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中 文 摘 要 ： 在這近幾十年來，耦合系統的同步化行為已經成為相當重要的研究
課題。在現有文獻中，用來處理具時間延遲之非線性耦合系統同步
化問題的方法仍受到了相當的限制。現有處理非線性藕合系統同步
問題的方法大多要求耦合矩陣是與時間無關的、或對稱的，或者要
求耦合矩陣之行的總和須為零、或其非對角線元素必須為非負，並
且要求耦合函數的斜率必須大於某一個正數。在這個研究中，我們
發展出一套可以處理具更一般耦合矩陣形式並具一般形式的耦合函
數之具時間延遲的非線性耦合系統的同步化方法。

中文關鍵詞： 同步化、耦合系統、耦合矩陣、耦合函數

英 文 摘 要 ： Synchronization of coupled systems have been important
research topics in recent decades. In the literature, the
existing methods for the synchronization of nonlinearly
coupled systems with delay are still limited. Most of the
existing approaches to the synchronization problems of
nonlinearly coupled systems require the connectivity matrix
to be time-independent, symmetric, with zero row-sums, with
nonnegative off-diagonal entries; moreover, these
approaches commonly require that the coupling functions
have positive lower bounds on their slope. In this project,
we develop an approach to the synchronization of
nonlinearly coupled systems with delays. Under this
approach, the connection matrix could be quite general, and
the condition on the slope of the coupling functions, which
is commonly imposed on the coupling functions in the
existing approaches, is not necessary

英文關鍵詞： Synchronization, Coupled system, Connection matrix,
Coupling function
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Synchronization is an important and common phenomenon in various biological and 
physical systems. As a result, the topic of synchronization in coupled dynamical systems 
has drawn a wide range of ongoing research interest [1-8]. Time delay, which occurs in 
the propagation of action potentials along the axon, and the transmission of signals across 
the synapse, is an important factor in the study of coupled neural systems [9]. Thus, such 
delays have been incorporated into neural network modeling [10,11,12]. Indeed, delay can 
modify the collective dynamics of neural networks; for example, it can induce 
synchronization [13] and asynchronization [14]. 

 
Some studies on the synchronization of coupled systems have focused on local 

synchronization, which is concerned with the stability of synchronous manifold, whereas 
others have studied global synchronization, by showing that all solutions converge to the 
synchronous manifold. The master-stability-function method, developed by Pecora and 
Carroll [4], is a well-known approach to the study of local synchronization in coupled 
chaotic systems. This method computes the eigenvalues of the connectivity matrix, and 
the Lyapunov exponents of the associated variational equation, in order to determine the 
stability of the synchronous manifold. It is well known that the largest Lyapunov 
exponent must be negative for local synchronization to occur. Lyapunov exponents cannot 
be calculated analytically, and thus this method requires the use of numerical operations 
[15]. Indeed, methods that rely on the manipulation of connectivity matrix eigenvalues 
and Lyapunov exponents, such as the master-stability-function method, may be 
ineffective if the coupling configuration is time-dependent, or has a time-dependent delay, 
as the stability theory may be invalid for the corresponding linearized system. However, 
time-delayed and time-dependent connections are more realistic in many real-world 
networks. 

Methodologies for the examination of global synchronization usually involve the 
notion of Lyapunov functions. For example, Lyapunov’s direct method has been applied 
for studying synchronization in networks in [16-18]. Other works employing Lyapunov 
functions/functionals include [10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. 
In the existing literature, many of the systems considered for tackling synchronization 



problems exhibit linear diffusive couplings [12, 19, 28, 26, 20, 29]. Some papers 
including [11, 21, 22, 23, 24, 25, 27, 30, 31] considered nonlinear couplings under the 
diffusion condition under which the coupling is annihilated in the synchronous state. The 
existing works on global synchronization of nonlinearly coupled systems commonly 
impose the slope condition under which the coupling functions have positive lower 
bounds on their slope. Notably, there is a significant difference between diffusive 
coupling and general nonlinear coupling. For nonlinear and non-diffusively coupled 
systems incorporating delay, global synchronization under the Lyapunov function 
approach often reduces to the situation where every solution converges asymptotically to 
a unique synchronous equilibrium point [30, 31]. Typically, only delay-independent 
criteria can be derived under such an approach. Thus, for general nonlinear coupled 
systems, in particular for those with time delays, finding an effective Lyapunov function 
that implies synchronization with non-trivial asymptotic dynamics may be a rather 
challenging and limited method.  

Therefore, in this project, we want to develop an approach to the synchronization of 
nonlinearly coupled network system with delays, under general coupling configuration.  
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An novel approach to synchronization of nonlinearly coupled systems with
delays

Jui-Pin Tsenga,⇤

aDepartment of Mathematical Sciences, National Chengchi University, Taipei, Taiwan

Abstract

In this investigation, an novel approach to establish the global synchronization of coupled systems is presented. Un-
der this approach, individual subsystems can be non-autonomous; the coupling configuration is rather general, and
can be nonlinear, time-dependent, asymmetric, and time delayed. By transforming the problem of synchronizing
coupled systems into one of solving corresponding linear systems of algebraic equations, delay-dependent and delay-
independent criteria for global synchronization are established. We implement the present approach to nonlinearly
coupled FitzHugh–Nagumo neurons under delayed sigmoidal coupling. Two numerical examples are then given to
show that oscillatory behavior and multistability can emerge or be suppressed as the coupled neurons synchronize
under the synchronization criterion; asynchrony induced by the coupling strength or coupling delay occurs while the
coupled neurons do not satisfy the synchronization criterion.

