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In this report we will review some results on Emden-
Fowler equations and treat the estimates for the
life-span of positive solutions of some semi-linear
wave equations with initial and boundary values
problem in bounded domain. And in the last, we report
some
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In this report we will review some results on Emden-
Fowler equations and treat the estimates for the
life-span of positive solutions of some semi-linear
wave equations with initial and boundary values
problem in bounded domain. And in the last, we report
some recently result on the blow-up phenomenon of
Emden-Fowler type semilinear wave equation.
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Abstract In this report we will review some results on Emden-Fowler equations
and treat the estimates for the life-span of positive solutions of some semi-linear
wave equations with initial and boundary values problem in bounded domain. And
in the last, we report some recently result on the blow-up phenomenon of Emden-
Fowler type semilinear wave equation.
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1. Introduction In this report we want to consider the existence and unique-
ness of solutions and nonexistence of global solution in time of the Emden-Fowler
type semilinear wave equation

(0.1) t2Usp — Upe = uP in [0,T) x (r1,79)

with boundary value null and initial values u (0,2) = wug(z) € H?(r1,72) N
H} (r1,72) and 4 (0,z) = uy (z), where p > 1,71 and ry are real numbers.

II. Review on the Emden-Fowler equation

II.1 Literature The study of the Emden-Fowler equation originates from
earlier theories concerning gaseous dynamics in astrophysics around the turn of the
20-th century.

The fundamental problem in the study of stellar structure at that time was to
study the equilibrium configuration of the mass of spherical clouds of gas. Under the
assumption that the gaseous cloud is under convective equilibrium (first proposed in
1862 by Lord Kelvin): W. Thompson (Lord Kelvin), On the convective equilibrium
of temperature in the atmosphere, Manchester Philos. Soc. Proc., 2 (1860-62),
pp.170-176; reprint, Math. and Phys. Papers by Lord Kelvin, 3 (1890), pp.255-260.

Lane studied the equation

d du
* 222 2P —
) p <t dt)—l—tu 0,

for the cases p = 1.5 and 2.5. Equation (*) is commonly referred to as the Lane-
Emden equation; see Chandrasekhar: Introduction to the Study of Stellar Struc-
ture, Chap. 4. Dover, New York, 1957;

The astrophysicists were interested in the behavior of the solution of (x) which
satisfies the initial condition: u (0) = 1, u/(0) = 0. Special cases of (*), namely,
when p = 1,5, have explicit solutions: for p =1,

d [ sdu 9
O[22 2y =
dt( dt>+ u=0,

and for p = 5,

d [ ,du 25

1
uw(0) =1, v’ (0) =0,u=1/ 1+§t2.

Many properties for solutions of the Lane-Emden equation was studied by Ritter
in a series of 18 papers published during 1878-1889: A. Ritter, Untersuchungen iiber
die Hohe der Atmosphare und die Konstitution gasformiger Weltksrper, 18 articles,
Wiedemann Annalen der Physik, 5-20, pp.1878-1883.

The publication of Emden’s treatise Gaskugeln marks the end of first epoch in
the study of stellar configurations governed by (x). R. Emden, Gaskugeln, An-
wendungen der mechanischen Warmentheorie auf Kosmologie und meteorologische
Probleme, B. G.Teubner, Leipzig, Germany 1907, Chap. XII.
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The mathematical foundation for the study of such an equation and also of the
more general equation

d du
+x L) ey =0, t >
(%) dt< dﬁ)+ u'=0,t=0,

was made by R.H. Fowler in a series of four papers during 1914-1931.

1) The form near infinity of real, continuous solutions of a certain differential
equation of the second order, Quart. J. Math., 45 (1914), pp.289-350.

2) The solution of Emden’s and similar differential equations, Monthly Notices
Roy. Astro. Soc., 91 (1930), pp.63-91.

3) Some results on the form near infinity of real continuous solutions of a certain
type of second order differential equations, Proc. London Math. Soc., 13 (1914),
pp-341-371.

4) Further studies of Emden’s and similar differential equations, Quart. J. Math.,
2 (1931),pp.259-288.

We refer the reader to a summary in Bellman’s book : R. Bellman, Stability
Theory of Differential Equations, McGraw-Hill, New York, 1953, Chap. VII.

The Emden-Fowler equation also arises in the study of gas dynamics and fluid
mechanics; see, e.g., the survey article by Conti, Graffi and Sansone, The Italian
contribution to the theory of nonlinear ordinary differential equations and to non-
linear mechanics during the years 1951-1961, Qualitative Methods in the Theory
of Nonlinear Vibrations, Proc. Internat. Sympos. Nonlinear Vibrations, vol. II,
1961, pp.172-189.

