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中 文 摘 要 ： Eeckhout (2004)提出的外部經濟的一般均衡理論可解釋都市的人口
分布以及都市成長的特質。模型中的生產力參數與地方外部性是推
導出都市人口分布以及都市人口成長特質的關鍵。本研究的目的是
探討生產力參數與地方外部性如何影響人口成長率；這兩個變數如
何影響都市人口分布；以及人口的極限分布情形。研究結果顯示
，在控制了外生技術衝擊變數的分布特質下，此理論可推導出對數
常態分布。在特定的外生技術衝擊變數範圍內，以及負的地方外部
效果條件下，都市人口成長率與外生技術衝擊變數成正向相關。在
同樣的外生技術衝擊變數下，地方外部效果的絕對值越大，都市人
口成長率越小。當地方外部效果的絕對值遞減時，吉尼係數遞增。
地方外部效果的絕對值越小，都市人口越集中分佈。外生技術衝擊
變數分佈的標準差越大，吉尼係數越大，表示外生技術衝擊變數越
分散，都市人口分佈越集中。

中文關鍵詞： 關鍵字：地方外部性、產出的都市人口彈性、外生技術衝擊變數

英 文 摘 要 ： An equilibrium theory of local externalities proposed in
Eeckhout (2004) explains both empirical size distribution
of cities and empirical regularity of cities growth.  Both
the productivity parameter and the local externalities in
theory are crucial in deriving the proportionate growth
process of cities and the subsequently limiting lognormal
distributions. The purpose of this paper is to investigate
how the productivity parameter and local externalities
affect the growth rate of cities, to examine how these two
factors affect the distribution of cities, and to verify
the feature of the resulting distribution of cities.  The
result shows that the theory could generate a lognormal
distribution conditional on the features of the
distribution of the exogenous technology shock. The city
growth rate is positively related to the exogenous
technology shock given a range of the exogenous technology
shock and negative local size effect. The larger the
absolute value of the local size effect, the smaller the
city growth rate given the same exogenous technology shock.
The Gini coefficient is increasing as the absolute value of
local size effect is decreasing; the less the absolute
values of the negative local size effect, the more
concentrate the city’s population. The Gini coefficient is
increasing as the standard deviation of exogenous
technology shock is increasing; the more the exogenous
technology shock deviated, the more cities size
concentrates.

英文關鍵詞： Keywords: local Externalities, size elasticity of
production, exogenous technology shock



Local externalities and city distribution 

 

 

 

Abstract 

 

An equilibrium theory of local externalities proposed in Eeckhout (2004) explains both 

empirical size distribution of cities and empirical regularity of cities growth.  Both the 

productivity parameter and the local externalities in theory are crucial in deriving the 

proportionate growth process of cities and the subsequently limiting lognormal 

distributions. The purpose of this paper is to investigate how the productivity parameter 

and local externalities affect the growth rate of cities, to examine how these two factors 

affect the distribution of cities, and to verify the feature of the resulting distribution of 

cities.  The result shows that the theory could generate a lognormal distribution 

conditional on the features of the distribution of the exogenous technology shock. The 

city growth rate is positively related to the exogenous technology shock given a range 

of the exogenous technology shock and negative local size effect. The larger the 

absolute value of the local size effect, the smaller the city growth rate given the same 

exogenous technology shock. The Gini coefficient is increasing as the absolute value 

of local size effect is decreasing; the less the absolute values of the negative local size 

effect, the more concentrate the city’s population. The Gini coefficient is increasing as 

the standard deviation of exogenous technology shock is increasing; the more the 

exogenous technology shock deviated, the more cities size concentrates. 
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摘要 

 

 

Eeckhout (2004)提出的外部經濟的一般均衡理論可解釋都市的人口分布以及

都市成長的特質。模型中的生產力參數與地方外部性是推導出都市人口分布

以及都市人口成長特質的關鍵。本研究的目的是探討生產力參數與地方外部

性如何影響人口成長率；這兩個變數如何影響都市人口分布；以及人口的極

限分布情形。研究結果顯示，在控制了外生技術衝擊變數的分布特質下，此

理論可推導出對數常態分布。在特定的外生技術衝擊變數範圍內，以及負的

地方外部效果條件下，都市人口成長率與外生技術衝擊變數成正向相關。在

同樣的外生技術衝擊變數下，地方外部效果的絕對值越大，都市人口成長率

越小。當地方外部效果的絕對值遞減時，吉尼係數遞增。地方外部效果的絕

對值越小，都市人口越集中分佈。外生技術衝擊變數分佈的標準差越大，吉

尼係數越大，表示外生技術衝擊變數越分散，都市人口分佈越集中。 
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1. Introduction 

 

 Location decisions of residents and firms define the dynamic process of cities 

population across cities and its resulting distribution. The economic factors are the 

crucial driving force in location decision of household and firm.  Economic activities 

affect the mobility of population across cities greatly.  The pattern of city size 

distribution is a consequence of the evolution of cities. Analyzing population evolution 

and distribution help to understand the underlying economic mechanisms, and the 

information of population mobility and the driving force provide essential knowledge 

for regional policy making.  