Keywords: Coupled system, Delay, Synchronization, FitzHugh–Nagumo neuron

2000 MSC: 34D06, 92B20, 34K20, 92B25

1. Introduction

Synchronization is an important and common phenomenon in various biological and physical systems [1, 2]. As a
result, the topic of synchronization in coupled dynamical systems has drawn a wide range of ongoing research interest
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 29]. Time delay, which
occurs in the propagation of action potentials along the axon, and the transmission of signals across the synapse, is an
important factor in the study of coupled neural systems [6, 31]. Thus, such delays have been incorporated into neural
network modeling [8, 12, 14, 20, 30, 29, 31]. Indeed, delay can modify the collective dynamics of neural networks;
for example, it can induce synchronization [15] and asynchronization [21, 32].

Some studies on the synchronization of coupled systems have focused on local synchronization, which is con-
cerned with the stability of synchronous manifold, whereas others have studied global synchronization, by showing
that all solutions converge to the synchronous manifold. The master-stability-function method, developed by Pecora
and Carroll [17], is a well-known approach to the study of local synchronization in coupled chaotic systems. This
method computes the eigenvalues of the connectivity matrix, and the Lyapunov exponents of the associated variational
equation, in order to determine the stability of the synchronous manifold. It is well known that the largest Lyapunov
exponent must be negative for local synchronization to occur. Lyapunov exponents cannot be calculated analytically,
and thus this method requires the use of numerical operations [9]. Indeed, methods that rely on the manipulation
of connectivity matrix eigenvalues and Lyapunov exponents, such as the master-stability-function method, may be
ine↵ective if the coupling configuration is time-dependent, or has a time-dependent delay, as the stability theory may
be invalid for the corresponding linearized system. However, time-delayed and time-dependent connections are more
realistic in many real-world networks.

⇤Corresponding author. Tel.: +886-2-29393091 extension 62419; fax: +886-2-29387905.
Email address: jptseng@nccu.edu.tw (Jui-Pin Tseng)
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Methodologies for the examination of global synchronization usually involve the notion of Lyapunov functions.
For example, Lyapunov’s direct method has been applied for studying synchronization in networks in [24, 25, 26].
Other works employing Lyapunov functions/functionals include [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 19, 20, 22, 28,
29, 30]. In the existing literature, many of the systems considered for tackling synchronization problems exhibit linear
di↵usive couplings [3, 4, 14, 17, 18, 20, 22, 23, 27, 30]. Some papers including [5, 7, 10, 11, 12, 13, 19] considered
nonlinear couplings under the di↵usion condition under which the coupling is annihilated in the synchronous state.
The existing works on global synchronization of nonlinearly coupled systems commonly impose the slope condition
under which the coupling functions have positive lower bounds on their slope. Notably, there is a significant di↵erence
between di↵usive coupling and general nonlinear coupling. For nonlinear and non-di↵usively coupled systems incor-
porating delay, global synchronization under the Lyapunov function approach often reduces to the situation where
every solution converges asymptotically to a unique synchronous equilibrium point [28, 29, 31, 32]. Typically, only
delay-independent criteria can be derived under such an approach. Thus, for general nonlinear coupled systems, in
particular for those with time delays, finding an e↵ective Lyapunov function that implies synchronization with non-
trivial asymptotic dynamics may be a rather challenging and limited method. In this investigation, we consider the
following delayed coupled system:

ẋi(t) = F(xi(t), t) + c
X

j2N
ai j(t)G(x j(t � ⌧(t))), i 2 N , t � t0, (1.1)

where N := {1, . . . ,N}, xi(t) = (xi,1(t), . . . , xi,K(t)) 2 RK , F = (F1, . . . , FK) is a smooth function, describing the
intrinsic dynamics of each subsystem, c � 0 is the coupling strength, and ai j(t), i, j 2 N , are bounded functions of t,
satisfying the following condition:

X

j2N
ai j(t) = (t), for all i 2 N and t � t0. (1.2)

The matrix A(t) := [ai j(t)]1i, jN refers to the connection matrix. The function G = (G1, . . . ,GK) satisfies

Gk(x j(t � ⌧(t))) = gk(x j,k(t � ⌧(t))), for all i, j 2 K and t � t0 (1.3)

where K := {1, . . . ,K}, gk is a nondecreasing and di↵erentiable function, and ⌧(t) 2 [0, ⌧M] stands for the time-
dependent transmission delay. For later use, we set

̄ = sup{|(t)| : t � t0}, ̌ = inf{(t) : t � t0}, ̂ = sup{(t) : t � t0}, (1.4)

āi j = sup{|ai j(t)| : t � t0}, ā = max{
X

j2N
āi j : i = 1, . . . ,N}, ⌧̄ = sup{⌧(t) : t � t0}. (1.5)

System (1.1) is a nonlinearly coupled system if gk is a nonlinear function for some k 2 K ; otherwise, it is a linearly
coupled system. Systems of neural network and neuronal network in the literature largely admit the form of (1.1) or its
similar forms; see [3, 4, 14, 22, 24, 26, 30, 23, 27] for linear coupling case, and [5, 7, 10, 11, 12, 13, 19] for nonlinear
coupling case. In the following, (x1(t), . . . , xN(t)) denotes an arbitrary solution of system (1.1), and (xt

