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: Synchronization of coupled systems have been important

research topics in recent decades. In the literature, the
existing methods for the synchronization of nonlinearly
coupled systems with delay are still limited. Most of the
existing approaches to the synchronization problems of
nonlinearly coupled systems require the connectivity matrix
to be time-independent, symmetric, with zero row-sums, with
nonnegative off-diagonal entries; moreover, these
approaches commonly require that the coupling functions
have positive lower bounds on their slope. In this project,
we develop an approach to the synchronization of
nonlinearly coupled systems with delays. Under this
approach, the connection matrix could be quite general, and
the condition on the slope of the coupling functions, which
1s commonly imposed on the coupling functions in the
existing approaches, 1s not necessary

Synchronization, Coupled system, Connection matrix,
Coupling function
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Synchronization is an important and common phenomenon in various biological and
physical systems. As a result, the topic of synchronization in coupled dynamical systems
has drawn a wide range of ongoing research interest [1-8]. Time delay, which occurs in
the propagation of action potentials along the axon, and the transmission of signals across
the synapse, is an important factor in the study of coupled neural systems [9]. Thus, such
delays have been incorporated into neural network modeling [10,11,12]. Indeed, delay can
modify the collective dynamics of neural networks; for example, it can induce

synchronization [13] and asynchronization [14].

Some studies on the synchronization of coupled systems have focused on local
synchronization, which is concerned with the stability of synchronous manifold, whereas
others have studied global synchronization, by showing that all solutions converge to the
synchronous manifold. The master-stability-function method, developed by Pecora and
Carroll [4], is a well-known approach to the study of local synchronization in coupled
chaotic systems. This method computes the eigenvalues of the connectivity matrix, and
the Lyapunov exponents of the associated variational equation, in order to determine the
stability of the synchronous manifold. It is well known that the largest Lyapunov
exponent must be negative for local synchronization to occur. Lyapunov exponents cannot
be calculated analytically, and thus this method requires the use of numerical operations
[15]. Indeed, methods that rely on the manipulation of connectivity matrix eigenvalues
and Lyapunov exponents, such as the master-stability-function method, may be
ineffective if the coupling configuration is time-dependent, or has a time-dependent delay,
as the stability theory may be invalid for the corresponding linearized system. However,
time-delayed and time-dependent connections are more realistic in many real-world
networks.

Methodologies for the examination of global synchronization usually involve the
notion of Lyapunov functions. For example, Lyapunov’s direct method has been applied
for studying synchronization in networks in [16-18]. Other works employing Lyapunov
functions/functionals include [10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

In the existing literature, many of the systems considered for tackling synchronization



problems exhibit linear diffusive couplings [12, 19, 28, 26, 20, 29]. Some papers
including [11, 21, 22, 23, 24, 25, 27, 30, 31] considered nonlinear couplings under the
diffusion condition under which the coupling is annihilated in the synchronous state. The
existing works on global synchronization of nonlinearly coupled systems commonly
impose the slope condition under which the coupling functions have positive lower
bounds on their slope. Notably, there is a significant difference between diffusive
coupling and general nonlinear coupling. For nonlinear and non-diffusively coupled
systems incorporating delay, global synchronization under the Lyapunov function
approach often reduces to the situation where every solution converges asymptotically to
a unique synchronous equilibrium point [30, 31]. Typically, only delay-independent
criteria can be derived under such an approach. Thus, for general nonlinear coupled
systems, in particular for those with time delays, finding an effective Lyapunov function
that implies synchronization with non-trivial asymptotic dynamics may be a rather
challenging and limited method.

Therefore, in this project, we want to develop an approach to the synchronization of

nonlinearly coupled network system with delays, under general coupling configuration.
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An novel approach to synchronization of nonlinearly coupled systems with
delays
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Abstract

In this investigation, an novel approach to establish the global synchronization of coupled systems is presented. Un-
der this approach, individual subsystems can be non-autonomous; the coupling configuration is rather general, and
can be nonlinear, time-dependent, asymmetric, and time delayed. By transforming the problem of synchronizing
coupled systems into one of solving corresponding linear systems of algebraic equations, delay-dependent and delay-
independent criteria for global synchronization are established. We implement the present approach to nonlinearly
coupled FitzHugh—-Nagumo neurons under delayed sigmoidal coupling. Two numerical examples are then given to
show that oscillatory behavior and multistability can emerge or be suppressed as the coupled neurons synchronize
under the synchronization criterion; asynchrony induced by the coupling strength or coupling delay occurs while the
coupled neurons do not satisfy the synchronization criterion.

