesized from a basic process is well-behaved.

Proof: See Appendix II. U

Lemma 1: for a N°, any pair of PSPs cannot be both concurrent and exclusive
to each other.

Proof: See Appendix III. O

This lemma leads to the equivalence of structural and temporal relationship,
which is marking or time, rather than structurally related. Two transitions (places)
are temporally concurrent to each other if they can fire (have tokens) simultaneously
in a safe PN. Without this lemma, p, and p, may not (may) be able to hold
tokens simultaneously even if p, Il (l) p, since there may be two DEPs from a p,
(1) to p, and p, respectively.

Lemma 2: For a N2, let Mi ¢ R?, where all IIs in C,, (C,)) holds exactly one
token.
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Proof: See Appendix IV. U

This lemma ensures that the application of Rule PP.2 will not alter the reachable
markings of N'. The following lemma also comes from the equivalence of
temporal and structural relationship.

Lemma 3: Using Rule TT.4, if one #; in X, gets a token in each of its input
places except the one from #;, then any subsequent firing sequence, if long
enough, will inject a token to #,; and fires the above 1,

Proof: See Appdneix V. ]

This lemma along with Lemma 4 ensures no tokens get accumulated in the
NP indefinitely. Note if 1; « 1,, then the NP is marked by Rule TT.2. #; can fire
without the token injected by firing a t,. But subsequent firings will always lead
to the firing of a 7, to restore M.

The above firing sequence, denoted as o¢", including both 7, and ¢ and
Vteo“, teT, iscalled a complete firing sequence of the NP. Lemma 4
shows that after a ¢", the marking of N' in N*, M'”? will be a reachable one
in N'. The correctness of this lemma is based on the following:

Obersation I: V t ¢ 7", if t#n,, t#n; and r#n,,

O 1etl = 1.

(2) V pair of 7, and 1, € T", = (t;llt,) using Rule TT.4, and - (1,1#,) using Rule
PP.2.

(3) Any TP (PT) generation occurs between exclusive (concurrent) PSPs.

(4) Any pair of PSPs II, and II, joining at a node n, in the NP, then IT Il ()
1L, if n, e T" (P").

Proof: See Appendix VI. UJ

The observation derives from the fact that there are only 7P and PT generations
beyond the first generation using Rules TT.4 and PP.2. From (2) of Observation
I, any pair of PSPs II, and IL, using Rule TT.4 (PP.2) are either IT, — II, or
IT, I(IN) IT,. Thus, a complete firing path tnrough the NP is a single DEP using
Rule TT.4 and includes all transitions in the NP using Rule PP.2.

Lemma 4: For the N° after applying Rule TT.4 (PP.2), after injecting a token
(tokens) into the NP by firing only one 7, (the i), the subsequent firing sequence

la

will lead to (M,', My) [o* — (M, M), where both M. and Mﬁlu e R
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Proof: See Appendix VII. U]
Lemma 5: V o, such that M, [oM,, either 0 © g or V te o, - (t e T.
Proof: See Appendix VIII. ]

Theorem 3: Any PNs resulting from the singular applications of Rules TT.4 and
PP.2 to a N synthesized from a basic process are well-behaved.

Proof: See Appendix IX. ]

Theorem 4: Any PN resulting from a singular application of Rule TT.3 to a N te
synthesized from a basic process is well-behaved.

Proof: See Appendix X. U

Theorem 5: Any PNs resulting from the applications of the TT and PP rules to
a basic process are bounded, live, reversible and marking monotonic.

Proof: See Appendix XI. U
The bounded property can also be proven by deriving the P-invariants® for
the synthesized nets.

Theorem 6: The class of synthesized PN belongs to the class of synchronized-choice
(SC) nets.

Proof: Sce Appendix XII. J

Note a SC may not be synthesized; this happens when the SC is not well-
behaved. For instance, when the PT-path (TP-path) generated using Rule TT.4.2
(PP.2.2) is not a virtual one, then N’ is a SC but with deadlocks.

IV. TEMPORAL MATRICES FOR PETRI NETS
The rules should be implemented as an interactive and visual-aid tool. The

designer can view the PN model being designed on the screen and use a mouse
to input paths according to the design specifications. Each time a path is generated,
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the system should check the new path generation against the rules. If some rule
is violated, a warning should be issued to the designer to request that either this
new path be deleted or else add more PSPs. In order to automate this process,
a mechanism is needed to:

® Record the relationship between any two PSPs, and

® Determine the applicable rule upon a path generation. Generate additional

paths and entries if necessary. If no rules are applicable, delete this path.