1, . . . , x
t
N) is

the corresponding evolution of system (1.1), where xt
i 2 C([�⌧M , 0];RK), i 2 N , are defined as xt

i(✓) = xi(t + ✓) for
✓ 2 [�⌧M , 0]. System (1.1) is said to attain global (identical) synchronization, if

xi,k(t) � x j,k(t)! 0, as t ! 1, for all i, j 2 N , k 2 K ,

for every solution (x1(t), . . . , xN(t)), where xi(t) = (xi,1(t), . . . , xi,K(t)). Recently, the idea of sequential contracting
has been developed in [21], to establish the global synchronization of coupled systems under circulant coupling. The
approach in [21] can apply to system (1.1) with the connection matrix A(t) which is a circulant matrix, this is

A(t) = [ai j(t)]1i, jN = circ(a1(t), . . . , aN(t)), (1.6)

for some ai(t), i 2 N . Based on this approach, the authors in [21] established the global synchronization of two
FitzHugh–Nagumo neurons under delayed sigmoidal coupling, which gives an analytical support to the numerical
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finding in [33]. They also considered the global synchronization of an neural network that consists of a ring of K
loops, coupled with their nearest neighbors under delayed sigmoidal coupling. The couplings for these two coupled
systems considered in [21] do not satisfy the di↵usive condition, and do not satisfy the slope condition commonly
imposed in the literature; however, their corresponding connection matrices must satisfy condition (1.6). A more
detailed discussion of the sequential contracting approach and the other existing synchronization approaches can be
found in [21]. In this investigation, we extend the approach developed in [21] to the coupled system (1.1), under a
more general coupling configuration; namely, condition (1.6) is not required for our present approach in this paper.

The remainder of this paper is organized as follows. In Section 2, we establish the synchronization of system
(1.1). In Section 3, we implement the synchronization criterion derived in Section 2 to coupled FitzHugh–Nagumo
neurons under delayed sigmoidal coupling.

2. Synchronization of system (1.1)

In this section, we study the global synchronization of system (1.1), under two assumptions to be introduced in
Subsection 2.1; delay-dependent and delay-independent synchrponization criteria are then derived in Subsection 2.2.

2.1. Model assumptions
The first assumption imposed on system (1.1) is as follows.
Assumption (D): All solutions of system (1.1) eventually enter and then remain in some compact set QN :=

Q ⇥ · · · ⇥ Q ⇢ RNK , where Q := [q̌1, q̂1] ⇥ · · · ⇥ [q̌K , q̂K] ⇢ RK .
Using the set introduced in assumption (D), which we denote as Q, we can define the following set:

CQ := {(�1, . . . ,�N) : �i = (�i,1, . . . , �i,K) 2 C([�⌧M , 0];RK), �i,k(✓) 2 [q̌k, q̂k], ✓ 2 [�⌧M , 0], i 2 N , k 2 K}. (2.1)

Remark 2.1. (i) The dissipative property, such as assumption (D) for system (1.1), is a basic requirement in studying
the synchronization of coupled systems, under which all solutions of the system exist on [0,1). There is no general
methodology to justify this property for a nonlinear system, and concluding such a property is usually case-dependent.
One may examine the dissipative property for linearly coupled systems by applying the approaches in [18, 20, 22].
(ii) Any evolution (xt

1, . . . , x
t
N) of system (1.1) eventually enter and then remain in CQ under assumption (D).

To introduce the second assumption, we first consider the configuration of Fk, k 2 K , in system (1.1). For each
k 2 K , we decompose Fk(�, t) � Fk(�̃, t) as follows:

Fk(⌅, t) � Fk(⌅̃, t) = hk(⇠k, ⇠̃k, t) + wk(⌅, ⌅̃, t), (2.2)

where t � t0, ⌅ = (⇠1, . . . , ⇠K), and ⌅̃ = (⇠̃1, . . . , ⇠̃K). Such a decomposition in (2.2) is always achievable, because the
trivial decomposition selects hk ⌘ 0. A nontrivial decomposition for the FitzHugh–Nagumo neuron is illustrated in
Proposition 3.2. Now, let us introduce the following assumption on hk and wk, for k 2 K :

Assumption (F): For each k 2 K , there exist µ̌k, µ̂k 2 R, ⇢w
k � 0, and µ̄kl � 0, for l 2 K � {k}, such that for any

⌅ = (⇠1, . . . , ⇠K), ⌅̃ = (⇠̃1, . . . , ⇠̃K) 2 Q, the following two properties hold for all t � t0:

(F-i):

8>><
>>:
µ̌k  hk(⇠k, ⇠̃k, t)/(⇠k � ⇠̃k)  µ̂k, ⇠k � ⇠̃k , 0,
hk(⇠k, ⇠̃k, t) = 0, ⇠k � ⇠̃k = 0,

(F-ii): |wk(⌅, ⌅̃, t)|  ⇢w
k , and |wk(⌅, ⌅̃, t)|  Pl2K�{k} µ̄kl|⇠l � ⇠̃l|.

Actually, assumption (F) is commonly satisfied, and µ̌k, µ̂k, ⇢w
k , and µ̄kl can be determined by applying the mean-value

theorem, provided that F = (F1, . . . , FK) is su�ciently smooth, and the set Q is given under assumption (D).