There the solutions of physical interest are bounded nonoscillatory which possess
a positive zero. The zero of such a solution corresponds to an equilibrium state in
a fluid with spherical distribution of density and under mutual attraction of its
particles. The Emden-Fowler equations also appear in the study of relativistic
mechanics, nuclear physics and also in the study of chemically reacting systems.
One interested in the physical aspects of such studies may wish to consult the
related references in the bibliography in the articles and books by:

1) Shevyelo, Problems, methods, and fundamental results in the theory of oscilla-
tion of solutions of nonlinear nonautonomous ordinary differential equations, Proc.
2nd All-Union Conf on Theoretical and Appl. Mech., Moscow, 1965, pp.142-157.

2) Das and Coffman, A class of eigenvalues of the fine-structure constant and
internal energy obtained from a class of exact solutions of the combined Klein-
Gordon-Maxwell -Einstein field equations, J. Math. Phys., 8 (1967), pp.1720-1735.

3) S. Chandrasekhar, Principles of Stellar Dynamics, University of Chicago Press,
Chicago, 1942, Chap. V.

The Emden-Fowler equation (%) can be transformed into a first order nonlinear
autonomous system, in fact a quadratic system, and information concerning its
solutions may be obtained from the associated quadratic systems through phase
plane analysis. This approach was in fact first used by Emden in his analysis of the
Lane-Emden equation (x). More detailed discussions on this approach we refer to:
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1) Coppel, A survey on quadratic systems, J. Differential Equations, 2 (1966),
pp.293-304.

2) P. J. Rijnierse, Algebraic solutions of the Thomas-Fermi equation for atoms,
Ph. D. thesis, Univ. of St. Andrews, Scotland, 1968.

Progress along Fowler’s approach concerning the Emden-Fowler equation (xx)
may be found in :

1) M. L. J. Hautus, Uniformly asymptotic formulas for the Emden-Fowvler dif-
ferential equation, J. Math. Anal. Appl., 30 (1970), pp.680-694.

2) R.T.V. Ramnath, On a class of nonlinear differential equations of astro-
physics, J. Math. Anal. Appl., 35 (1971), pp.27-47.

Similar analysis concerning the related Thomas-Fermi equation may be found
in:

R. V. Ramnath, A new analytical approximation to the Thomas-Fermi model in
atomic physics, J. Math. Anal. Appl., 31 (1970), pp.285-296.

N. H. March, The Thomas-Fermi approximation in quantum mechanics, Ad-
vances in Phys., 6(1957), pp. 1-101.

The first serious study on the generalized Emden-Fowler equation
d?u n
dt?

was made by F.V. Atkinson

a(t)|ul”sgn u=0, t>0

1) The asymptotic solutions of second order differential equations, Ann. Mat.
Pura. Appl., 37 (1954), pp.347-378.

2) On linear perturbation of nonlinear differential equations, Canad. J. Math., 6
(1954), pp.561-571.

3) On asymptotically linear second order oscillations, J. Rational Mech. Anal.,
4 (1955), pp.769-793.

4) On second order nonlinear oscillation, Pacific J. Math., 5 (1955), pp.643-647.

5) On second order differential inequalities, Proc. Roy. Soc. Edinburgh, Sect.
A (1973).

For general reference, we mention the well known texts by:

P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.

W.A. Coppel, Stability and Asymptotic behavior of Differential Equations, Heath,
Boston, 1965.

R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York,
1953.
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II-2 Review the result on the positive solution of Emden-Fowler equa-
tion t2u =uP,p>1

Consider the transformation ¢ = €®, u (t) = v (s), then v (0) = ug; vs (0) = uq,
the equation (%) can be transformed into the form

{ vss (8) —vs (8) =v(s)’, p>1,
v (0) =wug, vs(0)=u.

Thus, the local existence of solution u for (x) in (1,7T) is equivalent to the local
existence of solution v for (1.1) in (0,In7). In this report, we have estimated the
life-span T™* of positive solution u of (x) under three different cases.

(1.1)

The main results are as follows:

(a) up = 0,ug >0: T* < eh, k= so+%%v(so)%, e€(0,1).

(b) ug > 0,u0 >0:
1—p
i) E(0) >0, T <eb2, ky = 25y /B2, ™ . i) E(0) <0, T% < ébs,
kg = 240

p—l ul :

1

(c) ur < 0,up € (0, (—ul)ﬁ) cu(t) < (up—ur —uf) + (w1 +uf)t —ug Int.
Notation and Fundamental Lemmas

For a given function v in this work we use the following abbreviations
2 _p-1
2 2 p+1
a(s) =v(s)”, E(0) =ui ———uy ,J(s) =a(s) *
(s) ()7, E(0) =u P (s) (s)
By some calculation we can obtain the following lemma 1 and lemma 2, we omit
these argumentations on the proof of lemma 1.
Lemma 2.1. Suppose that v € C?[0,T] is the solution of (1.1), then

(2.1) E(s) = E(0),

22)  (p+3)vs(s) =@+ 1D)EQO)+d (s)—a (s)+2(p+ 1)/1)3 (r)? dr,

v pP—1 i’%‘? a (s) 2
ey T =T E(O)—p+1+2/vs(7~) dr |
(2.4) J (s)2=J (02 + -1 _41)2E(0) (J(s)% _ J(O)%)
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Lemma 2.2. For uy > 0, the positive solution v of the equation (1.1), we have:
(2.5) i) up >0, then vg (s) >0 for all s> 0.