Keywords: Coupled system, Delay, Synchronization, FitzHugh—Nagumo neuron
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1. Introduction

Synchronization is an important and common phenomenon in various biological and physical systems [1, 2]. As a
result, the topic of synchronization in coupled dynamical systems has drawn a wide range of ongoing research interest
[3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 29]. Time delay, which
occurs in the propagation of action potentials along the axon, and the transmission of signals across the synapse, is an
important factor in the study of coupled neural systems [6, 31]. Thus, such delays have been incorporated into neural
network modeling [8, 12, 14, 20, 30, 29, 31]. Indeed, delay can modify the collective dynamics of neural networks;
for example, it can induce synchronization [15] and asynchronization [21, 32].

Some studies on the synchronization of coupled systems have focused on local synchronization, which is con-
cerned with the stability of synchronous manifold, whereas others have studied global synchronization, by showing
that all solutions converge to the synchronous manifold. The master-stability-function method, developed by Pecora
and Carroll [17], is a well-known approach to the study of local synchronization in coupled chaotic systems. This
method computes the eigenvalues of the connectivity matrix, and the Lyapunov exponents of the associated variational
equation, in order to determine the stability of the synchronous manifold. It is well known that the largest Lyapunov
exponent must be negative for local synchronization to occur. Lyapunov exponents cannot be calculated analytically,
and thus this method requires the use of numerical operations [9]. Indeed, methods that rely on the manipulation
of connectivity matrix eigenvalues and Lyapunov exponents, such as the master-stability-function method, may be
ineffective if the coupling configuration is time-dependent, or has a time-dependent delay, as the stability theory may
be invalid for the corresponding linearized system. However, time-delayed and time-dependent connections are more
realistic in many real-world networks.
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Preprint submitted to “Physica A: Statistical Mechanics and its Applications” November 27, 2015



Methodologies for the examination of global synchronization usually involve the notion of Lyapunov functions.
For example, Lyapunov’s direct method has been applied for studying synchronization in networks in [24, 25, 26].
Other works employing Lyapunov functions/functionals include [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 19, 20, 22, 28,
29, 30]. In the existing literature, many of the systems considered for tackling synchronization problems exhibit linear
diffusive couplings [3, 4, 14, 17, 18, 20, 22, 23, 27, 30]. Some papers including [5, 7, 10, 11, 12, 13, 19] considered
nonlinear couplings under the diffusion condition under which the coupling is annihilated in the synchronous state.
The existing works on global synchronization of nonlinearly coupled systems commonly impose the slope condition
under which the coupling functions have positive lower bounds on their slope. Notably, there is a significant difference
between diffusive coupling and general nonlinear coupling. For nonlinear and non-diffusively coupled systems incor-
porating delay, global synchronization under the Lyapunov function approach often reduces to the situation where
every solution converges asymptotically to a unique synchronous equilibrium point [28, 29, 31, 32]. Typically, only
delay-independent criteria can be derived under such an approach. Thus, for general nonlinear coupled systems, in
particular for those with time delays, finding an effective Lyapunov function that implies synchronization with non-
trivial asymptotic dynamics may be a rather challenging and limited method. In this investigation, we consider the
following delayed coupled system:

%(t) = F(xi(0),1) + ¢ Y aij(0Gx;(t = 7(1), i € N, t > 1y, (1.1)
JEN

where N := {1,...,N}, x;(t) = (x;1(0),...,x;igx(2)) € RX, F = (F),...,Fg) is a smooth function, describing the
intrinsic dynamics of each subsystem, ¢ > 0 is the coupling strength, and a;;(?), i, j € N, are bounded functions of ¢,
satisfying the following condition:

D ai(t) = (), forallie Nandt> f. (1.2)
jeN
The matrix A(?) := [a;;(t)]1<i j<n Tefers to the connection matrix. The function G = (G4, ..., Gg) satisfies
Gi(xj(t — 1(1))) = gi(x(t — 7(2))), foralli,je K andt > ty (1.3)
where K := {1,...,K}, g is a nondecreasing and differentiable function, and 7(f) € [0, 7),] stands for the time-

dependent transmission delay. For later use, we set

Kk = sup{|k(®)| : t > to}, k = inf{k(?) : t > tp}, kK = sup{k(?) : t > 1o}, (1.4)
a;j = supfla;j(D| : t > 1o}, a = max{z ajj:i=1,...,N}, T=sup{r(®) : t > fp}. (1.5)
JEN

System (1.1) is a nonlinearly coupled system if g, is a nonlinear function for some k € %K; otherwise, it is a linearly
coupled system. Systems of neural network and neuronal network in the literature largely admit the form of (1.1) or its
similar forms; see [3, 4, 14, 22, 24, 26, 30, 23, 27] for linear coupling case, and [5, 7, 10, 11, 12, 13, 19] for nonlinear
coupling case. In the following, (x;(?),...,Xy(#)) denotes an arbitrary solution of system (1.1), and (x{,...,x},) is
the corresponding evolution of system (1.1), where X! € C([-7y,0]; RX), i € N, are defined as x}(0) = x;(t + 0) for
0 € [—7, 0]. System (1.1) is said to attain global (identical) synchronization, if

Xix(®) = xjp(t) > 0, ast — oo, foralli, je N, ke K,

for every solution (X;(?),...,Xn(?)), where x;(#) = (x;1(9), ..., xix(t)). Recently, the idea of sequential contracting
has been developed in [21], to establish the global synchronization of coupled systems under circulant coupling. The
approach in [21] can apply to system (1.1) with the connection matrix A(¢) which is a circulant matrix, this is

A() = [a;j(D]i<i j<n = circ(ar (@), ..., an(?)), (1.6)

for some a;(¢), i € N. Based on this approach, the authors in [21] established the global synchronization of two
FitzHugh—-Nagumo neurons under delayed sigmoidal coupling, which gives an analytical support to the numerical

2



finding in [33]. They also considered the global synchronization of an neural network that consists of a ring of K
loops, coupled with their nearest neighbors under delayed sigmoidal coupling. The couplings for these two coupled
systems considered in [21] do not satisfy the diffusive condition, and do not satisfy the slope condition commonly
imposed in the literature; however, their corresponding connection matrices must satisfy condition (1.6). A more
detailed discussion of the sequential contracting approach and the other existing synchronization approaches can be
found in [21]. In this investigation, we extend the approach developed in [21] to the coupled system (1.1), under a
more general coupling configuration; namely, condition (1.6) is not required for our present approach in this paper.

The remainder of this paper is organized as follows. In Section 2, we establish the synchronization of system
(1.1). In Section 3, we implement the synchronization criterion derived in Section 2 to coupled FitzHugh—Nagumo
neurons under delayed sigmoidal coupling.

2. Synchronization of system (1.1)

In this section, we study the global synchronization of system (1.1), under two assumptions to be introduced in
Subsection 2.1; delay-dependent and delay-independent synchrponization criteria are then derived in Subsection 2.2.

2.1. Model assumptions

The first assumption imposed on system (1.1) is as follows.

Assumption (D): All solutions of system (1.1) eventually enter and then remain in some compact set Q" :=
QAx---xXxQcC RNK, where Q := [(,?1,@1] X X [éK,qK] c RK,

Using the set introduced in assumption (D), which we denote as Q, we can define the following set:

Ca:={(@1,..., D) : i = (G, .- -, $ik) € CU=Tar, 0L, RY), 44 (6) € [Ga, i), 0 € [T, 0L i € N, k € K}, (2.1)

Remark 2.1. (i) The dissipative property, such as assumption (D) for system (1.1), is a basic requirement in studying
the synchronization of coupled systems, under which all solutions of the system exist on [0, c0). There is no general
methodology to justify this property for a nonlinear system, and concluding such a property is usually case-dependent.
One may examine the dissipative property for linearly coupled systems by applying the approaches in [18, 20, 22].
(ii) Any evolution (x|, ...,x}) of system (1.1) eventually enter and then remain in Cq under assumption (D).