2.2. Synchronization criteria
Let us define the following sets of indices:

A := (N � {N}) ⇥K andAi,k := A � {i} ⇥ {k}, where (i, k) 2 A. (2.3)

3



Assume that (x1(t), . . . , xN(t)), where xi(t) = (xi,1(t), . . . , xi,K(t)), is an arbitrary solution of system (1.1). Setting
zi(t) = (zi,1(t), . . . , zi,K(t)) := xi(t)�xi+1(t), for i 2 N�{N}, as seen from (1.1) and (1.3), we have that (z1(t), . . . , zN�1(t))
satisfies the following di↵erence-di↵erential system corresponding to system (1.1):

żi,k(t) = Hi,k(xt
1, . . . , x

t
N , t), (i, k) 2 A, t � t0, (2.4)

where
Hi,k(�1, . . . ,�N , t) := Fk(�i(0), t) � Fk(�i+1(0), t) + c

X

j2N
[ai j(t) � a(i+1) j(t)]gk(� j,k(�⌧(t))), (2.5)

for � j = (� j,1, . . . , � j,K) 2 C([�⌧M , 0];RK), j 2 N . Herein, the roles of � j, j 2 N are discussed in Remark ??. Clearly,
system (1.1) attains global synchronization if zi,k(t)! 0, as t ! 1, for every (i, k) 2 A.

Via A(t) = [ai j(t)]1i, jN , we first define Ã(t) = [ãi j(t)]1i, jN , where

ãi j(t) =

8>><
>>:

aii(t) � (t), if i = j 2 N ,
ai j(t), if i, j 2 N and i , j.

(2.6)

We then further define the following matrix Ā(t) derived from A(t), given by

Ā(t) = [↵i j(t)]1i, j(N�1) := CÃ(t)CT (CCT )�1 2 R(N�1)⇥(N�1), (2.7)

where

C :=

0
BBBBBBBBBBBBBBBBBB@

1 �1 0 · · · 0

0 1 �1
. . .

...
...
. . .

. . .
. . . 0

0 · · · 0 1 �1

1
CCCCCCCCCCCCCCCCCCA

2 R(N�1)⇥N .

Applying arguments parallel to those for the appendix of [16] shows that Ā(t) in (2.7) is well-defined, and satisfies

CA(t) = Ā(t)C, (2.8)

for all t � t0. For later use, we set

↵̄i j = sup{|↵i j(t)| : t � t0}, ↵̌i j = inf{↵i j(t) : t � t0}, ↵̂i j = sup{↵i j(t) : t � t0}, (2.9)

where ↵i j(t), 1  i, j  N �1, are entries of Ā(t), defined in (2.7). Based on (2.8), we derive the following proposition.

Proposition 2.1. Consider system (1.1) which satisfies assumptions (D) and (F). Then, functions Hi,k defined in (2.5),
(i, k) 2 A, can be decomposed as

Hi,k(�1, . . . ,�N , t) = hi,k(�i,k(0), �i+1,k(0), t) + h̃i,k(�i,k, �i+1,k, t) + wi,k(�1, . . . ,�N , t), (2.10)
hi,k(�i,k(0), �i+1,k(0), t) = hk(�i,k(0), �i+1,k(0), t), (2.11)

h̃i,k(�i,k, �i+1,k, t) = c[(t) + ↵ii(t)][gk(�i,k(�⌧(t))) � gk(�i+1,k(�⌧(t))], (2.12)

wi,k(�1, . . . ,�N , t) = wk(�i(0),�i+1(0), t) + c
X

j2N�{i,N}
↵i j(t)[gk(� j,k(�⌧(t))) � gk(� j+1,k(�⌧(t)))]. (2.13)

Moreover, for all (i, k) 2 A and all (�1, . . . ,�N) 2 CQ, where �i = (�i,1, . . . , �i,K), i 2 N , the following three
properties hold for all t � t0:

(H-i):
(
µ̌k  hi,k(�i,k(0), �i+1,k(0), t)/[�i,k(0) � �i+1,k(0)]  µ̂k, �i,k(0) � �i+1,k(0) , 0,
hi,k(�i,k(0), �i+1,k(0), t) = 0, �i,k(0) � �i+1,k(0) = 0,

(H-ii): |h̃i,k(�i,k, �i+1,k, t)|  ⇢h
ik, and

(
�̌ik  h̃i,k(�i,k, �i+1,k, t)/[�i,k(�⌧(t)) � �i+1,k(�⌧(t))]  �̂ik, �i,k(�⌧(t)) � �i+1,k(�⌧(t)) , 0,
h̃i,k(�i,k, �i+1,k, t) = 0, �i,k(�⌧(t)) � �i+1,k(�⌧(t)) = 0,
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(H-iii): |wi,k(�1, . . . ,�N , t)|  ⇢w
ik, and

|wi,k(�1, . . . ,�N , t)| 
X

( j,l)2Ai,k

{µ̄( jl)
ik |� j,l(0) � � j+1,l(0)| + �̄( jl)

ik |� j,l(�⌧(t)) � � j+1,l(�⌧(t))|},

for arbitrary ⇢h
ik and ⇢w

ik which satisfy ⇢h
ik � 2c(̄ + ↵̄ii)⇢

g
k and ⇢w

ik � ⇢w
k + 2c⇢g

k ⇥ (
P

j2N�{i,N} ↵̄i j), respectively, and

�̌ik =

8>><
>>:

c(̌ + ↵̌ii)Ľk, ̌ + ↵̌ii � 0,
c(̌ + ↵̌ii)L̂k, ̌ + ↵̌ii < 0,

�̂ik =

8>><
>>:

c(̂ + ↵̂ii)L̂k, ̂ + ↵̂ii � 0,
c(̂ + ↵̂ii)Ľk, ̂ + ↵̂ii < 0,

µ̄( jl)
ik =

8>><
>>:
µ̄kl, i = j, k , l,
0, otherwise,

�̄( jl)
ik =

8>><
>>:

c↵̄i j L̂k, j , i, k = l,
0, otherwise,

where

⇢g
k := max{|gk(⇠)| : ⇠ 2 [q̌k, q̂k]} � 0, Ľk := min{g0k(⇠) : ⇠ 2 [q̌k, q̂k]} � 0, L̂k := max{g0k(⇠) : ⇠ 2 [q̌k, q̂k]} � 0.

