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* An equilibrium theory of local externalities proposed in

Eeckhout (2004) explains both empirical size distribution
of cities and empirical regularity of cities growth. Both
the productivity parameter and the local externalities in
theory are crucial in deriving the proportionate growth
process of cities and the subsequently limiting lognormal
distributions. The purpose of this paper is to investigate
how the productivity parameter and local externalities
affect the growth rate of cities, to examine how these two
factors affect the distribution of cities, and to verify
the feature of the resulting distribution of cities. The
result shows that the theory could generate a lognormal
distribution conditional on the features of the
distribution of the exogenous technology shock. The city
growth rate is positively related to the exogenous
technology shock given a range of the exogenous technology
shock and negative local size effect. The larger the
absolute value of the local size effect, the smaller the
city growth rate given the same exogenous technology shock.
The Gini coefficient is increasing as the absolute value of
local size effect is decreasing; the less the absolute
values of the negative local size effect, the more
concentrate the city’ s population. The Gini coefficient is
increasing as the standard deviation of exogenous
technology shock is increasing; the more the exogenous
technology shock deviated, the more cities size
concentrates.

: Keywords: local Externalities, size elasticity of

production, exogenous technology shock



Local externalities and city distribution

Abstract

An equilibrium theory of local externalities proposed in Eeckhout (2004) explains both
empirical size distribution of cities and empirical regularity of cities growth. Both the
productivity parameter and the local externalities in theory are crucial in deriving the
proportionate growth process of cities and the subsequently limiting lognormal
distributions. The purpose of this paper is to investigate how the productivity parameter
and local externalities affect the growth rate of cities, to examine how these two factors
affect the distribution of cities, and to verify the feature of the resulting distribution of
cities. The result shows that the theory could generate a lognormal distribution
conditional on the features of the distribution of the exogenous technology shock. The
city growth rate is positively related to the exogenous technology shock given a range
of the exogenous technology shock and negative local size effect. The larger the
absolute value of the local size effect, the smaller the city growth rate given the same
exogenous technology shock. The Gini coefficient is increasing as the absolute value
of local size effect is decreasing; the less the absolute values of the negative local size
effect, the more concentrate the city’s population. The Gini coefficient is increasing as
the standard deviation of exogenous technology shock is increasing; the more the

exogenous technology shock deviated, the more cities size concentrates.

Hsin Ping Chen
Department of Economics

National Chengchi University

Keywords: local Externalities, size elasticity of production, exogenous technology
shock
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1. Introduction

Location decisions of residents and firms define the dynamic process of cities
population across cities and its resulting distribution. The economic factors are the
crucial driving force in location decision of household and firm. Economic activities
affect the mobility of population across cities greatly. The pattern of city size
distribution is a consequence of the evolution of cities. Analyzing population evolution
and distribution help to understand the underlying economic mechanisms, and the
information of population mobility and the driving force provide essential knowledge
for regional policy making.

Blank and Solomon (2000) and Xavier Gabaix (1999) show that a proportionate
growth process can generate a Pareto distribution at the upper tail. Blank and Solomon
(2000) finds that the creation of new cities and the entering process are the crucial rules
for the resulting limiting distribution.

Eeckhout (2004) uses Census 2000 data to investigate the empirical size
distribution of cities. It shows that un-truncated data of cities is lognormal distribution,
and the difference between the density distribution of the lognormal and the Pareto are
not dramatic at the very upper tail of the distribution. The lognormal distribution of
cities is consistent with a proportionate growth process which is one of the empirical
regularities regarding the size distribution of cities. This empirical analysis supports the
hypothesis that the process of the growth of cities size satisfies Gibrat’s proposition.
Eeckhout (2004) proposes a general equilibrium theory of local externalities to explain
the underlying mechanism of the evolution of size distribution. The local externalities
like those in Lucas and Rossi-Hansberg (2002) include both positive production
externalities and negative consumption externalities. The local externalities affect the
population within a city: firms benefit knowledge spillovers and workers bear greater
commuting cost in larger cities. It shows that economic forces drive population mobility,
and provides an empirically consistent theory. This general equilibrium theory
generates a proportionate growth of city size, and leads to a lognormal distribution
anticipated by Gibrat (1931).