We use matrix to perform the first function. Instead of recording connectivity
between places and transitions, the matrix in our algorithm records structural
relationship between PSPs. Before a path is generated, the T-Matrix needs to be
consulted to verify that no rule is violated. Whenever a new path is created, a
PSP may be separated into several new PSPs, and relationships between some PSPs
are changed. Therefore, the number of total PSPs needs to be updated, so do the
matrix entries.

Example: Fig. 4(a) shows a PN model with its matrix shown in Fig. 4(b). Originally
there are 5 PSPs in solid paths II; to Ils; Il in a dashed path is to be added
by IG. I, is concurrent to all other PSPs. Therefore, all entries in the first
column an the first row are CN. I, and II; are exclusive to each other, so are
I1, and Ils. Therefore,

Ay = Ay = Ay = Ay = EX

Notice Ils returns to form cycles; therefore some entries need to be updated.
Prior to I, generation, Il is structurally sequentially earlier (SE) to both I, and
Ils. After the addition, I, IT, and II; become SE to II,, implying the formation
of cycles.

We have described how the T-Matrix records the relationships. The next section
presents the algorithm and the associated time complexity for updating the T-Matrix.

V. THE ALGORITHM AND ITS COMPLEXITY

The algorithm consists of two steps:
® Create new entries in the T-Matrix for each NP (new path).
¢ Determine the applicable rule; generate additional new paths if
necessary and update the T-Matrix accordingly. If no rule is applicable
or some rules are violated, delete the path.
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For example, if a PP-path is generated between p, and p; and p,llp;, then
Rule PP.0 dictates that this path be deleted. It is easy to find the structural
relationship between the new PSP TI" and the PSPs directly involved with the
generation, but not obvious as to the structural relationship between PSPs far away
from (no direct connection with) the IT". In the following, we will develop
techniques to enter new entries for PG and IG respectively.

A. Determination of Entries for Pure-Generation

After the PG of a II; from II,, IL, is split into three new PSPs II,; — I,
— I, The entires related to I, should be deleted. The values for the new
entries are:

Ay = Agk’ Ay = Akg

where I, is any PSP other than II,, II, II,, I, and II; and II; is one of the
newly created PSPs. Note IL, and/or II,, may be empty. The rest new entries are
the relationships among the newly created PSPs:

A,g2gl = A’g3gl = A,g3g2 = SL,
Alpp = Alpy = A'gp = SE
and
Ao = CN for PG using TT rule
Ay = EX for PG using PP rule

Therefore, no modifications for existing entries are necessary for PG. There are
four new PSPs. Each new entry takes constant time to enter, and the corresponding
time complexity is O(n), where n is the number of PSPs before the generation.
We add a PG in Fig. 7 using the PP rule with the T-Matrix and PN shown in
Fig. 8. There are four new entries: IT;, IL,, Ils and Ils respectively.

B. Determination of Entries for Interaction-Generation

In the following, we consider only the case where ILIII; or ITLIIT; the cases
where Il — II; or II; — II, can be treated similarly.
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ﬂl‘; §ﬂ2

Y 9

1

"

Fig. 7(a). Original Petri Nets with 3 PSPs.

1 2
SP:
! CN SP Sequential
21 CN SP Previous
31 SN SN SN:
Secuential
Next

Fig. 7(b). Corresponding T-Matrix of Fig. 7(a) prior to the pure-generation.

For an IG of II, from I, to IT, II, (IT) is split into IT,, — II,, dI, -
IT;;). Note that IT,, — II, — II,. The structural relationship between the new
PSP 11, and existing PSPs must be determined. Also some structural relationships
among existing PSPs are changed. For instance, independent of the structural
relationship between II, and IT; prior to the generation, after the generation, I1,,
- II; = II,. It is easy to determine the structural relationships among PSPs
directly involved in the generation, but rather difficult to determine between PSPs
far away from the generation and PSPs directly involved in the generation.

