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Reproducibility of structural brain 
connectivity and network metrics 
using probabilistic diffusion 
tractography
Shang-Yueh Tsai  1,2

The structural connectivity network constructed using probabilistic diffusion tractography can be 
characterized by the network metrics. In this study, short-term test-retest reproducibility of structural 
networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject 
coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. 
The short-term reproducibility under various connectivity thresholds were also investigated when 
subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude 
around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The 
rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the 
sparsity can cause additional within-subject variations on network metrics. In conclusion, applying 
connectivity thresholds on structural network to exclude spurious connections for the network analysis 
should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be 
applied without significant effect on the short-term when network metrics are evaluated at the same 
sparsity in subject group. When the sparsity is not the same, the procedure of integration over various 
connectivity thresholds can provide reliable estimation of network metrics.

Diffusion Tensor Imaging (DTI) and the associate tractography methods can be used to reconstruct fiber bundles 
based on voxel based directional information1–6. Based on the tractography, the connectivity matrix also known 
as structural network can be constructed from structural connectivity calculated by counting the number of fibers 
between cortical regions in the brain7–10. Further, graph theory-based network analysis has been applied on the 
connectivity matrix to investigate the topology properties of entire network instead of individual analysis of large 
number of tracts11–14. The network metrics such as global efficiency, cluster coefficients have been found to be 
relevant in age and gender of healthy human brain15,16. The change in network metrics have already been found in 
several neurological and psychological disorders17–21.

The network metrics can be estimated in various ways with several intermediate steps. The reproducibility of 
network metrics can be therefore affected by many factors. For example: the number of directions of DTI acquisi-
tion, structural connectivity estimated from deterministic or probabilistic tractogaphy, the structural network in 
binary or weighted, the definition of weighting of weighted network, the number of nodes in the structural net-
work, different kind of thresholds applied on the connectivity. Because potential sources of bias and errors in each 
step can induce the variability of the outcome measures, a full characterization of the reproducibility of struc-
tural network and of network metrics is therefore essential for the applications22–25. In summary, Vaessen and 
associates25 reported the within subject coefficient of variation (CV) of network metrics for three kinds of DTI 
scheme (6, 15, 32 directions) for binary structural network. Owen and colleagues24 reported the CV and intraclass 
correlation coefficient (ICC) for intra- and inter-site to address the issue on the number of nodes for both binary 
and weighted network. Buchanan and colleagues26 compared the repeatability of network metrics from weighted 
network using two tractography algorithms (deterministic and probabilistic), two seeding approaches (white 
matter and gray matter), and three definitions of network weightings. They showed that probabilistic tractogra-
phy has higher ICC on network metrics. Bonilha and colleagues27 also showed that probabilistic tractography has 
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higher ICC on network metrics. Andreotti and colleagues23 reported the CV and ICC for global and local network 
metrics and addressed the issues on the effect of density thresholds. In their report, the weighted network is con-
structed using a connectivity threshold to exclude edges having low connectivity and using a density threshold to 
maintain the total number of edges (sparsity) across subjects, which is considered important in the comparison 
of network metrics between subjects28,29. They showed that applying the density and connectivity thresholds has 
significant effect on the network metrics and improves the reliability of network metrics (ICC and CV). Although 
there is argument that connectivity thresholds should not be applied or it will eliminate the real network prop-
erty of individuals24,26, the strategy of connectivity thresholds have been adopted in studying age and gender 
differences of network metrics15, and in studying patients with attention-deficit/hyperactivity disorder21. In these 
studies, connectivity thresholds were applied on whole subject groups to exclude edges. In this way, the structural 
network has same sparsity and identical position of the connections for all subjects.

The probabilistic approach is considered more effective in the calculation of connectivity between cortical 
regions compared to the deterministic approach27,30,31. However, little is known about the reproducibility of the 
connectivity matrix constructed from probabilistic tractography and how the connectivity thresholds affect the 
reproducibility of network metrics. We think the issues about what connectivity thresholds should be applied can 
be addressed by investigating the reproducibility of structural connectivity at different connectivity levels. Then, 
the reproducibility of network metrics at various connectivity thresholds can be reported. Because the sparsity 
may differ when connectivity thresholds are applied, it is important understand how the reproducibility of the 
network metrics alter when the sparsity is not the same. In addition, the strategy of cost normalization is used in 
the calculation of network metrics to maintain the sum of all weighting at the same level15,16,21. It is interested to 
investigate the reproducibility of the network metrics before and after cost normalization.

In this study, we constructed the structural connectivity matrix among cortical regions using probabilistic 
tractography from repeated scans on healthy subjects. We calculated the network metrics based on weighted 
structural network. Three specific issues are investigated. (1) We investigate the short-term reproducibility of 
structural connectivity matrix at various levels of connectivity. (2) We investigate the short-term reproducibility 
of network metrics at various connectivity thresholds. (3) We investigate the effects of three processing strategies 
on the short-term reproducibility of network metrics including integration over all connectivity thresholds, main-
tenance of sparsity and cost normalization.