In Toannides and Skouras (2013), city size distributions is examined by three
different definitions of US cities including the US Census Places data, which is also
used in Eeckhout (2004) and Levy (2009). They find that a Pareto distribution robustly
fits the upper tail of the distribution of cities; rather, the body of the distribution suits a
lognormal distribution. Eeckhout (2009) shows that data generated from a lognormal
distribution have tails similar to a Pareto distribution. Malevergne, Pisarenko,
and Sornette (2011) applies an unbiased test to investigate city size distributions

between a lognormal and a Pareto distribution regarding to the debate between



Eeckhout (2004,2009) and Levy (2009). They state that the Pareto distribution
hypothesis is accepted for the tail of city size distribution. Berry and Okulicz-Kozaryn
(2012) finds that growth process of US cities consists with Gibrat’s Law.
Bee, Riccaboni, and Schiavo (2013) examines the distribution by multiple tests on real
data and the result supports lognormal rather than Pareto. Lee, and Li (2013) proposes
a model generating city size distributions that asymptotically follow the log-normal
distribution and it is consistent with Pareto distribution in the top tail. Veneri (2013)
shows that Pareto distribution does not fit well with the cities data defined by traditional
administrative.

These literatures show that that body of distribution of cities consists with a
lognormal distribution; however, the upper tail of the distribution fits a lognormal or a
Pareto distribution depending on the definition of cities. Overall, a lognormal
distribution describes the un-truncated data better than a Pareto for the whole range of
data; a Pareto can only fit the very upper tail of the data. Moreover, a lognormal
distribution of cities is consistent with the empirical regularity of proportionate city
growth. There is no dramatic difference between the density distribution of the
lognormal and the Pareto at the upper tail of the distribution.

The proposed general equilibrium theory of local externalities in Eeckhout (2004)
can generate both the empirically verified lognormal distribution and the empirical
regularity: proportionate growth of cities. Both the productivity parameter and the
local externalities in theory are crucial in deriving the proportionate growth process of
cities and the subsequent lognormal distributions. The exogenous technology shock
assumed in the productivity technological advancement and the local externalities in
firm’s production function and consumer’s budget constraint determines the growth
rate of cities. The growth rate of cities characterizes the growth process of cites, and
consequently the growth process of cities determines the city size distributions.

The purpose of this paper is to explore the feature of the general equilibrium
theory in Eeckhout (2004) empirically: to investigate how the productivity parameter
and local externalities affect the growth rate of cities, to examine how these two factors
affect the distribution of cities, and to verify the feature of the resulting distribution of
cities. We first analyze the relation of the exogenous technology shock, local
externalities and the growth rate of cities; and simulate the growth process of cities
given various assumptions of net local externalities and the distribution of the
exogenous technology shock; and finally explore the relations of the net local
externalities, feature of the distribution of the exogenous technology shock, and the

corresponding Gini coefficient.



2. The theory in Eeckhout (2004)

The empirical work of this paper is based on the general equilibrium theory of
local externalities in Eeckhout (2004), which is introduced in this section briefly. Please
see the paper for detail.

In the general equilibrium theory of Eeckhout (2004), the labor market in city is

perfectly competitive and the labor is perfectly mobile among cities; firm maximizes

profit solving the wage rate W, , equals to the marginal product. Workers are endowed

with one unit of leisure, which can be employed as labor. Each worker devotes

l;; €[0,1] amount of labor and (1-1; ;) amount of leisure.

The productivity technology effect of city i at time t is assumed to follow the

random process: A, =A _ (1+0c;,) . The parameter o;, denotes an exogenous
technology shock for each city at time t.! The marginal product Y;; per worker
contains the productivity parameter, A , and a positive local externality,a, (S;,), in city
i of sizeS,,: y;, =A,a,(S,,), where a' (S;,)>0.> The amount of land in a city is
fixed and denoted by H. The price of land is p;, and a citizen consumes the amount of

land h; ;. Assume there is negative commuting externality; a fraction of labor a_(§;,)

is devoted to commuting.

Given size of city, consumers maximize utility subject to the budget constraint and

resolve the equilibrium allocation (Ci,t*, hi,t*, |i,t*) and price ( pi,t*’ Wi,t*) :
1_ —
Max. U(Cl’t, hi,tali,t):Ci,tah,tﬁ(l_lii) “r

st. ¢+ ph <w.a (S, where a,B,a+pe(0,1).

