HRS: A Hypermedia Retrieval System

1 B

BRARE

Don Lin Yang and Jiunn Jyi Chen
Department of Information Engineering
" Feng Chia University
Taichung, Taiwan 407, ROC

Abstract

The service of the World-Wide Web (WWW), a
typical hypermedia system, has been the fastest
growing hypermedia application on the Internet. It
does not only bring us a new way of representing
knowledge, but also a better way of accessing
related informaiton.

When users enter the hypermedia world like the
World-Wide Web, they will face information
overload. It requires an efficient way for users to
search related topics. A practical solution is
provided by our Hypermedia Retrieval System. In
this research we have studied and designed a
prototype of the Hypermedia Retrieval System,
which was implemented under the World-Wide
Web environment. The Hypermedia Retrieval
System not only integrates the network resources
available on the Internet, but also provides an
efficient way for users to find the information they
are interested in. v

There are four components in our system: the
World-Wide Web server, .the HTML parser, the
query processor and the descriptor database. We
use a hierarchical view approach to represent the
real world scenario in the World-Wide Web. There
are hthre:e levels of view approach: global view,
local view, and personal view. Each view reflects a
different situation that users encounter in the
World-Wide Web environment. A prototype system
has been implemented in Sun SPARC workstations.

Keywords: Hypermedia, World-Wide Web,
HyperText Markup Language, Database, Network.

1. Introduction

As the Internet grows, more and more people rely
upon it to do their research. There are a lot of
useful information resources on the Internet, such
as News groups, anonymous ftp, gopher and
Archie servers, and so on. In addition, these
abundant information resources extend the scope of
our knowledge.

Hypermedia, containing multimedia information
under the network architecture, brings us a new
way of representing knowledge. The World-Wide
Web, a typical hypermedia system, has been the
fastest growing hypermedia application on the
Internet.

TANet 95 o : F94

When users enter the hypermedia world like the
World-Wide Web, they will face information
overload. How can users find the information they
need? And is there an efficient way for users to
search related topics? What kind of system is
required to provide a practical solution?

In this research, we studied the above issues and
designed a prototype of the Hypermedia Retrieval
System (HRS), which was implemented under the
World-Wide Web environment. The hypermedia
retrieval system not only integrates the network
resources available on the Internet, but also
provides an efficient way for users to find the
information they are interested in.

We adopt a hierarchical view approach to reflect
the real world situation in the World-Wide Web.

“There are three levels of view approach: global

view, local view, and personal view. Each view
reflects a different situation that users encounter in
the World-Wide Web environment.

2. Background and Related Research

2.1 The World-Wide Web

Early - in 1945, the concept of "Universal
Information Database” has been formed: data not
only accessible to people around the world, but
related information that would link to other
information easily. The World-Wide Web is an
information system based on hypertext, which
offers a means of moving from one document to
another document (usually called to navigate)
within a network. It started at CERN (Collective of
European high-energy physics Research Nuclear),
now with many participants. It has become the
most popular part of the Internet. ‘

2.2 Relevant Terms

The World-Wide Web has ‘come to stand for a
number of things, which should be distinguished
[1]. These include: a network protocol (HTTP) [2],
a markup language (HTML) [3], and an address
system (URL) [4].

2.3 Other Protocols

Besides HTTP, the World-Wide Web model
contains many other protocols. The World-Wide
Web software can pick up information from many
information sources, using existing protocols.

HERE 84 410 A

These protocols are: file transfer protocol, network
news transfer protocol and z39.50 [5].

2.4 Internet Search Tools

The ALTWEB proposes that people should describe
the services they provide, in such a way that
automatic programs can simply pick up their
descriptions, and combine them into a searchable
database. The database can be updated regularly

(currently once a day), the data is kept up-to-date.

Since the ALIWEB does all the work of retrieving
and combining these files, people only need to

worry about the descriptions of their own services.

Therefore, the information i$ likely to be correct
and informative. Since only these small description

~ files need to be gathered, there is little overhead [6].

The Lycos is a catalog of the Internet. It searches
the World Wide Web every day (including Gopher
and FTP servers) and builds a database of all the

web pages it finds. The index is updated weekly [7].

The Lycos philosophy is to keep a finite model of
the web that enables subsequent searches to
proceed more rapidly. The idea is to prune the
"tree” of documents and to represent the clipped
ends with.a summary of the documents found
under that node [8].

The WebCrawler is a tool that solves the resource
discovery problem in the specific context of the
World-Wide Web. It provides a fast way of finding
resources by maintaining an index of the Web that

can be queried for documents about a specific topic.

