國立政治大學九十七 學年度研究所碩士班入學考試命題紙 第1頁,共1頁

考試科目 编性代数 所 別 作用數學案 考試時間 5月24日第一節

- 1. (20%) Let V be a vector space over \mathbb{C} , and let W be an inner product space over \mathbb{C} (i.e. W is an Hermitian inner product space,) with inner product (i.e. Hermitian product) $\langle \cdot, \cdot \rangle$. If $T: V \to W$ is linear, prove that for some fixed scalar $r, \langle \mathbf{x}, \mathbf{y} \rangle' = r \langle T(\mathbf{x}), T(\mathbf{y}) \rangle$ defines an inner product (i.e. Hermitian product) on V if and only if T is one-to-one and r > 0.
- 2. Let $V = P_3(\mathbb{R})$ be the set of all real polynomials with degree at most 3, with the inner product $\langle f(x), g(x) \rangle = \int_{-1}^1 f(t)g(t) dt$, and consider the subspace $W = P_2(\mathbb{R})$ (the set of all real polynomials with degree at most 2) with the standard ordered basis $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$.
 - (a) (6%) Applying the Gram-Schmidt orthogonalization process to β and obtain an orthonormal basis for W.
 - (b) (7%) Let $f(x) = x^3 + x$ on $P_3(\mathbb{R})$. Find the orthogonal projection g(x) of f(x) on W.
 - (c) (7%) We know $V = W \oplus W^{\perp}$, so $f(x) = \mathbf{w}_1 + \mathbf{w}_2$ for unique $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$. Find \mathbf{w}_1 and \mathbf{w}_2 .
- 3. (20%) Let A be an $n \times n$ matrix whose characteristic polynomial splits. Prove that A and A^{i} are similar. (Hint: Show that A and A^{i} have the same Jordan canonical form.)
- 4. For an $m \times n$ matrix M, we denote the *i*-th row by $M_{(i)}$ and *j*-th column by $M^{(j)}$. Let A be an $m \times n$ matrix and let B be the row echelon form of A. Suppose there are k nonzero rows in B.
 - (a) (7%) Show that there are $1 \le j_1 < j_2 < \dots < j_k \le n$ such that $B^{j_1} = \mathbf{e_1}$, $B^{j_2} = \mathbf{e_2}$, ..., $B^{j_k} = \mathbf{e_k}$, where $\mathbf{e_1} = [1, 0, 0, \dots, 0]^T$, $\mathbf{e_2} = [0, 1, 0, \dots, 0]^T$, ...,
 - (b) (7%) Show that $A^{j_1}, A^{j_2}, \ldots, A^{j_k}$ are linearly independent.
 - (c) (6%) Show that $A^{j_1}, A^{j_2}, \ldots, A^{j_k}$ is a basis for the column space of A (the vector space generated by columns of A.)
- 5. Let A be a Hermitian matrix. That is, A is a real or complex $n \times n$ matrix such that $A^* = \overline{A^T} = A$.
 - (a) (10%) Show that each eigenvalue of A is real.
 - (b) (10%) Show that A is diagonalizable.

備		į	号	試	题	胜	卷	缴	交				
命題	委	員	:							(簽章)	. 年	月	В

命題紙使用説明: 1.試題將用原件印製,敬請使用黑色墨水正楷書寫或打字 (紅色不能製版請勿使用)。

2. 書寫時請勿超出格外,以免印製不清。

3. 試題由郵寄遞者請以掛號寄出,以免遺失而示慎重。

國立政治大學九十七 學年度研究所博士班入學考試命題紙

第 / 頁,共 / 頁

考試科目分析概論所別應數方、考試時間5月24日第2節

- 1. (20%) Prove or disprove (by a counter example) the following statements:
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, then f is an open mapping.
 - (b) If $f: (-1, 1) \to \mathbb{R}$ is an infinitely differentiable function, and $|f^{(n)}(x)| \le 1$ for all $x \in (-1, 1)$ and $n = 0, 1, 2, \ldots$, then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ for all $x \in (-1, 1)$.
- 2. (20%) Let $\Omega \subset \mathbb{R}^n$ be an open set. Prove that Ω is connected if and only if Ω is pathwise connected.
- 3. (20%) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. If f'(x) > f(x) for all $x \in \mathbb{R}$ and f(0) = 0, then f(x) > 0 for all x > 0.
- 4. (20%) Let

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0. \end{cases}$$

Show that the improper integral of f(x) on $(-\infty, \infty)$ exists, but that f(x) is not Lebesgue integrable on $(-\infty, \infty)$.

- 5. (20%) Let $f(x) = e^{-x^2}, x \in \mathbb{R}$.
 - (a) Show that f(x) is Lebesgue integrable on \mathbb{R} .
 - (b) Define

$$\mu(E) = \int_E e^{-x^2} d\lambda(x)$$

for all Lebesgue measurable sets in \mathbb{R} , where λ is the Lebesgue measure on \mathbb{R} . Show that μ is a finite measure on \mathbb{R} and $\mu \ll \lambda$.

備考試題隨卷繳交

命題委員

(簽章)

年

月

E

命題紙使用説明: 1.試題將用原件印製,敬請使用黑色墨水正楷書寫或打字 (紅色不能製版請勿使用)。

- 2. 書寫時請勿超出格外,以免印製不清。
- 3.試題由郵寄遞者請以掛號寄出,以免遺失而示愼重。