Results
Structural connectivity matrix. Figure 1 shows the structural connectivity matrixes of 78 cortical regions 
from 4 subjects. Edges with stronger connectivity are mostly along the diagonal line and aside in the left-upper 
and right-lower part of the matrix. These edges belong to link with shorter inter-region distance and ROI sizes are 
larger in these regions. The within subject similarity of the connectivity of all subjects are 0.98 for and between 
subject similarity is 0.95. The distribution of structural connectivity matrix is similar to those in the previous 
reports using probabilistic tractography15,21,27. The averaged structural connectivity for 30 subjects with corre-
sponding matrix of CVbs, CVws and ICC are shown in Fig. 2. The edges with higher connectivity have lower CVbs 
and CVws. Further, CVws are in general lower than CVbs. The histogram of the number of edges versus connectivity 
(connectivity >0.01) and corresponding CVbs, CVws and ICC are shown in Fig. 3. Overall, both CVbs and CVws 
decrease as increasing connectivity. The CVbs are all higher than CVws. The ICC of the edges with connectivity 
over 0.01 is 0.75 ± 0.12 and the mean of ICC in each group range from 0.66 to 0.83. No observable trend in ICC 
versus connectivity is found but the variations of CVws and CVbs decrease for edges with connectivity over 0.1. For 
all 3003 edges, there are 2428 (80.85%) of the edges having connectivity less than 0.01. A significant increase of 
the CVbs (118 ± 44.5%) and CVws (73.2 ± 37.7%) is found for edges with connectivity less than 0.01 and the ICC 
of this group is 0.62 ± 0.19.

Network metrics. The sparsity for connectivity thresholds applied together and separate are shown in Fig. 4. 
The sparsity decrease from 0.32 to 0.08 as connectivity thresholds increasing from 0.01 to 0.1. The sparsity is 
the same for N1com and N2com. A slight difference is found in the sparsity between N1sep and N2sep (Fig. 4b). The 
sparsity of N1sep and N2sep also differ from N1com and N2com in the range of −4.7 × 10−3 to 2.3 × 10−3 (Fig. 4c). 
Whether the thresholds are applied together and separate, the spatial distribution of edges on the connectivity 
matrix is similar at the same threshold (Fig. 4d).

The network metrics (Eglob, Eloc, Cp, Lp) estimated with and without cost normalization are shown in Fig. 5. 
Quantitative values are different for the network metrics estimated with and without cost normalization. But the 
difference among N1com, N2com, N1sep, N2sep for each network metric is small relative to the difference caused by 
connectivity thresholds by visual inspection. The CVbs and CVws of network metrics are shown in Fig. 6. When 
the sparsity is the same (N1com and N2com), the CVbs-com range from 6% to 11% and the CVws-com range from 4% 
to 7% for network metrics without normalization (Fig. 6a). For network metrics with cost normalization, the 
CVbs-com are in the range of 1% to 3.5% and the CVws-com are in the range of 0.4% to 1.8% (Fig. 6b). In general, 
both the CVws-com and CVbs-com decreases smoothly as increasing connectivity thresholds (lower sparsity) and the 
CVbs-com are larger than the CVws-com. When the sparsity is not the same (N1sep and N2sep), there is less than 0.1% 
difference between CVbs-sep and CVbs-com for all connectivity thresholds and for all network metrics estimated 
with or without cost normalization. Large variation is found between CVws-sep to CVws-com in Cw and Eloc with cost 
normalization at several connectivity thresholds (up to 3%) (Fig. 6b). The ICC of network metrics are shown in 
Fig. 7. The ICC of network metrics without cost normalization from Nsep and Ncom are consistent at the range of 
0.5 to 0.6 for all connectivity thresholds (Fig. 7a,b). The ICC of network metrics with cost normalization are at 
range of 0.67 to 0.85 for Ncom (Fig. 7c). However, the ICC vary in the range of 0.1 to 0.8 through the connectivity 
thresholds in Eloc and Cw with cost normalization for Nsep (Fig. 7d).
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The integrated network metrics are summarized in Table 1. For the network metrics without cost normal-
ization, the CVbs are 6% to 8% and the CVws are 4% to 5.5%. The ICCs are in the level of fair to good (0.53 to 
0.60) for Nsep and Ncom. There is only minor difference of CVws between Nsep and Ncom found on Cw (0.13%) and 
Eloc (0.07%). The network metrics with cost normalization show lower CVbs (0.9% to 1.64%) and CVws (0.7% to 
1.05%) compared to those without cost normalization. The ICCs increase but are still in the fair to good level 
(0.69 to 0.76). A considerable difference of CVws between Nsep and Ncom is found in Cw (0.3%) and Eloc (0.15%). 
That lowers the ICC to the level of 0.5 and 0.63 for Cw and Eloc in Nsep.