Perfect mobility of labors resolves the same equilibrium utility level:

1 This city-specific technology shock is assumed to be symmetric and identically independently
distributed, and (1+ 05 ; )>0 (see Eeckhout, 2004)

2 The positive local externality indicates a positive external effect such as knowledge spilling effect.



U*(Si,t) = U*(Sj,t) =U
This suggests: A, -a,(S;,)a_(5;,)S;,”* =K, (1)

Let I'(S;,) =a,(S;,)a_(S;,)S;, ”'“indicates the net local size effect.

The motion of city population is derived as the proportionate growth in Eeckhout
(2004).

S, =1/T'(1+0,)-S;, =(+&,)-Si, > (2)
Assume the local externalities is power function:

a (S,)=S%and a (§,)= S’di’t .

Then the net local size effect becomes:

I'S,)=S,"""=5s.;° 3)

The output per worker becomes

Yit = Atsi,tc_d_ﬁ/a = AtSite ) 4)

Where parameter c denotes the positive local externality as knowledge spillover effect;
parameter d denotes the negative local externality as congestion costs which decrease
output with elasticity d with respect to city population; we define parameter € as the
size elasticity of production in the local externality which is the net effect of positive
and negative externalities. Let the negative externality denote congestion cost. The
larger the congestion costs, the smaller the local externality.

After normalizing equalized equilibrium utility to unity, the equilibrium size of

city is composed of technology shock and local externality:
Sy = A1tk =[1+ O-it)Ait—l]k =1+ Git)k St

where k=-1/e.
1nsit =kln At ~ lnsit—1 + ko—it

.
InS, ,+ko, =InS,, + kZ“ait

t=1
When the technology shock is small enough:
T
InS, =InS,, + kZ:O'it
t=1
where the parameter K is a function of the size elasticity of production which is assumed
to be a constant. The exogenous technology shock g, is identically independently



distributed as in Gibrat’s law (Gibrat, 1931). By the central limit theorem, after t period
of time, InN, is asymptotically normally distributed, and the size distribution of city
N, becomes lognormal.?

From equation (5), we have

ds,/do, >0, ife<0

ds,/do, <0, ife>0

Larger shocks will lead to larger cities if the size elasticity of production is negative.
The size elasticity of production is tending to be negative if the congestion cost from
congestion is very large. On the other hand, larger shocks will lead to smaller cities if
the size elasticity of production is positive. The size elasticity of production is tending
to be positive if the congestion cost from congestion is very small.

The local externality in Eeckhout (2004) is assumed to be negative. The positive
externality is required to be less than the negative externality to prevent an ever
increasing city size. On the other hand, if the local externality is positive, the limiting
distribution of city sizes would become extremely unequal, all population will
concentrate in one largest city due to the advantage of positive agglomeration effect.
It is crucial to fix the number of cities with a negative local size effect, otherwise
workers will move to new places given the disadvantage of agglomeration and result in
no cities since dispersion force always dominates agglomeration force.

The derived growth process of the size of cities is proportionate with a stochastic

growth rate as Gibrat's law:

it = (Si,t - Si,t—l) / Si,t—l : (5)
Let &, be an identically and independently distributed exogenous random variable

with mean @ and standard deviationo ; and¢; and S, is uncorrelated.

it-1
3. The extended model:

The growth rate of city population, ¢; ,, is a function of the exogenous technology

it

shock, o, , and the parameters of local size effect, e=(c—d - f#/a):
g =[1/(1+0,)"]-1 (6)
dg,/do, = —1(1+0,) """ >0, ife < 0

The influence of the exogenous technology shock on the city growth rate is depending

3 The city-specific technology shock is symmetric and identically independently distributed and small



on the net local size effect. When the net local size effect is negative, larger shocks will

lead to greater cities growth rate.

The equilibrium size of cities at time t, S, , is composed of the exogenous

it?>

technology shock and the parameters of local size effect. The effect of the exogenous

technology shock on city size depends on the net local size effect.

Si,t =K-(A. 1+ Gi,t))il/e (7)

dS;,/doy, =-K-(1/e)A V" >0, ife<0

When the net local size effect is negative, larger shock will lead to larger cities.
4. Local externality

In equation (3), parameter € is the size elasticity of production in the local
externality. It denotes the net local externality that net agglomeration economies
changes output with elasticity e with respect to city size. It is the net result from
positive local externality such as knowledge spillover and the negative local
externality such as congestion cost. The larger the congestion cost the smaller the net
local externality.