 Blank and Solomon (2000) and Xavier Gabaix (1999) show that a proportionate 

growth process can generate a Pareto distribution at the upper tail. Blank and Solomon 

(2000) finds that the creation of new cities and the entering process are the crucial rules 

for the resulting limiting distribution.  

Eeckhout (2004) uses Census 2000 data to investigate the empirical size 

distribution of cities. It shows that un-truncated data of cities is lognormal distribution, 

and the difference between the density distribution of the lognormal and the Pareto are 

not dramatic at the very upper tail of the distribution.  The lognormal distribution of 

cities is consistent with a proportionate growth process which is one of the empirical 

regularities regarding the size distribution of cities. This empirical analysis supports the 

hypothesis that the process of the growth of cities size satisfies Gibrat’s proposition.  

Eeckhout (2004) proposes a general equilibrium theory of local externalities to explain 

the underlying mechanism of the evolution of size distribution. The local externalities 

like those in Lucas and Rossi-Hansberg (2002) include both positive production 

externalities and negative consumption externalities. The local externalities affect the 

population within a city: firms benefit knowledge spillovers and workers bear greater 

commuting cost in larger cities. It shows that economic forces drive population mobility, 

and provides an empirically consistent theory.  This general equilibrium theory 

generates a proportionate growth of city size, and leads to a lognormal distribution 

anticipated by Gibrat (1931).   

 In Ioannides and Skouras (2013), city size distributions is examined by three 

different definitions of US cities including the US Census Places data, which is also 

used in Eeckhout (2004) and Levy (2009). They find that a Pareto distribution robustly 

fits the upper tail of the distribution of cities; rather, the body of the distribution suits a 

lognormal distribution.  Eeckhout (2009) shows that data generated from a lognormal 

distribution have tails similar to a Pareto distribution. Malevergne, Pisarenko, 

and Sornette (2011) applies an unbiased test to investigate city size distributions 

between a lognormal and a Pareto distribution regarding to the debate between 



Eeckhout (2004,2009) and Levy (2009). They state that the Pareto distribution 

hypothesis is accepted for the tail of city size distribution. Berry and Okulicz-Kozaryn 

(2012) finds that growth process of US cities consists with Gibrat’s Law.  

Bee, Riccaboni, and Schiavo (2013) examines the distribution by multiple tests on real 

data and the result supports lognormal rather than Pareto.  Lee, and Li (2013) proposes 

a model generating city size distributions that asymptotically follow the log-normal 

distribution and it is consistent with Pareto distribution in the top tail. Veneri (2013) 

shows that Pareto distribution does not fit well with the cities data defined by traditional 

administrative.  

These literatures show that that body of distribution of cities consists with a 

lognormal distribution; however, the upper tail of the distribution fits a lognormal or a 

Pareto distribution depending on the definition of cities. Overall, a lognormal 

distribution describes the un-truncated data better than a Pareto for the whole range of 

data; a Pareto can only fit the very upper tail of the data. Moreover, a lognormal 

distribution of cities is consistent with the empirical regularity of proportionate city 

growth. There is no dramatic difference between the density distribution of the 

lognormal and the Pareto at the upper tail of the distribution.  

The proposed general equilibrium theory of local externalities in Eeckhout (2004) 

can generate both the empirically verified lognormal distribution and the empirical 

regularity: proportionate growth of cities.  Both the productivity parameter and the 

local externalities in theory are crucial in deriving the proportionate growth process of 

cities and the subsequent lognormal distributions. The exogenous technology shock 

assumed in the productivity technological advancement and the local externalities in 

firm’s production function and consumer’s budget constraint determines the growth 

rate of cities. The growth rate of cities characterizes the growth process of cites, and 

consequently the growth process of cities determines the city size distributions.   

The purpose of this paper is to explore the feature of the general equilibrium 

theory in Eeckhout (2004) empirically: to investigate how the productivity parameter 

and local externalities affect the growth rate of cities, to examine how these two factors 

affect the distribution of cities, and to verify the feature of the resulting distribution of 

cities. We first analyze the relation of the exogenous technology shock, local 

externalities and the growth rate of cities; and simulate the growth process of cities 

given various assumptions of net local externalities and the distribution of the 

exogenous technology shock; and finally explore the relations of the net local 

externalities, feature of the distribution of the exogenous technology shock, and the 

corresponding Gini coefficient.  

 

 



 

2. The theory in Eeckhout (2004)  

The empirical work of this paper is based on the general equilibrium theory of 

local externalities in Eeckhout (2004), which is introduced in this section briefly. Please 

see the paper for detail.  