Discussion
In this study, the short-term reproducibility of structural connectivity matrix among 78 cortical regions estimated 
using probabilistic tractography was reported based on the connectivity. The edges with higher connectivity have 
less between-subject variations (lower CVbs) and better reproducibility (lower CVws) (Figs 2 and 3). The connec-
tivity threshold of 0.01 excluded around 80% of the edges and these edges show poor to moderate reproducibility 
(CVws = 73.2 ± 37.7%; CVbs = 119.3 ± 44.0%; ICC = 0.62 ± 0.19) compared to the other 20% edges (connectivity 
>0.01) showing moderate to good reproducibility (CVws < 45%; CVbs < 90%; ICC = 0.75 ± 0.12). A connectivity 
threshold at 0.01 can be considered as good choice to enroll edges for network analysis. The short-term reproduc-
ibility of network metrics (Cw, Lw, Eloc, Eglo) show smooth change for the connectivity thresholds between 0.01 to 
0.1 at the same sparsity (Fig. 6). We found that the network metrics estimated without cost normalization have 
moderate reproducibility (CVws < 5.5%, CVws < 8.0%, ICC = 0.5~0.6) (Table 1) and is less sensitive to the differ-
ence in the sparsity. The procedure of cost normalization can improve the reproducibility (ICC = 0.69 to 0.76) in 
associate with reduced within and between subject variations (CVws < 1.1% and CVbs < 1.7%). The presence of 1% 
difference in the sparsity (Fig. 4b,c) can cause additional within subject variations on the estimation of Cw and Eloc 
with cost normalization (Fig. 6b), which leads to lower ICC (Fig. 7d). The ICC is still in the moderate level when 
the networks metrics are estimated over various connectivity thresholds (Table 1).

Short-term reproducibility of connectivity matrix. For connectivity matrixes, the edges with the higher 
connectivity mostly coming from the links with shorter tracking distance have better reproducibility (lower CVws) 
and less inter-subject variation (lower CVbs). One reason is that tracking for longer distance is more likely to be 
interrupted by the successive tracking process, which yield lower connectivity and larger variations. The findings are 

Figure 1. Structural connectivity matrices of four subjects. Each matrix element (edge) represents the weighted 
connectivity (0 to 1) from probabilistic tractography between cortical regions by AAL template. The 78 cortical 
regions are in left to right hemisphere order and names of cortical regions are listed in Supplementary Table 1.
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in agreement with previous reports27. The outcome also indicates that tracking using probabilistic model between 
cortical regions are still subject to the intricate fiber pathways in the brain especially when the seeding points are 
mostly belonging to gray matter where the fiber has uncertain direction. Connectivity thresholds is therefore nec-
essary to exclude the edges with low connectivity, which can possibly lead to unreliable parameters calculated based 
on the connectivity matrix. The information of the reproducibility based on the level of connectivity provided in this 
study can be useful in setting the connectivity thresholds to exclude edges depending on the sensitivity needed for 
successive analysis. For example, we found that the variations of CVws and CVws drop at the connectivity threshold of 
0.1. For the study directly using inter-region connectivity for statistical analysis, we suggest to use the connectivity 
threshold at 0.1, where CVws < 15% and CVbs < 32% can be reached for 173 edges (5.76%).

Short-term reproducibility of network metrics. For network metrics estimated at the same sparsity 
(N1com and N2com), both CVws-com and CVbs-com decrease smoothly in comparable trend as increasing connectivity 
thresholds (Fig. 6), so the ICC are at same level for all connectivity thresholds and for all network metrics (Fig. 7a,c). 
The finding implies that the choice of connectivity thresholds in the range of 0.01 to 0.1 may not be crucial for the 
short-term reproducibility of the estimated network metrics at the same sparsity. Around 1% difference in the spar-
sity is found between N1sep and N2sep (Fig. 4b,c). The difference in sparsity here is from the difference in connectivity 
for edges in the shorter-term repetition. Our findings show that the difference in the sparsity leads to relatively larger 
variation on the CVws-sep and ICC on Eloc and Cw with cost normalization (Figs 6b and 7d). Even though, the CVws-sep 
of the integrated Eloc and Cw are still less than CVbs-sep and give moderate reproducibility (ICC > 0.5). Therefore, inte-
gration over various connectivity thresholds for the estimation of Eloc and Cw with cost normalization is suggested 
when the connectivity thresholds are applied without maintaining sparsity.

Comparison with the previous literature. Among all studies reporting the reproducibility of network 
metrics, we compared our results to those using probabilistic tractography and weighted network. In Bucchanan 
et al.26, they have reported the test-retest reliability of network metrics using three kinds of definition in network 
weighting. The CVws is 3.6% to 4.8% for Lw and 5.3% to 7.2% for Cw. The CVbs is 4.5% to 7.1% for Lw and is 8.5% 
to 9.6% for Cw. The ICC of Lw and Cw are in the moderate-to-good range (0.59 ~ 0.76). Andreotti et al.23 have 
reported the CVws for network metrics calculated by averaging over a range of density thresholds. The definition 
of network weighting is similar to our study but the range of sparsity differs from our study. According to their 
results, the CVws of Lw, Eloc, Eglo is at the level of 4% and CVws of Cw is around 8%. The ICC is the moderate-to-good 

Figure 2. (a) Averaged connectivity matrix from 30 subjects and matrices of (b) ICC, (c) CVws (%), (d) CVbs 
(%). Note edges with higher connectivity have lower CVws and CVbs.
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range (0.66 ~ 0.89). Despite there is difference in network processing procedures between our study and these 
two previous reports, the CVws of network metrics without cost normalization are close to their reports (Table 1). 
Both of these two previous reports found higher CVws for Cw than other network metrics. Same trend is found in 
our study. The ICC reported in Andreotti et al.23, Bucchanan et al.26 and our study are in different levels where our 
study show lowest ICC among the three studies. The possible explanation is the difference in the subject groups. 
This leads to difference in the between subject variations. One should notice that the between subject variation 
(CVbs) in the subject sample of this study is expectedly much lower than the general healthy groups because the 
study population is very homogeneous (healthy young subjects at comparable age and educational level)23,25,26. 
The smaller within and between subject variation helps in inferring the methodological difference in the con-
struction of structural network and in the estimation of network metrics.

