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Abstract

In this paper, we study the connections between working memory capacity (WMC) and learning in the context of economic guessing
games. We apply a generalized version of reinforcement learning, popularly known as the experience-weighted attraction (EWA) learning
model, which has a connection to specific cognitive constructs, such as memory decay, the depreciation of past experience, counterfactual
thinking, and choice intensity. Through the estimates of the model, we examine behavioral differences among individuals due to different
levels of WMC. In accordance with ‘Miller’s magic number’, which is the constraint of working memory capacity, we consider two dif-
ferent sizes (granularities) of strategy space: one is larger (finer) and one is smaller (coarser). We find that constraining the EWA models
by using levels (granules) within the limits of working memory allows for a better characterization of the data based on individual dif-
ferences in WMC. Using this level-reinforcement version of EWA learning, also referred to as the EWA rule learning model, we find that
working memory capacity can significantly affect learning behavior. Our likelihood ratio test rejects the null that subjects with high
WMC and subjects with low WMC follow the same EWA learning model. In addition, the parameter corresponding to ‘counterfactual
thinking ability’ is found to be reduced when working memory capacity is low.
� 2016 Elsevier B.V. All rights reserved.
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1. Introduction: motivation and literature review

The purpose of this paper is twofold. First, it is a follow-
up study to the research on individual differences in learning

observed in the laboratory of games and markets and char-
acterized by various empirical (parametric) learning models
(see Section 1.1). In this literature, learning heterogeneity
can be represented by the diversity of the estimates of the
models when they are applied to observations associated
with different individual subjects or different groups of sub-
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jects. Among many possible parametric learning models,
generalized reinforcement learning, or more popularly
known as experience-weighted attraction (EWA) learning,
is the one strongly motivated by psychology (Camerer &
Ho, 1999); hence, it provides us with a natural wonder
regarding the possible psychological underpinnings of the
observed individual differences in learning. The strength
of EWA modeling is that its parameters infer multiple cog-
nitive constructs, such as memory decay, counterfactual
thinking, and choice intensity, any of which may be sensi-
tive to individual differences in strategic learning.

In pursuing this line of reasoning, this paper examines
two hypotheses related to the effects of working memory
capacity on learning, one more general and the other more
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focused. The general one is termed the working memory

hypothesis for individual differences in learning, and the
focused one is termed the working memory hypothesis for

individual differences in counterfactual thinking ability. The
first hypothesis, also referred to as the maintained hypoth-
esis, states that subjects with different WMC do not share
the same generalized reinforcement learning model. By pin-
ning down one possible source of the above difference, the
second hypothesis further states that subjects with different
WMC differ in their counterfactual thinking ability, a
specific behavioral parameter of the EWA learning model;
in particular, as motivated by the literature to be reviewed
in Section 2.2, the hypothesis assumes a positive relation-
ship between WMC and counterfactual thinking ability.

Second, an unintended realization from our work is that
the learning model is sensitive to the size (cardinality, gran-
ularity) of the set of alternatives (choices, strategies,
actions, chunks, and so on). We find that the psychological
underpinning can be sensibly identified only when the size
(cardinality) is small or, at least, not overwhelmingly large.
This constraint may be related to Miller’s (1956) concept of
limited short-term or working memory capacity
(Section 1.2).

In this regard, this paper suggests that the generalized
reinforcement learning model can be constrained by reduc-
ing its strategy space to the number of items defined by the
limits of working memory. Constraining the EWA models
by using levels (granules) within the limits of working
memory allows for a better characterization of the data
based on individual differences in WMC, and by using this
constrained version of EWA learning, we find that working
memory capacity can significantly affect learning behavior.
Our likelihood ratio test rejects the null that subjects with
high WMC and subjects with low WMC follow the same
EWA learning model; hence, the working memory hypoth-
esis for individual differences in learning is well supported.
In addition, under the same constrained version of EWA
learning, we find that ‘counterfactual thinking ability’ is
significantly reduced when WMC is moderately low or very
low; nevertheless, in the reverse direction, ‘counterfactual
thinking ability’ is not significantly increased with moder-
ately high or very high WMC. Hence, our second hypoth-
esis is only weakly supported.

1.1. Individual differences in learning

In recent years, behavioral heterogeneity has not only
been identified in game experiments, but has also been
related to subjects’ cognitive ability. In particular, recent
studies have placed emphasis on the correspondence
between cognitive ability and strategic sophistication, such
as inductive reasoning, iterated dominance, and level-k
thinking (Brañas-Garza, Garcı́a-Muñoz, & González,
2012; Burnham, Cesarini, Johannesson, Lichtenstein, &
Wallace, 2009; Devetag & Warglien, 2003; Rydval,
Ortmann, & Ostatnicky, 2009; Schnusenberg & Gallo,
2011). Within the extensive literature on those behavioral
heterogeneities and their possible cognitive correlates, rela-
tively little research has focused on learning, and there have
been few attempts to establish a direct relationship between
cognitive ability and learning.

This deficit may be partially attributed to the conver-

gence hypothesis, i.e., the behavioral heterogeneity
observed in initial periods of an experiment, if any, may
be temporal after subjects become more experienced. Some
early studies involving independent measures of cognitive
ability have also shown that even though cognitive ability
is correlated with the behavioral heterogeneity in the one-
shot guessing game, also known as the beauty contest game
(BCG), if the game is played repeatedly this correlation is
no longer significant (Burnham et al., 2009; Schnusenberg
& Gallo, 2011).

Nevertheless, the convergence property does not guar-
antee a unique path toward the equilibrium, and one large
body of the literature in economics examines the so-called
out-of-equilibrium dynamics. Hence, the relevance of cogni-
tive ability to individual differences in learning can still be
an issue from the perspective of the transition dynamics of
the games or markets. By applying individual learning
models, several studies have identified individual differ-
ences in learning in games (Ho, Wang, & Camerer, 2008)
and in markets (Chen & Hsieh, 2011; Hommes, 2011). In
addition, there are also experimental studies showing that
learning is not independent of cognitive ability (Casari,
Ham, & Kagel, 2007).

In the context of a guessing game (beauty contest exper-
iment), Gill and Prowse (2012) found that cognitive ability
may positively affect learning in that subjects with higher
cognitive ability may learn more actively than subjects with
lower cognitive ability and hence, in the end, their perfor-
mance gap will become even more significant than that at
the initial time.

Chen, Du, and Yang (2014) conducted six series of 15-
to 20-person beauty contest experiments, and examined
the guessing behavior of a set of 108 subjects involved in
these experiments. They found a significant correlation
between guessing performance and WMC. They also per-
formed regression analysis and found that WMC positively
affects reasoning depth. Through a game of up to 10
rounds, the performance gap between the high WMC
group and the low WMC group was found to shrink but
still existed significantly. They further applied the level-k
reasoning model (see Section 3.3) to examine subjects’
guessing behavior from round to round. It was found that
subjects with high WMC tended to guess with a higher level
of reasoning than subjects with low WMC, specifically in
the initial periods. Through the analysis of the estimated
Markov transition matrix among different levels of reason-
ing, they further found that the subjects with high WMC
had a dynamic behavioral pattern that was different from
those with low WMC, which may indicate the possible
effect of WMC on learning.

However, neither the level-k reasoning model nor the
Markov transition model applied in Chen et al. (2014)



S.-H. Chen, Y.-R. Du /Cognitive Systems Research 42 (2017) 1–22 3
has explicit psychological underpinnings; hence further
connections between working memory capacity and learn-
ing are not feasible. The mapping between cognitive ability
and individual differences in learning requires a formal rep-
resentation of subjects’ learning behavior with a theoreti-
cally and empirically sound model; it also requires a
repertoire of subjects’ personal traits, in this case cognitive
ability. Existing studies are either deficient in the former or
in the latter. In this paper, we meet the two demands by
first applying a well-received learning model, i.e., the gener-
alized reinforcement learning (the EWA learning) model
(Section 2.1), to characterize subjects’ learning behavior,
and then comparing their learning characteristics with their
cognitive characteristics which are elicited from a working
memory test (Section 3.2). In this way, we can then make
sense of the inferred individual differences in learning in
light of the subjects’ cognitive ability.

More precisely, we shall apply the generalized reinforce-
ment learning (the EWA learning) model to the same data
that was employed in Chen et al. (2014), i.e., subjects’
behavioral data from the beauty contest experiment (Sec-
tion 3.1). As we shall see in Section 2, the parameters of
the EWA learning model can be linked to specific cognitive
constructs, such as memory decay, depreciation of past
experience, counterfactual thinking, and choice intensity,
which allow for a fine grained analysis of the factors under-
lying behavioral differences among different WMC groups.
We shall see whether the parameter estimates can be
related to subjects’ working memory in a sensible way, in
particular, the parameter normally interpreted as counter-
factual thinking (Section 2.2).

We consider two different sizes (granularities) of the set
of alternatives: one is large and finer, and one is smaller
and coarser. As we shall see later, the results which we have
sensitively depend on these settings, and there is a possibil-
ity that reinforcement learning may not behave properly
when the strategy space is overwhelmingly large. There-
fore, before we proceed further, it is also necessary to moti-
vate these settings with related literature developments.

1.2. Granularity in reinforcement learning

The second motivation of this paper is to question the
size of the choice problem to which reinforcement learning
is applied. The size here is measured by the number of dis-
tinctive choices, options, strategies, actions, chunks, and so
on. The reinforcement learning model was originally initi-
ated by psychologists (Bush & Mosteller, 1955), and was
later on introduced to economics by Cross (1973), Arthur
(1993), and Roth and Erev (1995). When it was used by
psychologists, it was applied to deal with stochastic choice
when the space of available options, strategies, or actions is
rather limited. The typical example is the application of
reinforcement learning to the multi-armed bandit problems.
While one can have many arms (choices) in this problem, it
is the two-armed version that is most popular. When Arthur
(1993) broke the long silence since Cross (1973) first intro-
duced reinforcement learning in economics, the laboratory
data which he used were in fact from the two-armed bandit
experiment conducted by Laval Robillard in 1952–53 at
Harvard (Bush & Mosteller, 1955). Even though two arms
may be too restrictive, psychologists rarely consider 100
arms. To the best of our knowledge, the largest number
of arms that has ever been used in experimental economics
is nine (Brenner & Vriend, 2006).

Psychologists seem to be more sensitive to this number
of possible choices than economists. A classic work is Mill-
er’s famous number seven (Miller, 1956). Miller (1956) is a
celebrated contribution to psychology in the discussion of
short-term memory capacity or working memory capacity.
In this regard, it is about the number of items that an indi-
vidual can discriminate among or can remember over very
short periods of time, say, seconds. Based on a few exper-
iments that he reviewed, Miller concluded that most people
can correctly recall about 7 � 2 items. This is the origin of
the magic number seven.