In the general equilibrium theory of Eeckhout (2004), the labor market in city is 

perfectly competitive and the labor is perfectly mobile among cities; firm maximizes 

profit solving the wage rate ,i tw equals to the marginal product.  Workers are endowed 

with one unit of leisure, which can be employed as labor. Each worker devotes 

, [0,1]i tl   amount of labor and ,(1 )i tl amount of leisure.  

The productivity technology effect of city ݅ at time t is assumed to follow the 

random process: , , 1 ,(1 )i t i t i tA A   . The parameter ,i t  denotes an exogenous 

technology shock for each city at time t. 1  The marginal product ,i ty  per worker 

contains the productivity parameter, ,i tA , and a positive local externality, ,( )i ta S , in city 

i of size ,i tS : , , ,( )i t i t i ty A a S , where ,' ( ) 0i ta S  .2 The amount of land in a city is 

fixed and denoted by H. The price of land is ,i tp , and a citizen consumes the amount of 

land ,i th . Assume there is negative commuting externality; a fraction of labor ,( )i ta S  

is devoted to commuting.   

Given size of city, consumers maximize utility subject to the budget constraint and 

resolve the equilibrium allocation * * *
, , ,( , , )i t i t i tc h l and price * *

, ,( , )i t i tp w . 

Max. 1
, , , , , ,( , , ) (1 )i t i t i t i t i t i tu c h l c h l          

s.t. , , , , , ,( )i t i t i t i t i t i tc p h w a S l   where , , (0,1).       

Perfect mobility of labors resolves the same equilibrium utility level: 

                                                       
1  This city‐specific technology shock is assumed to be symmetric and identically independently 

distributed, and (1+ ,i t )>0 (see Eeckhout, 2004) 
2  The positive local externality indicates a positive external effect such as knowledge spilling effect. 



* *
, ,( ) ( )i t j tu S u S U              

This suggests: /
, , , ,( ) ( )i t i t i t i tA a S a S S K 

   ,                        (1) 

Let /
, , , ,( ) ( ) ( )i t i t i t i tS a S a S S  

   indicates the net local size effect.          

The motion of city population is derived as the proportionate growth in Eeckhout 

(2004). 

1
, , , 1 , , 11/ (1 ) (1 )i t i t i t i t i tS S S 

         ,                          (2) 

Assume the local externalities  is power function: 

, ,( ) c
i t i ta S S  and , ,( ) d

i t i ta S S 
  . 

Then the net local size effect becomes: 

/
, , ,( ) c d e

i t i t i tS S S                                               (3) 

The output per worker becomes 

/
,

c d e
it it i t it itY A S A S    ,                       (4) 

Where parameter c denotes the positive local externality as knowledge spillover effect; 

parameter d denotes the negative local externality as congestion costs which decrease 

output with elasticity d with respect to city population; we define parameter e as the 

size elasticity of production in the local externality which is the net effect of positive 

and negative externalities. Let the negative externality denote congestion cost. The 

larger the congestion costs, the smaller the local externality. 

After normalizing equalized equilibrium utility to unity, the equilibrium size of 

city is composed of technology shock and local externality:            

1 1[(1 ) ] (1 )k k k
it it it it it itS A A S                          

where 1/k e  .  

1lnS ln lnSit it it itk A k    

1 0
1

ln ln
T

it it i it
t

S k S k 


     

When the technology shock is small enough: 

0
1

ln ln
T

it i it
t

S S k 


                           

where the parameter k is a function of the size elasticity of production which is assumed 
to be a constant. The exogenous technology shock itq  is identically independently 



distributed as in Gibrat’s law (Gibrat, 1931). By the central limit theorem, after t period 

of time, ln itN  is asymptotically normally distributed, and the size distribution of city

itN becomes lognormal.3  

From equation (5), we have 

/ 0, 0it itdS d if e    

/ 0, 0it itdS d if e    

Larger shocks will lead to larger cities if the size elasticity of production is negative. 

The size elasticity of production is tending to be negative if the congestion cost from 

congestion is very large. On the other hand, larger shocks will lead to smaller cities if 

the size elasticity of production is positive. The size elasticity of production is tending 

to be positive if the congestion cost from congestion is very small. 

The local externality in Eeckhout (2004) is assumed to be negative. The positive 

externality is required to be less than the negative externality to prevent an ever 

increasing city size.  On the other hand, if the local externality is positive, the limiting 

distribution of city sizes would become extremely unequal, all population will 

concentrate in one largest city due to the advantage of positive agglomeration effect.  

It is crucial to fix the number of cities with a negative local size effect, otherwise 

workers will move to new places given the disadvantage of agglomeration and result in 

no cities since dispersion force always dominates agglomeration force. 

The derived growth process of the size of cities is proportionate with a stochastic 

growth rate as Gibrat's law: 

, , , 1 , 1( ) /i t i t i t i tS S S    .                   (5) 

Let ,i t be an identically and independently distributed exogenous random variable 

with mean g and standard deviation ; and ,i t and , 1i tS  is uncorrelated. 