The new matrix (4') entries are determined by the following lemma.
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n](? +TTZ
n3
4 \\_\)__115

Fig. 8(a). After adding a pure-generation, there are 6 PSPs in the Petri Net.

1 2 3 4 S 6

1 CN SP SE SE SE S

2 | N SPSE SE SE peduentd
3| SN SN SPSP SE o,

4 SL SL SN EX SP  Sequential
51 sL SL SN EX gp Next

6| sL sSL SL SN SN

Fig. 8(b). Updated T-Matrix.

Lemma 6: For an IG of II, from II, to I, then update 4 to A’ as follows:
(1) A'=SE and A';=SL, where ik=g,g,, ji» &l U2 lq, 842 rl, rjp, and
rq.
) A',.=A,, and A',=A,, where mz # rq, qr (m, ze{r,q,u,v}), and
(3) A',=A,, and A’ =A, where st=gg,, 88, Jji, W ze{r.qu,v}, and
1z # o, 84
where I1,, I1,, II,, and II, be old PSPs not belonging to C, or X, such that
I1,-1I1, I,,-II, - dI,-Il) (II, not sequentially earlier to 1), - dL~-IL),
(I, not sequentially earlier to I1,), = (II,~IL), and — (I1,—IL).
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Proof: See Appendix XIII.

The corresponding time complexity is O(#*) mainly incurred by the operation
A',, = SE. To complete the step of a single application of a TT or PP rule,
additional TP- or PT-paths may have to be generated from/to the NPs. The matrix
update after each such generation can be performed in a similar fashion to that
in Lemma 6 with the same time complexity. Since there are O(n) such TP- or PT-
paths, the total time complexity of completing one single application of Rule TT.4
or PP.2 is O(n%).

Fig. 9 shows that the PN after the IG and the updated T-Matrix (refer to
Fig. 6). Any alphabetic number in Fig. 9(a) stands for a PSP. II; in Fig. 6

(b)

1 2 3 4 H s 7 1.3 3 10 n 12 13 14 15 16 17 8
v & ¥ % ¥ £ & & & & & & & & =& &% =X =
2 124 X SE >3 S P b3 5P SE SE SE S SE SE SE SE SE
E T P N N X & X X B X X X X & X S
L3N CORE- S I N T - R T - - G 3
5 SN EX =} N b4 £X EX & & EX [>3 (>4 EX >3 L EX SE
€It 2 o o W E I - I - R e - T ="
7 je&X M o OSE & s N N o o = ¥ s £ w =
LI > S B > S S - > S NN X A X X X & $ =
9 [>3 SN EX SE >4 2 CN =] b4 CN » SE -3 SE SE SE SE
10 | EX S EX [>.4 [24 X CN CN N 23 & X |24 2.4 X P SE
1 123 L [> SE X SE N >3 [=) EX o™ 4 = = SE EX SE
12 124 L {24 SE >4 SE S EX SN [>.9 ™ b x SE SE 124 SE
13 EX € [>3 P [23 (=] B8 (>3 € >3 N SN > g SE EX SE
M oL & N X P % o % B S 9 sn [~ > -
15 EX T > fe] EX 4 <L 124 S & T 8 N ot SE EX SE
16 L L L SN * N €L 23 BN & s 2 L 2 SL (24 b4
17 | £x s 124 {24 >4 >4 S SN b8 SN (>4 EX EX (2.4 3.4 &% b4
8 SL L Su T L €L L K L s L -8 SL = s =™ SN

Fig. 9. (a) After the Interaction-generation (IG), there are 18 PSPs in
Petri nets. Each number stands for a PSP.
(b) The new T-Matrix of Fig. 9(a).
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has been separated into two PSPs, IT; and Il, respectively. Note this PN does not
belong to the class of assymetric-choice nets. But note that every pair of exclusive
(concurrent) PSPs have places (transitions) as their n, and n,; i.e., the PN
belongs to the class of synchronized-choice nets. The synthesized PN in Fig. 5(a)
also belongs to the class of synchronized-choice nets.

C. Complexity of the Algorithm

The complexity for the algorithm consists of the following components: The
complexity for

(1) determining which rule is applicable and checking the rule violation,

and

(2) updating matrix entries,

For factor 1, it takes O(1) time to consult the T-Matrix to find A, For factor
2, the complexity to update entries has been shown to be O(n) for PG and omn?
for each PSP generation during an IG.