In section 2, the size elasticity of production is a constant, a negative net local
externality will lead to domination of dispersion forces; on the other hand, a positive
net local externality will result in only one largest city in the region. The fact that
region with only one largest city or with completely dispersed populations are two
extreme cases which are not in reality. This suggests that initially agglomeration
force may dominate as the population increases and dispersion force will dominate
eventually due to increasing congestion cost. The indirect utility function of city may
be a concave and non-monotonic function of population; it is eventually diminishing
with city size. This proposes that size elasticity of production may varied by size of

city rather than to be a constant, e(S,). Let both positive and negative local

externalities be functions of city size, the net local externality becomes:
E(Sit) = a+(sit)a7(sit) = Site(sit) (8)

The output per worker and the motion of city size become

Yit = AtsitE(S“) > )



InS; =Ins;, - (l/e(sit))io-it (10)

t=1
In this case, the motion of city size shows that the growth rate of city size varied
by city size. This implies that growth of city size is not proportionate. Consequently,
the central limit theorem and identically independently distributed technology shock
condition cannot be applied to generate lognormal size distribution of city as in previous
case. The size distribution of cities depends on the attribute of size elasticity of
production in the local externality. In this case, the theory of local economies and the

mobility of workers cannot explain the empirical size distribution of cities.
K(S;)=-1/¢e(S,) =k,

Sit = (‘g‘it)il/eit Sit—l = gitknsiH (11)

Let the size elasticity of production be a linear function of city size:
e, =e(S,)=¢ —-¢e,S,, e=0 when S,=¢ /e,

it?

The indirect utility function becomes:

V(Sit) = h(At 'E(Sit ))a = h(At ’ Siterezsn )a (12)

dv, /dS; = (e, —&,S; )ah(A, - Sitei[ )a_l Siteir1 = eitwhAnoHSiteitm1
dv, /dS, >0, ife, >0
dv, /dS, <0, ife,<0
The maximized utility rises as the city population increases given a positive size

elasticity of production; on the contrary, the maximized utility decreases as the city

population reduces given a negative size elasticity of production.

d*v, /dS;* = eahle, (@ —D(A - §;*) 7S + (& = D(A - §;)* "5, ]

It is allowed that the indirect utility function of city be a concave and non-monotonic

function of population.
d’v,/dS’<0, ife, >0
d’v,/dS,><0, ife, <0

After normalizing equalized equilibrium utility to unity, the equilibrium size of

city becomes:
Sit = (l + qit)il/eit Sit—l = (1 + qit)kit Sit—l (13)

where k, =-1/¢, =1/(e,S,, —€,) < 1/S,.
The growth process of city size cannot be reduced to a growth process with random

growth rate, and therefore Gibrat’s law cannot be applied.



T T
InS; =InS§;, - (l/e(Sit))Zo-it =InS;, —(1/(e, —&,5; ))Zait
t=1 t=1

It shows that the central limit theorem and asymptotically normally distributed
production technology shock cannot derive lognormal distribution of size of city S,

when size elasticity of production is varied by city population.

The driving force of the equilibrium theory in Eeckhout (2004) to explain the
empirical size distribution of cities is mainly depending on a random productivity
process and free mobility of workers. A random productivity process could result in

proportionate growth of city size only if the size elasticity of production is constant.
5. Simulation Analysis

5.1  Experiment 1: the local size effect The growth rate of city population,

&> consists of the exogenous technology shock, o, and the parameters of local

size effect, 6 :

it :[1/(1+Gi,t)l/e]_l (14)
de,/do, =-L(1+0,) """ >0, ife <0
dgi,t/d Oi; = —+(1+ Ui,t)7(1+e>/e <0, ife>0

The influence of the exogenous technology shock on the city size growth rate depends
on the net local size effect. When the net local size effect is negative, cities with larger
technology shocks will have higher city population growth rate. This is consistent
with the theoretical result in Eeckhout (2004). If net local size effect is positive, it
implies that larger cities have greater externalities. Equilibrium will show an extreme

concentration of population.