1
(2.6) i) up <0, up€ (O, (ul)P) , then v, (s) <0 for all s> 0.

Proof. 1) vss(0) =wuy +uh > 0, we know that vgs (s) > 0 in [0, s1)and vs (s)
is increasing in [0, s1) for some s; > 0. Moreover, since vand v, are increasing in
[07 81) ’

Vs (8) =vs(8) +v(s)P >wvs(0)+v(0) >0
for all s € [0,s1) and vs(s1) > vs(s) > 0 for all s € [0,s1), we know that
there exists a positive number s > 0, such that vy (s) > 0 for all s € [0, s1 + s2).
Continuing such process, we obtain v (s) > 0 for all s > 0.

ii ) According to vss (0) = vs (0) + v (0)” = uy + ub < 0, there exists a positive
number s; > 0 such that ves (s) < 0 in  [0,51), vs(s) is decreasing in [0, s1);
therefore, vs(s) < vs(0) = w3 < 0 for all s € [0,s1) and v (s) is decreasing in
[07 81)‘

Moreover, since v and vy are decreasing in [0,51), vss (5) = vs (5) + v (s)? <
vs (0) +v(0)” <0 forall s €[0,s1) and v, (s1) < vs(s) <0 for all s € [0,s1),
we know that there exists a positive number s; > 0, such that v, (s) < 0 for all
s € [0, 51 + s2). Continuing such process, we obtain v, (s) < 0 for all s > 0.1

Estimates for the life-span of positive solution u of (x) under u; = 0,
ug > 0.

In this section we want to estimate the life-span of positive solution w of (x)
under u; = 0, ug > 0. Here the life-span T*of v means that u is the solution
of equation (x) and u exists only in [0,7*) so that the problem (%) possesses the
positive solution u in C?[0,T*) for T' < T*.

Theorem 2.3. For u; = 0, ug > 0, the positive solution u of (x) blows up in
finite time; that is, there exists a bound number T™* so that
w(t) ™t =0 for t—T*
Proof. By (2.5) and lemma 1
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Since a’ (s) > 0 for all s > 0, v is increasing in (0, c0) and
31 / 8 pt3 0 pE3 8 0 pt3 !
. s> 2 7 e 5 — 2 2 —e7%),
B @@z S (007 e )4 00T (- e)
’ 8 p+3 pE3
>_° T 2
a(s)_p+3(v(s) Uy )
Using u; = 0 we obtain
vs (8) > v(s)—uo—l—/v(O)pdr:v(s)—uo—l—ugs,
0
(3.2) (e"v(s)), = e * (ufs — ug),
, 8 p+3 %
a(S)Zm(’U(S)Q — U )
According to (3.2) and v’ (s) > 0, v (s)pTH > (up +ug (e —1— s))st and for

all € € (0,1), we get that

pi3 p+3 p+3 p(p+3) p+3
ev(s) 2 —8uy? >(e—8)uy? +euy 2 (e°—1-—s) 2 .

Now, we want to find a number s; > 0 such that es°—sg = 1+ (%“0
This means that there exists a number sy > 0 satisfying

pt3 i3
ev(s) = —8uy? >0 for all s> so.

From (3.1), it follows that

()2 ) for all s>
a (s v (s or all s> sg.
()= ~5v(s) > 50
For all s > sg, € € (0,1), we obtain that
8 —¢ pt3 _ptl 8 —¢
2v(s)vs (s) > v(s) 2, v(s) 2% v5(8) 2 —F70v,
(5)v1(5) 2 50 (s () F 092 5005
1-p 8—e¢ 1—p
v(s) 2 ) L ——c—.
() 2t 2
Integrating the above inequality, we conclude that
1-p 1-p 8—¢ p—1
v(s) 2 <wv(sy) 2 ——F———(5—50).
Thus, there exists a finite number
" 2(p+3) 2 1-p
S1 SSO—Fﬁp*l’U(SO) 7 =k

such that v (s)™" — 0 for s — s%, that is,

w®) =0 for t— e,

2
o)

which implies that the life-span T* of positive solution u is finite and T* < e**. 1

Estimates for the life-span of positive solution u of (x) under u; > 0,

U0>0
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In this section we start to estimate the life-span of positive solution u of (x)
under u; > 0, ug > 0.