Thus each PSP generation takes O(#°) time complexity. Let n; be the number
of PSPs prior to the ith generation. The time complexity for the ith generation is
O(n?). After a PG, one PSP is deleted, while at most four new PSPs are created.
Thus after the PG, the number of PSPs increases at most from n; to n;+3.

Four an IG of an NP between two PSP, two PSPs are deleted and at most
five new PSPs are created. Hence after the IG of a single PSP, there are at most
n,+3 PSPs. The time complexity for the next generation is bounded by
O([n;+3]%). Let K be the total number of PSPs at the end of a design. The total
time complexity for the design is

ni=K—4 K
Y m+3F < Lk = O(K?)
1 k=0

"i=

Thus the total time complexity for the whole design process is O(K).

VI. X-WINDOW IMPLEMENTATION

We have implemented the above algorithm by incorporating it into a Multi-
Function Petri Net Graphics (MFPNG) tool based on X-Window (Motif version).
This software package® ™ is a user friendly CAD tool for designing, verifying,
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simulating, querying (including cycle time, invariants, incidence matrix, inputs/outputs
of nodes, ... etc), reducing and synthesizing PN. The structure of this tool is shown
in Fig. 10.

{  Design Ideas

File Manipubtor

\ Graph Editor }= . Display
\ /

l Petri  Net Graphics ]

Behavior Anaiyser Reduction Tool

Simulator

Checker

Fig. 10. Structure of the CAD tool for designing, analysis, and synthesis
of protocols.

This tool can draw, erase, copy, move, pan, and zoom in/out objects such
as places, transitions, states, rectangular and elliptical objects (filled and nonfilled)
and texts (with a variety of fonts). The user can construct a PN either using the
“DRAW”’ button to draw transitions, places and arcs, or using the ‘‘FILE’’ button
to input a PN file. Buttons ‘““Move’’, “‘Pan’’, and ‘‘Zoom’ allow large PNs to
be drawn. Clicking the ‘‘Pan’’ button centers the graphics at a chosen location.
In addition, the vertical (horizontal) scrollbar allows the graphics to be moved up
and down (left and right). After the PN is drawn or displayed on the screen,
graphical interconnections among places and transitions are translated into internal
representations for further manipulations.
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A user can initiate the synthesis by clicking the ‘‘Petri’” button of the
‘“Synthesis”” menu. Afterwards, no further clicking is necessary for further generations
except for clicking the ‘‘T-Matrix’’ button to display the T-Matrix in the bottom
window (called text_w) after a new generation. An example of this process to the
synthesis of an automated manufacturing system (fig. 11) is shown in Fig. 12. Shown
in the bottom is a message window text_w. After each generation step, it displays
the kind of generation and signals any rule violations or whether tokens must be
added to places in the NPs.

A new window is popped up upon an interaction generation, inside which
displays an arrow linking two sets of nodes inviting the designer to pick one node
in the left-hand (right-hand) set as n, (n). Each time after a node is picked, the
tool will call a filtering procedure to eliminate nodes in the set that are sequential
to the node just picked and redisplay the window. This process continues until both
sides are empty and no more NP needs to be generated for this specific IG.

In the displayed T-Matrix, each structural relationship is expressed by a single
letter (c.g. E) different from the two letters (SE) presented earlier. The

correspondence is shown in Table 2. In addition, 4; = 'Y’ if 4y = 'X’ and
I, is in a cycle which has a place with more than one input transition; 4; = 'Z’
if A, = 'U’' and II; is in a cycle which has a place with more than one input

transition. We now apply the tool to the synthesis of an automated manufacturing
system (Fig. 11).

Description of a Manufacturing System

This automated manufacturing system consists of the following major components
(Table 3): two entries, two exists, five machines, two robots, and two Automatic
Guided Vehicles (AGV), and related conveyors. It can produce two types of products.
An unlimited source of raw materials is assumed. Once machines, robots, or AGVs
start any operation, they cannot be interrupted until the work is complete. We now
build up a well-behaved PN model.

Modeling And Synthesis Process
First, synthesize the production protion from Entry 1 to Exit 1, followed by
that from Entry 2 to Exit 2. For the first portion, pick a basic process by identifying

a sequence of operations of loading by R1, machining by M1, unloading via AGV1,
loading by R2, and machining by M3 modeled as shown by the solid cycle
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[pl tl p2 t2 p3 t3 p4 t4 p5 t5 p6 t6 pl] in Fig. 12(a). In this basic process,
pl models the availability of A-raw materials.