To introduce the second assumption, we first consider the configuration of Fy, k € K, in system (1.1). For each
k € K, we decompose F(®,t) — Fy(D, 1) as follows:

Fu(E, 1) = Fu(E 1) = hi(&, & 1) + wi(E, B, D), (2.2)

where t > 19, & = (¢1,...,€k), and E= (51, ... E‘K) Such a decomposition in (2.2) is always achievable, because the
trivial decomposition selects i = 0. A nontrivial decomposition for the FitzZHugh—Nagumo neuron is illustrated in
Proposition 3.2. Now, let us introduce the following assumption on /; and wy, for k € K:

Assumption (lf): Fczr each~k € K, there exist fix, i € R, p}’ 2 0, and fiy > 0, for [ € K — {k}, such that for any
E=(1,...,8k),2=(&,...,8k) € Q, the following two properties hold for all ¢ > #:
(F-: {ﬁk < &0/ ~8) < fue &~ E#0,

hi(&x, &k, 1) = 0, & =& =0,

(F-ii): wi(E, B, 0] < p, and [wi(E, E, DI < Xjege—ny Aialét — &1l
Actually, assumption (F) is commonly satisfied, and i, fi, o}/, and fiy; can be determined by applying the mean-value
theorem, provided that F = (Fy,..., Fg) is sufficiently smooth, and the set Q is given under assumption (D).

2.2. Synchronization criteria

Let us define the following sets of indices:

A= (N —{N}) x K and A; := A - {i} X {k}, where (i,k) € A. 2.3)



Assume that (x;(?),...,Xy(f)), where x;(f) = (x;1(?),...,x;x(?)), is an arbitrary solution of system (1.1). Setting
zi(t) = (21 (D), ..., Zig () := X;(t)—X;41 (1), fori € N—{N}, as seen from (1.1) and (1.3), we have that (z,(?), . . ., zy— (¥))
satisfies the following difference-differential system corresponding to system (1.1):

Zix(t) = H,',k(th, . ,Xj\,, 0, (i,k) e A, t > 1y, 2.4)
where
Hiy(®q,..., Dy, 1) 1= Fi(D;i(0),1) = Fir(Di1(0),0) + ¢ Z[aij(f) = agi+1);(D]1gr(@ i (—=T(D)), (2.5)
JEN

for®; = (¢;1,...,0,x) € C([~7um,0]; RX), j € N. Herein, the roles of ®;,j € N are discussed in Remark ??. Clearly,
system (1.1) attains global synchronization if z;x(f) — 0, as t — oo, for every (i, k) € A.
Via A(t) = [a;j(®)]1<i j<n, We first define A@®) = [&; i(D]i<i j<n, where

5 a;(t)—«k(t), ifi=jeN,
(1) = o o (2.6)
a;j(t), ifi,je Nandi # j.
We then further define the following matrix A(f) derived from A(f), given by
A0 = [@;;(Oli<i j<v-1) := CA@)CT(CCT)™! e RW-DXN=D) 2.7)
where
1 -1 0 --- O
C:= 0 1 -1 o € RW-DxN,
S 0
o --- 0 1 -1

Applying arguments parallel to those for the appendix of [16] shows that A(¢) in (2.7) is well-defined, and satisfies
CA®t) = A(DC, (2.8)
for all ¢ > ty. For later use, we set
@;; = supfla;;j(H)| : t > to}, &;; = infle;;(@) : t = to}, &;; = supla;;(?) : t = to}, 2.9)
where a;;(¢), 1 < i, j < N -1, are entries of A(?), defined in (2.7). Based on (2.8), we derive the following proposition.