Theorem 2.4. For u; > 0, ug > 0, the positive solution u of (*) blows up in
finite time; that is, there exists a bound number T™* so that

u(t)' =0 for t—T*

Proof. We separate the proof into two parts, £ (0) > 0 and F (0) < 0.
i) E(0) > 0. By (2.1) and (2.5) we have

2 2 p+1
vs (8)" — ——wv (s > E(0),
(6= o 2 B Q)
w6 2 e (P 000 (6) 2 [ (7 - B 0)
T pt+l “Vp+1
2 ptl P+l 2
Vg (S s) 2, wv(s) 2 vs(s —_—
() 20 vz
1-p 1-p 2
7)) <22
(v ) =72 Vp+1
. . . : e 52 1-p /5
Integrating the above inequality, we obtain v (s) <wuy® + 5\ TS Thus,

there exists a finite time

1-p
§< 2 [p+1l 12
-1 2

such that v (s)”" — 0 for s — s§, that is, u(t)"" — 0 for t — e*2, which means
that the life-span T* of positive solution w is finite and 7% < e*2.

n N R . 1
uo
Picturte 2 graph of ks, wgo € [1,5]

ii ) E(0) < 0. From (2.1) and (2.5) we obtain that a' (s) > 0, v, (s) > 0 for all
s> 0and

’ p+1
T <—7 ——— +E(0)a(s)” *,
¢p+1 a(s)



SEMILINEAR WAVE EQUATIONS 9

p+1
J(s) <a(0 —— +E0)a(0) 7 s.
() a0 \/p+1+ 00
Thus, there exists a finite number
1
2 p—1 2 pt1) 2
3 < 0)" * (—=+FE0)a(0) = =k
52 2000 (2 EO0 ) Tk

1

such that J(s3) = 0 and a(s)”' — 0 for s — s, that is, u(t)”" — 0 for

t — eFs. This means that the life-span T of v is finite and T* < e*s .l

Estimates for the life-span of positive solution u of (x) under u; <0

Finally, we estimate the life-span of positive solution u of (x) under u; < 0 in
this section.

Theorem 2.5. For u; <0, ug € (0, (7u1)%) we have:
u(t) < (up —ug — uh) + (ug +uf)t —uf Int.

and particularly, for £ (0) > 0, then

2
1-p -1 2 -r
u(t)g(u(fp—&—p? erllnt> .

Proof. i) According to (1.1) and integrating this equation with respect to s, we get

S

vs (8) = (U1 —wo) +v(s) + /v (r)? dr.
0

We have v is decreasing and

S

vs (8) < (ug fuo)Jrv(s)Jr/v(O)pdr = (u1 —up) + v (s) + ubs,
0

e v (s)—up < (ug —up) (1—e®) +uf (—se™* —e*+1);
that is,
u(t) < (up—ur) +urt +uf (t—1—Int)
= (uo —uy — ub) + (u1 + uf) t — uf Int.
ii ) E(0) > 0. By (2.1), we have

2 2 p+1
vs (8) 2E(0)—|—mv(s) +

R IR IO IR
—vs(S) 2 —V (S , —— (VS = >
‘ p+1" p—1 s p+1
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Then,

for all s > 0, that is,

p p-—1 2

t) < 2 —_—
T R e

2
fe=r
lnt) for all ¢t>1.1
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ITI. Some results on semilinear wave equation [J u = u? in [0,T) x

We have treated the estimates for the life-span of positive solutions of the semi-
linear wave equation

(3.1) Ou=wPin [0,T) x Q

with boundary value null and initial values u (0, ) = ug (z) € H? (Q) N H} () and
4 (0,z) = uy (z), where p € (1,n/n — 2] and Q@ C R™ is a bouned smooth domain
We use the following notations:

o o 0 . >
— &’V = (ax:l’ ...... 5 M) ,D’U,.— (u,VU) 7|:| —w_Ay

a(t) ::/u2 (t,2) dz, E (1) :—/<|Du|2—pi1up+1> (t,2) da.
Q Q

For a Banach space X and 0 < T < oo we set
Ck(0,T,X) = Space of C¥ — functions : [0,T) — X,

H1:=C"(0,T, H} (Q)) N C? (0,T, L2 () .

Jorgens [J1] published the first exist theorem for global solutions to the wave
equation

(%) Ou+ f(u) =0in [0,T) x Q,

for Q =R*'n=3and f(u) =g (uQ) u, his result can be applied to the equation
Ou + u? = 0; and Browder [B] generalized Jorgens’s result to n > 2.