Herein, ̄, ̌, and ̂ are defined in (1.4), CQ is defined in (2.1), Ai,k is defined in (2.3), functions hk and wk are defined
in (2.2), ↵̄i j, ↵̌i j, and ↵̂i j are defined in (2.9), and µ̌k, µ̂k, ⇢w

k , and µ̄kl are defined in assumption (F).

Using µ̌k, µ̂k, �̌ik, �̂ik, µ̄( jl)
ik , and �̄( jl)

ik , introduced in Proposition 2.1, and ⌧̄, defined in (1.5), we define

⌘ik := �µ̂k � �̂ik + �̄ik⌧̄(µ̌k + µ̂k + �̌ik + �̂ik), ⌘̃ik := �µ̂k � �̄ik, L̄( jl)
ik := µ̄( jl)

ik + �̄
( jl)
ik , (2.14)

where
�̄ik := max{|�̌ik |, |�̂ik |}. (2.15)

The parameter ⌘ik can be regarded as delay-dependent, as it is related to ⌧̄, defined in (1.5), whereas the parameters
⌘̃ik and L̄( jl)

ik are delay-independent. Via ⌘ik, ⌘̃ik, and L̄( jl)
ik , defined in (2.14), we define two matrices that are delay-

dependent and delay-independent, respectively, to obtain the delay-dependent and delay-independent synchronization
criteria for system (1.1) (see Theorems 2.1 and 2.2). The delay-dependent matrix is defined as follows:

M := DM � LM � UM = [M(kl)]1k,lK , (2.16)

where DM, �LM, and �UM represent the diagonal, strictly lower-triangular, and strictly upper-triangular parts of M,
respectively; M(kl) = [m(kl)

i j ]1i, jN�1, k, l 2 K , are blocks of (N � 1) ⇥ (N � 1) matrices, defined by

m(kl)
i j =

8>><
>>:
⌘ik, if i = j 2 N � {N} and k = l 2 K ,
�L̄( jl)

ik , otherwise.

Notably, matrix M in (2.16) is delay-dependent, because the diagonal entries ⌘ik are delay-dependent. The proof of
Theorem 2.1 explains the formulation of matrix M. We now introduce the delay-independent matrix:

M̃ := DM̃ � LM̃ � UM̃ = [M̃(kl)]1k,lK , (2.17)

where DM̃, �LM̃, and �UM̃ represent the diagonal, strictly lower-triangular, and strictly upper-triangular parts of M̃,
respectively; M̃(kl) = [m̃(kl)

i j ]1i, jN�1, k, l 2 K , are blocks of (N � 1) ⇥ (N � 1) matrices, defined by

m̃(kl)
i j =

8>><
>>:
⌘̃ik, if i = j 2 N � {N} and k = l 2 K ,
�L̄( jl)

ik , otherwise.

Let us now introduce two conditions needed for criteria for the synchronization of system (1.1), as follows:
Condition (S1): µ̂k + �̂ik < 0 and �̄ik⌧̄ < 3⇢h

ik(µ̂k + �̂ik)/[(µ̂k + µ̌k + �̂ik + �̌ik)(3⇢h
ik + ⇢

w
ik)], for (i, k) 2 A,

Condition (S2): �̄ik < �µ̂k/(1 + ⇢w
ik/⇢

h
ik), for (i, k) 2 A.

The parameters in conditions (S1) and (S2) are defined in Proposition 2.1, (1.5), (2.14), and (2.15). Condition (S1)
is related to ⌧̄, and is thus delay-dependent, whereas condition (S2) is independent of time delay. We note that each
⌘ik > 0 (resp., ⌘̃ik > 0), cf. (2.14), under condition (S1) (resp., (S2)).
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Theorem 2.1. Consider system (1.1) which satisfies assumptions (D) and (F). Then, the system globally synchronizes
if condition (S1) holds, and the Gauss-Seidel iterations for the linear system:

Mv = 0, (2.18)

converge to zero, the unique solution of (2.18); or equivalently,

�syn := max
1�K⇥(N�1)

{|��| : �� : eigenvalue of (DM � LM)�1UM} < 1. (2.19)

where the matrices M, DM, LM, and UM are defined in (2.16).

Using arguments similar to those for Theorem 2.1, but using Proposition 5.2 (given in the appendix) instead of
Proposition 5.1, we can derive the delay-independent criterion for the global synchronization of system (1.1).

Theorem 2.2. Consider system (1.1) which satisfies assumptions (D) and (F). Then, the system globally synchronizes
if condition (S2) holds, and the Gauss-Seidel iterations for the linear system:

M̃v = 0, (2.20)

converge to zero, the unique solution of (2.20); or equivalently,

�̃syn := max
1�K⇥(N�1)

{|��| : �� : eigenvalue of (DM̃ � LM̃)�1UM̃} < 1.

where the matrices M̃, DM̃, LM̃, and UM̃ are defined in (2.17).