Upon this basic process, generate a new PSP [p2 (7 p7 18 p4] as the dashed
line in Fig. 12(b) using Rule PP.1 since n, = p2 and n;=p4; both are from the
same basic process. The new PSP models another alternative to produce A-paths
by Machine 2. Now there are three unique PSPs, i.e., II; (or pspl) = [p4 14 pS
t5 p6 t6 pl], I, (or psp2) = [p2 12 p3 13 p4], and II; (or psp3) = [p2 {7 p7
18 p4] . The tool also displays the T-matrix after the PP generation the bottom
window. It is easy to see that IT,|II; and II, is sequential to both II, and II;.

Now since the operation in p3 requires Robot 1, generate a backward T7-
path from t2 (in Il,) to tl (in II)), i.e., [t2 p8 tl]. And add a token in place
p8, standing for Robot 1, using Rule TT.2. Furthermore, since the local exclusive
set LEX(IL,, IT)) = {II,, I1;}, generate a TP-path [t8 p8] via Rule TT.4.1 from
a transition in IT; to p8. Since LEX(II,, IL;) = {II,}, nothing more needs to be
added via Rule TT.4.2.

Note there are two transitions t7 and t8 in II;, we can pick either one as
the ¢, of the new 7P-path. The tool conveys this information to the designer by
popping up a new window, inside which displays an arrow linking two sets of
transitions: {t7, t8} and — (an empty set). Picking t7, resulting in the dotted
lines in Fig 12(c). The tool then pops up another window linking two empty
sets signaling the completion of this step of synthesis. The set of home places now
is H = {pl, p8}.

Machines 1, 2, 3, and R2 are required to start their corresponding operations.
Thus using Rules TT.2 and TT.4, generate the new paths: [t3 pl2 2], [t8 p9 t7],
[t5 pll t4], and [t6 p13 t6] (Fig. 12(d)) where pl12, p9, pll and pl0 model the
availability of M1, M2, R2 and M3 respectively.

Consider the AGV1, first generate a TT-path between t4 (in II = [p4 t4])
and t3 (in IT" = [t3 p4]), i.e., {t4 pl13 t3]. Then add a token to pl3 using Rule
TT.2. Since LEX([p4 t4], [t3 p4]) = ¢, add nothing according Rule TT.4. LEX([t2
p3], [p3 t3]) can be any one of {[t7 p3]}, {[t6 p6 t7]} and {[pl t6]}. Using either
{[t7 p31} or {[t6 p6 t7]1}, add the virtual PT-path from pl2 to t7 as the dotted
line in Fig. 12(d). This implies that once Machine 2 completes its processing, AGV1
delivers the part. Theoretically, one may use {{pl t6]} and then a PT-path [pl2
t6] would be added. H = {pl, p8-p13}.

Having synthesized the partial system, i.e., the production portion from Entry
1 to Exit 1, now synthesize the rest portion, from Entry 2 to Exit 2 to involve
Machines 4 and 5, AGV2 and Robots 1 and 2. For [¢7 p8 1] and [t5 pl12 4],
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applying Rule PP.1 leads to the two cycles [p8 9 pl4 t10 p8] and [p12 11 pl5
12 p12]. The meanings of the added places are shown in Fig. 12(e).

Consider two new PSPs: I1, = [p8 © pl4 110 p8] and IIs = [p12 11 pl2
112 p12] and choose 10 from Il, and tI11 from II5 to generatce a new PSP,
psp=[t10 p16 13 p17 t11]. Note each of the transitions 10 and 11 is in a cycle
which were generated using Rule PP.1. Hence, now apply Rule TT.3 to pick up
19 from I1, and 712 from Il; and generate psp‘ = [r12 pl8 t14 pl19 9]. It is
easily verified that psp, psp’, Il, and Ils constitute a cycle. Furthermore, insert
the tokens in p19 to represent the availability of raw material from Entry 1 to fulfill
Rule TT.2. H={pl, p8-pl13, pl19}.