This paper was overwhelmingly received and motivated
many follow-up studies, which even caused an ‘evolution’
of this magic number, for example, from seven even to four
(Cowan, 2001; Mathy & Feldman, 2012). However, its con-
nection to the number of choices in economics became
more evident only after the choice overload hypothesis

was formulated. The hypothesis basically states that ‘‘an
increase in the number of options to choose from may lead
to adverse consequences such as a decrease in the motiva-
tion to choose or the satisfaction with the finally chosen
option” (Scheibehenne, Greifeneder, & Todd, 2010, p.
73). This hypothesis was first tested by Iyengar and
Lepper (2000), and there is a large body of literature ema-
nating from it (Scheibehenne et al., 2010). While there is a
constant influx of research trying to distinguish the cases
‘‘more is less” from the cases ‘‘more is better”, the lessons
that we have been given from these studies have already
become a part of the psychological foundation of public
policy when it deals with the design of choice architecture
(Iyengar, Huberman, & Jiang, 2004; Thaler & Sunstein,
2008).

The above literature well motivates the fundamental
question: to make choice problems susceptible to the anal-
ysis of reinforcement learning, need we impose a constraint
on the size of the set of alternatives? In fact, the exceedingly
large number of alternatives has already been noticed in
human-subject experimental games where reinforcement
learning is often applied (Chen & Khoroshilov, 2003;
Sarin & Vahid, 2004). However, the way in which experi-
mental economists cope with this large size of alternatives
is to introduce a similarity function, also known as the
neighborhood function, well used in the machine learning lit-
erature. The neighborhood function or the similarity func-
tion is to correlate the payoffs of similar strategies up to
their degree of closeness or similarity. Nevertheless, just
this device alone cannot solve the size problem. To manage
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the size problem, we need to have either a direct manipula-
tion of the number of strategies or an indirect reorganiza-
tion scheme to limit the effective number of choices.

In this paper, we shall propose a direct approach, i.e., to
use a coarse granulation to substantially reduce the number
of strategies into a niche of Miller’s magic numbers. We
will then compare the results by applying the EWA learn-
ing models to both the original (finer) strategy space and
the modified (coarser) strategy space.

2. EWA learning

2.1. An introduction to the EWA learning model

Learning behavior in experimental games, including
BCG, has been widely studied by applying various learning
models (Crawford, 1995; Duffy & Nagel, 1997; Ho,
Camerer, & Weigelt, 1998; Nagel, 1995; Roth & Erev,
1995; Stahl, 1996, 1998). Among them, a generalized rein-
forcement learning model, formally known as experience-

weighted attraction (EWA) learning, was initially proposed
by Camerer and Ho (1998, 1999) to encompass two impor-
tant families of learning models, namely, reinforcement
learning and belief learning. These two families may origi-
nally be seemingly unrelated, but are now related to each
other as special cases in the EWA family. The EWA model
has been applied to many experimental games, and the
BCG studied in this paper is one of them.

For making this paper self-contained, the EWA learning
model is briefly introduced in this section. The EWA learn-
ing model as a generalized reinforcement learning model is
a kind of stochastic choice model. The stochastic choice
model is normally applied to the situation where subjects
are repeatedly offered a fixed set of choices (strategies),
but the reward for each choice is not fixed, neither certain.
This uncertain environment can cause the subject’s choice
behavior to also be random. In a technical formulation,
the random behavior can be represented in a probabilistic
fashion, which assigns each choice (strategy) a probability
based on its prospect, propensity, or attraction. This choice
probability will be updated over time with the subject’s
experience, and hence learning is encapsulated through this
updating mechanism. In the EWA learning model, the
choice probability of each strategy is represented by a logit

function of the strategy’s attraction, which is determined by
the initial attraction of the strategy and is updated through
time according to the payoff from choosing that strategy.

To proceed further, let us denote the attraction of strategy

j for subject i at time (round) t by Aj
i ðtÞ. The appearance of t

as part of the notation shows that the strategy attraction is
updated over time, a notion suitable for the repeated game.

Accordingly, Aj
i ð0Þ is the prior value of the initial attraction

before the game starts. The EWA learning model captures

the essence of learning through the dynamics of Aj
i ðtÞ (the

attraction update). The attraction update mainly depends
on two determinants, first, the strategy’s own past attraction
Aj
i ðt � 1Þ, and, second, the newly-gained experience of strat-

egy j or its immediate payoff p j
i ðtÞ. Let siðtÞ denote player i’s

choice at time t and s�iðtÞ ¼ ðs1ðtÞ; . . . ; si�1ðtÞ; siþ1; . . . ; snðtÞÞ
denote a strategy combination of all other subjects’ strate-
gies at time t. Then

p j
i ðtÞ ¼ Iðs ji ; siðtÞÞ � piðs ji ; s�iðtÞÞ:

where Iðx; yÞ is an indicator function that equals 1 if x ¼ y
and 0, otherwise. The indicator function simply shows the
possibility that subject i may have no newly-gained experi-
ence of strategy j had it not been chosen to activate in time
t. The update is then the sum of these two determinants.

Aj
i ðtÞ ¼ Aj

i ðt � 1Þ þ Iðs ji ; siðtÞÞ � piðs ji ; s�iðtÞÞ: ð1Þ
Eq. (1) is a simple version of reinforcement learning. This
simple version has, however, been extended by taking into
account other psychological factors, such as memory and
imagination (Camerer & Ho, 1999; Roth & Erev, 1995).
Eq. (2) gives such an extended version with two additional
parameters, / and d.

Aj
i ðtÞ ¼ / � Aj

i ðt � 1Þ þ ½dþ ð1� dÞ � Iðs ji ; siðtÞÞ�
� piðs ji ; s�iðtÞÞ: ð2Þ

In Eq. (2), the parameter / is the normal discount factor
which captures the memory decay. The parameter d dictates
whether the payoff of a non-activated strategy (unchosen
strategy) can still be simulated or imagined as a result of
counterfactual thinking, for example, ‘‘what might have
happened had I not chosen that but this” or ‘‘the grass is
always greener on the other side”. The conventional rein-
forcement learning model shaped by psychologists only
cares about the actual payoff rather than the simulated
one; in this case, d ¼ 0. If, however, the subject does have
the power to simulate the what-if scenarios, then part or
the whole of the forgone payoff may contribute to attrac-
tion updating; in this case, 0 < d 6 1.

The key component of this updating rule (2) is the
weighted payoff term

½dþ ð1� dÞ � Iðs ji ; siðtÞÞ� � piðs ji ; s�iðtÞÞ;
which captures two basic principles of learning. First, the
attractions of chosen strategies siðtÞ are updated by the
actual payoff, which means that successful strategies are
given more reinforcement and are more likely to be
repeated in the subsequent encounters. Behavioral psychol-
ogists call this the law of effect (Herrnstein, 1970;
Thorndike, 1911). Second, the attractions of unchosen
strategies are updated by a foregone and hypothetical pay-
off with the weight d (0 6 d � 1). Camerer and Ho (1999)
introduce this effect and call it the law of simulated effect

and rename the former one the law of actual effect. In this
setting, both chosen and unchosen strategies are ‘rein-
forced’ by the payoff that the strategy either yielded or
would have yielded.

In addition to the law of simulated effect, Camerer and
Ho (1999) also introduce a new parameter called the
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experience weight, denoted by NðtÞ, to capture how sub-
jects’ past experience accumulates over time. While past
experience could constantly grow linearly in time,
Camerer and Ho (1999) consider a growth function which
can generalize reinforcement learning to encompass belief
learning models, i.e., to dictate NðtÞ by a first-order differ-
ence equation. It begins with an initial value Nð0Þ and is
updated according to

NðtÞ ¼ qNðt � 1Þ þ 1; t P 1: ð3Þ
The parameter q in Eq. (3) controls the speed of the growth
of past attractions relative to the current experience, or, in
Camerer and Ho (1999)’s expression, ‘‘the number of ‘ob
servation-equivalents’ of past experience” relative to one
period of current experience. If q is small, NðtÞ will grow
at a slower rate or, alternatively put, the past experience
will depreciate at a faster rate. On the other hand, if q is
large, NðtÞ will grow at a faster rate, which indicates a
slower depreciation of past experience. Hence, other things
being equal, the higher the q, the lower the depreciation
rate. In this way, the parameter q is a discount factor that
captures decay in the strength of prior beliefs. The experi-
ence weight is then applied to determine the relative impor-

tance of the past attraction Aj
i ðt � 1Þ and the newly-gained

experience p j
i ðtÞ in attraction updating as shown in Eq. (4).

Aj
i ðtÞ¼

/ �Nðt�1Þ �Aj
i ðt�1Þþ ½dþð1�dÞ � Iðsji ;siðtÞÞ� �piðsji ;s�iðtÞÞ

NðtÞ
ð4Þ

In general, the attraction AiðtÞ is the running total of
past attractions, which are constituted by a depreciated

experience-weighted past attraction Aj
i ðt � 1Þ plus the pay-

off yielded from period t. The probability of choosing strat-
egy j is then determined by its attraction relative to that of
other strategies. One mathematical form frequently used to
represent this probability function is the logit function, and
by the logit function the probability of choosing strategy j

at time t þ 1, P j
i ðt þ 1Þ, is

P j
i ðt þ 1Þ ¼ ek�A

j
i ðtÞPm

l¼1e
k�Al

i ðtÞ
; ð5Þ

where m denotes the number of choices, and the parameter
k (0 6 k < 1) is known as the intensity of choice in the lit-
erature (Brock & Hommes, 1997). By Eq. (5), the choice is
random but is biased toward the strategies with higher
attraction values except in the following two extreme cases:
k ¼ 0 and k ¼ 1. For the former case (k ¼ 0), the choice
becomes uniformly random, and the attraction value of
strategies does not play a role. For the latter case
(k ¼ 1), the choice becomes deterministic, and only the
strategy with the highest attraction value will be selected.

With Eqs. (4) and (5) it can be shown that the familiar
reinforcement learning model and the belief-based learning
model are both special cases of the EWA learning model if
some parameters of Eq. (4) are properly restricted. As we
have already seen above, the family of choice reinforce-
ment models corresponds to the case where d ¼ 0, and
the family of belief learning models corresponds to the case
where d ¼ 1. Between the two extremes, there exist many
other learning models characterized by different values of
d, varying between 0 and 1. These models indicate that
the law of simulated effect, which distinguishes between
the two extremes, can be just a matter of degree. Therefore,
by encompassing the two extremes, EWA learning allows
each subject to have his/her own degree (capability) of
engaging in ‘‘simulation” or ‘‘imagination” or ‘‘counterfac-
tual thinking”.

2.2. Cognitive ability and counterfactual thinking

Through the way in which the EWA learning model is
presented, we can see its connections to a number of cogni-
tive constructs, memory decay (/), depreciation of past
experience (q;Nð0Þ), counterfactual thinking (d), and
choice intensity (k). Among these four facets of cognitive
constructs, not all of them have a clear relation to working
memory capacity. For example, to the best of our knowl-
edge, there is no theory which can inform us of the relation-
ship between WMC and choice intensity (d). Of course, we
can empirically examine their relationship in our BCG
experiment, as we shall do in Section 4, but there is no the-
ory known to us to suggest an expectation and to form a
hypothesis. The other three parameters, /; q and Nð0Þ, to
some extent are all memory-related. One might also expect
to find a relation between WMC and these parameters.
However, as well explained in Camerer and Ho (1999, p.
839) there is no unique interpretation for the behavior cap-
tured by these parameters; for example, they could be inter-
preted as either naturally forgetting or deliberately

forgetting (discounting old experience) when the environ-

ment is changing. Depending on the interpretation adopted,
the relation between cognitive capacity and these memory-
related parameters can be either positive or negative. This
ambivalent relation does not suggest that there is a clear
hypothesis to maintain. Among the five, the only one which
has a clear psychological underpinning is counterfactual
thinking (d).