3. Synchronization of coupled FitzHugh–Nagumo neurons

This section implements the present approach, developed in Section 2, to a network of FitzHugh–Nagumo neurons.
The dynamics of an isolated FitzHugh–Nagumo neuron is described by the nonlinear di↵erential equations [34]:

(
u̇(t) = fu(u(t), v(t)) := �u3(t) + (a + 1)u2(t) � au(t) � v(t),
v̇(t) = fv(u(t), v(t)) := bu(t) � �v(t), (3.1)

where a, b, � > 0. We consider coupled FitzHugh–Nagumo neurons under delayed sigmoidal coupling, as follows:
(

u̇i(t) = fu(ui(t), vi(t)) + c
P

j2N ai j(t)g(u j(t � ⌧)),
v̇i(t) = fv(ui(t), vi(t)),

(3.2)

for t � t0 and i 2 N , where ai j(t) satisfies (1.2), and the coupling function g is in the following class:

{g 2 C1 : g(0) = 0, � := g0(0) > g0(⇠) > 0, |g(⇠)| < ⇢, for ⇠ , 0}. (3.3)

Moreover, we assume that system (3.2) is with cā > 0, cf. (1.5); otherwise, there exists no connection between
neurons in system (3.2). Notably, system (3.2) is in the form of (1.1). In referring to the notation in (1.1), F = (F1, F2)
and G = (G1,G2) now satisfy

F1(⌅, t) = fu(⇠1, ⇠2), F2(⌅, t) = fv(⇠1, ⇠2), G1(⌅) = g1(⇠1) = g(⇠1), G2(⌅) = g2(⇠2) = 0, (3.4)

for ⌅ = (⇠1, ⇠2) 2 R2 and t � t0, where fu, fv, and g are defined in (3.1) and (3.3). Now, we show that system (3.2)
satisfies assumption (D) via the following iteratively constructed functions. We define, for k 2 N,

P(k)(⇠) := �⇠4 + (a + 1)⇠3 � a⇠2 + cā⇢(k�1)|⇠|, (3.5)

where ⇢(0) := ⇢, and

⇢(k) := max{|g(⇠)| : ⇠ 2 [�
q
�2 + bq̄(k)/�,

q
�2 + bq̄(k)/�]}, with q̄(k) := max{|⇠| : P(k)(⇠) = 0}. (3.6)

Herein, the parameters ā, a, b, c, �, ⇢ and function g were introduced in (1.5) and (3.1)–(3.3).
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Proposition 3.1. For each k 2 N, all solutions of system (3.2) eventually enter and then remain in Q(k) ⇥ · · · ⇥ Q(k) ⇢
R2N, where

Q(k) := [�
q
�2 + bq̄(k)/�,

q
�2 + bq̄(k)/�] ⇥ [�bq̄(k)/�, bq̄(k)/�] ⇢ R2.

Throughout this section, thanks to Proposition 3.1, we consider that system (3.2) satisfies assumption (D) with

Q = Q(k) = [�⇢⇤1, ⇢⇤1] ⇥ [⇢⇤2, ⇢
⇤
2] =: Q⇤, where ⇢⇤1 :=

q
�2 + bq̄(k)/�, ⇢⇤2 := bq̄(k)/�, (3.7)

for some fixed k 2 N. Indeed, q̄(k), k 2 N, are strictly decreasing with respect to k. Thus, for larger k, Q(k) provides
a smaller attracting region for the dynamics of system (3.2), and hence relaxes the conditions in our synchronization
criterion.

Proposition 3.2. System (3.2) satisfies assumption (F) with µ̌1 = �3(⇢⇤1)2 � 2(a + 1)⇢⇤1 � a, µ̂1 = (a2 � a + 1)/3 > 0,
µ̌2 = µ̂2 = ��, µ̄12 = 1, µ̄21 = b, ⇢w

1 = 2⇢⇤2, and ⇢w
2 = 2b⇢⇤1, where ⇢⇤i , i = 1, 2, are defined in (3.7).

Next, we derive delay-dependent synchronization criterion for system (3.2) based on Propositions 3.1 and 3.2, and
Theorem 2.1.

Theorem 3.1. System (3.2) achieves global synchronization, if

(a2 � a + 1)/3 + c(̂ + ↵̂ii)L̃ < 0 and ⌧ < ⌧⇤i , for i = 1, . . . ,N � 1, (3.8)

and the Gauss-Seidel iterations for the linear system (2.18) converge to zero, the unique solution of (2.18), where the
entries of matrix M in (2.18), cf. (2.16), are defined by

m(kl)
i j =

8>>>>><
>>>>>:

�(a2 � a + 1)/3 � c(̂ + ↵̂ii)L̃ � ⌧�̃i, if i = j, (k, l) = (1, 1),
�, if i = j, (k, l) = (2, 2),
�µ̃( jl)

ik � �̃
( jl)
ik , otherwise,

(3.9)

with

µ̃( jl)
ik :=

8>>>>><
>>>>>:

1, i = j, (k, l) = (1, 2),
b, i = j, (k, l) = (2, 1),
0, otherwise,

�̃( jl)
ik :=

8>><
>>:
�⇤i j, j , i, k = l = 1,
0, otherwise.