For local Lipschitz f , Li [Li2] proved the non-existence of global solution of the
initial-boundary value problem of semilinear wave equation (*) in bounded domain
Q C R™ under the assumption

E(0) = || Dul)?( +2/f (0,2) dx <0,

7
nf(n)—2(1+2a) /f ydr < Aam® VYneR
0

with & > 0, Ay := sup {[Jull, / [|[Vull, : w € H} ()} and o’ (0) > 0.
There we have a rough estimate for the life-span

T <fBy=2 [1 - (1 — ksa (0)“")1/2] Jkiks

with
ki = aa (0)”*" \/a’ (0)* — 4E (0) a (0),
k2:: (_4OC2E (0) /k%)oé/l-i-Zoz )
For n = 3 and f(u) = —u?, there exist global solutions of (SL) for small initial

data [KP]; but if F(0) < 0 and a'(0) > 0 then the solutions are only local, i.e.
T < oo [Li2).
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John [J2] showed the nonexistence of solutions of the initial-boundary value
problem for the wave equation Ou = A|ulP, A > 0,

l<p<14+V2, Q=R3

This problem was considered by Glassey [G] in two dimensional case n = 2; for
n > 3 Sideris [S3] showed the nonexistence of global solutions under the conditions

lluoll; >0 and |luq|l; > 0.

According to this result Strauss [S1, p.27] guessed that the solutions for the
above mentioned wave equation are global for p > pg(n) = A which is the positive
root of the quadratic equation

(n—1DN-(n+DA-2=0

and Q@ = R”. Further literature about blow up one can see [J2], [S3], [Li2] and
[Li3] and their reference. Further literature could be fund in [S1] and [R]. Here we
extend our results to the equation (3.1).

Definition and Fundamental Lemmas

There are many definitions of the weak solutions of the initial-boundary problems
of the wave equation, we use here as following.

Definition 3.1: For p € (1,n/n — 2], u € H1 is called a positive weakly solution
of equation (3.1), if

t
//(ugb—Vu-Vgo—i—up(p)(r,:E)dxdr:0
00

t
for all ¢ € H1 and / / w(r,z) Y (r,z)dxdr > 0 for each positive ¢p €
0/ @
C3 ([0,T) x Q).

Remark 3.2: 1) This definition 3.1 is resulted from the multiplication with ¢
to the equation (3.1) and integration in  from 0 to ¢.

2) From the local Lipschitz functions v?,p € [1,n/n — 2|, the initial-boundary
value problem (0.1) possesses a unique solution in H1 [Lil].

Hereto we use the notations for ¢ € [1,2n/n — 2]:

1
o5 =m = sup {|lull, / | Dull, : u€Hg ()},

N = sup{llull, /1Dully s ue HY () N Ly (@)}
In this report we need the following lemmas

Lemma 3.3: Suppose that u € H1 is a weakly positive solution of (3.1) with
E(0) =0 for p € [1,n/n — 2], then for a (0) > 0 we have:

(i)aeC?*(R")and E(t) = E(0) Vte[0,T).
(i) o’ (t) >0 WVt €0,T), provided a’ (0) > 0.
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(ili) @’ (t) >0 Vte (0,T),ifa’ (0) =0.
(iv) For a’ (0) < 0, there exists a constant t; > 0 with

2(p+3)
p+1

a’ (t) = /up'H (t,z) dx — 4/ \Vul? (t,z) dz.
) o)

Lemma 3.4: Suppose that u is a positive weakly solution in H1 of equation
(3.1) with u (0,) = 0,4 (0,-) = 0 in L?(Q). For p € [1,n/n — 2], we have u = 0 in
H1.

According to Lemma 3.4, we discuss the following theme

(3) E(0) =0,a(0) >0and o’ (0) >0o0ra (0) <O.

(4) E(0) <0,a(0)>0anda (0) >0orad (0) <O.

Estimates for the Life-Span of the Solutions of (3.1) under Null-Energy

In this section we focus on the case that £ (0) =0, p € [I,n/n —2] and divide
it into two parts

(i) a(0) > 0,a’ (0) >0

(ii) @ (0) >0,a’(0) <O

Estimates for the Life-span of the Solutions of (3.1) under o’ (0) >0

Theorem 3.5.1. Suppose that w € H1 is a positive weakly solution of equation
(3.1) with @’ (0) >0 and E(0) =0. Then the Life-span of u is finite, further

k
(3.2) T<aqp:= k;l sin~? <2pl>
kpa (0) T
with
p—1 —zgt -
ko =P a0 Ja(0)a (0) +4C3,
-1
o :p2 Co.

If T=oa, then a(t) ' —0,t — T.
Furthermore, we have also the estimate for a (t):

4

b)% (sin (kpoy — kot)) »=1 Vt € [0,T).

(3.3) alt) > (k

This means that the blow-up rate of u is T in the sin-growth.