Now apply Rule TT.2 to obtain the paths: [t13 p20 t10], [tl] p21 ti13], and
[t14 p22 t12], which model the availability of Machines 4, 5, and AGV2. H={pl,
p8-p13, p19-p22}. This completes the modeling process and the final net is depicted
in Fig. 11 as a bounded, live, and reversible net if Vp ¢ H, Myp)>0 and
Vp € PN-H, Myp)=0; i.., the places except those in H in the net have no
tokens.

VII. CONCLUSION

The tool based on the synthesis rules and the algorithm helps designers to
construct large PNs interactively and to synthesize an automated manufacturing system
in a user-friendly fashion. We have also implemented a reduction algorithm based
on the rules; the code is very simple containing less than 100 lines.

None of the existing tools integrate drawing, file manipulation, analysis,
simulation, animation, reduction, synthesis and property query in one software
package. Further, because PNs model discrete-event systems, the tool finds
applications in communication protocols, flexible manufacturing systems, (extended)
finite state machines, expert systems, interactive paralel debuggers*, digital signal
processing (DSP?>*%), ... etc.

We have enhanced the tool to include models not only PNs but also state
diagrams and data flow graphs (DFGs) with few code changes. Thus a designer
can choose the model that he is familiar with. For instance, DSP professionals do
not know PNs well. They can, however, draw DFGs and obtain iteration bounds,
critical loops, rate-optimal scheduling and others by justing clocking a button3+%.

The fact that some generations are prohibited however, limits the classes for
the synthesized nets. Recently we have discovered new rules to free forbidden
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generations. For instance, Rule TT.0 forbids a 77-path generation (e.g., PSP [t3
p4 t4] in Fig. 13(a)) between exclusive transitions. The new rule allows it, but
needs additional generations (PSP [t4 pS5 t3]) to synchronize the two exclusive
transitions (t3 and t4).

Also, adding new paths allows TP and PT generations. A new PT generation
(Ip4 t3]) must accompany each TP generation ([tl p2]) in Fig. 14) and vice versa.
And each new PT generation must synchronize with existing P7-paths having the
same n,. These rules deal with ordinary PNs having unit weights between places
and transitions. We have extended these rules to synchesize GPNs with multiple
weights?!.

As a result, these new rules can synthesize more classes of nets. Future work
should enhance the algorithm and incorporate these new rules into the tool.

= pt p1
T
-1 u 11

06 p7 06 pS 9 p7
15\55/‘ t6 tsw 16
Y v j_ (7
N S~
(a) (b)

Fig. 13. An example of Rule TT.0. (a) [t3 p4 t4] is generated.
The net deadlocks or is unbounded.
(b) The addition of [t4 pS t3] renders the net live
and bounded.
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e

tl v tl
p3 p2 p3Q p2
3 3
[#3 Q
P o4 S P
*
4 U—— 4
(2) (b)

Fig. 14 An example of TP-path ([t]1 p2] generation causing
the net unbounded.
(b) The generation of [p4 t3] turns the net bounded
again.
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Appendix I. Proof of Theorem 1
Proof: This lemma can be proved by repetitively applying reduction and expansion
[HYUS82,85,87, YAWS87, RAMS86z]. U

Appendix II: Proof of Theorem 2
Proof: This lemma can be proved by repetitively applying reduction [HYUS82,85,87,
YAWS87, RAMS6a]. L]

Appendix III: Proof of Lemma 1

Proof: Assume contrary, then there are two n,, one a t ¢ T and another a p ¢
P. This can only happen when they are PT or PP generations between concurrent
PSPs or TP or TT generations between exclusive PSPs. All these four types of

generations are forbidden. U]
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Appendix IV: Proof of Lemma 2

Proof: After each IT in C,, fires once, there exists a ¢ for one of G, to gain
a token. By the equivalence of temporal and structural relationship, each II in G
will gain a token. Hence the lemma. O

Appendix V: Proof of Lemma 3
Proof: This lemma comes from the fact that prior to the generation, d(X,;, X;,) =
1, since X,; <> or Il X,. O

Appendix VI: Proof of Observation I

Proof (1) l+tl > 1 only for transition joints within the NP. But this occurs only
under Rule PP.2.1 where the joint is a 7,. (2) Consider Rule TT.4 first. Any pair
of new PSPs corresponding to the TP-path using Rule TT.4.1 are mutually exclusive
since they have the same p,, as the two corresponding IIs. The same result
applies to Rule TT.4.2 since the n, is a place p; The case for Rule PP.2 can
be proved in a dual fashion. Cases (3) and (4) can be similarly proved. O