Herein,

L̃ := min{g0(⇠) : ⇠ 2 [�⇢⇤1, ⇢⇤1]}, �⇤i j := c↵̄i j�, ⇢̃
h
i := 2c(̄ + ↵̄ii) max{|g(⇠)| : ⇠ 2 [�⇢⇤1, ⇢⇤1]}, (3.10)

⇢̃w
i := 2⇢⇤2 + 2c(

X

j2N�{i,N}
↵̄i j) max{|g(⇠)| : ⇠ 2 [�⇢⇤1, ⇢⇤1]}, (3.11)

�̃i := c(̌ + ↵̌ii)�{�3(⇢⇤1)2 � 2(a + 1)⇢⇤1 � a + (a2 � a + 1)/3 + c[(̂ + ↵̂ii)L̃ + (̌ + ↵̌ii)�]}, (3.12)
⌧⇤i := �3⇢̃h

i [(a2 � a + 1)/3 + c(̂ + ↵̂ii)L̃]/[�̃i(3⇢̃h
i + ⇢̃

w
i )], (3.13)

⇢⇤i is defined in (3.7), and ̌, ̂, ̄, ↵̄i j, ↵̌ii, and ↵̂ii are defined in (1.4) and (2.9), respectively.

4. Conclusion

Over the past few decades, synchronization in coupled systems has been a subject of intensive research. However,
the existing analytical tools for studying the global synchronization of coupled systems with nonlinear or delayed
coupling are rather limited. There are still synchronization problems for some coupled systems which cannot be
solved with the use of existing methodologies. Moreover, delay-dependent synchronization criteria are rare in coupled
systems under delayed and nonlinear coupling in the literature. Without relying on the existence of certain Lyapunov
functions, our approach in this investigation has provided a new and e↵ective alternative for the examination of global
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synchronization of coupled systems. We present such an approach by connsidering coupled systems (1.1) under
assumptions (D) and (F). The connection matrix A(t) of system (1.1) could be time-dependent, asymmetric, and with
negative o↵-diagonal entries; hence can be free from the commonly imposed conditions in the existing works, cf.
Remark ??. The unique condition imposed on A(t) is condition (1.2), under which every solution of system (1.1) that
has evolved from the synchronous set will remain on the set; it is indeed a basic condition for studying the identical
synchronization of coupled systems. The di↵usive condition, such as (1.2) with (t) ⌘ 0 for system (1.1), is not
imposed on A(t), alothough system (1.1) can be recast into a system satisfying the di↵usive condition, as follows:

ẋi(t) = F̃c(xt
i, t) + c

X

j2N
ãi j(t)G(x j(t � ⌧(t))),

where ãi j(t) is defined in (2.6) and F̃c(xt
i, t) := F(xi(t), t) + c(t)G(xi(t � ⌧(t))); notably,

P
j2N ãi j(t) = 0, t � t0.

For such a recast system, function F̃c now involves some coupling terms, including the coupling strength c and the
coupling delay ⌧(t), and it may exhibit much more complicated property than function F. It should be noticed that,
a synchronization theory should depend on both the properties of the intrinsic dynamics of each subsystem and the
coupling terms. We implement the present approach to coupled FitzHugh–Nagumo neurons under delayed sigmoidal
coupling.

Acknowledgements. This work is partially supported by the Ministry of Science and Technology of Taiwan.

5. Appendix. Scalar delay-di↵erential equation.

We denote by t0 the initial time and by ⌧M > 0 the upper bound of delay magnitude. Let w(t) be a bounded
continuous function for t � t0, and let h : R ⇥ R ⇥ R ! R and h̃ : C([�⌧M , 0];R) ⇥ C([�⌧M , 0];R) ⇥ R ! R be
continuous functions. Let xt, yt 2 C([�⌧M , 0];R) for t � t0, and set x(t + ✓) = xt(✓), y(t + ✓) = yt(✓) for ✓ 2 [�⌧M , 0].
We assume that x(t) and y(t) eventually enter and then remain in some compact interval [q̌, q̂]; namely, x(t) and y(t)
lie in [q̌, q̂] for all t � t̃0, for some t̃0 � t0. We suppose that z(t) = x(t) � y(t) satisfies the following scalar equation:

ż(t) = h(x(t), y(t), t) + h̃(xt, yt, t) + w(t), t � t0. (5.14)

Set |w|max(T ) := sup{|w(t)| : t � T } and |w|max(1) := limT!1 |w|max(T ). Then, we introduce the following conditions:
Condition (H0): There exist µ̂, µ̌, �̌, �̂ 2 R, ⇢h > 0, and 0  ⌧̄  ⌧M , such that for each �, 2 {' 2 C([�⌧M , 0];R) :

'(✓) 2 [q̌, q̂], ✓ 2 [�⌧M , 0]}, the following properties hold for all t � t0:

(H0-i):
(
µ̌  h(�(0), (0), t)/[�(0) �  (0)]  µ̂, �(0) �  (0) , 0,
h(�(0), (0), t) = 0, �(0) �  (0) = 0,

(H0-ii): |h̃(�, , t)|  ⇢h, and there exists a ⌧ = ⌧(�, , t) 2 [0, ⌧̄], such that(
�̌  h̃(�, , t)/[�(�⌧) �  (�⌧)]  �̂, �(�⌧) �  (�⌧) , 0,
h̃(�, , t) = 0, �(�⌧) �  (�⌧) = 0.

Condition (A1): µ̂ + �̂ < 0 and �̄⌧̄ < 3⇢h(µ̂ + �̂)/[(µ̂ + µ̌ + �̂ + �̌)(3⇢h + |w|max(t̃0))], where �̄ := max{|�̌|, |�̂|}.
Condition (A2): 0  �̄ < �µ̂/[1 + |w|max(t̃0)/⇢h].

Proposition 5.1. If z(t) satisfies (5.14), then z(t) converges to interval [�m̄, m̄] as t ! 1, under conditions (H0) and
(A1). Moreover,

0  m̄  |w|max(1)/[�µ̂ � �̂ + �̄⌧̄(µ̌ + µ̂ + �̌ + �̂)].