Psychologists have hypothesized the relationship
between working memory capacity and counterfactual
thinking ability for more than a decade (Byrne, 2005). To
think counterfactually, one has to keep both the real world
and the fictive alternative in mind and therefore it expects
the role of working memory capacity (Byrne, 2005, 2016).
For instance, low-memory-span individuals are more prone
to bias during counterfactual judgment when they are
under memory loads (Goldinger, Kleider, Azuma, &
Beike, 2003). In addition to the mock-jury decision, studies
in psycholinguistics have suggested that the counterfactual
context may be more cognitively demanding and requires
increased working memory capacity to process
(Ferguson, 2012; Kulakova & Nieuwland, 2016; Urrutia,
de Vega, & Bastiaansen, 2012). Camille et al. (2004) found
that participants with orbitofrontal lesions, while perform-
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ing a gambling task, reported no regret and also failed to
anticipate the possible negative consequences of their
choices. This indicates that individuals with prefrontal cor-
tex damage were less likely to produce counterfactual
reasoning.

The recent progress in empirical studies based on hetero-
geneous learning models normally shows that the estimated
parameters differ among subjects (Broseta, 2000; Camerer
& Ho, 1998, 1999; Chen & Hsieh, 2011; Cheung &
Friedman, 1997; Gill & Prowse, 2012; Ho et al., 2008;
Stahl, 2000). However, few of them actually went further
to ask what we may learn from these ‘inferred individual
differences in learning’. This ‘silence’ is particularly intrigu-
ing when the estimated models originate from psychology
and are shaped by psychological concepts. Given their psy-
chological underpinning, it makes sense to probe the possi-
ble connections between these ‘inferred individual
differences in learning’ and personal traits, such as working
memory capacity. Reinforcement learning or its general-
ized version, EWA learning, is a perfect example. Its
parameter d has been motivated as an ability to engage
in counterfactual thinking, imagination, or simulation
(Camerer & Ho, 1999), all of which require cognitive
resources. Due to individual differences this task is easier
and less costly for some subjects than others. Subjects
who are more resourceful can perform this task more
easily, and hence may tend to do so at a lower cost,
whereas subjects who are less resourceful cannot afford to
do so. Therefore, their difference in cognitive ability may
be revealed through their behavior (observations) in the
lab and may be further captured by the applied statistics.
If so, we shall be able to examine the psychological under-
pinning of the parameter d by empirically testing its con-
nection with subjects’ WMC.

3. Experiments, data and estimation

In this section, we shall first give a description of the
experiment (Section 3.1) and the working memory test
(Section 3.2) that were conducted to generate the data.
We then describe two kinds of empirical EWA learning
models used in this paper (Section 3.4). They are distin-
guished by the size (granularity) of the strategy space:
one larger (finer) and one smaller (coarser). The latter is
closely tied to the level-k reasoning and classification (Sec-
tion 3.3). Finally, these models are estimated using maxi-
mum likelihood estimation (Section 3.5).

3.1. Beauty contest experiment

The experiment consisted of 6 sessions and there were
15–20 subjects in each session, there being a total of 108
subjects involved. The subjects were required to complete
both a repeated beauty contest game and then a working
memory test. All experiments were conducted in the Exper-
imental Economics Laboratory (EEL) at National Cheng-
chi University from October 2009 to August 2010.
Experiments were announced on the NCCU EEL web site1

and on the part-time job board in PPT, one of the most
popular bulletin board systems in Taiwan. Subjects were
required to register through the NCCU EEL Registration
System2 and sign up for our experiments. After signing
up for one experiment, subjects immediately received an
e-mail for confirmation.

The BCG was conducted by means of a z-tree
(Fischbacher, 2007). For each period, subjects were
required to select an integer number between [0, 100], and
competed with all of the others in the session. The subjects
were informed that the prize was given to the one whose
guess number was closest to the target number, denoted
by s, which was calculated by averaging all guesses and
then multiplying the result by a factor p ¼ 2=3. After col-
lecting all subjects’ guesses, the screen would display feed-
back information regarding the target number, the
subject’s chosen number, profit and accumulated profit.
The BCG was repeated 10 times and it took about
60 min to finish. In addition to a fixed show-up fee of
NT$125, we also provided a prize for the winner in each
period of NT$100, and the prize was to be evenly split if
there was more than one winner. The instruction manual
can be found in Chen et al. (2014).

3.2. Working memory task

The task we used for eliciting working memory capacity
(WMC) was developed by Lewandowsky, Oberauer, Yang,
and Ecker (2010). This task includes 5 tests, a backward
digit-span task (Dspan), a spatial short-term memory test
(SSTM), a memory updating task (MU), a sentence-span
task (SentSpan), and an operation-span task (OpsSpan).
The WMC task was always conducted after finishing the
beauty contest experiment and was administered in the
order of DSpan, SSTM, MU, SentSpan, and OpsSpan
for all subjects. It took about 90 min to finish all 5 tests.
NT$200 was paid to those subjects who completed all five
sets. The score for each test was calculated and then nor-
malized by the mean and standard deviation of the scores
derived from our Experimental Subject Database (ESD),
which included 740 subjects completing the same task.

Then a single measure of WMC was derived by averag-
ing these five normalized scores. Although each of these
five tests alone is a way of measuring WMC, a battery con-
sisting of heterogeneous indicators is required to reduce the
test-specific variance. Lewandowsky et al. (2010) found
that, through a structural equation model analysis, the tests
including SSTM, MU, SentSpan and OpsSpan have sub-
stantial loadings on a single latent WMC factor. These
results lend support to our derivation of the WMC score.
Compared to the other 4 tests, the Dspan test is more sim-
ple without the demand for processing or relational inte-

http://eel.nccu.edu.tw/
http://eel.nccu.edu.tw/Registration/
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gration. However, since the storage capacity of memory
measured by Dspan also contributes to the common
WMC factor (although weaker), we also include it in the
battery of WMC. The descriptions of the stimuli, design,
and procedure of all five tests are given in Appendix A.

3.3. Characterization of reasoning levels

Subjects’ behavior in the beauty contest experiment is
frequently associated with level-k reasoning (Nagel,
1995). A simple way to identify subjects’ reasoning levels-
k, known as the Cournot myopic best response algorithm,
was proposed by Nagel (1995). Denote player i’s guess in
period t by giðtÞ and the number of players in session j

by nj. For t ¼ 1 and p ¼ 2
3
, player i is classified exactly as

k0 ðlevel 0Þ; if gið1Þ ¼ 50;

k1 ðlevel 1Þ; if gið1Þ ¼ 50� p � 33:33;

k2 ðlevel 2Þ; if gið1Þ ¼ 50� p2 � 22:22;

k3 ðlevel 3Þ; if gið1Þ ¼ 50� p3 � 14:81:

8>>><>>>: ð6Þ

Although subjects may not choose these critical values,
making a guess closer to any one of them could be roughly
considered as belonging to the same level. Therefore, we
divide ½0; 100� into several adjacent intervals corresponding
to different levels. For t > 1, the subjects are given informa-
tion about the previous target number. It is plausible that
they make the best response to the behavior in the previous
period by assuming others to be the same. To sum up, for-
mally, subject i will be classified as level d in period t, and
denoted by diðtÞ, if

giðtÞ 2
mðt � 1Þpdþ0:5;mðt � 1Þð �; if d ¼ 0;

mðt � 1Þpdþ0:5;mðt � 1Þpd�0:5ð �; if d – 0;

�
ð7Þ

where

mðt � 1Þ ¼
50: if t ¼ 1;
1
nj

Pnj
i¼1giðt � 1Þ; if t > 1:

(
In Eq. (7), the upper limit of the level d ¼ 0 is bounded
from the right side by mðt � 1Þ, instead of mðt � 1Þp�0:5.
Regarding this asymmetry, Nagel (1995) indicates that
the results, for the first period, would not change if a sym-
metric bound were to be taken instead (Nagel, 1995, p.
1317). For the later periods, it is pointed out that the cho-
sen numbers tend to be below the mean of the previous per-
iod (Nagel, 1995, p. 1320). To make our results comparable
with those of Nagel (1995), the same asymmetric bound is
taken in our analysis.

Nagel (1995) found that d ¼ 0, 1, 2 and 3 can identify
approximately 80% or more guesses. The subjects with
guesses larger than the upper limit of the level zero
(d ¼ 0) are grouped into ‘‘d < 0”. Similarly, the subjects
with guesses smaller than the lower limit of the level 3
(d ¼ 3) are grouped into ‘‘d > 3”. The subjects are finally
categorized into 6 classes: d < 0; d ¼ 0, 1, 2, 3 and d > 3.
Normally the target number s and hence mðtÞ will decrease
with time; therefore, the Intervals constantly updated
according to Eq. (7) are expected to shrink over time. Since
all the guessing numbers are integers, it becomes possible
that some levels d may contain no single integer.

3.4. Empirical EWA learning model

In this subsection, we shall describe how to prepare the
EWA learning model so that it becomes an empirical
model. Altogether we shall introduce five different empiri-
cal EWA learning models, denoted by Models I, II, III,
IV, and V, respectively. Model I is introduced by
Camerer and Ho (1999), and Models II and III are intro-
duced by Camerer, Ho, and Chong (2002). All these three
models are based on the set of alternatives being the integer
numbers from 0 to 100. In other words, the cardinality of
the strategy space is 101. The subsequent two models,
Models IV and V, are developed based on the set of alter-
natives being the reasoning level (Section 3.3), and the size
of the strategy space is 6. Models IV and V are basically the
small-size equivalent of Models I and II, respectively. We
will then apply these five different EWA learning models
to structurally characterize the learning behaviors in
repeated BCGs.

3.4.1. Number reinforcement: Models I, II, and III

Model I. Camerer and Ho (1999) provide the first
attempt to estimate the EWA parameters with the data
of repeated BCGs. To estimate the model, since the general
structure described in Section 2 is not sufficient, Camerer
and Ho (1999) provide further details of the design neces-
sary to carry out the empirical work, specifically, in the
context of the BCG. The strategy space of the game is con-
sidered to be the interval [0, 100] with only integers
allowed. These 101 strategies are initially endowed with

attractions Ajð0Þ (j ¼ 0; . . . ; 100), which are then rein-

forced over time. If we treat all Ajð0Þs as model parameters,
then there are overwhelmingly 101 parameters to be
calibrated.

To alleviate this ‘curse of dimensionality’, they first
grouped these 101 numbers into 10 non-overlapping inter-
vals with consecutive numbers, such as [0, 9], [10, 19],. . .,
and [90, 100]; they then assumed that the initial attraction

Ajð0Þ was the same within each interval. Therefore, the first
design detail is that the 101 initial attractions are reduced

to only 10, denoted by A1ð0Þ, A2ð0Þ, . . ., A10ð0Þ. This simpli-
fication will be referred to as ‘‘Assumption A1” throughout
our paper. Next, to facilitate a proper calculation of the
reinforcement being attributed to each strategy, they fur-
ther made two additional assumptions. First, subjects
know the winning number w ¼ argmingifjgi � sjg
(Assumption A2); second, they treat the target number as
being exogenous to their own guesses (Assumption A3).
A remark is needed here. Virtually speaking, Assumption
A2 can neither be applied to Camerer and Ho (1999)’s
nor to our designs of the experiment. This is because sub-
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jects in these experiments were only informed of the target
number, but not the winning number. They can know the
winning number of a specific round only if they happened
to be the winner of that round.