Experiment 1 observes the relation between the exogenous technology shock, o,
and the growth rate of city size, ;. The functions of city growth given negative local
size effect, e, are shown in Figure 1.1~Figure 1.6. The city growth rate, &;  , is positively

related to the exogenous technology shock, o, 4 Bigger technology shocks promote

* 1+ 0;, >0 (see Eeckhout, 2004)



the productivity of local firms; higher profit of the city will lead to higher city growth
rate provided negative net local size effect. Moreover, the larger the influence of the
negative net local size affect, the smaller the city growth rate given the same shock.

Negative local externalities will hinder the growth of city.
5.2 Experiment 2: the mean of exogenous technology shock

The equilibrium size of cities at time t, S; ¢, is a function of the exogenous technology
shock and the local size effect. The influence of the exogenous technology shock on

city size is conditional on the net local size effect.

Si,t =K '(Ai,t—l(l + Gi,t))il/e (15)

ds, /doy, =—K-(1/e)A, />0, ife<0

When the net local size effect is negative, cities with larger technology shocks will have
larger cities. Bigger shocks lead to larger cities. This is consistent with the theoretical
result in Eeckhout (2004).

We simulate cities growth by various assumption of the distribution of exogenous
technology shock to investigate how the distribution of shocks affects the distribution
of cities. In experiment 2, different values of the mean of shocks are applied in the
simulations.

Figure 2.1~2.6 are the corresponding results given the mean of shock equals zero.
Figure 2.1 is the generated normal shock distribution given zero mean. Figure 2.2 is
the distribution of the derived city size growth rate, which is correlated to the
distribution of exogenous technology shock. Figure 2.3 is the corresponding evolution
of all cities. Figure 2.4 is the city size distribution at t=100, and Figure 2.5 is the city
size distribution at t=200. It is more skew to the right as time increase. Figure 2.6 is the
distribution of city size at t=200.

Figure 3.1~3.4 are the corresponding results given the mean of shock equals 0.06.
Figure 3.1 is the generated normal shock distribution. Figure 3.2 is the distribution of
the derived cities growth rate, which is correlated to the distribution of exogenous
technology shock. Figure 3.3 is the corresponding evolution of all cities. Figure 3.4 is
the city size distribution at t=200.

Figure 4.1~4.4 are the simulated results given the mean of shock equals 0.1. Figure
4.1 is the generated normal shock distribution. Figure 4.2 is the distribution of the
derived cities growth rate. Figure 4.3 is the corresponding evolution of all cities. Figure
4.4 is the city size distribution at t=200 and the fitted lognormal distribution. Both



estimated parameters are significantly different from zero within 1% significant level.’
It shows that an increase in the mean of shocks will move the distribution of city growth
rate to the right which accelerates the city growth; the inequality of cities is increased.
This simulated result confirms the theoretical result in Eeckhout (2004). A random

productivity process and local size effect could generate lognormal distributed cities.

5.3 Experiment 3: the standard deviations of exogenous technology shock

We simulate cities growth by varying the value of the standard deviations of the
distribution of exogenous technology shock. Given all the other parameters the same as
in simulations of Figure 3 (the standard deviation of shock is 0.1) , we decrease the
standard deviation of shock to 0.01.

Figure 5.1~5.4 are simulated results given the standard deviation of shock equals
0.01. Figure 5.1 is the generated normal shock distribution. Figure 5.2 is the distribution
of the derived cities growth rate. Figure 5.3 is the corresponding evolution of all cities.
Figure 5.4 is the city size distribution at t=200 and the fitted lognormal and normal
distributions.

Figure 6.1~6.4 are the results given the standard deviation of shock equals 0.001.
Figure 6.1 is the generated normal shock distribution. Figure 6.2 is the distribution of
the derived cities growth rate. Figure 6.3 is the corresponding evolution of all cities.
Figure 6.4 is the city size distribution at t=200 and the fitted lognormal and normal
distributions. Comparing to Figure 3, this experiment shows that, as the less the shocks
deviates, the less the city growth rate deviates; consequently, city size are more equally

distributed and the generated cities size distribution is less skew to the right.

5.4 Experiment 4: uniform distribution of exogenous technology shock

In this experiment, city size is simulated given the same parameter values as in
Figure 3 except that the distribution of shock is assumed to be uniform rather than
normal distribution as in Figure 3.