Because the Web is constantly changing and
indexing is done periodically, the WebCrawler
includes a second searching component that
automatically navigates the Web on demand. The
WebCrawler is best described as a "Web robot” [9].

The UCSTRI is a WWW service which provides a
searchable index over thousands of existing
technical reports, theses, preprints, and other

documents broadly related .to computer science.

The UCSTRI requires two major modules. An
index builder polls numerous FTP sites for item
information to construct a master index file. The
list of sites and their characteristics are the only
components of the system's operation that must be
maintained by hand. A search engine then
processes queries to return citations and hypertext
links to appropriate items. The overall structure is
similar to” other indexing-systems such as the
ALIWEB [10].

2.5 Search Techniques .

The existing search techniques on the WWW fall
into two main categories: hypertext browsing and
keyword searching. .

TANet 95 F95

Navigating or browsing in hypermedia systems
traditionally involves manual - traversal of
hyperlinks. It is well known that this technique by
itself cannot be used to search hypermedia system
containing more than several hundred nodes. Users
quickly become lost because of the size of the
search space [11].

In keyword searching, users input keyword items
as query parameters to- do query process. The
keyword searching combines the keyword items
and the combination of the boolean operators such
as “and", "or", and "not".

The search tools on the Internet have the followmc7
drawbacks:
1. Centralized process:
All these tools on the Internet use a
centralized data base. Maintaining such a
large amount of data is difficult.
2. A waste of network bandw1dth and other
resources:
It is possible that a lot of people search for a
specific - document simultaneously. - This
would take up the whole network bandl}x/idth
to transmit such a large amount of in-
formation. -In addition, it will increase the
system overhead.
To solve the above problems, we offer the
following approaches:
1. Distributed process:
Change the use of databases from a
centralized control to a distributed approach.
A local site can maintain its own' database.
When a request is made, the local sever can
connect other site to provide necessary
information. There are two ways of doing it:
a. Automatic linking:
By connecting other server one can get
requested information automatically. To
the user, such process is transparent
b. Hint:
© By giving a proper hint to the user it can
help users find information faster..
When a server finds the information, it does the
"cache" process to hold the information for the
subsequent query action.
2. Tracking Process: ‘
‘The major reason of wasting network -
bandwidth is that too. many people log on to
search (browse) on-line information at the
same time. System can change the query
model depending on the network condition:
the number of users, the data. size, or the
response time. It can also use different ways
of sending search result, like e-mail: So the
user can go off-line -and . receive the
information result.at its own site. The
format of the result they receive can be a

EP&’?E%D?! 84 10 A

simple index,-or an HTML format document
filled with hyperlinks.
3. Integrated environment:
The major effort of our system is to provide
an integrated environment for users to
locate (or retrieve) the heterogeneous in-
formation they need.
We believe this proposal can reduce the overhead
of the retrieval system and utilize the network
bandwidth (resource) more efficiently.

The search tools and techniques mentioned above
provide an efficient way for users to locate and
retrieve the information they need. The major
problem of these systems is to focus on the "text
search” only. Keyword searching provides users a
direct way to describe the information they need.
Users don't need to learn the syntax of the query
method. In the hypermedia world like the World-
Wide Web, there are a lot of diverse information,
such as audio, video, and image. To develop a
global way to find (or locate) these heterogencous
information is not easy. Many object-oriented
approaches are used in the multimedia query
processing. In the future of the World-Wide Web
development, there will be more efficient ways to
process these different types of media:

3. System Architecture

3.1 Architecture Overview

Our system flow can be divided into two parts: the
back end process and the front end process. The
back end process reflects the functionality of our
system. The fiont end process reflects the user's
’search behavior.

I

The back end process can be divided into 4 steps :

1. Analyze all the HTML documents at the
server end. ,

2. Parse the HTML tags for each HTML
document.

3. Store related information such as keyword
items and link description to the descriptor
database.

4. Receive the input parameter, search the
descriptor database according to the user's
input, and send the result in the proper
format to the user.

The front end process can be divided into 3 steps :

1. Users log on to enter our service page.

2. Keywords are typed in the input field. The
keyword describes the needed information.

3. Qur system will return an appropriate result
according to the user request.

We construct our systemm under the World-Wide
Web environment. It consists of four components:
the World-Wide Web server, the query processor,
the HTML parser, and the descriptor database. The

TANet'95 F96

HTML parser is responsible. for analyzing all the
HTML documents at the server site, parsing the
HTML tags for each HTML file, and writing the
link information and description to the descriptor
database. The query processor is responsible for
receiving the user query parameters, searching the
descriptor database, and returning the search result
in an appropriate format. We will describe their
functions in detail in Section 3.3. The architecture
of our system is shown in Figure 3.1.