Denote the distance between the winning number and
the target number as e ¼ js� wj, and also denote the prize
for each round as np where n is the number of winners in a
particular round. By assumptions A2 and A3, we can easily
define the reinforcement intervals without introducing
additional parameters. First, all subjects reinforce numbers
in the intervals ðs� e; sþ eÞ by dnp (Fig. 1, panels (a) and
(b)). This is because none of them actually chose the num-
bers within this interval; however, through their counter-
factual thinking, they know that, had they done so, they
would have won a prize of np. As a result, based on our
earlier discussion of the EWA learning model (Section 2),
the non-chosen strategy will be reinforced by this imagi-
nary payoff, as only a d-proportion of the true payoff.

Second, the winners reinforce what they chose, which is
one of the boundary numbers, either s� e or sþ e, by p,
and reinforce the other boundary number, which they did
not choose, by an imaginary reinforcement of dp (Fig. 1,
panel (a)). Third, losers reinforce both boundary numbers
s� e and sþ e, again, by an imaginary reinforcement of
ðdnpÞ=ðnþ 1Þ (Fig. 1, panel (b)). The denominator in the
previous division is nþ 1 and not n, because had the sub-
Fig. 1. Calculation of Forgone Payoffs. The above figures summarize how
foregone payoffs are determined (see the text for the details); d; s and w

refer to the ‘counterfactual thinking ability’, the target number and the
winning number, respectively. Based on the assumption whether the
winning number, w, is publicly known (Assumption A2 in the text), two
different forgone payoffs are considered for losers, as shown in (b) and (c).
ject actually chosen the number, we would have one addi-
tional subject to share the prize.

Model II. In Camerer et al. (2002) the assumptions A1
and A2 were removed and replaced by others. First, instead

of treating initial attractions Ajð0Þ as parameters and
simultaneously estimating them with other EWA parame-

ters, Camerer et al. (2002) empirically obtained Ajð0Þ from
the choice data in the first period. Formally, they recovered
initial attractions by the following system of equations

ek�A
jð0ÞP10

l¼1e
k�Alð0Þ ¼ f j; j ¼ 1; . . . ; 10: ð8Þ

where f j is the observed fraction of total activations in the
first period that involves strategy j. In the system of equa-
tions (8), we have 11 unknowns, including ten initial attrac-

tions (Ajð0Þs) plus the parameter k, but there are only ten
knowns. Hence, the values of the 11 unknowns are underi-
dentified. To solve this underidentification problem, they
added one more known by setting the initial attraction of

the strategy with the lowest f j to 0, i.e.,

Aj	 ð0Þ ¼ 0; where j	 ¼ argmin
j
ff jg: ð9Þ

Model III. Camerer et al. (2002) also remove the unreal-
istic assumption A2 and introduce an additional parameter
h, to be estimated, to describe how losers compute foregone
payoffs. We assume that they reinforce numbers in the

interval s� dnp
h ; sþ dnp

h

� �
. The amount of reinforcement is

dnp at the target number s, which is the maximum. In
departing from s, the amount of reinforcement decreases
at a rate of h. The foregone payoff for the losers to be rein-
forced will be of a triangular form (Fig. 1, panel (c)). Based
on a similarity concern, not Assumption A2, Camerer et al.
(2002) also assign this parameter h to the winners and
assume that they reinforce the numbers in the interval

s� e; s� e� dnp
h

� �
and sþ e; sþ eþ dnp

h

� �
with a similar tri-

angular form of reinforcement amount, if there is only one
winner. However, since Assumption A2 still applies to win-
ners, we therefore decide to stick to our original setting.

Model III differs from the first two models by also tak-
ing into account the similarity effect. Due to this effect, not
only is the target number rewarded by the payoff np, but all
other neighboring numbers are also rewarded in propor-
tion to their distance from the target number np

h . This idea

is referred to as local experimentation in Roth and Erev
(1995). The parameter h is used to control the radius of
the neighborhood.

3.4.2. Level reinforcement: Models IV and V

In both versions of the EWA model, i.e., Camerer and
Ho (1999) and Camerer et al. (2002), subjects are assumed
to be able to initialize the attractions of 101 strategies, store
all of them in memory, and update them over time. As we
have reviewed in Section 1.2, this cognitive task, to some
extent, may literally be beyond what a human’s limited
memory capacity can handle. Therefore, an alternative
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approach is to assume that subjects take coarser granules
to group numbers and use interval instead of number as
the basic unit of the strategy space.

There are many possible ways to do this; for example, it
can be handled by a fuzzy set with flexible linguistic expres-
sions, such as high, medium, and low. The numeric corre-
spondences of these linguistic values are more fluid and can
adapt with subjects’ dynamically changing perceptions dur-
ing the game. Hence, ‘low’ at the beginning of the game
may be different from ‘low’ at the end of the game. In fact,
this time-dependent virtue is well captured by the levels
associated with level-k reasoning; as described in Eqs. (6)
and (7), these levels are time-variant, and can approxi-
mately match the perceptions of subjects on the linguistic
expressions, high, medium, low, and so on. Therefore, we
use the six levels determined by level-k reasoning, namely,
s j 2 fd < 0; d ¼ 0; d ¼ 1; d ¼ 2; d ¼ 3; d > 3g, as the alter-
native strategy space, and assume that subjects apply and
reinforce level-k rules instead of 101 numbers. To be distin-
guished from the previous three models which are based on
number reinforcement, we shall also call this alternative,
based on level reinforcement, EWA rule learning, and the
original one EWA number learning. In this setting, subjects
are only required to initialize, maintain, and update 6

attractions Aj
i ðtÞ, where j 2 f1; 2; 3; 4; 5; 6g. We define the

payoff function as follows,

piðs ji ; s�iðtÞÞ ¼ np; if s ji ¼ target� d;

0; if s ji – target� d;

(
where target-d denotes the level at which the target number
is located. Notice that, in our definition, a level is an inter-
val and it may include several numbers.

By Eq. (2), the amount of reinforcement for target-d
will be np if it is chosen, and will be dnp if it is not cho-
sen. Here, we still assume that subjects can infer the level
target-d from the known target number. This assumption
is similar to Assumption A2, but may be weaker,
because in using EWA rule learning we have already
implicitly assumed that all subjects are aware that other
subjects are learning simultaneously. Their perceived
width of each interval is also updated over time, and
hence, to some extent, may be approximately close to
those given by Eq. (7).
Table 1
Summary of the five EWA learning models.

Model Strategy Representation Nð0Þ;/;q; d
I Number Estimated
II Number Estimated
III Number Estimated
IV Level-k rule Estimated
V Level-k rule Estimated

Model IV (V) is the equivalent of Model I (II) in a more granular strategy sp
3.4.3. A sum-up

Table 1 summarizes the five empirical EWA learning
models applied in this study. As discussed above, these five
models differ in their granularities of the strategy space
(Table 1, column 2), and also in their set of parameters
to be estimated, as shown in the last block of columns
under the heading ‘‘Parameters”. For granularity (the sec-
ond column), there are two granulations being considered:
Models I-III have 101 strategies (numbers), and Models IV
and V have only 6 strategies (levels). As to the parameters,
all five models share a common set of the five parameters
(the third column) to be estimated. Models I and IV also

include the initial attractions Ajð0Þ (j ¼ 0; 1; 2; . . . ; 101 for
Model I, or j ¼ 1; 2; . . . ; 6 for Model IV) as additional
parameters, but other models simply use the empirical ini-
tial fractions to derive the calibrated ones through Eq. (8).
Finally, the radius parameter h (controlling the radius of
the target number), as an alternative to Assumption A2,
is only imposed in Model III. The other four models do
not need this parameter because Models I and II rely on
Assumption A2, whereas Models IV and V rest upon a
coarser granulation of the strategy space, which already
encapsulates a notion of the neighborhood of the target
number. To sum up, through Models I-III, we first try to
‘replicate’ what Camerer and his colleagues have done
before (Camerer & Ho, 1999; Camerer et al., 2002) using
our data, and take these results as benchmarks to be com-
pared with our proposed models (Models IV-V).

3.5. Estimation strategy

To estimate the above models, attractions are first trans-
formed to the choice probability by the logit function,
which is given by

P j
i ðt þ 1Þ ¼ ek�A

j
i ðtÞPm

l¼1e
k�Al

i ðtÞ

where m denotes the number of choices, and m ¼ 101 in
Camerer’s EWA number learning and m ¼ 6 in our EWA
rule learning. Define player i’s initial attractions as a vector

Aið0Þ 
 ðA1
i ð0Þ;A2

i ð0Þ; . . . ;Am
i ð0ÞÞ. We assume a representa-

tive agent, so Aið0Þ ¼ Að0Þ;8i. The number of subjects is
denoted by I. Multiplying I by the number of rounds (T)
for each session, we have a total of T � I observations.
Parameters

; k Ajð0Þ h

Estimated NA, Assumption A2
Initialized NA, Assumption A2
Initialized Estimated
Estimated NA, Coarse Granulation
Initialized NA, Coarse Granulation

ace.
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Denote it by M. Then the log-likelihood function
LLðAð0Þ;Nð0Þ;/; q; d; kÞ, is
LLðAð0Þ;Nð0Þ;/; q; d; kÞ

¼
XT
t¼1

XI
i¼1

ln
Xm
j¼1

Iðs ji ; siðtÞÞ � P j
i ðtÞ

 !

¼
XT
t¼1

XI
i¼1

ln
Xm
j¼1

Iðs ji ; siðtÞÞ �
ek�A

j
i ðt�1ÞPm

l¼1e
k�Al

i ðt�1Þ

 !
: ð10Þ

By following Camerer and Ho (1999), we impose the fol-
lowing restrictions on the parameter space:

0 6 Ajð0Þ 6 T � np; 8j
/ > 0;

0 6 q 6 1;

0 6 d 6 1;

0 6 Nð0Þ 6 1

1� q
;

k > 0:

According to Camerer and Ho (1999), these restrictions

are based on the following considerations. First, Ajð0Þ is
restricted to be less than or equal to the difference between
the maximum and minimum payoffs through the entire
game so that attractions are given the same range as pay-
offs. This restriction allows Nð0Þ to play a role of weighting
between initial attractions and payoffs and excludes the
possibility of being a scaling factor which puts the attrac-
tions and payoffs on the same scale.3 Second, although
both q and / are discount factors or decay rates and are
expected to share a common range between zero and one,
/ is not bounded from the above, which allows us to detect
the problem of misspecification especially when the result-
ing estimates of / are above one.4 Third, the parameter d
should be equal to or less than one in order to represent
a relative weight on the foregone payoff compared to the
weight on the actual payoff (dþ ð1� dÞ ¼ 1). Fourth, the
restriction imposed on Nð0Þ is to ensure that the experience
weights increase over time since, based on the first-order
difference equation of the experience weight (3), the steady
state of NðtÞ is 1=ð1� qÞ. Finally, k as described in Eq. (5),
should positively associate attractions with choice
probabilities.