Appendix VII: Proof of Lemma 4

Proof: We first show that the injected tokens will eventually disappear from the
NP due to the following facts: (1) There are no internal TP-path whose p; = n;
and (2) Injected tokens can flow freely inside the NP since every t inside the NP
has only one input place by Observation I. We then show that upon the above
disappearing of the injected tokens from the NP, the resultant M? contains a M'?
e R'. This is true for Rule TT.4 since the sub-firing sequence in N leading to
the firings of 7, and ¢; is exactly the same as that in N ' prior to the generation.
For Rule PP.2, the token disappearing is equivalent to the switching of tokens from
C, to-C, which leads to a submarking M'" ¢ R by Lemma 2. U

Appendix VIII: Proof of Lemma 5
Proof: This lemma comes directly from Lemmas 3 and 4. U

Appendix IX: Proof of Theorem 3

Proof: V ¢ that does not include any node in the NP, it will fire exactly the same
manner as that in N'* and leads to the same reachable marking. Hence this case
need not be considered.

Reversible: We need to show that a o exists such that (M, M}) [0 > (My', My).
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There are two cases: (a) M' = M, and (b) M* + M,

(@): Two cases: if o (i) does or (ii) not include any t ¢ T". For case (ii), the
subnet that involves ¢ are exactly those in N @ Hence, the o exists. For case (i),
Lemma 5 dictates that a o € . Let o=0,0%, then (M., My [0,0" >
(M},a, My), where Mg ¢ R'. The problem then reduces to case (i) which has
been proved.

(b): M" # M;, which implies a partial ¢”. By Lemma 5, all subsequent firing
sequences, if long enough, can complete the rest of ¢” to restore M. The case
then is similar to case (a) and can be proved similarly.

Bounded: Assume contrary, and unbounded places are in (a) N'“ or (b) the NP.
(a) is impossible because the generation only at most eliminates (not adds) some
reachable markings. (b) is impossible, because by Lemma 5, f, or /2, would not
fire infinitely often relative to ¢ or 7.

Live: Assume contrary, then J a t ¢ Tz; some of its input places, which are
mutually concurrent, can never get tokens. But this is impossible by the equivalence
between temporal and structural relationship. U

Appendix X: Proof of Theorem 4

Proof: Lemma 5 does not hold for Rule TT.3.1 since Lemma 3 does not either,
which is because 7, may fire infinitely often relative to 7. Now Rule TT.3.2
prevents such an infinite firings of f, with respect to t; and forces d,; = 1. Thus
Lemma 3, and hence Lemma 5, also hold for Rule TT.3. The rest of proof follows
that for Rule TT.4 in Theorem 3. U

Appendix XI: Proof of Theorem 5

Proof: Prove by induction. It is easy to see that a basic process is live, bounded
and reversible. Then, assuming the N from the (N-1)th synthesis steps is bounded,
live and reversible, the proof needs to show that after each full synthesis step using
a certain TT or PP rule, the resulting N ' remains so. The correctness of which
is established by Theorems 1-4. Note that we have been assuming that there is only
one token in every home place. Now prove the property of marking monotonic
by showing that N’ is well-behaved.

Reversible: Let M.* ¢ R™ in N*, then
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M2a - Méa + AxZa

a

where A 1s the incidence matrix and x** a firing vector. Since N* is reversible,
3 a x such that Ax* = 0 and M2 = M. Now add some tokens to some
places in N to result in N°. The relevant equation is:

M. = M) + Ax’

(o4

The above firing vector x** also makes Ml; = Mg since Ax™ = 0. Now choose
the least positive integer u such that x=w* — x" = 0; ie., every component
of x is nonnegative. We have

Ml;+A.x:M0b

+ Aw™) = M,
Thus N’ is reversible.
Bounded: Since N** is bounded, 3 an P-invariant y>0 such that
My = MYy + ™Ay
Since ATy = 0, we have
My = M)y
This equation also applies to N’ so that
M)y = (Mo)'y

The above equation will not hold if any component of MJ; is oo since y>0. Thus
N’ is bounded.