3. The extended model: 

The growth rate of city population, ,i t , is a function of the exogenous technology 

shock, ,i t , and the parameters of local size effect, ( / )e c d     :  

1/
, ,[1/(1 ) ] 1e

i t i t                            (6) 

(1 ) /1
, , ,(1 ) 0, 0e e

i t i t i ted d ife          

The influence of the exogenous technology shock on the city growth rate is depending 

                                                       
3  The city-specific technology shock is symmetric and identically independently distributed and small  



on the net local size effect. When the net local size effect is negative, larger shocks will 

lead to greater cities growth rate.  

The equilibrium size of cities at time t, ,i tS , is composed of the exogenous 

technology shock and the parameters of local size effect. The effect of the exogenous 

technology shock on city size depends on the net local size effect.  

1/
, , 1 ,( (1 )) e

i t i t i tS K A  
                                (7) 

(1/ ) 1
, , ,/ (1/ ) 0, 0e

i t i t i tdS d K e A if e        

When the net local size effect is negative, larger shock will lead to larger cities.   

 

4. Local externality  

 

In equation (3), parameter e is the size elasticity of production in the local 

externality. It denotes the net local externality that net agglomeration economies 

changes output with elasticity e with respect to city size. It is the net result from 

positive local externality such as knowledge spillover and the negative local 

externality such as congestion cost. The larger the congestion cost the smaller the net 

local externality. 

In section 2, the size elasticity of production is a constant, a negative net local 

externality will lead to domination of dispersion forces; on the other hand, a positive 

net local externality will result in only one largest city in the region. The fact that 

region with only one largest city or with completely dispersed populations are two 

extreme cases which are not in reality.  This suggests that initially agglomeration 

force may dominate as the population increases and dispersion force will dominate 

eventually due to increasing congestion cost. The indirect utility function of city may 

be a concave and non-monotonic function of population; it is eventually diminishing 

with city size. This proposes that size elasticity of production may varied by size of 
city rather than to be a constant, ( )ite S . Let both positive and negative local 

externalities be functions of city size, the net local externality becomes: 

( )( ) ( ) ( ) ite S
it it it itS a S a S S                     (8) 

The output per worker and the motion of city size become 

 

( )ite S
it it itY A S ,                          (9) 

 



0
1

ln ln (1/ ( ))
T

it i it it
t

S S e S 


                     (10) 

In this case, the motion of city size shows that the growth rate of city size varied 

by city size. This implies that growth of city size is not proportionate. Consequently, 

the central limit theorem and identically independently distributed technology shock 

condition cannot be applied to generate lognormal size distribution of city as in previous 

case. The size distribution of cities depends on the attribute of size elasticity of 

production in the local externality. In this case, the theory of local economies and the 

mobility of workers cannot explain the empirical size distribution of cities.   

( ) 1/ ( )it it itk S e S k   . 

1/
1 1( ) it ite k

it it it it itS S S 
                     (11) 

Let the size elasticity of production be a linear function of city size: 

1 2( )it it ite e S e e S   , 0e   when 1 2/itS e e  

The indirect utility function becomes: 

 1 2( ) ( ( )) ( )ite e S
it it it it itv S h A S h A S                      (12) 

1 11 1
1 2/ ( ) ( )it it ite e e

it it it it it it it it itdv dS e e S h A S S e hA S          

/ 0, 0it it itdv dS if e   

/ 0, 0it it itdv dS if e   

The maximized utility rises as the city population increases given a positive size 

elasticity of production; on the contrary, the maximized utility decreases as the city 

population reduces given a negative size elasticity of production. 

 1 22 2 2 1/ [ ( 1)( ) ( 1)( ) ]it it it ite e e e
it it it it it it it it it it itd v dS e h e A S S e A S S            

It is allowed that the indirect utility function of city be a concave and non-monotonic 

function of population. 

2 2

2 2

/ 0, 0

/ 0, 0

it it it

it it it

d v dS if e

d v dS if e

 

 
 

After normalizing equalized equilibrium utility to unity, the equilibrium size of 

city becomes:            

1/
1 1(1 ) (1 )it ite k

it it it it itS q S q S
                      (13) 

where 2 11/ 1/( ) 1/it it it itk e e S e S     .  

The growth process of city size cannot be reduced to a growth process with random 

growth rate, and therefore Gibrat’s law cannot be applied.  



0 0 1 2
1 1

ln ln (1/ ( )) ln (1/( ))
T T

it i it it i it it
t t

S S e S S e e S 
 

               

It shows that the central limit theorem and asymptotically normally distributed 

production technology shock cannot derive lognormal distribution of size of city itS

when size elasticity of production is varied by city population.  