Proof: By Lemma 3.3 (i) we have

(3.4) a’(t)— (p+ 3)/u2 (t,x)dx > (p—1)Céa(t) Vt>O0.
Q
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_p=t
Set J(t) :=a(t)” * . Then

-1 =1
(3.5) J" () = pTa ()7 2 [—aa” (t) + 7%3(1' (t)Q] .
Using Lemma 3.3 (ii), (iii) and (3.5), we find that a’ (¢) > 0 for each ¢ > 0, and
also J' (t) <0 for each ¢t > 0.
Hereto, for each ¢t > 0, we obtain
p+3,

ad’ ()~ P2 (07 2 0" ()~ 0+ 3)a®) [ (to)do
Q

> (p—1)Cha(t)”.

1
Thereby, J” (1) < =7 (b — 1)>C2J (t) <0 YVt >0and J(t) < J(0)+ J' (0)t.
According to J' (0) < 0, there exists a constant T* > 0 with J (T*) = 0. Since
we have J' () <0 for each t >0, by (3.4) we find

1
JJ"(t) > —1 (- D2C2JJ (t) >0 Vte[0,TF),

J ()2 > k2 — k2T (t)* >0,

7(0)
and J' (t) < —\/k2 — k2J (t)* Vt € [0,T). Therefore we obtain /J(t) \/ﬁ =
W
_/J(O)Wztand
k k
(3.6) sin~! <1€2J(0)> —sin~! (]:J(t)) > kot Vit € [0,T).
1 1

k
From (3.6), it follows T < k; ' sin™* <k2J (0)> = ky 'y and herewith
1

(37) J (t) < % sin (k‘gOtl — kizt) Vit € [O,T) .
2

4
e\ =1 4
and a(t) > <k:1> 3 (sin (ko1 — kot)) P~1 YVt € [0,T). I T = ay, by (3.7),
2

then J (t) — 0 as t — T, this means that
a(t) =0, t—T.

Remark ) The theorem 3.5.1 is a extension of my own Satz 2 in [Lil]. And the
local existence and uniqueness of solutions of equation (3.1) in H1 are known [Li2].

2) For special cases: i) For n = 2, p > 1 and E (0) = 0, the life-span of the
positive solution u € H1 of equation (3.1) is bounded by T' < a;.

ii) Forn = 3, p =2 and E (0) = 0, the life-span of the positive solution u € H1 of
1
equation (3.1) is bounded T' < v := 2Cg, " sin™* (26’9 (a’ 0)?a(0) + 46%) 2) :

If T = ag, then a=! (t) — 0,t — T.
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iii) For n = 3, p = 3, £ (0) = 0 the life-span of the positive solution u € H1 of
1
equation (3.1) is bounded T' < a3 := Oy ' sin™! (209 (a’ (0)2a(0)+ 46%) 2) .

If T = as, then a(t)”" — 0,t — T.

iv) For a’ (0) = 0, we have a; = Cq.

p—1
1 a(0)

fla’i(())’ as || — 0, then a; —

v) For |Q] — oo, we have also a1 —

2 (1 4
p—lsm 1(409 )

Estimates for the Life-span of the Solutions of equation (3.1) under
a (0) <0

Theorem 3.5.2 Suppose that uw € H1 is a positive weakly solution of the initial-
boundary value problem equation (3.1) with a (0) > 0, E(0) =0 and o’ (0) < 0.
Then the life span of u is bounded:

2

+1\ p=1

T <as:= m 7‘1/(0) 2)‘g+1 .
p-1)Cq p—-1\p-1

If T = as, then a(t)f1 — 0,7 — as. Further, we have the estimate for the
blow-up rate of a(t) in the neighborhood of s :

4

a(t) > a(to) [Sin ((1’21)09 (s — t))] Tp1

2
p—1

. -1 p+1 ,
for ¥t € [to,T) ,to < t1 with t; : ] 2)\21% a’ (0).

Proof. By Lemma 3.3 (iv), we have o/ () > 0 V¢ > t;. Similar to the proof
of theorem 3.5.1, we get J” (t) < —%C&J(t) < 0 Vt > t; and there exists
a constant to < ¢1 with o’ (t) > 0 Vt > to, a’ (to) = 0; thus J'(t) <0 Vt >
to, J/ (to) =0. And

7 < 2= 1)205 (J (to)? — J(t)z) Vit > to

4

and herewith J' (t) < —252Can/J (to)” — J (t)> Vit > to,
2 J(to) dr

toho = (p—1)Cq /J(t) J(t0)2 —r2




SEMILINEAR WAVE EQUATIONS 17

™

—1)C;
Gonc <o ) <

Therefore we conclude that T < t9 +

—sin~? (jé%) Vt > to and

2

J(t) < J(to)sin (p Lo (as — t)) Vit > t.

Theorem 3.5.3: Suppose that u is a positive weakly solution of equation (3.1)
with a (0) >0, E(0) =0 and

. 1 , . T1a (0) —2d (O) 2rity
(i) — 57‘1@(0) <a' (0)<0 (zz)m < )

where r1 := /2 (p — 1)Cq. Then the life-span of u is bounded:

. 1 ln<71a(0)—2a'(0)>ga5.