The parameters are first estimated by the choice data of
all 108 subjects in all ten rounds. In this way, our results
can be compared with the original work done by
Camerer and Ho (1999) and a modified version by
Camerer et al. (2002). We then separate our data into
two groups, high WMC and low WMC (see also Appendix
B), and obtain two sets of parameter estimates, to see how
cognitive ability affects learning behaviors. To have the
3 See Camerer and Ho (1999), p. 846, footNotes 24 and 25.
4 For the discussion on the range of /, see Camerer and Ho (1999), pp.

864 and 869.
results reported here, we actually tried several numerical
nonlinear global optimization methods available in Math-
ematica, including simulated annealing, Nelder-Mead, ran-
dom search, and differential evolution, to maximize the
likelihood function (10). When a specific method derived
superior results, we further explored some options of this
method, such as the number of search points, number of
random seeds, and post process for local search, to avoid
reporting local optima.

To be able to conduct model comparison, we followed
Camerer and Ho (1999) to calculate and present AIC
(Akaike Information Criterion) and BIC (Bayesian Infor-
mation Criterion). The former is defined as LL� k and
the latter is defined as LL� ð2=kÞlogðMÞ, where k is the
number of degrees of freedom and M is the sample size.
To conduct legitimate model comparisons using AIC and
BIC, it is required that the same dependent variable be used
for all candidate models. In this sense, it is not possible to
compare the accuracy of number reinforcement models
(Models I-III) and level reinforcement (Models IV and V)
together since the former models have guessing numbers
as the dependent variable and the latter have the choosing
level as the dependent variable.

4. Results

4.1. Number reinforcement models

4.1.1. Models I, II and III

We first estimate the first version of Camerer’s EWA
number learning model (Camerer & Ho, 1999). The results
are given in Table 2. Table 2, column 2, gives the estimates
of Model I by pooling all 108 subjects’ data together. The
last column is the corresponding estimates obtained by
Camerer and Ho (1999). By comparing these two columns
item by item, we can see some similarities and differences.

First, for the parameters which control the decay rate of
memory or experience, such as /; q, and Nð0Þ, the results
between the two are close. Second, as to the parameters
of initial attractions Að0Þ, direct comparisons of initial
attractions are not feasible because they are bounded by
T � np, which may differ among different experiments. To
be specific, the prize for each period, np, was either 100
new Taiwan dollars in our case or 3.5 Singapore dollars
in Camerer and Ho (1999)’s case. Despite this being so,
their relative magnitudes are exactly the same. Both have

a peak at A1ð0Þ, then decline constantly until they reach

A8ð0Þ, and bounce back again to the end. Third, as to
another parameter pertinent to choice making, k, our
results are rather low as compared to those of Camerer
and Ho (1999). Finally, for the parameter of counterfactual
thinking ability, d, we obtain a value of zero, which is also
different from their positive estimate, 0.232.

To see whether there is a relation between working
memory capacity and d, we divide our subjects into four
subgroups by their WMCs, namely, the top one-third



Table 2
Parameter estimates of EWA number learning: Model I.

Model I Camerer and Ho (1999)

Parameters All Subjects WMC > P 67 WMC > mean WMC < mean WMC < P 33 All Subjects

Initial values

A1ð0Þ 1000.000 650.995 999.653 1000.000 1000.000 3.348
A2ð0Þ 843.453 603.302 853.518 850.305 827.940 3.311
A3ð0Þ 609.908 556.747 721.618 499.077 485.753 3.301
A4ð0Þ 602.262 533.672 635.722 607.027 595.728 3.269
A5ð0Þ 409.08 467.274 492.692 378.091 327.518 3.227
A6ð0Þ 385.661 491.440 464.772 357.925 312.050 3.180
A7ð0Þ 293.776 412.806 374.657 279.607 292.980 3.052
A8ð0Þ 0.000 335.744 0.346 0.000 0.000 2.192
A9ð0Þ 137.497 319.480 333.387 25.0297 28.356 2.871
A10ð0Þ 392.352 463.211 547.117 272.644 123.005 3.060
Nð0Þ 12.890 2.773 2.485 13.578 15.165 16.815

Decay parameters

/ 1.236 1.231 1.222 1.255 1.257 1.330
q 0.922 0.639 0.598 0.926 0.934 0.941

Imagination factor

d 0.000 0.000 0.000 0.000 0.000 0.232

Payoff sensitivity

k 0.003 0.010 0.003 0.002 0.002 2.579

Log-likelihood

LL �3707.17 �1227.00 �1747.83 �1949.78 �1507.71 �5878.20

Information Criteria

AIC �3722.17 �1242.00 �1762.83 �1964.78 �1522.71 �5893.20
BIC �3759.56 �1271.35 �1794.73 �1997.24 �1553.19 �5932.38

Sample size

M 1080 370 520 560 430 1372
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(WMC > P 67), above average, below average, and the bot-
tom one-third (WMC < P 33), and separately estimate the
EWA model for each group (see Appendix B). The results
are presented in columns 3–6, Table 2. From these col-
umns, some differences and similarities between the high
WMC groups (P 67 and ‘above average’) and the low
WMC groups (‘below average’ and P 33) are also observed.

First, they differ in the experience-decaying parameters,

q̂, and dNð0Þ. The high WMC groups of subjects have a
lower q̂, indicating that they depreciate their past experi-
ence faster than the low WMC groups (see the model
description in Section 2). In addition, the high WMC

groups have lower initial values of dNð0Þ, indicating that
they learn faster than low WMC groups, because they
attach lower weights to lagged attractions. Second, despite
the quantitative difference in their initial attractions (Að0Þ),
the two groups share a very similar pattern, which demon-

strates a greater initial interest in the lower values. Ajð0Þ
declines from the beginning (j ¼ 0) all the way down and
bounces back when j approaches the endpoint (j ¼ 10).
While a serious behavioral interpretation of this pattern
is difficult, this inverted J pattern is basically what we
observe for all Að0Þ, including the one in Camerer and
Ho (1999). Third, maybe the greatest commonality shared
by these groups is the counterfactual thinking ability. Inter-
estingly enough, d̂ is consistently zero from the low WMC
groups to the high WMC groups. From this result, there is
no observed relation between cognitive capacity and d.

4.1.2. Models II and III

We then move to estimate the second and third versions
of Camerer and Ho’s EWA learning model (Camerer et al.,
2002). Following Camerer et al. (2002) we consider two
modifications of the original EWA learning model. In
Model II, we initialize Að0Þ by the corresponding empirical
choice distribution over all strategies in the first period. In
addition to that, in Model III, we introduce an additional
parameter h to replace the unrealistic assumption that the
winning number is known. The parameter estimates of
Models II and III are given in Table 3. The last two col-
umns of Table 3 also show the results of Camerer et al.
(2002) in which both of the two aforementioned modifica-
tions were taken into account, i.e., Model III. Notice that
Camerer et al. (2002) recruit both experienced subjects
and inexperienced subjects, and their results are separately
estimated. While cognitive capacity is not identical to expe-
rience, to make a rough comparison, we also present our
results by dividing the subjects into the high group (above
average) and the low group (below average).

First, let us look at the memory and experience decaying
parameters. In Model II, for /; q, and Nð0Þ, we find that



Table 3
Parameter estimates of EWA number learning: Models II and III.

Model IIa Model IIIb Camerer et al. (2002)

Parameters WMC > mean WMC < mean WMC > mean WMC < mean Experienced Inexperienced

Nð0Þ 0.000 0.000 0.000 0.924 –c –c

/ 0.701 0.683 0.881 0.685 0.22 0.000
q 0.000 0.000 0.725 0.388 0.000 0.000
d 0.436 0.598 0.354 0.899 0.99 0.90
k 0.040 0.030 0.101 0.038 –c –c

h – – 0.727 1.955 0.11 0.13
LL �2333.17 �2526.92 �1974.96 �2068.30 �2128.88 �2155.09
AIC �2338.17 �2531.92 �1980.96 �2074.30 –c –c

BIC �2348.80 �2542.74 �1993.72 �2087.28 –c –c

M 520 560 520 560 1372 1372

a In Model II, initial attractions Ajð0Þ are initialized by first period data.
b In Model III, initial attractions Ajð0Þ are initialized by first period data and an additional parameter h is introduced to replace the unrealistic

assumption.
c Camerer et al. (2002) neither reported the parameter estimates of Nð0Þ and k nor information criteria AIC and BIC in their paper.
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subjects in the high and low WMC groups did not perform

substantially differently; their numerical difference in /̂ is
negligible. In Model III, these two groups are in stark con-
trast in all these parameters. The high WMC group exhibits

a lower dNð0Þ, indicating a rapid initial rate of learning, but
a larger q, indicating a slower depreciation of past experi-
ence; the latter is exactly opposite to what we have learned
from Model I. The high WMC group also has a slower
decaying memory than the low WMC. This inequality is
consistent with the one in Camerer et al. (2002) if we match
their experienced group with our high WMC group and
their inexperienced group with our low WMC group.

Second, regarding the intensity of choice, k, the k̂ of
both models slightly increases as compared to that of
Model I. Nevertheless, the inequality direction remains
unchanged. In all three models, the high WMC groups tend

to have higher k̂s than the low WMC groups.5 The value of
k is not reported in Camerer et al. (2002), and hence a fur-
ther comparison is not available.

Third, maybe the most significant change with the tech-

nical modification(s) is d̂. In Model I, it is consistently zero,
but now it is moderately high for both groups and for both

models. Furthermore, d̂ is different between the two groups
and that inequality direction is consistent in both models,
indicating that d is higher for the low WMC group. This
result may contradict the way in which we motivate the
connection between d and cognitive capability (see Sec-
tion 2.2). In comparison with Camerer et al. (2002), while

our d̂ is positive, it is much lower than theirs, which are
both close to one. In addition, in Camerer et al. (2002)

experienced subjects were found to have a higher d̂ than
5 Regarding the relation between k and performance, Chen and Hsieh
(2011) is the only experimental study known to us. In their asset market
experiments with 120 subjects, k̂ ranges from a minimum of 0.01 to a
maximum of 42,746. Their empirical results indicate that subjects with a
greater k tend to perform better than they would do otherwise.
inexperienced subjects. This inequality direction is expected
if d, as the ability to engage in counterfactual thinking, can
be related to experience.

Finally, the newly-added parameter h in our data is
much greater than the one in Camerer et al. (2002), which
suggests that when calculating the foregone payoff, our
subjects applied a triangular form with a narrower base
(a smaller neighborhood), hence the foregone payoff
quickly goes toward zero once the strategy (the guessing
number) gets away from the target number, and subjects
with a lower WMC have an even smaller neighborhood
than subjects with a higher WMC.

In sum, Camerer et al. (2002) provide us with some fine
details about the heterogeneity of the behavioral parame-
ters. By roughly treating cognitive ability in parallel to
experience, we find that in both memory and radius param-
eters we have consistency in the inequality direction; how-
ever, in regard to our counterfactual thinking parameter, d,
our observed inequality directions are just the opposite of
those in Camerer et al. (2002).