 The driving force of the equilibrium theory in Eeckhout (2004) to explain the 

empirical size distribution of cities is mainly depending on a random productivity 

process and free mobility of workers. A random productivity process could result in 

proportionate growth of city size only if the size elasticity of production is constant.  

 

5. Simulation Analysis 

 

5.1 Experiment 1: the local size effect  The growth rate of city population,

,i t , consists of the exogenous technology shock, ,i t , and the parameters of local 

size effect,  :  

1/
, ,[1/(1 ) ] 1e

i t i t                           (14) 

(1 ) /1
, , ,e (1 ) 0, 0e e

i t i t i td d ife          

(1 ) /1
, , ,e (1 ) 0, 0e e

i t i t i td d ife          

The influence of the exogenous technology shock on the city size growth rate depends 

on the net local size effect.  When the net local size effect is negative, cities with larger 

technology shocks will have higher city population growth rate.  This is consistent 

with the theoretical result in Eeckhout (2004).  If net local size effect is positive, it 

implies that larger cities have greater externalities. Equilibrium will show an extreme 

concentration of population. 

Experiment 1 observes the relation between the exogenous technology shock, ,i t , 

and the growth rate of city size, ,i t . The functions of city growth given negative local 

size effect,e , are shown in Figure 1.1~Figure 1.6. The city growth rate, ,i t , is positively 

related to the exogenous technology shock, ,i t .4 Bigger technology shocks promote 

                                                       
4  1+ ,i t >0 (see Eeckhout, 2004) 



the productivity of local firms; higher profit of the city will lead to higher city growth 

rate provided negative net local size effect.  Moreover, the larger the influence of the 

negative net local size affect, the smaller the city growth rate given the same shock.  

Negative local externalities will hinder the growth of city. 

 

5.2 Experiment 2: the mean of exogenous technology shock  

 

The equilibrium size of cities at time t,	 ௜ܵ,௧, is a function of the exogenous technology 

shock and the local size effect.  The influence of the exogenous technology shock on 

city size is conditional on the net local size effect.  

1/
, , 1 ,( (1 )) e

i t i t i tS K A  
                                        (15) 

1/ 1
, , ,/ (1/ ) 0, 0e

i t i t i tdS d K e A if e        

When the net local size effect is negative, cities with larger technology shocks will have 

larger cities. Bigger shocks lead to larger cities. This is consistent with the theoretical 

result in Eeckhout (2004). 

 We simulate cities growth by various assumption of the distribution of exogenous 

technology shock to investigate how the distribution of shocks affects the distribution 

of cities.  In experiment 2, different values of the mean of shocks are applied in the 

simulations. 

Figure 2.1~2.6 are the corresponding results given the mean of shock equals zero. 

Figure 2.1 is the generated normal shock distribution given zero mean.  Figure 2.2 is 

the distribution of the derived city size growth rate, which is correlated to the 

distribution of exogenous technology shock. Figure 2.3 is the corresponding evolution 

of all cities. Figure 2.4 is the city size distribution at t=100, and Figure 2.5 is the city 

size distribution at t=200. It is more skew to the right as time increase. Figure 2.6 is the 

distribution of city size at t=200.  

Figure 3.1~3.4 are the corresponding results given the mean of shock equals 0.06. 

Figure 3.1 is the generated normal shock distribution. Figure 3.2 is the distribution of 

the derived cities growth rate, which is correlated to the distribution of exogenous 

technology shock. Figure 3.3 is the corresponding evolution of all cities. Figure 3.4 is 

the city size distribution at t=200.  

Figure 4.1~4.4 are the simulated results given the mean of shock equals 0.1. Figure 

4.1 is the generated normal shock distribution. Figure 4.2 is the distribution of the 

derived cities growth rate. Figure 4.3 is the corresponding evolution of all cities. Figure 

4.4 is the city size distribution at t=200 and the fitted lognormal distribution. Both 



estimated parameters are significantly different from zero within 1% significant level.5 

It shows that an increase in the mean of shocks will move the distribution of city growth 

rate to the right which accelerates the city growth; the inequality of cities is increased. 

This simulated result confirms the theoretical result in Eeckhout (2004).  A random 

productivity process and local size effect could generate lognormal distributed cities.  

 

5.3 Experiment 3: the standard deviations of exogenous technology shock 

We simulate cities growth by varying the value of the standard deviations of the 

distribution of exogenous technology shock. Given all the other parameters the same as 

in simulations of Figure 3（the standard deviation of shock is 0.1）, we decrease the 

standard deviation of shock to 0.01. 

Figure 5.1~5.4 are simulated results given the standard deviation of shock equals 

0.01. Figure 5.1 is the generated normal shock distribution. Figure 5.2 is the distribution 

of the derived cities growth rate. Figure 5.3 is the corresponding evolution of all cities. 

Figure 5.4 is the city size distribution at t=200 and the fitted lognormal and normal 

distributions.  

Figure 6.1~6.4 are the results given the standard deviation of shock equals 0.001. 