T < =
ae ~1a(0) + 24’ (0)

< — A t 5
(p—1)Ca 2m
And there is a constant t4 > 0 with

1 r1a (0) — 2a’ (0)
(ZZZ) ty tg == —1n <’I“1a(0)—‘,—2> s

IN

(iv) a(t) a(ts) [sin (p2 Lo (g - t))} o .

Remark 3.5.3: In theorem 3.5.1 we have no restriction (i) or (ii) under theo-
rem 3.5.2. It seems that theorem 3.5.1 is better as theorem 3.5.2, yet under the
suppositions (i) , (ii) theorem 3.5.2 is better then theorem 3.5.1.

v

Proof of Theorem 3.5.2: Similar to the proof of Lemma 3.3 (iii) for all t > 0 it
yields

2ad’ (t) = ¥ (t) > (a' (0) + %a (0)) a(0) et + (a' (0) — %a (0)) a(0)e ",

herewith a’ (t) >0 V¢ > t3 and there exists a constant ¢4 < t3 with
a (ty) =0,a’ (t) >0 Vt > ty.
Using the same steps in the proof of Theorem 3.5.1 we obtain
J(t4)

s (p—21)09 J/(t) J(Z;T;(p—i)cﬂ (gSinl(j(ii)>>) =t

A

Thus we get the assertions in Theorem 3.5.2.

Estimates for the Life-Span of the Solutions of equation (3.1) under
Negative Energy

In this chapter we suppose the energy E (0) is negative and consider the following
cases:

(i) a(0)>0,a’(0) >0 (i) a(0) >0,d’ (0)=0 (iii) a(0) >0,a’ (0) < 0.

Fundamental Lemmas
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In this section we use the following lemmas and those argumentations of proof to
lemmas are not true for positive energy, so under positive energy we need another
method to show the results.

Lemma 3.6.1: Suppose that v € H1 is a positive weakly solution of equation
(3.1) with a(0) >0 and E(0) <0. Then

(i) for @’ (0) >0, we have &’ (t) >0 Vt > 0.

(ii) for o’ (0) < 0, there exists a constant t; > 0 with o/ (¢) > 0 V¢t >

—a’ (0) ) .
ts, o' (t5) =0 and t5 < tg:= ——————, where ¢ is the positive root of the
(p—1) (62 — E)
equation APt 2 L B (0) = 0.

+ 17
Proof: By Sobolev inequality it yields
2 p+3 I
a” (1) < 2B (0) + 2| Vul}3 (1 (pHAzi% [9ully ™ (1)~ 2) vt > 0.

‘We have also

" (t) = = (p+ D E0) + (p— 1) [Vul3(t) Vt=0,

. 2 2 1 —1
herewith follows —E (0) < ||Vull; (t) (p—l—lAiL [Vull5™" (6) —1) Vt>0.
According to F (0) < 0 there exists the positive root § to the equation
2 pHl pr1 2
p+1/\5+1 P =17+ E(0) = 0.
2 _2(pt1)

and § > (EEHL)77 “Apii s so it is |Vull5 (t) > 6% Vi > 0, hereby a” (t) >
—(1£p)E0)+ (p—1)6% Vt >0 and

a (t)>d (0)+(p—1) (52 -

Thus, (i) under lemma 3.6.1 follows.

For o' (to) < 0, we have a’ (tp) > 0 > o’ (0), therefore (ii) in lemma 3.6.1 is
proved.

p+1
——F . > 0.
P (0)> tVt>0

Estimates for the Life-Span of the Solutions of equation (3.1) under
E(0) <0,d (0) >0.

Theorem 3.6.2: Suppose that uw € H1 is a positive weakly solution of equation
(5.1) with E(0) <0 and o' (0) > 0. Then the life-span of u is bounded:

p—1
(3.8) T <as:=ky'ky" sin (kzga (0)” 4 )
n— iy 1 — 2 n— %
where ko = 251 (0)"" 1 \/4a ) @ (0 + 254 (6%~ EE(0)) ko = (12)
2_p—1
ky =2t M. Further we have

2 p+1

(3.9) a(t) > kP~T (sin [koks (a5 — t)])‘fl vt € [0,7].
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Remark 3.6.2: 1) We can good estimate the rate of the singularity of a (¢) and
the life-span of u, but we can not get them contemporaneously:

p—1
tan—! (kga (0)4)
(3.10) T <ag:=ky'ky" =

_p—2
1—k2a(0)” 2

(3.11)
4

a(t) > k;’%l {tan {tan—l ka (0)”11> _ kokz\/l B k%a(o)pr_l t] }} p—1

for each t € [0,77].
-1

2) For ky-a(0)” 4 =1, that is,

(3.12) 4(2-p) (6° = E(0)) a(0) = (p+1)d' (0)°, n >4,
then we can get a better estimate for the life-span of w:
(i1
—1
(3.13) T<ky 1k212€) VT (2 ”“) = ar.
p
g r(5%)

Proof of Theorem 3.6.2: By lemma 3.6.1 we have o’ (t) >0 V¢t >0 and J' (t) <
0 Vt > 0. Similar to the proofs in above

a//(t)*(p+3)/u2(t,x)dxz (p—1) <52p+1
Q

p_lE(O)) vt > 0.