Front Epd BackEnd
e Server ond
HTML document
{Form)

Hypermedia Retrieval
System

Fig. 3.1 The architecture of Hypermedia Retrieval
System (HRS)

3.2 Hierarchical View Approach

We use a hierarchical view approach for our
system service. Through the concept of view
approach, we try to provide a better way for users
to find diverse information on the World-Wide
Web sites.

The view approach is the main idea of our system.
It can be divided into three levels of "view": global
view, local view, and personal view. Each view has
its own feature to reflect the different situation and
environment. Figure 3.2 shows a hierarchical view
diagram.

Global View

Fig. 3.2 The Hierarchical View diagram

Global view:
A World-Wide Web server uses hyperlinks to
connect all related information for different types

hEERE 84 - 10 H

of data, such as text, audio, image, video, and so
on. Users can navigate to retrieve all the
information they are interested in through the help
of these hyperlinks. We can image a hypermedia
world (or even a real world) is like pieces of
information everywhere with hyperlinks to
represent their relationship. We can get all the
interesting information on the Web by using a
World-Wide Global Index to retrieve relevant
information. It is not practical to create a global

index .including all the information on the Web.

Instead, we focus on the hyperlinks specified by the
information providers. These hyperlinks are what
the users would be interested in. Such an
information. model extends the scope of our
knowledge in a global scale.

Local view: ‘
Though a global view provides us a "world-wide"
index to use, it has the following problems:

1. Space capacity: To store all useful
information on the Web, it would require a
very large amount of storage space.

2. Complexity: To maintain such a big global
index, one needs a Jot of efforts. _

3. Time restriction: To retrieve a vast amount
of information through network, it would be
considered unacceptably high, especially

- when the network traffic is busy.

4. Network bandwidth: To retrieve distributed
information, one needs a higher network
bandwidth when the data size is huge.

If we want to avoid the problems existed in a
global view, we can put our attention on a smaller

scale, such as 4 single site. This is our "local view".

Local views help us learn very well about the Jocal
site information where we are interested in the
most. At the local site, information accesses are
much more efficient too.

Personal view:

Personal views are focused on tracking the path of
the user's navigation on the Web. By using the
index from the server, users can specify their needs
for the server to provide with the appropriate result.
Along the path being visited, an HRS collects their
link information to generate a personal view. As
the navigation tour ends, one would have created a
hypermedia document that contains all the infor-
mation presented in the tour. It provides a simple
way for users to revisit the information that they
are interested in. User can retrieve information
according to their specific need.

3.3 System Components

3.3.1 The World-Wide Web Server

It is a typical server like any Web site. We
construct our system under the server homepage
which provides the user a fast way to preview the

information available at this site. We can provide
different styles of service appearance at the Web
site. Users can use service from our system, to
search the information they need.

The responsibilities of the World-Wide Web server
are:
« To receive the input parameters from the
user, and send them to the query processor
« To receive the search result from the query
processor, and send the result to the user *

3.3.2 The Query Processor
The responsibilities of the query processor are:
+ To receive the query parameters sent by the
World-Wide Web server
+ -Search the descriptor database according to
the parameters
« Return the search result in the HITML
format file filled with related links and
description ,
The query processor receives the query parameter
from the environment variable which is set by the
server. It parses the parameter to get the actual
query value, and uses the value to searchlthe
descriptor database. When the result is found, it
transforms the search result to an HTML format
file filled with a list of information including links
and their description.

Receiving the user input is the HTML form's first
task. Then it sends the user input as parameters to
the query processor. The query processor then
proceeds with the search action. Figure 3.3 shows
the information flow of the query processor.

set environment variable
QUERY_STRING =
“paratzvaluel&pars2=value2s_ "

(a st of search resul)

Fig. 3.3 The information flow of the query
processor

3.3.3 The HTML Parser
The HTML parser is typically a state machine. The
responsibilities of the HTML parser are:
+ Retrieve all the HTML files in the World-
Wide Web server site .
+ Parse the tags for every HTML file
« Record the link information and their
description
+ Write results to the descriptor database
When the HTML parser receives the href attribute
in the HTML file, it records the link information.
If it finds an anchor like ">", that means the tag is
ended, then we are ready to receive the description.
The input of the HTML parser is all of the HTML
files in the server end, and the output is link

IR 84 4710 A

information (URL) and their description. The
HTML parser parses every HTML document at the
server end. Like a compiler parser, it analyzes the
syntactic structure of the document. Figure 3.4
shows the HIML parser.