Limitation. In this study, probabilistic tractography is preferred based on previous reports26,27,31. Even our anal-
yses were not able to directly compare the deterministic and probabilistic tractorgraphy, there are still other works 
reporting acceptable repeatability for network metrics from deterministic tractography28,32,33. Here, the weighting of 
the network is defined according the most commonly used weighting scheme in the literatures21,24,33. However, the 
weighting may include effect of both relevant and irrelevant diffusion characteristics of WM tracks. It is therefore 
difficult to correctly interpret the weight of network. Question on how the definition of the weighting influence 
the reliability and which weight is more suitable to represent the connectivity are not addressed in this study. The 
test-retest repeatability of network metrics was investigated in a relative short time interval (~ 30 min.). The subjects 
stay in the scanner for consecutive measurement makes the CVws smaller than other studies where repeated scans 
were made in different days24,27. it is also important to understand the long-term or cross site repeatability24,27.

In conclusion, we suggest to apply the connectivity thresholds to exclude spurious connections for network 
analysis. When the sparsity is the same, a connectivity threshold over 0.01 can serve as an acceptable choice with-
out significant effect on the short-term reproducibility of network metrics. When the sparsity is not the same for 
subject group, the procedure of integration over various connectivity thresholds can be considered to give reliable 
estimation of network metrics.

Methods
Data acquisition. Experiments were conducted in 30 healthy volunteers (15 females/15 males; mean 
age ± standard deviation: 22.03 ± 1.82 years; age range: 20–26 years). Before being included in the study, all par-
ticipants gave their informed consent to the protocol, which was approved by the Research Ethic Committee of 
National Chengchi University. All experiments were performed in accordance with the approved guidelines. Data 
were collected on a 3T MR system (Skyra, SIEMENS Medical Solutions, Erlangen, Germany) with a 32-channel 

Figure 3. (a) Histogram of number of edges versus connectivity groups (0.01 to 0.30 with 0.01 steps) and 
corresponding (b) ICC, (c) CVws (%), (d) CVbs (%) of 30 groups. For connectivity less than 0.01, there are 2428 
(80.85%) out of total 3003 edges with the CVbs (118 ± 44.5%), CVws (73.2 ± 37.7%) and ICC (0.62 ± 0.19).
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head coil array. We acquired a high-resolution 3D MPRAGE (Magnetization Prepared Rapid Acquisition 
Gradient Echo) anatomical scan (TR/TE/flip angle: 2530 ms/3.03 ms/7 degrees; FOV: 224 × 256 × 192 mm3; voxel 
size: 1 × 1 × 1 mm3). DTI datasets were obtained using single shot spin echo EPI sequence. We used 30 diffusion 
directions with b-value 1000 s/mm2 and 5 additional images with b-value = 0 s/mm2. Experiment parameters 
were TR = 8800 ms, TE = 90 ms, FOV = 256 × 256 mm2, MAT = 128 × 128, slice thickness = 2 mm, slice = 61, 
NEX = 4, acceleration factor = 3. The total acquisition time were 30 minutes. DTI protocols were repeated twice 
on each subject for the assessment of short-term test-retest reproducibility (N1 and N2). The subjects were asked 
to stay in the scanner and rest for 30 minutes between N1 and N2.

DTI analysis and tractography. Before DTI analysis, 78 cortical regions (39 for each hemisphere) were 
extracted using the automated anatomical labeling (AAL) template in standard MNI space34. Labels and names of 
cortical regions can be found in Supplementary Table S1. Each cortical region represents a network node. These 
AAL masks were then transformed to DTI native space for each individual using following procedures. First, T1 
images were coregistered to non-diffusion weighting image of DTI data sets. The coregistered T1 image was trans-
formed to standard MNI template using nonlinear transformation. The transformation matrix was then applied 
to warp the defined AAL mask to DTI native space for each subject. The procedures were carried out using FLIRT 
and FNIRT tool (FSL, version 4.1; http://www.fmrib.ox.ac.uk/fsl). The AAL masks in each subject were further 
refined by removing WM voxels that are not neighbor to GM voxels15.

For the analysis of DTI data sets, the procedures were performed using the FMRIB Software Library (FSL, 
version 4.1; FMRIB’s Diffusion Toolbox [FDT]5; Oxford Centre for Functional MRI of the Brain [FMRIB], 
UK; http://www.fmrib.ox.ac.uk/fsl) as described in previous studies15,21,26. DICOM images were converted to 
Neuroimaging Informatics Technology Initiative (NIFTI) format using the MRICron tool. Images were visually 
checked for observable artifacts, and no volume was discarded. Eddy current correction was applied with the 
eddy_correct tool, using the default settings. In summary, the first non–diffusion-weighted image was set as 
the target image, into which the remaining images (120 diffusion weighted image and 3 non-diffusion weighted 
images) were registered using an affine transformation to adjust for distortions caused by eddy currents and head 
motion. Then bet tool was used for skull stripping and bedpostx tool was used to build up a two-fibre per voxel 
model for fiber tracking. Probabilistic tractography was applied to estimate the connectivity probability among 
78 cortical regions using PROBTRACKS tool. For the seed region. 5000 fibers streamlines grow from each voxel 
with tracking parameters of 0.5 mm step size, 500 mm maximum trace length, ±80° curvature threshold. This 