Proposition 2.1. Consider system (1.1) which satisfies assumptions (D) and (F). Then, functions H;; defined in (2.5),
(i, k) € A, can be decomposed as

Hip(@1,...,0n, 1) = hig(in(0), $i14(0), 1) + hije(Bis, bis1 s D) + wig( D@1, ..., Dy, 1), (2.10)

hik(9ik(0), 9ir14(0), 1) = hp($ix(0), div14(0), 1), (2.11)

hir(@igs Pisrin ) = clk(®) + @i (O1[gr(Bis(—T(1) = gr(Biv1 4k (~T(D)], (2.12)

Wwir(D1,.... O, 1) = wi(P(0), Py 1(0),0) + ¢ Z @;j(D[8r(Pju(—7(1)) — gi(Pjs1x(—T(D)))]. (2.13)
JENiN)

Moreover, for all (i,k) € A and all (Py,...,Dy) € Cq, where ®; = (¢i1,....dix), i € N, the following three
properties hold for all t > ty:
(H-i): { fre < hig(@ix(0), 9ir14(0), )/ [$ix(0) = Pir1 k(O] < fix,  ¢ik(0) — ¢ir1£(0) £ 0,
hik($ix(0), ¢i114(0), 1) = 0, $i)(0) — ¢i+1£(0) = 0,
(H-ii): hij(i> bi1s D] < Pk, and

{ Bix < hig(Bigs $ist oo D/ [$ix(=7(1) = Gt k(=T < Bt Gia(=7(1)) = i1 x(=7(1)) # 0,
Rk (Biges Pivr k1) = 0, ik (—7(0)) — Piv14(—7(0) = 0,



(H-iii): Wig(®y,...,On,0)| < p¥, and

Wi @1, OO < D T 18,00) = 1100 + B (D) = e s (=T,

(DeA;x

for arbitraryp and pY; which satisfy pl. > 2c(k + a/,,)pk and p} > p;! + 2cpk X (X jen—iny @ij), respectively, and

ik =
5 c(k+ &)y, k+d;>0, 4 cR+&i)ky, R+a&;>0,
k = . o N . . . = N R «v N R
! c(k+ay)Ly, k+a; <0, c(k+ay)Ly, k+a;<0,

Gy Bk, i=gkEL gy feaily, jEL k=
ik 0, otherwise, ik 0, otherwise,

where

pf = max{lge(@)| : & € [Gr, Gel} = 0, Ly := min{g((é) : & € [Ge, qul} = 0, Ly = max{gy(€) : € € [dx, Gl} 2 0.
Herein, k, k, and k are defined in (1.4), Cq is defined in (2.1), A; is defined in (2.3), functions hy and wy are defined
in (2.2), @;;, &;;, and &;; are defined in (2.9), and [, fi, p}:’, and iy are defined in assumption (F).

Using i, fi, ,B,k, ﬁ:k’ f,ﬁ ), and Bgﬂ), introduced in Proposition 2.1, and 7, defined in (1.5), we define

ik 1= = — Bi + BTl + i + Bix + Bie)s Tk ==~ — B iﬁ,{l) = ﬁf,ﬁl) BE,{I), (2.14)

where
Bir := max{([Bil, |Bil}- (2.15)
The parameter N can be regarded as delay-dependent, as it is related to 7, defined in (1.5), whereas the parameters
1 and L ) are delay-independent. Via ny, i, and L(’ , defined in (2.14), we define two matrices that are delay-

dependent and delay-independent, respectively, to obtaln the delay-dependent and delay-independent synchronization
criteria for system (1.1) (see Theorems 2.1 and 2.2). The delay-dependent matrix is defined as follows:

M := Dy — Ly — Uyt = [M*], 4 1, (2.16)

where Dy, —Lyy, and —Uy represent the diagonal, strictly lower-triangular, and strictly upper-triangular parts of M,
respectively; M*) = [ml(?l)]lg,jslv_l, k,1 € K, are blocks of (N — 1) x (N — 1) matrices, defined by

kl) _ Niks ifi=j€N—{N}andk=l€7(,
B otherwise.

ij _ Z‘l('/{l)’

Notably, matrix M in (2.16) is delay-dependent, because the diagonal entries 7;; are delay-dependent. The proof of
Theorem 2.1 explains the formulation of matrix M. We now introduce the delay-independent matrix:

M := Dy — Ly — Uy = [M(kl)]lgk,lsk, (2.17)

where Dy, —Lg;, and —Uy; represent the diagonal, strictly lower-triangular, and strictly upper-triangular parts of M,
respectively; M*) = [m(k)]1<, i<n-1, k, [ € K, are blocks of (N — 1) x (N — 1) matrices, defined by

_ (kl) f]ik’ ifi=j€N—{N}andk=l€7(,
m..’ = .
i —Ll(.,il), otherwise.
Let us now introduce two conditions needed for criteria for the synchronization of system (1.1), as follows:
Condition (S1): fi + Ba < 0 and BaT < 3pl (A + Ba) /[ + fia + B + Bu) 3ol + pip], for (i, k) € A,
Condition (S2): By < —fu/(1 +p; /plk) for (i, k) € A.
The parameters in conditions (S1) and (S2) are defined in Proposition 2.1, (1.5), (2.14), and (2.15). Condition (S1)
is related to T, and is thus delay-dependent, whereas condition (S2) is independent of time delay. We note that each
nix > 0 (resp., fjix > 0), cf. (2.14), under condition (S1) (resp., (S2)).
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Theorem 2.1. Consider system (1.1) which satisfies assumptions (D) and (F). Then, the system globally synchronizes
if condition (S1) holds, and the Gauss-Seidel iterations for the linear system:

Mv =0, (2.18)
converge to zero, the unique solution of (2.18); or equivalently,

Asyn 1= max {|ds|: A, : eigenvalue of (Dy — Ly) ' Unmt < 1. (2.19)
1<o<Kx(N-1)

where the matrices M, Dy, Lyt, and Uy are defined in (2.16).

Using arguments similar to those for Theorem 2.1, but using Proposition 5.2 (given in the appendix) instead of
Proposition 5.1, we can derive the delay-independent criterion for the global synchronization of system (1.1).

Theorem 2.2. Consider system (1.1) which satisfies assumptions (D) and (F). Then, the system globally synchronizes
if condition (S2) holds, and the Gauss-Seidel iterations for the linear system:

My = 0, (2.20)
converge to zero, the unique solution of (2.20); or equivalently,

Agyn 1= ol Ay i lue of (Dy; — Lyy) "' Uy < 1.
Asyn 1g(r2<%v71){|/1| Ay eigenvalue of (D s Umt) <

where the matrices M, Dy, Lyy, and Uy are defined in (2.17).

3. Synchronization of coupled FitzHugh—-Nagumo neurons

This section implements the present approach, developed in Section 2, to a network of FitzHugh—Nagumo neurons.
The dynamics of an isolated FitzHugh—Nagumo neuron is described by the nonlinear differential equations [34]:

{ W) = fuu@®), (1) := —u>(t) + (a + D (1) — au(t) — v(t),
v(t) = f,(u(®), v(1)) := bu(t) — yv(t),

where a, b, y > 0. We consider coupled FitzHugh—Nagumo neurons under delayed sigmoidal coupling, as follows:

{ (1) = fuui(), vi(®) + ¢ X jen aij(g(u;t — 1)), 3.2)
vi(8) = fulwi(D), vi(D)), '

fort > tp and i € N, where a;;(?) satisfies (1.2), and the coupling function g is in the following class:

{geC':g(0)=0,6:=¢g0)>g@ >0, |g@l <p, for&#0}. (3.3)

3.1)

Moreover, we assume that system (3.2) is with ca > 0, cf. (1.5); otherwise, there exists no connection between
neurons in system (3.2). Notably, system (3.2) is in the form of (1.1). In referring to the notation in (1.1), F = (F, F3)
and G = (G, G,) now satisfy

Fi1(E, 1) = fu€1,&), Fa(B, 1) = fi(é1,62), Gi(B) = g1(&1) = g(&1), G2(B) = g2(6) =0, (3.4)

for Z = (£,&) € R? and t > 1, where f,, f,, and g are defined in (3.1) and (3.3). Now, we show that system (3.2)
satisfies assumption (D) via the following iteratively constructed functions. We define, for k € N,

PO@ = &+ (a+ DE ~ ag® + cap™ g, (3.5)

where p©@ := p, and

p® = max{|g(@)] : £ € [~ \[y? + bg® [y, \Jy* + bg® /1), with g® := max{l¢| : P (&) = 0). (3.6)

Herein, the parameters a, a, b, c, v, p and function g were introduced in (1.5) and (3.1)—(3.3).
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Proposition 3.1. For each k € N, all solutions of system (3.2) eventually enter and then remain in Q% x --- x Q¥ ¢

RN where
O® 1= [= 2 + bGP 1y, \Jy? + bg® 171 x [-bg® 1, bg® Jy] c R2.