<TITLE> WWW Homepage <TITLE>

 Database <./b> Lab.

T
T

Get the syntatic structure |

Description UL
Database Lab “hitp://apoiio.ieca.fcu.edutw

Write to[Database

3.3.4 The Descriptor Database

The descriptor database is a simple data storage. It
is designed to store the parsing result of the HTML
parser, including keyword items, link information
like URLs and their description.

The descriptor database is used for processing the
searching request to respond to the user's search
request. Figure 3.5 shows the descriptor database.

HTML parsing
result

Description and UR
.. . Database

Fig. 3.5 The descriptor database

1 <> il ff
introduction<>intro.himi
fist<>10to11. htm!
CGl<>ftp:/iftp. ncsa. uiuc. edu/Web/nesa_hitpd/el

4. System Implementation

4.1 System Environment

We construct our system prototype under the
World-Wide Web environment. The server (NCSA
httpd) is installed on a Sun SPARC station 20 with
SunOS 4.1.4. The other equipments (PCs and
workstations) are connected via Ethernet. Figure
4.1 shows the environment of our network

laboratory.
| z
|

un SPARC QLASSIC PC
140.1342427
want2

l

140,13424.101

14013424160

I —Ethernet

TANet*95

4.2 The Implementation of the HRS

4.2.1 The HTML Parser
The HTML parser creates all the index information
for the hyperlinks of the HTML files at the Web
site. It belongs to the back end process. The
responsibilities of the HIML parser are:
+ Process all the HTML files at the World-
Wide Web server end
» Parse the tags for every HTML file
+ Receive the href attribute and record the
link and description
+ 'Write results to the descriptor database.
The input of the HTML parser is all the HTML
files in the server end, and the output is link
information (URL) and its description.

We use C language to implement the HTML parser.
The main procedures of the HTML parser are as
follows:

1. CreateAIlHTML(): Get the HIML file
directory path as the parameter. The
procedure creates all HTML files from the
directory path recursively.

2. HTML_character(); Parse the "A"nchor
tag and the "href' attribute. Note the
description and link information (URL).

3. Write the results to the resource.db

Figure 4.2 shows the flowchart of the HTML
parser.

file_1.html
file_2.htmi
file_3.htmi

HTML document

Parse the tag,
Note the URL &
Description information

‘Whiite down to

<=

Fig. 4.2 The flowchart of the HTML parser

In HTML, there are a lot of tags used for
improving the printing, but these are meaningless
tags to us. All we are interested in are: the anchor
tag <A> or , the attribute href, the link
description (URL), and the description used for
keyword matching later. So we ignore the useless
tags, and keep the useful information. The index

R E 84 4F 10

information that the HTML parser creates is for the
hyperlinks of the HTML files in the Web site. We
did not index the whole document except the
hyperlinks because of the space limitation and
other problems of a global view in Section 3.2. We
use the URL as our index information because it
provides a direct link to the related information.

When the parsing process and output process are
finished , the final results will be written to the
descriptor database. The resource.db is the actual
database to store the related information.

4.2.2 The World-Wide Web Server

Our system is implemented under the World-Wide
Web environment. The hypermedia retrieval
system is put under the World-Wide Web server
homepage. The user interfaces of our system are
developed by using the fill-out forms. A fill-out
form is a tag in HTML. It provides a "two-way"
communication under the World-Wide Web. Fill-
out forms allow users to return information to the
World-Wide Web server. We use it as the interface
for database accesses. It provides the user an input

field, and transmits appropriate results to the user.

Figure 4.3 shows the typical example of a fill-out
form in HTML format. Figure 4.4 shows the result
of the fill-out form.