Figure 4. The sparsity at 37 connectivity thresholds from 0.01 to 0.10 with a step of 0.0025. The connectivity 
thresholds are applied on (a) N1 and N2 together (N1com and N2com) and (b) N1 and N2 separately (N1sep and 
N2sep). (c) Difference of N1sep to N1com and of N2sep and N2com. Note the sparsity decrease from 0.32 to 0.08 as 
increasing connectivity thresholds and the difference in sparsity is less than 5 × 10−3. (d) masks of connectivity 
matrix at connectivity thresholds of 0.0575 where the sparsity is 0.1171 for N1com, N2com, 0.1182 for N1sep, and 
0.1175 for N2sep. The differences on the edges are indicated by the red arrow.

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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yields 5000 × n streamlines from the seed region where n is the number of voxel in seed region5. The connectivity 
probability between seed region i and target region j was then calculated as the ratio of number of fibers passing 
through target region j to the total number of fibers from seed region i. The probability from i to j is not equal to 
that from j to i but they are correlated (all Pearson >0.92, p < 10−15). We then calculated the unidirectional con-
nectivity probability between region i to region j (Pij) as the average of these two probabilities15,21. For each subject 
a 78 × 78 symmetric connectivity matrix was estimated.

Figure 5. Network metrics (Eglo, Eloc, Cw, Lw) of N1com, N2com, N1sep, N2sep at 37 connectivity thresholds 
estimated (a) without cost normalization and (b) with cost normalization. Note that all network metrics have 
consistent trend o as increasing connectivity thresholds and minor difference can be observed on the network 
metrics among N1com, N2com, N1sep, N2sep.
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Construction of weighted network. The connectivity matrix has non-zero probabilities for all 3003 
edges. Thresholds on connectivity were used to remove spurious connections that have small connectivity prob-
abilities. Two cortical regions were considered unconnected and set to zero in the connectivity matrix, if the 
mean connectivity probability across subjects plus two times of standard deviation is less than the connectivity 

Figure 6. CVws and CVbs of network metrics (Eglo, Eloc, Cw, Lw) at 37 connectivity thresholds estimated (a) 
without cost normalization and (b) with cost normalization. Both CVbs and CVws vary smoothly as increasing 
connectivity thresholds. When sparsity is not the same (N1sep and N2sep), dramatic variations of CVws are found 
in Eloc, Cw, estimated with cost normalization.
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threshold. The sparsity defined as the number of non-zero edges divided by the total number of edges in the diffu-
sion connectivity matrix can be calculated. To ensure same sparsity for N1 and N2, connectivity thresholds were 
applied on N1 and N2 group together denoted as N1com and N2com:

Figure 7. ICC of network metrics (Eglo, Eloc, Cw, Lw) at 37 connectivity thresholds estimated (a,b) without cost 
normalization and (c,d) with cost normalization. Note The ICC is at level of 0.5 to 0.6 for network metrics 
without cost normalization and the ICC is at 0.67 to 0.85 for network metrics with cost normalization. However, 
dramatic variations of ICC are found for Eloc, Cw estimated with cost normalization when sparsity is not the 
same (N1sep and N2sep).

without cost 
normalization N1 N2 CVbs (%) CVws (%) ICC

com

Eglo 2.08 ± 0.13 2.07 ± 0.13 6.06 4.12 0.53

Eloc 3.28 ± 0.25 3.27 ± 0.25 7.54 5.00 0.55

Cw 2.00 ± 0.16 1.99 ± 0.16 7.92 5.26 0.55

Lw 884 ± 55.9 885.3 ± 58.2 6.45 4.06 0.60

sep

Eglo 2.08 ± 0.13 2.07 ± 0.13 6.07 4.12 0.53

Eloc 3.29 ± 0.25 3.27 ± 0.25 7.56 5.07 0.54

Cw 2.01 ± 0.16 1.99 ± 0.16 7.93 5.39 0.54

Lw 884.8 ± 55.9 884.9 ± 58.2 6.45 4.06 0.60

com

Eglo (4.82 ± 0.08) × 10−2 (4.83 ± 0.07) × 10−2 1.49 0.82 0.69

Eloc (7.75 ± 0.07) × 10−2 (7.75 ± 0.07) × 10−2 0.90 0.44 0.76

Cw (4.73 ± 0.06) × 10−2 (4.72 ± 0.06) × 10−2 1.27 0.70 0.69

Lw 38159 ± 656 38076 ± 593 1.64 0.89 0.70

sep

Eglo (4.82 ± 0.08) × 10−2 (4.83 ± 0.07) × 10−2 1.49 0.83 0.68

Eloc (7.78 ± 0.07) × 10−2 (7.74 ± 0.07) × 10−2 0.91 0.59 0.63

Cw (4.76 ± 0.06) × 10−2 (4.71 ± 0.06) × 10−2 1.28 1.05 0.50

Lw 38152 ± 659 38052 ± 590 1.64 0.92 0.69

Table 1. Integrated network metrics (Eglo, Eloc, Cw, Lw) from N1com, N2com, N1sep, N2sep and the associate CVbs, 
CVws, ICC.
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( ) ( )P std P thresholdaverage 2 (1)ij
Total

ij
Total+ < .