And

_1)2 1 pt3
J"(t) < —% (52 - ;H__lE(O)> J()p—1 <0 Vit > 0.

So there exists a finite number T > 0 such that J (T") = 0, and herewith

2(p+1)

207" (t) > — @2 (52 P+1E(0))J(0) P

1? (2 1 HAptd)
4(1;?1)-&-1) (5 %E(O)) J(t)

According to the definitions of kg, k1 and ks and the fact that J' (t) < 0 for
each t > 0, it follows

T () < —koV/ 1 — (kad (1) vt > 0.

Using J' (t) <0 Vt> 0 we find that g (¢) is a monotone increasing function
and 0 < J'(0)> = g(0) < g(t) < g(T)=k2 Vt €[0,T], therefore

ko (t) <1Vtel0,T].
Hence,

k2-J(0)

dr
. < R — .
(3.14) Fakot < / —— Vi e[0,T]
kQ-J(t) 1—17r p—1
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(pt+1)
Because p € [1, ﬁ] , we get 2(;71-11) >4 and 1 —’/‘QPj—ll >1—7rt vrelo1].
Therefore we obtain
k2J(0) k2J(0)

dr / 1 dr
[
A/ 2./1 — 27— _ 2
1+7r 1 r ke (1) \/1 + (kQJ(t))2 \/1 r

kokot <

ko J(t)

_ sin—! (ko (0) — sin™! (k2J (1)) vt e [0,7].

1+ (ko (1))
Hence the estimate (3.8) follows. Further, we have

Sini1 (kQJ (t)) + kokot < kokoas Vt € [O,T] R

J(t) < ky'sin[koks (as—t)] Vt€[0,T].
Herewith we obtain the assertion (3.9).

Proof of Remark 3.6.2: Using the inequality (3.14) we obtain
k2J(0)

kokot < ! / dr
02 >~ — e
1 2

1= (k2 (0))° ey VETT

N S [tan™" (k2 (0)) — tan™" (ko (2))] -

L= (k27 (0))*
From this, the estimates (3.10) and (3.11) follows.
Under the inequality (3.12) we use (3.14), then it yields

1 —
kokat < / dr = rE)r (2&7;1))

» -1 1)
b 1o T (o )

Thus the estimate (3.13) is proved.
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IV. Blow-up result on Emdenm-Fowler type semilinear wave equation
t2upy — gy = uP  in [0,T) x (a,b), p>1

Under some tranformations one can get the existence of solutions to the Emdenm-
Fowler type semilinear wave equation

Uy — Uy = uPin [0,T) x (a,b), p>1, (4.1)

w(0,2) = wo(z), w(0,2)=uy (),
for suitable conditions. There are at least three methods on this existence result, the
simplest is taking the transform s = e, u (t,z) = v (s, ) then uy =t~ 1oy, t2uy =
—vs + Vg5, the equation (4.1) can be transformed into the following type

Vgs — Vge = Vs +0P in [1,6T) x (a,b),

v(l,2) = wup(x),vs(l,z) =up (x).
By the similar way to disscuse the existence of solutions for nonlinear wave equation
in bounded domain. Second method is the Laplace transform method on ¢. Third
is the method of Laplace-Fourier transform, taking Laplace tranceform on ¢ and
Fourier transform on space x. In this report we focus on the Blow-up property of
the solution w.

After some tedious argumentations, we can obtain the following results:

4.1 Life-Span of the Solutions of (4.1) under Null-Energy

Theorem 4.1.1. Suppose that w € H1 is a positive weakly solution of equation
(4.1) with o' (0) > 0 and E(0) = 0. Then the life-span of w is finite and the

blow-up rate of u is smaller than

Theorem 4.1.2. Suppose that w € H1 is a positive weakly solution of the initial-
boundary value problem equation (4.1) with a(0) > 0, E(0) =0 and o’ (0) < 0.
Then the life span of u is bounded and the blow-up rate of a(t) in the neighborhood

of s is smaller than

4.2 Life-Span of the Solutions of (4.1) under Negative-Energy

Theorem 4.2: Suppose that uw € H1 is a positive weakly solution of equation
(4.1) with E(0) <0 and o' (0) > 0. Then the life-span of u is bounded and the

blow-up rate of a(t) in the neighborhood of «s is smaller than

The above results are maybe not the best but it is not easy to achieve.
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