<TITLE> FCU HRS </TITLE>

<CENTER>

<H1> World Wide Web Services</H1>

<H2> HyperMedia Retrieval and Database
Retrieval Applications </H2>

</CENTER> -

<HR> :

<FORM ACTION = N
"http://apollo.iecs.fcu.edu.tw/cgi-Service/select™>
<BLOCKQUOTE> ‘
<BLOCKQUOTE>

Select the required service:

<SELECT NAME="SELECT">

<OPTION selected VALUE="0"> Hypermedia
Retrieval Application

<OPTION VALUE="1"> Database
Application

</SELECT>

<INPUT TYPE="SUBMIT" VALUE= "Subm1t">
</BLOCKQUOTE>

</BLOCKQUOTE>

</FORM> ‘

<HR> :

Fig. 4.3 The HRS fill-out form in HTML format

Retrieval

The service of our system is based on the three

levels of hierarchical view approach: global view,

local view, and personal view. So the
implementation is done accordingly. '

TANet'95 - F99

Fig. 4.4 The HRS fill-out form result

Global view:

A global view provides a "world wide" view of the
information . on all the Web sites. - So the
implementation of the global view needs to collect
the information index of each site. By getting the
index information such as the directory path of
their HTML files, we can build a global index. A
complete global view is only an ideal situation due
to the problems described in Section 3.2. In reahty
we would construct the global index to include as
many sites as an HRS implementation can afford.
In our prototype implementation we create a global
view of our two laboratory sites.

Local view:

The local view deals with a single site. The
implementation is done by collecting. all the
information index at a local site. Given the HIML
file directory path of a local site, the HTML. parser
creates a local index. This index contains all the
index data at this site. Each Web site can establish
its own local view by using the HTML parser.

The combination of the global view and the local
view prowdes users flexibility to choose the range
of information they are interested in. The global
index merges the contents of each local site index.
These contents can be updated periodically. The
diagram is shown in Figure 4.5.

Global View[]
Local View [J
Personal View

Fig. 4 5 The combination of global view and local
v1ew
Personal view:

R 84 4 10 A

The implementation of our personal view provides
two basic functions: Creating a personal view and
Revisiting a personal view. Because we are not able
to modify or rewrite the Web browser Netscape, the
personal view is implemented in a semi-automatic
mode. It works as follows. First, a user inputs
keywords to search the descriptor database. If any
match is found, it returns an HTML format file
filled with hyperlinks. The user uses these
hyperlinks to navigate through the Web to view the
information he is interested in.- When the user
finds a segment of information worth keeping, he
can use the browser to make a copy and save it. For
example, using the Netscape users can use mouse
to move a cursor to mark the scope and make the
copy by clicking the right button of the mouse. The
copied information can be pasted in a document. It
can be saved to the user site whether as a plain file
or an HTML file. Then users can use an edtior like
the Microsoft Word to edit the file to build a
personal document. If the user wants to edit an
HTML file, he must add some HIML tags. Then
the personal document is created. If the user wants
to revisit the information, he can choose the option
of revisiting a personal view to get a help menu.
This second function provides the user a hint to
open the saved personal document.

4.2.3 The Query Processor
The responsibilities of the query processor are:
+ Receive the user query typed in the HIML
form
+ Search the descriptor database and find the
appropriate query result
- Return the query result in HTML file filled
 with related links and description
| corresponding to the user query.
When users receive the query result lists, they can
choose the link to go directly to the document.

To get the user input is the responsiblity of a
HTML form. So the input of the query processor is
the query parameter and the output is an HIML
file filled with the link information corresponding
to the user query. The HTML file is created by the
query processor. It contains a lot of lists for users to
choose.

We use C language to implement the . query
processor. The procedures of the query processor
are as follows:

1. query_parse(): Get the query parameter,
store the related value, and search the
database resource.db according to the
parameter.

2. -GetField(): Exiract the link information
(URL) and the description in the string
format. N

3. TransForm(): Transform the query result
from the string type to the HTML format.

TANet*95

Figure 4.6 shows the flowchart of the query
Processor. '

Query parameter
setby
the WWW server

Parse
each parameter
value

searching process

Database

Searched results
in
"String" format

Transformation

HTML format

Final Results

{in HTML format|

Fig. 4.6 The flowchart of the query processor

The result of the search in the_descriptor database

“is the "string" type. So we have a "tranformation”

procedure to change these string results into the
HTML format, then these results can be sent to the
server. The users use their World-Wide Web
browser to view these results.

After the above steps are completed, the user will
get the result information they requested: a list of
searched result which cantains hyperlinks. So users
can retrieve the information they need through the
help ‘of these hyperlinks taking them to a specific
location.

4.2.4 The Descriptor Database

We use the file resource.db as the database to store
the link infomation and description from. the
HTML parser. The content of the databse is- a list
of string type. Each string contains the description
and link information. Figure 4.7 shows the
contents of the descriptor database.