Throughout this section, thanks to Proposition 3.1, we consider that system (3.2) satisfies assumption (D) with

Q= 0% = [-p}.p{1 % [p5. p3] =t @', where pj := Y2 + b7 ¥ [y, p3 := bg" . 3.7)

for some fixed k € N. Indeed, g¥, k € N, are strictly decreasing with respect to k. Thus, for larger k, Q¥ provides
a smaller attracting region for the dynamics of system (3.2), and hence relaxes the conditions in our synchronization
criterion.

Proposition 3.2. System (3.2) satisfies assumption (F) with fi; = —3(,0’1‘)2 -2(a+1Dpj—a 1 = (@ —-a+1)/3>0,
fio = o =—y, 12 =1, fio1 = b, p\' = 2p5, and p} = 2bp], where p}, i = 1,2, are defined in (3.7).

Next, we derive delay-dependent synchronization criterion for system (3.2) based on Propositions 3.1 and 3.2, and
Theorem 2.1.

Theorem 3.1. System (3.2) achieves global synchronization, if
(@-a+1D)/3+cR+a)L<0and7 <7}, fori=1,...,N—1, (3.8)

and the Gauss-Seidel iterations for the linear system (2.18) converge to zero, the unique solution of (2.18), where the
entries of matrix M in (2.18), ¢f. (2.16), are defined by

—(@—-a+1)/3-c®+a)L—-1p;, ifi=j (k,D=(,1),

mgl) =\ , ifi=j (k)=(2,2), (3.9)
—ﬂg,il) - Bl(.,il), otherwise,
with
L, i=jkD=0@1,2), ..
, i L jtiLk=1=1,
A= 0=k =@, B = P TEEE
. 0, otherwise.
0, otherwise,
Herein,
L= min{g'(¢) : € € [-p},p}1), B} := cij6, p = 2c(k + @) max{lg(@)| : £ € [-py.pil},  (3.10)
B =205+ 2e( Y. @)max(igé)l: £ € [—pi, i), (3.11)
JEN—{i,N}
Bi = c(k + &i)d1=3(0})* = 2(a+ 1)} —a+ (@ —a+1)/3 + c[(k + &)L + (k + &;)01}, (3.12)
7= =3p1a” — a+ 1)/3 + ck + @)L/ [BGR} + 5], (3.13)

p; is defined in (3.7), and Kk, k, K, @;j, &;;, and &;; are defined in (1.4) and (2.9), respectively.

4. Conclusion

Over the past few decades, synchronization in coupled systems has been a subject of intensive research. However,
the existing analytical tools for studying the global synchronization of coupled systems with nonlinear or delayed
coupling are rather limited. There are still synchronization problems for some coupled systems which cannot be
solved with the use of existing methodologies. Moreover, delay-dependent synchronization criteria are rare in coupled
systems under delayed and nonlinear coupling in the literature. Without relying on the existence of certain Lyapunov
functions, our approach in this investigation has provided a new and effective alternative for the examination of global
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synchronization of coupled systems. We present such an approach by connsidering coupled systems (1.1) under
assumptions (D) and (F). The connection matrix A(7) of system (1.1) could be time-dependent, asymmetric, and with
negative off-diagonal entries; hence can be free from the commonly imposed conditions in the existing works, cf.
Remark ??. The unique condition imposed on A(¢) is condition (1.2), under which every solution of system (1.1) that
has evolved from the synchronous set will remain on the set; it is indeed a basic condition for studying the identical
synchronization of coupled systems. The diffusive condition, such as (1.2) with x(f) = 0 for system (1.1), is not
imposed on A(?), alothough system (1.1) can be recast into a system satisfying the diffusive condition, as follows:

%i(1) = Fo(x, 1) + ¢ ) ai(nGx;(t = 7)),

JEN

where ;;(t) is defined in (2.6) and Fc(xﬁ, 1 = F(xi(1), 1) + ck(@®)G(x;(t — 7(£))); notably, > jen @ij(t) = 0, t > to.
For such a recast system, function F,. now involves some coupling terms, including the coupling strength ¢ and the
coupling delay 7(¢), and it may exhibit much more complicated property than function F. It should be noticed that,
a synchronization theory should depend on both the properties of the intrinsic dynamics of each subsystem and the
coupling terms. We implement the present approach to coupled FitzHugh—Nagumo neurons under delayed sigmoidal
coupling.

Acknowledgements. This work is partially supported by the Ministry of Science and Technology of Taiwan.

5. Appendix. Scalar delay-differential equation.

We denote by 1 the initial time and by 73, > 0 the upper bound of delay magnitude. Let w(z) be a bounded
continuous function for t > fy, and let A : Rx R xR — Rand & : C([—7y,0:R) X C([-74,0];R) x R — R be
continuous functions. Let x;, y; € C([—Tp, 0]; R) for ¢ > 1y, and set x(¢ + 8) = x,(6), y(t + ) = y:(6) for 6 € [-T),0].
We assume that x(¢) and y(#) eventually enter and then remain in some compact interval [g, §]; namely, x(¢) and y(¥)
lie in [g, §] for all 7 > #y, for some 7, > fo. We suppose that z(r) = x(¢) — y(¢) satisfies the following scalar equation:

2(t) = h(x(?),y(®), 1) + E(x,, Ve, 1) + w(t), t > to. (5.14)

Set [w[™(T) := sup{lw(?)| : t > T} and [w|"*(c0) := limy_,c [W|™**(T'). Then, we introduce the following conditions:
Condition (Hg): There exist 2, /1, 8,8 € R, p" > 0, and 0 < 7 < 7, such that for each ¢,y € {¢ € C([-7p, 0];R) :
w(0) € [q,q],0 € [-Tux, 0]}, the following properties hold for all ¢ > #y:
(Ho-): { £ < h(g(0),¢(0), 1)/ [¢(0) — ¢ (0)] < i1, ¢(0) — y(0) # 0O,
" A(g(0),¥(0),1) =0, ¢(0) — ¢ (0) =0,
(Ho-ii): |i(e, ¥, 1) < p, and there exists a T = 7(¢, ¥, 1) € [0, 7], such that
{ B < kg, 0/ [¢(~7) = (=D < B, $(=7) = (1) £ 0,
h(¢, ¢, 1) =0, ¢(=7) —y(-7) = 0.
Condition (A1): i + 8 < 0 and 87 < 3p" (it + B)/[(A + j1 + B + B)3P" + W™ (%y))], where 3 := max{|3], |B]}.
Condition (A2): 0 < 8 < —1/[1 + [w|™*(%y)/p"].

Proposition 5.1. If z(¢) satisfies (5.14), then z(t) converges to interval [—im,m] as t — oo, under conditions (Hy) and
(Al). Moreover,
0 <m < W™ (0)/[-ft =B+ BT+ 1 + B + P)].

Proposition 5.2. If z(¢) satisfies (5.14), then z(t) converges to interval [—in,m] as t — oo, under conditions (Hy) and
(A2). Moreover,
0 <7 < W™ (c0)/(=f1 = p).

Propositions 5.1 and 5.2 can be derived by arguments parallel to those for Propositions 2.3 and 2.4 in [21], respectively.
The assertion in Proposition 2.3 (resp., 2.4) in [21] uses £y instead of 7, in condition (A1) (resp., (A2)). From the
arguments for Proposition 2.3 (resp., 2.4) in [21], it can seen that ¢y in condition (A1) (resp., (A2)) for Proposition 2.3
(resp., 2.4) in [21] can be replaced by 7y to weaken the condition, which then implies Proposition 5.1 (resp., 5.2).
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