Figure 7.1~7.3 are the corresponding results based on the uniform distribution
assumption. Figure 7.1 is the generated shock distribution. Figure 7.2 is the distribution
of the derived cities growth rate which is influenced by the distribution of shock. Figure
7.3 is the corresponding evolution of all cities. The model of local externalities with
random productivity process in Eeckhout (2004) could generate lognormal distributed

cities conditional on the features of the distribution of the exogenous technology shock.

5.5 Experiment 5: Gini

The features of cities size distribution is determined by both the exogenous

5 1=15.542 (Std. Err.=0.135), §=1.358 (Std. Err. = 0.096)



technology shock, o;,, and the local size effect,0. In this experiment, we investigate

how exogenous technology shock and the local size effect affect the level of
concentration of cities. The Gini coefficient is applied to explain the level of
concentration of city size. We simulate the cities growth and fit the resulting size
distribution. From Cowell (1995), Gini index = 20(8/\2) — 1, where ®(x) is the
standard normal distribution with ®(x) = Prob(X < x). The range of the Gini coefficient
is between 0 (complete equality) and 1 (complete inequality). The greater the Gini
coefficient is, the more concentration of cities size. The simulated results are in Figure
8.

Figure 8.1 shows the relation between the local size effect 0 and the corresponding
estimated Gini coefficient with 95% confidence interval given that shocks are generated
from a uniform distribution. It shows that the Gini coefficient is increasing as the
absolute value of local size effect 6 is decreasing. The less the absolute values of the
negative local size effect, the more concentrate the cities size. The less the influence of
negative local size effect, the more concentrates the city population.

Figure 8.2 shows the relation between the local size effect 0 and the corresponding

estimated Gini coefficient with 95% confidence interval given that shocks are
generated from normal distribution with §,=0.5; the other condition are the same as in
Figure 8.1 . Similarly to the result in Figure 8.1, the Gini coefficient is increasing as the
absolute value of local size effect 0 is decreasing. The less the influence of the negative
local size effect, the more concentrates the cities’ population.
Figure 8.3 shows the relation between the local size effect 6 and the corresponding
estimated Gini coefficient with 95% confidence interval given that the shocks are
generated from normal distribution with a smaller standard deviation §,=0.3. Similarly
to the previous results, the Gini coefficient is increasing as the absolute value of local
size effect 0 is decreasing. Comparing to Figure 8.2, the standard deviation of
exogenous technology shock §,is smaller. The change of the standard deviation of
exogenous technology shock does not affect the sign of their relation.

Figure 8.2~8.3 shows that greater influence of the negative local externalities will

decentralize cities’ population.

Figure 8.4 shows the relation between the standard deviation of exogenous
technology shock &, and the corresponding estimated Gini coefficient with 95%
confidence interval given e =-1.1. The Gini coefficient is increasing as the standard
deviation of shock is increasing. The more the exogenous technology shock deviated,
the more concentrate cities population. The less the technology shock deviated; the

more decentralized the city population.



Figure 8.5 is the relation between the estimated Gini coefficient with 95%
confidence interval and the standard deviation of exogenous technology shock 4,
given e = -2. Comparing to Figure 8.5, a change in the net local size effect does not
change the positive relation between Gini and the standard deviation of exogenous
technology shock d,. The relation of the level of concentration of cities population and
the deviation of shock is not sensitive to the change of the net local size effect.

Figure 8.6 shows the relation between the estimated Gini coefficient with 95%
confidence interval and the mean of exogenous technology shock p,. We do not see a
systematic relation between mean of exogenous technology shock and the level of

concentration of cities population.
6 Congestion cost and the level of concentration

The size elasticity of production, parameter € in equation (4), is composed of the
positive local externalities as knowledge spillover and the negative local externalities
as congestion and transport cost. It is a net effect of positive and negative externalities.
In the theory, the size elasticity of production is crucial in determining motion and
resulting size distribution of cities. Change of congestion cost affects the growth
process of cities, and consequently the size distribution of cities.