Database Stucture

Description (:ulng)] Link hlonnnlonisﬁlp_g% k:g:
I

introduction irtro.html
list 10to11.himi
hp:/Mp. nesa.viuc.edwWe!

introduction<>intro.htm!
fiste>10to11.himi .
CGi<itp:/ittp.nesa. uiuc. edu/Web/ncsa_httpd/egi

Fig. 4.7 The contents of the descriptor database

We can also use the commercial databases such as
Infomix, Oracle, or Sybase to store information.
All we need to do is to write an external program.

ch¥e [R5 84 £ 10 A

The Common Gateway Interface (CGD wilt

transform the excution result to a proper format.

Then the user can view this result through the
World-Wide Web browser.

5. Conclusions and Future Research

In this thesis, we have discussed the design of a
hypermedia retrieval system. The system consists
of four parts: the HTML parser, the descriptor
database, the query processor and the World-Wide
Web ‘server. By creating and ‘storing index
automatically, the database provides keyword items
and their related addresses (URL's) to locate
information. Our system is based on the client-
server model under ‘the World-Wide Web
environment. The sever site automatically creates
and maintains index in a fixed period of time.

The major task of our hypermedia retrieval system
is to provide an efficient way for users to find
information from various resources. Presenting a
useful index needs the following procedures:

» Retrieve ail the HTML files at the World-

Wide Web site

» Create the index automatically

+ Transmit the index to the user interface

+ Users retrieve the information they need
The execution efficiency-of these procedures affects
the overall system performance. Currently, our
prototype system is implemented under the World-
Wide Web server homepage. This can help users
quickly find every piece of useful information at
that site.

Besides providing an efficient way for users to
search information, our system also integrates the
network resource available on the Internet. All
these efforts are based on the three levels of view
approach we propose: global view, local view, and
personal view. Each of the three views is used in
the different environment and situation.

Keyword matching is the method we use for
searching information. We- use the full-text match
to search information on the Web. One of our
future work is to adopt the Natural Language
Processing (NLP) technology in our system. It
should have a dictionary function and would not
identify keywords just as a combination of charac-
ters. We hope the NLP technology can improve the
keyword recognition efficiently, so the users don't
have to learn a complex query language.

Another future work of our system is to add
management functions. Services provided in our
system could increase the network traffic. We
would like to add some management functions to
monitor the network, such as the number of users

TANet'95

logged on and the amount of data being
transmitted.

In our system implementation, we use the file
resource.db as our descriptor database. In the
future we can use commercial databases to store

these information. Then we can access data from

databases in a general way such as using SQL. The
database can also store various types of multimedia
information for retrieval. A complete service model
is shown in Figure 5.1..

Databsse Retrieval [
Applications

Fig. 5.1 A complete Web service model

6. References
(1] Tim Bemers-Lee, Robert Cailliau} Ari
Luotonen, Henrik - Frystyk Nielsén,‘l and
Arthur Secret, "The World-Wide Web”,
-Communications of the ACM, August 1994,
Vol. 37, No. 8, pp. 76-82.
[2] "Overview of HTTP", http//www.w3.org/
hypertext/WWW/Protocols/Overview.html
[3] "HyperText Markup Language: Working &
Background Materials",http://www.w3.org/
hypertext/WWW/MarkUp/MarkUp.html
[4] "UR* and The Names and Address of WWW
objects”, http://www.w3.org/hypertext/
WWW/Addressing/Addressing.htmi
[5] “"Protocols used in the World-Wide Web",
http:/f'www.w3.org/hypertext/ WWW/Protocol
s/RelevantProtocols.htmi
[6] "Introduction to ALTWEB" http://web.nexor.
co.uk/public/aliweb/doc/introduction.html
[71 "Lycos: Frequently Asked Questions”,
http:/Alycos.cs.cmu.edw/lycos-fag.html
[8] -"Lycos Project Description”,
http://lycos.cs.cmu.edw/lycos-post-01.html
[9] Finding What People Want: Experiences with
the WebCrawler", http//webcrawler.cs.
washington.edu/WebCrawlet/WWW94.html
[10] Marc VanHeyningen, "The Unified Computer
Science Technical Report Index: Lessons in
indexing diverse resources”,
http://www.ncsa.uiuc.edu/SDG/AT94/Proceedi
ngs/DDay/Vanheyningen/paper.html
[11] Howard Beck, Amir Mobini, and Viswanath
Kadambari, "A word is worth 1000 pictures :
Natural languages access to digital libraries”,
http://www.ncsa.uiuc.edu/SDG/1T94/Proceedi
ngs/Searching/beck/beckmain.html

thEE K] 84 42 10 A