Figure 6.1 is the generated normal shock distribution. Figure 6.2 is the distribution of 

the derived cities growth rate. Figure 6.3 is the corresponding evolution of all cities. 

Figure 6.4 is the city size distribution at t=200 and the fitted lognormal and normal 

distributions. Comparing to Figure 3, this experiment shows that, as the less the shocks 

deviates, the less the city growth rate deviates; consequently, city size are more equally 

distributed and the generated cities size distribution is less skew to the right.  

   

5.4 Experiment 4: uniform distribution of exogenous technology shock 

In this experiment, city size is simulated given the same parameter values as in 

Figure 3 except that the distribution of shock is assumed to be uniform rather than 

normal distribution as in Figure 3. 

Figure 7.1~7.3 are the corresponding results based on the uniform distribution 

assumption. Figure 7.1 is the generated shock distribution. Figure 7.2 is the distribution 

of the derived cities growth rate which is influenced by the distribution of shock. Figure 

7.3 is the corresponding evolution of all cities. The model of local externalities with 

random productivity process in Eeckhout (2004) could generate lognormal distributed 

cities conditional on the features of the distribution of the exogenous technology shock. 

 

5.5 Experiment 5: Gini 

The features of cities size distribution is determined by both the exogenous 

                                                       
5   ,(Std. Err.=0.135) 15.542=ߤ̂  መ=1.358 (Std. Err. = 0.096)ߜ



technology shock, ,i t , and the local size effect,θ. In this experiment, we investigate 

how exogenous technology shock and the local size effect affect the level of 

concentration of cities. The Gini coefficient is applied to explain the level of 

concentration of city size. We simulate the cities growth and fit the resulting size 

distribution. From Cowell (1995), Gini index = 2Φ(δ /√2) – 1, where Φ(x) is the 

standard normal distribution with Φ(x) = Prob(X < x). The range of the Gini coefficient 

is between 0 (complete equality) and 1 (complete inequality). The greater the Gini 

coefficient is, the more concentration of cities size.  The simulated results are in Figure 

8.  

Figure 8.1 shows the relation between the local size effect θ and the corresponding 

estimated Gini coefficient with 95% confidence interval given that shocks are generated 

from a uniform distribution. It shows that the Gini coefficient is increasing as the 

absolute value of local size effect θ is decreasing. The less the absolute values of the 

negative local size effect, the more concentrate the cities size. The less the influence of 

negative local size effect, the more concentrates the city population. 

Figure 8.2 shows the relation between the local size effect θ and the corresponding 

estimated Gini coefficient with 95% confidence interval given that  shocks are 

generated from normal distribution with ߜఙ=0.5; the other condition are the same as in 

Figure 8.1 . Similarly to the result in Figure 8.1, the Gini coefficient is increasing as the 

absolute value of local size effect θ is decreasing. The less the influence of the negative 

local size effect, the more concentrates the cities’ population. 

Figure 8.3 shows the relation between the local size effect θ and the corresponding 

estimated Gini coefficient with 95% confidence interval given that the shocks are 

generated from normal distribution with a smaller standard deviation ߜఙ=0.3. Similarly 

to the previous results, the Gini coefficient is increasing as the absolute value of local 

size effect θ is decreasing. Comparing to Figure 8.2, the standard deviation of 

exogenous technology shock ߜఙis smaller. The change of the standard deviation of 

exogenous technology shock does not affect the sign of their relation.  

Figure 8.2~8.3 shows that greater influence of the negative local externalities will 

decentralize cities’ population. 

  

Figure 8.4 shows the relation between the standard deviation of exogenous 

technology shock ߜఙ  and the corresponding estimated Gini coefficient with 95% 

confidence interval given	݁	=-1.1.  The Gini coefficient is increasing as the standard 

deviation of shock is increasing. The more the exogenous technology shock deviated, 

the more concentrate cities population. The less the technology shock deviated; the 

more decentralized the city population.  



Figure 8.5 is the relation between the estimated Gini coefficient with 95% 

confidence interval and the standard deviation of exogenous technology shock ߜఙ 

given	݁	= -2. Comparing to Figure 8.5, a change in the net local size effect does not 

change the positive relation between Gini and the standard deviation of exogenous 

technology shock ߜఙ. The relation of the level of concentration of cities population and 

the deviation of shock is not sensitive to the change of the net local size effect.  

Figure 8.6 shows the relation between the estimated Gini coefficient with 95% 

confidence interval and the mean of exogenous technology shock	ߤఙ. We do not see a 

systematic relation between mean of exogenous technology shock and the level of 

concentration of cities population.  

 

6 Congestion cost and the level of concentration   

 

The size elasticity of production, parameter e in equation (4), is composed of the 

positive local externalities as knowledge spillover and the negative local externalities 

as congestion and transport cost. It is a net effect of positive and negative externalities. 