where Pij
Total is the connectivity probability from N1 and N2 (60 DTI scans from 30 subjects). In this way, all sub-

jects have the same number of edges and the edges are located at the same position of the connectivity matrix. 
Further, we applied the connectivity thresholds on N1 and N2 separately, denote as N1sep and N2sep:

+ ∗ <( ) ( )P std P thresholdaverage 2 (2)ij
N

ij
N1 1

+ ∗ <( ) ( )P std P thresholdaverage 2 (3)ij
N

ij
N2 2

where Pij
N1 and Pij

N2 is the connectivity from N1 (30 DTI scans from 30 subjects) and N2 (30 DTI scans from 30 
subjects) respectively. The resultant connectivity matrixes may have different sparsity for the repeated scans under 
the same connectivity threshold. This is to examine the potential variation of the network metrics when sparsity 
cannot be adjusted at same level by the connectivity thresholds. A series of connectivity thresholds at the range of 
0.01 to 0.1 with 0.0025 steps were chosen based on Gong et al.15. The range of sparsity in this study is 8% to 32%, 
which is similar to previous studies15,35. To construct the weighted network from connectivity matrix, the weights 
of each edge is computed as wij = Pij. For each subject, 37 weighted networks were constructed corresponding to 
37 connectivity thresholds.

Network measures. For each network, four network metrics were calculated. They are network cluster coef-
ficient (Cw), characteristic path length (Lw), global efficiency (Eglob) and local efficiency (Eloc)36,37. The definition 
of these network metrics is given in the supplementary methods. Because these network metrics were computed 
for a range of sparsity under a series of connectivity thresholds, the summary network metrics were integrals of 
each metrics over the range of the sparsity. The network metrics were additionally calculated using the weights 
scaled by the sum of all weights for all edges to control each subject’s cost at same level, known as cost normaliza-
tion15,21. All network analysis was performed in Matlab (The MathWorks, Natick, USA) using Brain Connectivity 
Toolbox9.

Quantification of reproducibility. The similarity was calculated by the Pearson’s correlation coef-
ficients of connectivity from structural connectivity matrixes. Within subject similarity was computed by 
averaging 30 correlation coefficients of connectivity calculated between 2 repeated measurements. Between 
subject similarity was computed by averaging correlation coefficients of connectivity calculated among 30 
subjects. The CV and ICC were used as indices of reproducibility23,25. The CV is defined as the stand-
ard deviation divided by the overall measurement mean. For CVws, the standard deviation was calculated 
between 2 repeated measurements (N1 and N2) for each subject. The CVws was given by mean of within sub-
ject standard deviation divided by the overall mean. For CVbs, the standard deviation was calculated among 
30 subjects in N1 and N2, respectively. The CVbs was given by mean of between subject standard deviation 
divided by the overall mean. The ICC was computed using two-way mixed single measures using the abso-
lute agreement within the repeated measurement. The ICC was computed using MATLAB toolbox created 
by Arash Salarian (www.mathworks.com/matlabcentral/fileexchange/22099). The ICC values are classified 
as: poor reproducibility (<0.5), moderate reproducibility (0.5–0.75), good reproducibility (0.75–0.9), excel-
lent reproducibility (>0.9)23,38,39. To summarize the structural connectivity matrix, edges were separated 
into 31 groups according to the connectivity probability from 0 to 0.3 in 0.01 step. The indexes of the repro-
ducibility were calculated for each group.

References
 1. Lebel, C., Benner, T. & Beaulieu, C. Six is enough? Comparison of diffusion parameters measured using six or more diffusion-

encoding gradient directions with deterministic tractography. Magn Reson Med 68, 474–483, https://doi.org/10.1002/mrm.23254 
(2012).

 2. Van Hecke, W. et al. On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. 
NeuroImage 43, 69–80, S1053-8119(08)00797-0, https://doi.org/10.1016/j.neuroimage.2008.07.006 (2008).

 3. Glasser, M. F. & Rilling, J. K. DTI tractography of the human brain’s language pathways. Cereb Cortex 18, 2471–2482, https://doi.
org/10.1093/cercor/bhn011 (2008).

 4. Huang, H. et al. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus 
callosum. NeuroImage 26, 195–205, https://doi.org/10.1016/j.neuroimage.2005.01.019 (2005).

 5. Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre 
orientations: What can we gain? NeuroImage 34, 144–155, https://doi.org/10.1016/j.neuroimage.2006.09.018 (2007).

 6. Ciccarelli, O. et al. Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic 
lateral sclerosis. Brain 129, 1859–1871, https://doi.org/10.1093/brain/awl100 (2006).

 7. Sporns, O. The human connectome: origins and challenges. NeuroImage 80, 53–61, https://doi.org/10.1016/j.neuroimage.2013.03.023 
(2013).

 8. Sporns, O. The human connectome: a complex network. Ann N Y Acad Sci 1224, 109–125, https://doi.org/10.1111/j.1749-
6632.2010.05888.x (2011).

 9. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069, 
https://doi.org/10.1016/j.neuroimage.2009.10.003 (2010).

 10. Hagmann, P. et al. MR connectomics: Principles and challenges. Journal of neuroscience methods 194, 34–45, https://doi.
org/10.1016/j.jneumeth.2010.01.014 (2010).