4.1.3. Predicted choice probabilities

It would be interesting to know how well the previous
three versions of the EWA learning model perform in terms
of actually predicting (fitting) the empirical distribution of
the strategy choice. To do so, in Fig. 2, the top panel, we
present the evolution of the empirical distribution of the
strategy choice from period one to period ten. To make a
comparison, in the upper middle, lower middle, and bot-
tom panels, we also present the evolution of the predicted
probability of each strategy being chosen (the predicted fre-
quencies of guessing numbers) using Models I, II, and III,
respectively. As before, we separate the observations into a
high WMC group (higher than average) and a low WMC
group (lower than average). They are displayed on the left
and the right of each panel, respectively.

Let us first look at the predictions made by Models II
and III (the lower middle panel and the bottom panel).



Fig. 2. Guess distribution and predicted guess distribution.
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Although EWA learning seems to predict a tendency
toward convergence to zero (the unique Nash equilibrium),
its speed of convergence is too slow to mimic experimental
data. Next, let us look at the prediction made by Model I
(the upper middle panel). Camerer and Ho (1999) comment
on its performance as follows:

None of these models captures the nature of learning well.
The reinforcement and one-segment EWA models simply
pretend that the first period is like later periods and inflate
initial attractions to gradually reproduce the later-period
data. (Camerer & Ho, 1999, p. 866)

This comment applies well to our performance using
Model I. As we can see, the first-period prediction made
by Model I is substantially different from the actual choice
distribution. The entire predicted distribution of the first

period is like that of the later periods, and, with /̂ larger
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than one (Table 2), it gradually converges to or reproduces
the last-period distribution. As pointed out in Camerer and

Ho (1999), /̂ being larger than one is an indication of
model misspecification.

In fact, Camerer and Ho (1999) horse raced various
learning models including choice reinforcement, belief-
based, and EWA learning. They found that, although the
EWA learning model does do better in fitting other games
such as the constant-sum game and the median-action
coordination game, when applied to the beauty contest
game, it does not have an equally good degree of fitness.
One remedy to this problem, as suggested by Camerer
and Ho (1999), is to consider learning when players sophis-
ticatedly realize that other players are learning as well.
Sophistication is central in BCGs for producing level-k rea-
soning and it has been put into practice in Camerer et al.
(2002).

Here, we do not follow the sophisticated version of
EWA learning; instead, we turn to a different direction,
which may have been largely ignored in the literature,
i.e., the size of strategy space. Based on our concern as dis-
cussed in Section 1.2, there is a possibility that (general)
reinforcement learning may not behave properly when
the strategy space is overwhelmingly large. In fact, the
two experiments in which EWA learning performs well in
Camerer and Ho (1999) both have a much smaller strategy
space; it is seven for the median action game, and four or
six for the constant sum game. These sizes are all in the
range of ‘magic numbers’. Therefore, in this paper, we
would like to apply the same EWA learning to a smaller
(coarser) strategy space to see whether simple EWA learn-
ing can properly function.

4.2. Level reinforcement models

4.2.1. Models IV and V
We redefined the strategy space from 101 guessing num-

bers to 6 reasoning levels. Based on the discussion in Sec-
tion 1.2, we consider that few strategies are more
plausible than many strategies for subjects to distinguish,
process, and hence reinforce them. In this case, levels of
reasoning are independently calculated and their attrac-
tions are directly reinforced. The two versions of EWA rule
learning proposed in Section 3.4.2 were estimated, and the
results of the estimates are given in Table 4 (Model IV) and
Table 5 (Model V).

By taking a glimpse at these two tables, we can find that

the parameter estimates are not sensitive to whether Ajð0Þ
is estimated by MLE (Eq. (10)) or is calibrated by empirical
distribution (Eq. (8)). To make a quick comparison with
the EWA (number) learning model, we also demonstrate
the empirical choice probability sided with the predicted
choice probability based on Models IV and V in Fig. 3,
as a juxtaposition of Fig. 2.

First of all, if we look at the first-period prediction, we
can see that both models have matched that of the empir-
ical distribution quite closely. Even though the initial distri-
bution of Model IV is derived by the maximum likelihood
estimator (Eq. (10)) rather than by the direct imposition
(Eq. (8)), it still catches well the mode at ‘d ¼ 1’ for the
high WMC group (panel (c), Fig. 3) and the mode at
‘d ¼ 0’ for the low WMC group (panel (d), Fig. 3). Second,
compared to Model I ((c) and (d), Fig. 2), nither of these
two models generates the distribution of the later periods
through inflating or deflating the initial distribution.
Instead, from period to period, we can see the shift of the
mode from one level to a different level; besides, the ups
and downs of major levels (spikes) in the empirical distri-
bution are also well represented by the predictions of Mod-
els IV and V. Finally, apart from the level distribution, we

also find that /̂ uniformly lies between zero and one
(Tables 4 and 5); hence, the early misspecification found
in Model I no longer exists. With the above features, we
tend to conclude that the simple EWA learning model
can still perform well even in the BCG as long as the size
of the strategy space is consistent with the human’s mental
constraint.

Now, let us come back to Tables 4 and 5. Notice that we
add one more high and one more low group to these tables,
i.e., the top one fourth (WMC > P 75) and the bottom one
fourth (WMC < P 25) (see Appendix B). Hence, we have
three high WMC groups and three low WMC groups.
Models IV and V are applied to each group to derive the
parameter estimates of the respective group. In light of
the subjects’ WMC and better model quality, can we make
good sense of the estimates obtained?

There are two ways in which we can form the compar-
ison, one using only the symmetric group and one using
any two of the six groups. The former restricts the compar-
ison to within the three symmetric pairs: (‘WMC > mean’,
‘WMC < mean’), (‘WMC > P 66’, ‘WMC < P 33’), and
(‘WMC > P 75’, ‘WMC < P 25’); the farther away from the
mean, the further sharper the contrast. The symmetric
comparison serves this purpose: it examines whether cogni-
tive ability affects the learning behavior in more and more
contrasting frames. Alternatively, any higher WMC group
can be compared to any lower WMC group; in this way we
can see whether the influence of cognitive ability is mono-
tonic. To make our presentation easier, we shall use the
‘weak sense’ to refer to the comparisons of symmetric pairs
only, and the ‘strong sense’ to refer to comparisons of any
pairs, and unless it is mentioned we mean only in the ‘weak
sense’. We shall begin by looking at the structure of the
numerical differences, and leave the former test of some
of these differences to the next section.

Given that the parameter estimates of models IV and V
are quite similar, the following results on the effect of work-
ing memory capacity generally apply to both models. We
begin with the experience and memory decay factors,dNð0Þ; q̂, and /̂. As we can see from the tables, subjects with

high WMC tend to learn faster (a lower dNð0Þ), are more
sensitive to recent experience (a lower q̂), and have a slower



Table 4
Model parameter estimates of EWA rule learning: Model IV.

Parameters All Subjects WMC > P 75 WMC > P 67 WMC > mean WMC < mean WMC < P 33 WMC < P 25

A1ð0Þ 532.286 533.361 518.615 500.240 533.144 553.022 513.975
A2ð0Þ 545.508 493.314 468.395 475.770 549.254 559.275 510.991
A3ð0Þ 576.813 789.98 664.918 600.983 551.464 574.821 511.407
A4ð0Þ 549.469 791.015 678.365 573.574 524.537 524.52 504.834
A5ð0Þ 462.426 646.955 549.271 451.966 468.705 430.489 486.738
A6ð0Þ 466.480 609.044 512.761 416.919 484.360 474.161 497.761
Nð0Þ 0.464 0.490 0.584 0.210 1.131 1.287 4.918
/ 0.889 0.889 0.914 0.861 0.848 0.665 0.820
q 0.464 0.000 0.000 0.000 0.711 0.223 0.949
d 0.535 0.411 0.484 0.578 0.472 0.405 0.314
k 0.016 0.010 0.009 0.011 0.027 0.017 0.090
LL �1756.01 �480.35 �562.99 �815.47 �927.29 �712.28 �566.63
AIC �1767.01 �491.35 �573.99 �826.47 �938.29 �723.28 �577.63
BIC �1794.43 �512.08 �595.51 �849.87 �962.09 �745.63 �598.68
M 1080 320 370 520 560 430 340

In Model IV, initial attractions Ajð0Þ are estimated by all data.

Table 5
Model parameter estimates of EWA rule learning: Model V.

Parameters All Subjects WMC > P 75 WMC > P 67 WMC > mean WMC < mean WMC < P 33 WMC < P 25

Nð0Þ 0.328 0.333 0.178 0.083 0.706 14.068 9.171
/ 0.891 0.906 0.939 0.864 0.849 0.677 0.493
q 0.465 0.260 0.362 0.114 0.675 1.000 0.964
d 0.545 0.464 0.558 0.588 0.489 0.400 0.277
k 0.016 0.014 0.015 0.012 0.025 0.255 0.181
LL �1756.95 �483.01 �564.93 �815.66 �929.06 �713.72 �569.03
AIC �1761.95 �488.01 �569.93 �820.66 �934.06 �718.72 �574.03
BIC �1774.41 �497.43 �579.72 �831.29 �944.88 �728.88 -583.60
M 1080 320 370 520 560 430 340

In Model V, initial attractions Ajð0Þ are initialized by first period data.
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memory decay rate (a larger /̂). This is basically consistent
with what we learn from Model I and Camerer et al. (2002)
(Table 3). Second, regarding the intensity of choice (k), we
have a result that is totally contradictory to the previous

models: subjects with high WMC now have a lower k̂ than
subjects with low WMC. Before seeing this result, we have
a strong tendency to suspect that k is positively related to
performance and is positively associated with cognitive
ability (also see footnote 5). However, the results here have
added some uncertainties regarding this relationship.
Finally, it is the counterfactual thinking ability (d). Among
all symmetric pairs, subjects with high WMC tend to have

a higher d̂ than subjects with low WMC. This result over-
throws the findings of Model I (no relationship) and Mod-
els II and III (a negative relationship). However, due to
relatively superior model quality, we tend to attach a
higher weight to this finding, and tend to treat this result
more seriously.

All the qualitative results shown above are in the weak
sense, i.e., valid only for the symmetric pairs. If we just
read the parameter estimates row by row from one end
to the other end, we can quickly see that we cannot find
any evidence of the monotonic relation, i.e., the strong
sense. Take d as an example. The top one-fourth of subjects
in WMC have a d̂ higher than the bottom one-fourth of
subjects, but compared to the top one-third or top one-

half, their d̂ is lower. Interestingly enough, it is even lower
than the bottom one-half. To ascertain whether this indi-
cates a non-linear effect of WMC on d, a more rigorous sta-
tistical test is needed.

4.2.2. Likelihood ratio tests

In this section, we shall apply the likelihood ratio (LR)
test to provide a statistical treatment of the significance of
working memory capacity (WMC) to learning. The likeli-
hood ratio test is carried out at two levels which, from gen-
eral to specific, correspond to two questions. First, at a
more general level, we inquire whether the learning behav-
ior, characterized by the parameters of the EWA learning
model, differs between the high WMC group and the low
WMC group. Second, at a specific level, we ask whether
the counterfactual thinking ability, characterized by the
parameter d, differs between the two groups.