Proposition 5.2. If z(t) satisfies (5.14), then z(t) converges to interval [�m̃, m̃] as t ! 1, under conditions (H0) and
(A2). Moreover,

0  m̃  |w|max(1)/(�µ̂ � �̄).

Propositions 5.1 and 5.2 can be derived by arguments parallel to those for Propositions 2.3 and 2.4 in [21], respectively.
The assertion in Proposition 2.3 (resp., 2.4) in [21] uses t0 instead of t̃0 in condition (A1) (resp., (A2)). From the
arguments for Proposition 2.3 (resp., 2.4) in [21], it can seen that t0 in condition (A1) (resp., (A2)) for Proposition 2.3
(resp., 2.4) in [21] can be replaced by t̃0 to weaken the condition, which then implies Proposition 5.1 (resp., 5.2).
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參加會議經過 

此次參加的會議是於中國大陸北京所舉辦的 The 8th International Congress on Industrial and 

Applied Mathematics (ICIAM2015)（期間：2015,8/10-8/13）。The International Congress on Industrial 

and Applied Mathematics(ICIAM)是應用數學領域的重要國際會議, 在 International Council for 

Industrial and Applied Mathematics 的主持之下每四年舉行一次。此會議所包含的議題相當的廣泛；

共分成 28 個 sections；分別為 A1: Linear Algebra, A2: Real and Complex Analysis, A3: Ordinary 

Differential Equations, A4: Partial Differential Equations, A5: Discrete Mathematics, A6: Numerical 

Analysis, A7: Computational Science, A8: Computer Science, A9: Probability and Statistics, A10: Control 

and Systems Theory, A11: Optimization and Operations Research, A12: Information, Communication, 

Signals, A13: Applied, Algebraic, and Computational Geometry, A14: Imaging Science, A15: Fluids, 16: 

Physics and Statistical Mechanics, A17: Geophysical, Atmospheric & Oceanographic Science, A18: 

Chemistry, Chemical Engineering, A19: Life Science and Medicine, A20: Social Science, A21: Finance 

and Management Science, A22: Education in the Mathematical and Computational, A23: Science, 

Simulation and Modeling, A24: Materials Science and Solid Mechanics, A25: Applications of the 

Mathematical and Computational Sciences in Industry, A26: Dynamical Systems and Nonlinear Analysis, 

A27: Other Mathematical Topics and their Applications, A28: General。 而大會議程主要分為 Prize 

lectures,  Public Lectures, Invited lectures, Minisymposia, Iudustrial Minisymposia, Contributed Papers, 

Poster sessions, satellite meetings, Embedded Meeting。在這次的會議，我所參加的部分是 Dynamical 

Systems and Nonlinear Analysis 這 個 section 的 Poster sessions， 我 報 告 的 題 目 為 A novel 

synchronization approach of coupled systems and its applications，而 Poster standing 的時間是安排於會

議的第二天(8/11)中午 12:00-13:00。在會議的海報時間之外，依時間安排我也聽了數個較感興

趣的演講；其中，有幾個演講是有關於同步化的研究，算是與我目前的研究主題較相關的演講，

而這些演講的內容也令我收獲良多。  
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                           計畫主持人參加會議之照片 

與會心得: 

這個會議算是相當地大型的會議，所討論的議題相當的廣泛。我所聽的演講大多是我較熟悉的

Ordinary Differential Equations 或是Dynamical Systems and Nonlinear Analysis這些與我的研究領域

較接進的section的演講，不過有許多的演講都為我不熟悉的研究題目，即使是我較熟悉的同步

化問題，我也有聽到了一些我之前較沒有接觸到的研究問題。因此藉這次參加這個會議的機會，

我接觸到許多不同的研究課題，增廣了的見聞，對我長期的研究發展有相當的幫助。這次參加

會議與我同行的還有台灣師大數學系陳賢修教授與高雄師大數學系的李俊憲教授。他們所報告

的的題目分別為Travelling Waves in A Continuum Coupled Hindmarsh-Rose Type Model與Dynamics 

of A Network-based SIS Epidemic Model with Nonmonotone Incidence Rate, 我也用藉這次參加會議

的機會與這兩位教授交流討論，也對彼此的研究工作有進一步的了解。 

 

發表論文全文或摘要: 

The investigation presents a novel approach to establish the global synchronization of coupled systems of 

differential equations. Under this approach, the problem of synchronizing coupled systems is transformed 

into one of solving corresponding linear systems of algebraic equations; moreover, the coupling 

configuration of the coupled systems can be quite general. The framework established in this investigation 

can accommodate a wide range of coupled systems, such as chaotic oscillators, neuronal models, and 

neural networks. 

 

建議: 

非常感謝科技部給我研究計劃補助，讓我有機會可以參加這個國際間相當知名的應用數學領域

的會議。藉這次參加會議，我接觸、認識了一些學者，也對他們的研究有初步的了解，也接觸

到一些不同的研究課題，增廣自已的見聞，覺得自己又學到了許多東西，收益良多。在參加這

個大型的會議的過程，我可以感受到國際學術之間的交流的力量與重要性。很希望貴部未來持



續多補助國內學者經費參加國際會議，去了解目前國際間所重視的研究課題，也可持續多補助

國內的相關學術研究單位爭取舉辦大型的國際研討會，相信這對台灣的學術研究發展會有很大

的幫助。 
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