In the theory, the size elasticity of production is crucial in determining motion and 

resulting size distribution of cities. Change of congestion cost affects the growth 

process of cities, and consequently the size distribution of cities.  

We simulate the growth of city population based on the model in Eeckhout (2004) 

to examine the relation between the size elasticity of production and the resulted city 

sizes distribution. The equilibrium city size is determined by city-specific technology 

shock and local externalities.  In the simulation, technology shock and positive local 

externalities are exogenous. The technology shock is symmetric and identically 

independently distributed. The equilibrium city sizes and the growth of cities are 

endogenously determined in the model given various negative local externality denoted 

as transport cost in the size elasticity of production 

Further, the Gini coefficient is applied to measure concentration of population 

across cities. The growths of size of cities are simulated and the corresponding Gini 

coefficient of the resulting size distribution of cities is estimated.6  

The simulated result is in Figure 9.  Larger value of the Gini coefficient represents 

more concentrate among cities; on the contrary, smaller value of Gini denotes a more 

evenly distributed cities population across cities. The size of cities is identical if the 

Gini coefficient is 0, and the size of cities is perfectly unequal if the Gini coefficient is 

1. Figure 1 shows the relation between congestion cost and the corresponding estimated 

Gini coefficient. The trend in figure shows that the larger the congestion cost, the 

                                                       
6  Gini index = 2Φ(δ/√2) – 1, where Φ(x) is the standard normal distribution with Φ(x) = Prob(X < x). 
(Cowell, 1995) 



smaller the estimated Gini. An increase of congestion cost may lead to more evenly 

distributed cities population; on the other hand, a decrease of congestion cost increases 

the advantage of agglomeration which may raise the size of large cities in the region; 

the degree of inequality of city size will increase.    

 

7 Conclusion 

In this paper, the relation between the exogenous technology shock, and the growth 

rate of city size, conditional on the local size effect, is investigated. Growth of cities is 

simulated given various parameter of the distribution of exogenous technology shock 

to investigate how the distribution of shocks affects the distribution of cities.  Cities 

growth is simulated given different value of the standard deviations or the mean of the 

exogenous technology shock; moreover, cities growth is simulated given different 

assumption distribution. Finally, we investigate how exogenous technology shock and 

the local size effect affect the level of concentration of cities. The Gini coefficient is 

applied to explain the level of concentration of cities size. The relation is investigated 

by various assumption of distribution, the values of mean and standard deviation of 

exogenous technology shock, and local size effect.  

The simulation result shows that the city growth rate is positively related to the 

exogenous technology shock, given negative net local size effect. This is consistent 

with the theoretical result in Eeckhout (2004). The greater the exogenous technology 

shock, the greater the city growth rate.  Bigger technology shocks promote the 

productivity of local firms, and lead to higher city growth rate provided negative net 

local size effect.  The larger the absolute value of the net local size effect, the smaller 

the city growth rate.  Smaller influence of the negative net local size effect will 

accelerate city growth rate.  Negative local externalities will hinder the growth of city.   

An increase in the mean of shocks will increase city growth rate, and subsequently 

the inequality of cities is increased.  The less the shocks deviates, the less the city 

growth rate deviates; consequently, city size are more equally distributed and the 

generated cities size distribution is less skew to the right. The distribution of shocks 

affects the distribution of city growth rate and city size.  Uniformly distributed shocks 

will lead to more evenly distributed cities. The model of local externalities with random 

productivity process in Eeckhout (2004) could generate lognormal distributed cities 

conditional on the features of the distribution of the exogenous technology shock.  

The Gini coefficient is increasing as the absolute value of local size effect is 

decreasing. The less the influence of the negative local size effect, the more 

concentrates the city size. Bigger influence of the negative local externalities will 

decentralize cities’ population. The Gini coefficient is increasing as the standard 

deviation of exogenous technology shock is increasing. The more the exogenous 



technology shock deviated, the more city size concentrates. The less the technology 

shock deviated; the more decentralized the city population. 

A change in the net local size effect does not change the positive relation between 

Gini and the standard deviation of exogenous technology shock. The relation of the 

level of concentration of cities population and the deviation of shock is not sensitive to 

the change of the net local size effect. We do not see a systematic relation between the 

mean of exogenous technology shock and the level of concentration of cities population. 

Smaller negative local externalities or more diverge technology shock could generate 

bigger cities. We also finds that the theory implies that larger shocks lead to larger cities 

when the size elasticity of production is negative; larger productivity shocks lead to 

bigger cities if the congesting cost dominates the net local externalities. Moreover, an 

increase of congestion cost will lead to more evenly distributed cities. 
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Fig. 1.1 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = ‐0.1. 

 

Fig. 1.2 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = -0.5. 
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Fig. 1.3 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = -1. 

Fig. 1.4 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = -1.5. 
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Fig. 1.5 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = -2. 