 11. Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50, 970–983, https://doi.
org/10.1016/j.neuroimage.2009.12.027 (2010).

http://www.mathworks.com/matlabcentral/fileexchange/22099
http://dx.doi.org/10.1002/mrm.23254
http://dx.doi.org/10.1016/j.neuroimage.2008.07.006
http://dx.doi.org/10.1093/cercor/bhn011
http://dx.doi.org/10.1093/cercor/bhn011
http://dx.doi.org/10.1016/j.neuroimage.2005.01.019
http://dx.doi.org/10.1016/j.neuroimage.2006.09.018
http://dx.doi.org/10.1093/brain/awl100
http://dx.doi.org/10.1016/j.neuroimage.2013.03.023
http://dx.doi.org/10.1111/j.1749-6632.2010.05888.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05888.x
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.jneumeth.2010.01.014
http://dx.doi.org/10.1016/j.jneumeth.2010.01.014
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027


www.nature.com/scientificreports/

1 1SCIeNTIfIC REPORTS |  (2018) 8:11562  | DOI:10.1038/s41598-018-29943-0

 12. Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying differences in brain networks. NeuroImage 53, 
1197–1207, https://doi.org/10.1016/j.neuroimage.2010.06.041 (2010).

 13. Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging 
tractography. Cereb Cortex 19, 524–536, https://doi.org/10.1093/cercor/bhn102 (2009).

 14. Iturria-Medina, Y. et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 
36, 645–660, https://doi.org/10.1016/j.neuroimage.2007.02.012 (2007).

 15. Gong, G. et al. Age- and gender-related differences in the cortical anatomical network. The Journal of neuroscience: the official 
journal of the Society for Neuroscience 29, 15684–15693, https://doi.org/10.1523/JNEUROSCI.2308-09.2009 (2009).

 16. Yan, C. et al. Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb 
Cortex 21, 449–458, https://doi.org/10.1093/cercor/bhq111 (2011).

 17. Filippi, M., Preziosa, P. & Rocca, M. A. Brain mapping in multiple sclerosis: Lessons learned about the human brain. NeuroImage 
https://doi.org/10.1016/j.neuroimage.2017.09.021 (2017).

 18. Collin, G. et al. Brain network analysis reveals affected connectome structure in bipolar I disorder. Human brain mapping 37, 
122–134, https://doi.org/10.1002/hbm.23017 (2016).

 19. Munsell, B. C. et al. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on 
structural connectome data. NeuroImage 118, 219–230, https://doi.org/10.1016/j.neuroimage.2015.06.008 (2015).

 20. Prescott, J. W. et al. The Alzheimer structural connectome: changes in cortical network topology with increased amyloid plaque 
burden. Radiology 273, 175–184, https://doi.org/10.1148/radiol.14132593 (2014).

 21. Cao, Q. et al. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity 
networks in drug-naive boys with attention deficit/hyperactivity disorder. The Journal of neuroscience: the official journal of the 
Society for Neuroscience 33, 10676–10687, https://doi.org/10.1523/JNEUROSCI.4793-12.2013 (2013).

 22. Welton, T., Kent, D. A., Auer, D. P. & Dineen, R. A. Reproducibility of graph-theoretic brain network metrics: a systematic review. 
Brain Connect 5, 193–202, https://doi.org/10.1089/brain.2014.0313 (2015).

 23. Andreotti, J. et al. Repeatability analysis of global and local metrics of brain structural networks. Brain Connect 4, 203–220, https://
doi.org/10.1089/brain.2013.0202 (2014).

 24. Owen, J. P. et al. Test-retest reliability of computational network measurements derived from the structural connectome of the 
human brain. Brain Connect 3, 160–176, https://doi.org/10.1089/brain.2012.0121 (2013).

 25. Vaessen, M. J. et al. The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. 
NeuroImage 51, 1106–1116, https://doi.org/10.1016/j.neuroimage.2010.03.011 (2010).

 26. Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J. & Bastin, M. E. Test-retest reliability of structural brain networks 
from diffusion MRI. NeuroImage 86, 231–243, https://doi.org/10.1016/j.neuroimage.2013.09.054 (2014).

 27. Bonilha, L. et al. Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging. PloS one 10, 
e0135247, https://doi.org/10.1371/journal.pone.0135247 (2015).

 28. Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Conserved and variable architecture of human white matter 
connectivity. NeuroImage 54, 1262–1279, https://doi.org/10.1016/j.neuroimage.2010.09.006 (2011).

 29. van Wijk, B. C., Stam, C. J. & Daffertshofer, A. Comparing brain networks of different size and connectivity density using graph 
theory. PloS one 5, e13701, https://doi.org/10.1371/journal.pone.0013701 (2010).

 30. Khalsa, S., Mayhew, S. D., Chechlacz, M., Bagary, M. & Bagshaw, A. P. The structural and functional connectivity of the posterior 
cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function 
relationships. NeuroImage 102(Pt 1), 118–127, https://doi.org/10.1016/j.neuroimage.2013.12.022 (2014).

 31. Moldrich, R. X. et al. Comparative mouse brain tractography of diffusion magnetic resonance imaging. NeuroImage 51, 1027–1036, 
https://doi.org/10.1016/j.neuroimage.2010.03.035 (2010).