To proceed, let us denote the vector of the estimates of

the respective parameters by ĥ ¼ ð dNð0Þ; /̂; q̂; d̂; k̂Þ. Further-
more, we shall use the superscripts ‘h’ and ‘l’ to distinguish
the vectors associated with high and low WMC groups, i.e.,

ĥh and ĥl. Let LLð�Þ denote the log-likelihood function, and



Fig. 3. Level distribution and predicted level distribution.
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we also distinguish its association with the two groups

using the same superscripts, i.e., LLhð�Þ and LLlð�Þ. When
the function LLð�Þ is evaluated under a given vector of esti-

mates, ĥ, it is written as LLðĥÞ. We shall use the high WMC

group as the reference. In this case, ĥh can be regarded as

the unrestricted MLE estimate, and LLhðĥhÞ is the unre-
stricted likelihood of the high-WMC observations.
To conduct the general test of the difference in learning
behavior between high and low WMC groups, we simply

replace ĥh with ĥl to LLhð�Þ as if restricting parameters

h ¼ ĥl (the null hypothesis) and obtain the corresponding

LLhðĥlÞ. This defines the restricted likelihood of the high-
WMC observations. The likelihood ratio test statistic,
denoted by LR, for the null can be written as
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LR ¼ �2ðLLhðĥlÞ � LLhðĥhÞÞ:
It is known that under the null the test statistic LR follows
a chi-square distribution with r degrees of freedom, which
is the number of restrictions; in our case, r = 11 for Model
IV, and r = 5 for model V.

On the other hand, to conduct the specific test of the dif-
ference in counterfactual thinking ability (d) between the

high and low WMC groups, we replaced d̂h with d̂l into

LLhð�Þ and obtained LLhðbN 0ð Þh; /̂h; q̂h; d̂l; k̂hÞ. The likeli-
hood ratio test statistics are given as follows:

LR ¼ �2ðLLhðbN 0ð Þh; /̂h; q̂h; d̂l; k̂hÞ � LLhðĥhÞÞ:
This statistic follows a chi-square distribution with m ¼ 1
degrees of freedom.

The results of the two likelihood ratio tests are presented
in Tables 6 (Model IV) and 7 (Model V). The results of the
general test are given in the upper panel of Tables 6 and 7,
whereas the results of the specific test are given in the lower
panel of Tables 6 and 7. In fact, the results presented in
both tables are more extensive than what we have illus-
trated above. For the high WMC group, in addition to
the upper half, we also estimate the h of the top one-
third (WMC > P 67) and the top one-fourth (WMC > P 75);
similarly, for the low group, in addition to the lower half,
the h of the bottom one-third (WMC < P 33) and one-
fourth (WMC < P 25) are also estimated. Therefore, what
is presented in Tables 6 and 7 are the likelihood ratio tests
of all heterogeneous pairs, i.e., pairs involving one high
WMC group and one low WMC group. Here we do not
consider comparisons based on the homogeneous pairs
since their observations are partially overlapping. Alto-
gether we have 9 (3� 3) heterogeneous pairs (the cross pro-
duct of three high WMC groups and three low WMC
groups). The results can be easily arrayed into a three-by-
three matrix, as shown in both the upper and lower panel
of Tables 6 and 7. In addition, our LR tests were corrected
Table 6
LR test for the significance of differences in parameter estimates: Model IV.

Parameters WMC < mean

General comparison

WMC > P 75 64.594***(<0.001)
WMC > P 67 54.168***(<0.001)
WMC > mean 53.422***(<0.001)

Single parameter compa

(d̂ ¼ 0:472)
WMC > P 75(d̂ ¼ 0:411) 1.178(0.278)
WMC > P 67(d̂ ¼ 0:484) 0.016(0.899)
WMC > mean(d̂ ¼ 0:578) 2.472(0.116)

The test statistic v2 is shown in the table. The p value of each v2 is also shown in
denoted as a, using the method proposed by Zbyněk Šidák (Šidák, 1967). Give
the p-value is lower than 1� ð1� aÞ1=k . The significance level a are set at 5%, a
v20:9884ð11Þ ¼ 24:271, v20:9943ð11Þ ¼ 26:386, and v20:9989ð11Þ ¼ 30:964. T
v20:9884ð1Þ ¼ 6:365; v20:9943ð1Þ ¼ 7:648, and v20:9989ð1Þ ¼ 10:624.
* The significance level a are set at 10%.
*** The significance level a are set at 1%.
for multiple comparisons, in our case, nine comparisons,
by controlling the family-wise error rate (Šidák, 1967).

Let us first look at the general test (the upper panel of
Tables 6 and 7). An interesting pattern immediately stand-
ing out is that the likelihood ratio test is statistically signif-
icant over all pairs. This can be clearly seen from the
asterisks, denoting the significance level, which are pre-
sented beside the v2 statistics. The only one exception is
the pair ‘WMC > P 75’ vs. ‘WMC < mean’ under Model V
(Table 7). Therefore, by and large, these results support
our working memory hypothesis for individual differences
in learning, i.e., the learning behavior of subjects is different
between low and high WMC groups. This seems to confirm
the earlier conjecture made by Chen et al. (2014) that
WMC not only affects subjects’ performance, but may also
have effects on their learning schemes.

As to the specific test of the counterfactual thinking abil-

ity (d), we found that the d̂ of the top one-half of subjects is
significantly higher than those of the bottom one-third and
the bottom one-fourth of subjects, but there is no evidence

showing that it is different from the d̂ of the bottom one-
half of subjects (this result is consistent for both Models
IV and V). The increase in WMC does not seem to be

enhancing; in fact, the d̂ of the top one-third and the top
one-fourth of subjects exhibited no significant difference
to any group of low-WMC subjects (the only one exception
is the pair ‘WMC > P67’ vs. ‘WNC < P25’ in Model V).

Hence, our second hypothesis, the working memory
hypothesis for individual differences in counterfactual think-
ing ability, is not well supported by our data, and a mono-
tonically increasing relation between WMC and
counterfactual thinking ability can be rejected outright.
The results of the two tables together seem to suggest that
working memory capacity can have an effect on counterfac-
tual thinking ability (d) onlywhenworkingmemory capacity
is low, down to the bottom one-fourth or the bottom one-
third. When WMC gets closer to its average or is above its
WMC < P 33 WMC < P 25

s: ĥl ! LLhð�Þ
79.970***(<0.001) 96.288***(<0.001)
72.182***(<0.001) 87.928*** (<0.001)
73.158***(<0.001) 97.536***(<0.001)

risons: d̂l ! LLhð�Þ
(d̂ ¼ 0:405) (d̂ ¼ 0:314)
0.188(0.665) 0.928(0.335)
0.772(0.380) 3.978(0.046)
7.118*(0.008) 17.262***(<0.001)

side the parentheses below. We control the family-wise error rate (FWER),
n k independent comparions (k ¼ 9), each null hypothesis is rejected when
nd they are denoted as 		. The critical values for general comparisons are
he critical values for single parameter comparisons are



Table 7
LR test for the significance of differences in parameter estimates: Model V.

Parameters WMC < mean WMC < P 33 WMC < P 25

General comparisons: ĥl ! LLhð�Þ
WMC > P 75 10.194(0.070) 26.540***(<0.001) 48.906***(<0.001)
WMC > P 67 17.028*(0.004) 37.292***(<0.001) 63.370***(<0.001)
WMC > mean 16.828**(<0.001) 38.232***(<0.001) 66.324***(<0.001)

Single parameter comparisons: d̂l ! LLhð�Þ
(d̂ ¼ 0:4894) (d̂ ¼ 0:3998) (d̂ ¼ 0:2774)

WMC > P 75(d̂ ¼ 0:4635) 0.114(0.736) 0.688(0.407) 5.866(0.015)
WMC > P 67(d̂ ¼ 0:5582) 0.982(0.322) 5.212(0.022) 16.370***(<0.001)
WMC > mean(d̂ ¼ 0:5877) 2.702(0.100) 9.846**(0.002) 26.724***(<0.001)

The test statistic v2 is shown in the table. The p value of each v2 is also shown inside the parentheses below. We control the family-wise error rate (FWER),
denoted as a, using the method proposed by Zbyněk Šidák (Šidák, 1967). Given k independent comparions (k ¼ 9), each null hypothesis is rejected when
the p-value is lower than 1� ð1� aÞ1=k . The critical values for general comparisons are v20:9884ð5Þ ¼ 14:718, v20:9943ð5Þ ¼ 16:445, and v20:9989ð5Þ ¼ 20:261. The
critical values for single parameter comparisons are v20:9884ð1Þ ¼ 6:365; v20:9943ð1Þ ¼ 7:648, and v20:9989ð1Þ ¼ 10:624.
* The significance level a are set at 10%.
** The significance level a are set at 5%..
*** The significance level a are set at 1%.
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average, the difference becomes less certain; specifically, the
subjects with superb WMC (the top one-fourth) do not
demonstrate their superiority in terms of d. This latter evi-
dence may suggest that the counterfactual thinking ability
may become flat after WMC increases to its average or even
a little before its average. This tendency is what is numeri-
cally presented in both tables. For example, in Tables 6

and 7, d̂ begins with 0.31 (0.28) when only the bottom one-
fourth of subjects are considered and increases all the way
up to 0.57 (0.59) when only the top one-half of subjects are
considered. It then declines slightly to 0.48 (0.56) and falls
further to 0.41 (0.46) when the subjects considered are
restricted to the top one-third and the top one-fourth.

5. Discussion

This paper, to the best of our knowledge, is the first
study to provide a detailed account of the inferred individ-
ual differences in EWA learning models in light of subjects’
working memory capacity. In this section, we want to high-
light the three key results presented in the previous section;
there are three aspects, namely,

� the validity of the constrained version of generalized
reinforcement learning (Section 5.1),

� the working memory hypothesis for individual differ-
ences in learning (Section 5.2), and

� the working memory hypothesis for individual differ-
ences in counterfactual thinking ability (Section 5.3).

5.1. Cognitively constrained models of reinforcement

learning

First, we have examined the generalized reinforcement
learning models without the constraint of cognitive
capacity (Models I-III) and with the constraint of cognitive
capacity (Models IV-V). From the behavior of the pre-
dicted choice probabilities and the range of some estimates,

such as /̂, it is found that the constrained version of gener-
alized reinforcement learning performs more reasonably
than the unconstrained version. As we mention in Sec-
tion 1.2, the problem of the unconstrained version was
acknowledged in the economics literature (Brenner &
Vriend, 2006; Camerer & Ho, 1999) but only implicitly.
However, the psychological underpinning of this problem
has been well developed with the coined term ‘magic num-
ber’ (Mathy & Feldman, 2012). Recently, Collins and
Koechlin (2012) have found that the model that best fits
human data is endowed with a monitoring capacity of three
or four task sets, suggesting that working memory is lim-
ited to three or four concurrent behavioral strategies.
Hence, our finding in this regard is relevant and contributes
to this line of research.

Despite this being the case, a point which has been made
earlier (Section 3.4.2) and which needs to be reemphasized
here is that what concerns us here is not just size per se, but
to a somewhat greater extent the associated structure.
What seems to be more impressive about the level-k rea-
soning is that the six intervals are updated and may shrink
over time, which provides additional flexibility for Models
IV-V, and may also be a better description of what subjects
are actually doing. As we move from the number reinforce-
ment models to the level reinforcement models, subjects are
assumed to redefine learning objects that are being evalu-
ated and updated as consisting of a few sophisticated rules.
Under such circumstances, the reinforcement mechanism
works at a more abstract level (the choice of reasoning
depths) instead of at a primitive stage (the choice of guess-
ing numbers).