Live: The proof of N being live is exactly the same as that in Theorem 3. [J
Appendix XII: Proof of Theorem 6
Proof: A basic process is obviously a SC. Then assume N'is a SC, we need to

prove that N’ is also a SC. This can be proved by showing that any two PSPs
joining at a place (transition) in a SC are mutually exclusive (concurrent). For
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otherwise, there exist IT,IITT, and whose n, is a place. The two PSPs, which
are incident to n, and on the two DEPs from II, and I1, to n, respectively,
are also mutually concurrent. But they join at a place — a contradiction. The
same conclusion applies if IT,;IIL,.

This condition applies to N' since it is a SC. To prove it for N’, we
need to do it for only the joints inside the NP, which is true by (4) of
Observation 1. OJ

Appendix XIII: Proof of Lemma 6
Proof: Case (1) is obvious when neither i = r nor k = g. For i=r, it is discussed
as follows. The presence of II, affects the following entries: (a) 4,, = A, and
(b) A, where II, - II,, = I, — II) and (I, - II) (note I, — II).

For case (a), prior to the generation, no path passes through both II, and
I1, (otherwise II, — II); after the generation, there is a path passing through IL,
I, and I1,. Hence, 4,, = SE and this completes the proof for case 1). For case
(b), note the two paths I, . . . II, and IIII, . . . II, intersect at the generation
point of IT;. this might change the relationship between II, and II,. However, it
is easy to see that 4,, = A, and from the structure definitions of ““I”” and ““lI”,
we have A',, = A,,. Hence except for mz = rq, A',, = Ay, where m, z € {r,
q, u, v}. Hence case (2) is proved.

Case (3) can be proved similarly to that for cases (1) and (2).

Appendix XIV: Notations

A, entries of structure matrix
AC: assymetric-choice nets

CN (ID): concurrent

CL (o0): cyclic

C,: LCN (1, IIp

VP: virtual PSP which has only the generation point and the joint
EFC: extended free-choice nets
EX (1): exclusive

FC: free-choice nets

H: the set of home places

IG: interactive generation

LCN: local concurrent set of PSPs
LEX: local exclusive set of PSPs
M: marking
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12,

: the marking of N'in N

M'(NY) or M
N: a PN
N“ a synthesized PN with every home place holding only one token
N’ a PN after adding tokens to N°

N'“ a N' and N°

N*: a N® and N

N'": the subnet N' in N’

n: the number of PSPs in a Petri net

n;: the number of PSPs before the ith generation

n, (f,): the (next) generation point

n; (f)): the (next) joint

Nyt (Pps> t,): the prime start node (place, transition)

NP: new path

p: place

op (pe): the set of input (output) transitions of place p

ps (p,): the (prime) start place for a pair of exclusive PSPs.
P: the set of places in net N.

DEP: directed elementary path

PG: pure generation

Il: PSP

I1,: the PSP containing n,

I1;: the PSP containing n,

I1": new PSP

PN: Petri net

PP generation: place-place path generation

PP-path: place-place path

PT-path: place-transition path

PSP: pseudo-process

R or R(N,M,): reachable set of markings of N with initial marking M,
t: transition

o (t°): the set of input (output) places of transition t

t, (1,5): the (prime) start transition for a pair of concurrent PSPs.

T: the set of transitions in net N

T-Matrix: temporal matrix

TP-path: transition-place path

TT generation: transition-transition path generation

SE or E (—): sequentially earlier
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SL or L («): sequentially later

SN or N («): sequentially next

SP or P («): sequentially previous

SQ: sequential

subscript g: related to generation point

subscript j: related to joint

superscript 1: for the net prior to the generation; i.e., N : (T', P', M', Rl) refers
to the net (T, P, M, and R) prior to the generation

superscript la: for the net prior to the generation and every home place has only
one token; i.e., N': (T, P, M" R")

superscript 2: for the net after the generation; i.e., N’ (Tz, P , M , iq ) refers to
the net (T, P, M, and R) after the generation

superscript w: for the NP; i.e., (T", P*, M") refers to the (T, P. M) of the
NP. ¢” denotes a complete firing sequence through the NP, which includes
both n, and n;

o: transition firing sequence

o(7): the number of firings of ¢ in o.
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K: the total number of final PSPs in the final system

- 496 -