We simulate the growth of city population based on the model in Eeckhout (2004)
to examine the relation between the size elasticity of production and the resulted city
sizes distribution. The equilibrium city size is determined by city-specific technology
shock and local externalities. In the simulation, technology shock and positive local
externalities are exogenous. The technology shock is symmetric and identically
independently distributed. The equilibrium city sizes and the growth of cities are
endogenously determined in the model given various negative local externality denoted
as transport cost in the size elasticity of production

Further, the Gini coefficient is applied to measure concentration of population
across cities. The growths of size of cities are simulated and the corresponding Gini
coefficient of the resulting size distribution of cities is estimated.®

The simulated result is in Figure 9. Larger value of the Gini coefficient represents
more concentrate among cities; on the contrary, smaller value of Gini denotes a more
evenly distributed cities population across cities. The size of cities is identical if the
Gini coefficient is 0, and the size of cities is perfectly unequal if the Gini coefficient is
1. Figure 1 shows the relation between congestion cost and the corresponding estimated

Gini coefficient. The trend in figure shows that the larger the congestion cost, the

6 Gini index = 2d(8/N2) — 1, where ®(x) is the standard normal distribution with ®(x) = Prob(X < x).
(Cowell, 1995)



smaller the estimated Gini. An increase of congestion cost may lead to more evenly
distributed cities population; on the other hand, a decrease of congestion cost increases
the advantage of agglomeration which may raise the size of large cities in the region;

the degree of inequality of city size will increase.

7 Conclusion

In this paper, the relation between the exogenous technology shock, and the growth
rate of city size, conditional on the local size effect, is investigated. Growth of cities is
simulated given various parameter of the distribution of exogenous technology shock
to investigate how the distribution of shocks affects the distribution of cities. Cities
growth is simulated given different value of the standard deviations or the mean of the
exogenous technology shock; moreover, cities growth is simulated given different
assumption distribution. Finally, we investigate how exogenous technology shock and
the local size effect affect the level of concentration of cities. The Gini coefficient is
applied to explain the level of concentration of cities size. The relation is investigated
by various assumption of distribution, the values of mean and standard deviation of
exogenous technology shock, and local size effect.

The simulation result shows that the city growth rate is positively related to the
exogenous technology shock, given negative net local size effect. This is consistent
with the theoretical result in Eeckhout (2004). The greater the exogenous technology
shock, the greater the city growth rate. Bigger technology shocks promote the
productivity of local firms, and lead to higher city growth rate provided negative net
local size effect. The larger the absolute value of the net local size effect, the smaller
the city growth rate. Smaller influence of the negative net local size effect will
accelerate city growth rate. Negative local externalities will hinder the growth of city.

An increase in the mean of shocks will increase city growth rate, and subsequently
the inequality of cities is increased. The less the shocks deviates, the less the city
growth rate deviates; consequently, city size are more equally distributed and the
generated cities size distribution is less skew to the right. The distribution of shocks
affects the distribution of city growth rate and city size. Uniformly distributed shocks
will lead to more evenly distributed cities. The model of local externalities with random
productivity process in Eeckhout (2004) could generate lognormal distributed cities
conditional on the features of the distribution of the exogenous technology shock.

The Gini coefficient is increasing as the absolute value of local size effect is
decreasing. The less the influence of the negative local size effect, the more
concentrates the city size. Bigger influence of the negative local externalities will
decentralize cities’ population. The Gini coefficient is increasing as the standard

deviation of exogenous technology shock is increasing. The more the exogenous



technology shock deviated, the more city size concentrates. The less the technology
shock deviated; the more decentralized the city population.

A change in the net local size effect does not change the positive relation between
Gini and the standard deviation of exogenous technology shock. The relation of the
level of concentration of cities population and the deviation of shock is not sensitive to
the change of the net local size effect. We do not see a systematic relation between the
mean of exogenous technology shock and the level of concentration of cities population.
Smaller negative local externalities or more diverge technology shock could generate
bigger cities. We also finds that the theory implies that larger shocks lead to larger cities
when the size elasticity of production is negative; larger productivity shocks lead to
bigger cities if the congesting cost dominates the net local externalities. Moreover, an

increase of congestion cost will lead to more evenly distributed cities.
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This research verifies the theoretical result in Eeckhout (2004)
empirically and shows the limit of the theory. We find that the
theory could generate a lognormal distribution conditional on the
features of the distribution of the exogenous technology shock. Both
the productivity parameter and the local externalities are crucial
in city size distribution. This research investigates the i1ssue
generally; in the future, both key variables could be examined more
specifically by industries.
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