 

Fig. 1.6 The relation between the exogenous technology shock, ,i t
, and the growth 

rate of city size, ,i t
, given the local size effect = -10. 
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Fig. 2.1 The distribution of the exogenous technology shock, ,i t
, given its mean = 0. 

Fig. 2.2 The distribution of the growth rate of city size, ,i t
, given the mean of the 

distribution of the exogenous technology shock, ,i t
equals 0.  
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Fig. 2.3 The evolution of city size, ,i tS
, given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0.  

 

Fig. 2.4 The distribution of city size at t=100 given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0.  
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Fig. 2.5 The distribution of city size at t=200 given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0. 

 

Fig. 2.6 The fitted lognormal distribution of city size at t=200 given the mean of the 

distribution of the exogenous technology shock, ,i t
equals 0. 
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Fig. 3.1 The distribution of the exogenous technology shock, ,i t
, given its mean = 

0.06.  

 

Fig. 3.2 The distribution of the growth rate of city size, ,i t
, given the mean of the 

distribution of the exogenous technology shock, ,i t
equals 0.06. 
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Fig. 3.3 The evolution of city size, ,i tS
, given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0.06. 

 

Fig. 3.4 The distribution of city size at t=200 given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0.06. 
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Fig. 4.1 The distribution of the exogenous technology shock, ,i t
, given its mean = 

0.2.  

 
 

Fig. 4.2 The distribution of the growth rate of city size, ,i t
, given the mean of the 

distribution of the exogenous technology shock, ,i t
equals 0.2. 
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Fig. 4.3 The evolution of city size, ,i tS
, given the mean of the distribution of the 

exogenous technology shock, ,i t
equals 0.2. 

 

 

Fig. 4.4 The distribution of city size at t=200 given the mean of the distribution of the 

exogenous technology shock, ,i t
, equals 0.2.  
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Fig. 5.1 The distribution of the exogenous technology shock, ,i t
, given its standard 

deviation = 0.01.  

 

Fig. 5.2 The distribution of the growth rate of city size, ,i t
, given the standard 

deviation of the distribution of the exogenous technology shock, ,i t
equals 0.01. 
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Fig. 5.3 The evolution of city size, ,i tS
, given the standard deviation of the distribution 

of the exogenous technology shock, ,i t
,equals 0.01. 

 
Fig. 5.4 The distributions of city size at t=200 given the standard deviation of the 

distribution of the exogenous technology shock, ,i t
,equals 0.01.  
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Fig. 6.1 The distribution of the exogenous technology shock, ,i t
, given its standard 

deviation = 0.001 

 

Fig. 6.2 The distribution of the growth rate of city size, ,i t
, given the standard 

deviation of the distribution of the exogenous technology shock, ,i t
,equals 0.001. 

 

0.056 0.057 0.058 0.059 0.06 0.061 0.062 0.063
0

5

10

15

20



0.04 0.0405 0.041 0.0415 0.042 0.0425 0.043 0.0435 0.044 0.0445
0

2

4

6

8

10

12

14

16

18

20





 

Fig. 6.3 The evolution of city size, ,i tS
, given the standard deviation of the distribution 

of the exogenous technology shock, ,i t
,equals 0.001.  

 
 

Fig. 6.4 The distribution of city size at t=200 given the standard deviation of the 

distribution of the exogenous technology shock, ,i t
, equals 0.001. 
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Fig. 7.1 The generated random distribution of the exogenous technology shock, ,i t
, 

given uniform distribution assumption. 

 

 

Fig. 7.2 The distribution of the growth rate of city size, ,i t
, given uniform distribution 

of the exogenous technology shock, ,i t
. 
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Fig.7.3 The evolution of city size, ,i tS
, given uniform distribution of the exogenous 

technology shock, ,i t
. 

 

Fig. 8.1 The relation between the estimated Gini coefficient with 95% confidence 

interval and the local size effect θ given that exogenous technology shock is from 

uniform distribution. 
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Fig. 8.2 The relation between the estimated Gini coefficient with 95% confidence 

interval and the local size effect θ given that exogenous technology shock is from 

normal distribution with ߜఙ=0.5. 

 

 

 

Fig. 8.3 The relation between the estimated Gini coefficient with 95% confidence 

interval and the local size effect θ given exogenous technology shock is from normal 

distribution with ߜఙ=0.3. 
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Fig. 8.4 The relation between the estimated Gini coefficient with 95% confidence 

interval and the standard deviation of exogenous technology shock ߜఙ given	θ	=-1.1. 

 

 

 

Fig. 8.5 The relation between the estimated Gini coefficient with 95% confidence 

interval and the standard deviation of exogenous technology shock ߜఙ given	θ	= -2. 
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Fig. 8.6 The relation between the estimated Gini coefficient with 95% confidence 

interval and the mean of exogenous technology shock ߤఙ. 

 

 

 

Fig. 9. Congestion cost and the estimated Gini coefficient with 95% confidence 
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