Alternatively put, reducing dimensionality comes along
with some forms of abstraction from the original
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unprocessed representation of the problem. In the litera-
ture on reinforcement learning when it serves as an algo-
rithm to solve a computational problem, recent studies in
hierarchical reinforcement learning (HRL) share a similar
idea (see Botvinick, 2012 a review). The HRL framework
was proposed to resolve the curse of dimensionality which
causes the deterioration of efficiency. It allows the agent to
select temporally abstract actions, and therefore reduces
the number of alternatives the agent has to learn about.
How the relevant forms of abstraction are initially acquired
or learned is the central issue in this line of research, while
the application of level-k models could be regarded as a
natural abstraction in our guessing game.

5.2. WMH for individual differences in learning

Second, given the above result, our subsequent efforts
were directed toward the constrained version of the EWA
learning model (Models IV and V). As introduced in Sec-
tion 2.1, EWA learning models have three kinds of cogni-
tive constructs, namely, the memory-related parameters
(/;Nð0Þ and q), choice intensity (k), and counterfactual
thinking ability (d). At a finer level, one may want to know
whether each of these parameters can be related to WMC
in a certain way. However, as argued in Section 2.2, a good
maintained hypothesis can only be found for the relation-
ship between WMC and d. Nonetheless, we are still inter-
ested in knowing whether WMC has an effect on
(generalized) reinforcement learning as a whole. For that
purpose, we formed the working memory hypothesis for
individual differences in learning and found that the
hypothesis can be well supported by our data (see Tables
6 and 7).

This result is related to the recent efforts to incorporate
the working memory component into reinforcement learn-
ing (Collins & Frank, 2012; Dolan & Dayan, 2013). Collins
and Frank (2012) include the capacity-limited working
memory component in a simple reinforcement learning sys-
tem, and show that fitting the data with a reinforcement
learning model alone can cause the estimated learning rate
parameters to be misleading, because it will capture the
effect introduced by working memory capacity. In this
regard, our paper provides additional evidence showing
that this influence of working memory capacity may be
applicable to generalized versions of reinforcement
learning.

Furthermore, as motivated by Collins and Frank (2012)
and their model-based learning, we can go further to
hypothesize that subjects with different working memory
capacity can have different geometries of strategy space,
for example, hierarchical ones. It is unlikely that all
humans homogeneously resolve the size problem by using
the same granulation. Subjects with different working
memory capacity may also apply different forms of granu-
lation. So far, we have known very little about these indi-
vidual differences, particularly in the context of economic
decision making. Currently, the kinds of reinforcement
learning models used in economics have a flat structure
with no restrictions on the span. When the number of
options is far beyond the ‘magic number’, what the appro-
priate representation of the strategy space that allows rein-
forcement learning models to be effectively applied actually
constitutes an issue for further study.

5.3. WMH for individual differences in CT ability

Third, by estimating the constrained EWA learning
models, we have also pinpointed the effect of working
memory capacity on various cognitive constructs. We have
found that subjects with high WMC tend to learn faster (a
lower Nð0Þ), are more sensitive to recent experience (a
lower q), and have a slower memory decay rate (a larger
/). What interests us most is the second maintained
hypothesis, namely, the working memory hypothesis for
individual differences in counterfactual thinking ability.
Although it is only weakly supported by the data, the pos-
itive effect of working memory capacity on counterfactual
thinking ability has been found in a number of studies
(Byrne, 2016; Camille et al., 2004; Goldinger et al., 2003;
Kulakova & Nieuwland, 2016).

We also understand that research on the biological and
neural underpinnings of reinforcement learning has already
been undergoing a thorough understanding of the dopa-
mine neural system. By hypothesizing that dopamine neu-
rons encode reward prediction errors, a hypothesis widely
known as the reward prediction error hypothesis has been
developed for decades (Bayer & Glimcher, 2005;
Glimcher, 2010; Schultz & Romo, 1990; Schultz, Dayan,
& Montague, 1997; Zhu, 2011). Recently, by directly mea-
suring dopamine release in the human striatum, Kishida
et al. (2016) have found that dopamine levels reflect a com-
bination of reward prediction errors and counterfactual
prediction errors. To account for this result, their proposed
computation model indicates that dopamine neurons com-
pute not only experienced rewards and losses but also the
rewards and losses that might have been experienced if
the alternative had been taken. Therefore, their finding
extends the long-held reward prediction error hypothesis
and directly implies that dopamine also encodes counter-
factual prediction errors, a key variable posited by models
of generalized reinforcement learning addressed in this
paper (see also Montague, King-Casas, & Cohen, 2006).

Within this research circle, our result on weakly sup-
porting the positive relation between counterfactual think-
ing ability (d) and working memory capacity may stimulate
new research questions. In particular, it places itself at an
initial stage of a more integrated framework which overar-
ches psychological studies of counterfactual thinking, neu-
roscientific studies of generalized reinforcement learning
mechanisms, and behavioral studies of strategic decision-
making in economic games. Psychologists have conducted
various tasks to measure counterfactual thinking ability;
however, at this point, it is not clear how d as part of the
generalized reinforcement learning can be related to those
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tasks. A follow-up study would be to carry out an indepen-
dent counterfactual thinking test for the subjects, and
directly examine the relationship between WMC and coun-
terfactual thinking ability. Then we could use this result to
shed light on the connection between WMC and d derived
from experimental games. This line of research will help us
to gain a better understanding of the cognitive role of d.
6. Conclusions

In conclusion, the main findings and contribution of the
paper can be summarized as follows. First, we have shown
that the generalized reinforcement learning model may
work reasonably well when the number of choices (armed
bandits) is constrained by our working memory capacity,
such as Miller’s seven. As we have shown from the dynam-
ics (evolution) of choice probabilities, the level reinforce-
ment model (with six alternatives only) behaves very well
compared to the number reinforcement model (with an
overwhelming 101 alternatives). This finding may not sur-
prise psychologists, but there has been a general lack of
awareness among economists. Second, while restricted to
the level reinforcement model, the working memory
hypothesis for individual differences in learning is well sup-
ported by our data from the beauty contest games (guess-
ing games). Even after the multiple comparison
correction, 17 out of 18 pairs of heterogeneous groups in
WMC exhibit significant differences in learning. This result
together with that of Chen et al. (2014) shows that the
observed behavioral difference among subjects with differ-
ent WMC is sustained because they actually learned in a
different way. Third, as to the working memory hypothesis
for individual differences in counterfactual thinking ability,
we find that this hypothesis is also supported in the follow-
ing sense: the parameter corresponding to counterfactual
thinking ability increases with working memory capacity
at its initial level, but then flattens out at its middle and
high levels. Each of the results has been discussed, and pos-
sible directions for further studies provided.
Acknowledgements

Earlier versions of this paper were presented at the 2013
Regional Economic Science Association (ESA) Confer-
ence, Santa Cruz, California, October 24–26, 2013, the
NeuroPsychoEconomics Conference, Munich, Germany,
May 29–30, 2014, the 21st International Conference on
Computing in Economics and Finance, Taipei, June 20–
22, 2015, and the North America Conference of the Chi-
nese Economists Society (CES), Sacramento, California,
USA, April 2–3, 2016. The authors benefited significantly
from the discussions with conference participants. This ver-
sion has been substantially revised in light of two anony-
mous referees’ very painstaking reviews, for which we are
most grateful. Research support in the form of the Ministry
of Science and Technology – Taiwan (MOST) Grant,
MOST 103-2410-H-004-009-MY3, is gratefully
acknowledged.

Appendix A. Working memory test

Backward Digital Span Test (Dspan). This task was to
recall a set of digits in reverse order. Following a fixation
cross presented for 1 s, a set of 4–8 digits were displayed
one by one, for 1 s each. After that, subjects were required
to enter this set of digits in reverse order without time con-
straints. There were 15 trials in total, with 3 at each set size.

Spatial Short-term Memory Test (SSTM). The subjects
were required to memorize the location of a set of dots in a
10 � 10 grid. This task started with a fixation cross for 1 s
and the grid was shown. There were 2–6 solid dots that
appeared, one by one, in individual cells, for 900 ms each.
The interstimulus interval was 100 ms. The subjects were
instructed to remember the spatial relation of the dots
instead of the absolute position of each dot. After present-
ing all of the dots, the subjects were asked to replicate the
pattern of dots. There were 30 trials, with 6 at each set size.

Memory Updating Test (MU). This task was to encode
a set of digits, each presented sequentially in a set of
frames, and then to update these digits by arithmetical
operations. In each trial, the subjects were presented with
3–5 frames containing to-be-remembered digits in each.
Each trial was initialized by a keypress and then the initial
digits were displayed one by one, for 1 s each. After that, 2–
6 arithmetical operations, such as ‘‘+3” or ‘‘�1”, were dis-
played in individual frames one by one for 1.3 s each and
followed by a 250-ms blank interval. Subjects were
required to apply these operations to the digits that they
currently remembered in that particular frame and to
update the content with the result. There were 15 trials in
total.

Sentence Span Test (SentSpan). On each trial, an alter-
nating sequence of Chinese sentences and to-be-
remembered consonants was presented. The subjects had
to judge the meaningfulness of the sentences and to remem-
ber the following consonants for later serial recall. The sen-
tences were composed of 17 Chinese characters. For
example, a meaningful sentence might be I went out without
taking any money, but fortunately I ran into an old friend

who helped me out. By replacing fortunately with unfortu-

nately we obtained the meaningless counterpart of this sen-
tence. Following a fixation cross presented for 1.5 s,
subjects saw the first sentence appear on the screen. It dis-
appeared either when subjects gave a response or after the
maximal response time of 5 s had elapsed. The subjects
were instructed to use the ‘‘/” and ‘‘z” keys to make Yes,

this is correct and No, this is not correct responses, respec-
tively. After a judgment was made on a sentence, a conso-
nant was presented for 1 s. After the consonant
disappeared, the next sentence appeared. The list length,
defined as the number of sentences and letters needed to
be judged and remembered, ranged from 4 to 8. There were
15 trials in total, with 3 trials per list length.



Fig. B.4. WMC score distribution of each group. The above figure shows the box-whisker plot of various subgroups of subjects in terms of WMC. From
the leftmost to the rightmost are the group ‘‘the top one-fourth”, ‘‘the top one-third”, ‘‘above average”, ‘‘below average”, ‘‘the bottom one-third”, and
‘‘the bottom one-fourth”. What is shown inside the parentheses is the number of subjects in the respective group.
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Operation Span Test (OS). This task was almost the
same as the SentSpan task except that the subjects had to
judge the correctness of the arithmetic equations (e.g.,
3þ 2 ¼ 5). A minor difference was that the maximum
response time for the equation was set to 3 s due to the sim-
plicity of this processing task.

Appendix B. Distribution of various subgroups

In Fig. B.4, we provide the distribution (the box-whisker
plot) of the various subgroups of subjects considered in this
study. From what has been shown in the figure, we can see
that the high and low WMC groups are clustered in dis-
cernible disparate levels.
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