 32. Smith, R. E., Tournier, J. D., Calamante, F. & Connelly, A. The effects of SIFT on the reproducibility and biological accuracy of the 
structural connectome. NeuroImage 104, 253–265, https://doi.org/10.1016/j.neuroimage.2014.10.004 (2015).

 33. Cheng, H. et al. Characteristics and variability of structural networks derived from diffusion tensor imaging. NeuroImage 61, 
1153–1164, https://doi.org/10.1016/j.neuroimage.2012.03.036 (2012).

 34. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the 
MNI MRI single-subject brain. NeuroImage 15, 273–289, https://doi.org/10.1006/nimg.2001.0978 (2002).

 35. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3, e17, https://doi.
org/10.1371/journal.pcbi.0030017 (2007).

 36. Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys Rev Lett 87, 198701, https://doi.org/10.1103/
PhysRevLett.87.198701 (2001).

 37. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442, https://doi.org/10.1038/30918 
(1998).

 38. Koch, G. G. et al. A general methodology for the analysis of experiments with repeated measurement of categorical data. Biometrics 
33, 133–158 (1977).

 39. Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr 
Med 15, 155–163, https://doi.org/10.1016/j.jcm.2016.02.012 (2016).

Acknowledgements
The author thanks the Taiwan Mind & Brain Imaging Center (TMBIC) and National Chengchi University for the 
instrumental availability. The TMBIC is supported by the Ministry of Science and Technology, Taiwan. This work 
was supported in part by grants from the Ministry of Science and Technology, Taiwan (MOST 106-2221-E-004-
001, 105-2221-E-004-003, 105-2420-H-004-003-MY2).

Author Contributions
S.-Y.T. conceived and designed the experiments, performed the experiments, analyzed the data, interpreted the 
data, and drafted the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29943-0.
Competing Interests: The author declares no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1016/j.neuroimage.2010.06.041
http://dx.doi.org/10.1093/cercor/bhn102
http://dx.doi.org/10.1016/j.neuroimage.2007.02.012
http://dx.doi.org/10.1523/JNEUROSCI.2308-09.2009
http://dx.doi.org/10.1093/cercor/bhq111
http://dx.doi.org/10.1016/j.neuroimage.2017.09.021
http://dx.doi.org/10.1002/hbm.23017
http://dx.doi.org/10.1016/j.neuroimage.2015.06.008
http://dx.doi.org/10.1148/radiol.14132593
http://dx.doi.org/10.1523/JNEUROSCI.4793-12.2013
http://dx.doi.org/10.1089/brain.2014.0313
http://dx.doi.org/10.1089/brain.2013.0202
http://dx.doi.org/10.1089/brain.2013.0202
http://dx.doi.org/10.1089/brain.2012.0121
http://dx.doi.org/10.1016/j.neuroimage.2010.03.011
http://dx.doi.org/10.1016/j.neuroimage.2013.09.054
http://dx.doi.org/10.1371/journal.pone.0135247
http://dx.doi.org/10.1016/j.neuroimage.2010.09.006
http://dx.doi.org/10.1371/journal.pone.0013701
http://dx.doi.org/10.1016/j.neuroimage.2013.12.022
http://dx.doi.org/10.1016/j.neuroimage.2010.03.035
http://dx.doi.org/10.1016/j.neuroimage.2014.10.004
http://dx.doi.org/10.1016/j.neuroimage.2012.03.036
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1371/journal.pcbi.0030017
http://dx.doi.org/10.1371/journal.pcbi.0030017
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/j.jcm.2016.02.012
http://dx.doi.org/10.1038/s41598-018-29943-0


www.nature.com/scientificreports/

1 2SCIeNTIfIC REPORTS |  (2018) 8:11562  | DOI:10.1038/s41598-018-29943-0

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography
	Results
	Structural connectivity matrix. 
	Network metrics. 

	Discussion
	Short-term reproducibility of connectivity matrix. 
	Short-term reproducibility of network metrics. 
	Comparison with the previous literature. 
	Limitation. 

	Methods
	Data acquisition. 
	DTI analysis and tractography. 
	Construction of weighted network. 
	Network measures. 
	Quantification of reproducibility. 

	Acknowledgements
	Figure 1 Structural connectivity matrices of four subjects.
	Figure 2 (a) Averaged connectivity matrix from 30 subjects and matrices of (b) ICC, (c) CVws (%), (d) CVbs (%).
	Figure 3 (a) Histogram of number of edges versus connectivity groups (0.
	Figure 4 The sparsity at 37 connectivity thresholds from 0.
	Figure 5 Network metrics (Eglo, Eloc, Cw, Lw) of N1com, N2com, N1sep, N2sep at 37 connectivity thresholds estimated (a) without cost normalization and (b) with cost normalization.
	Figure 6 CVws and CVbs of network metrics (Eglo, Eloc, Cw, Lw) at 37 connectivity thresholds estimated (a) without cost normalization and (b) with cost normalization.
	Figure 7 ICC of network metrics (Eglo, Eloc, Cw, Lw) at 37 connectivity thresholds estimated (a,b) without cost normalization and (c,d) with cost normalization.
	Table 1 Integrated network metrics (Eglo, Eloc, Cw, Lw) from N1com, N2com, N1sep, N2sep and the associate CVbs, CVws, ICC.




