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Abstract 

Many papers have been presented on the study of  change points detection. None- 
theless, we would like to point out that in dealing with the time series with switching 
regimes, we should also take the characteristics of change periods into account. Because 
many patterns of change structure in time series exhibit a certain kind of duration, those 
phenomena should not be treated as a mere sudden turning at a certain time. In this 
paper, we propose a procedure about change periods detection for nonlinear time series. 
The detecting statistical method is an application of fuzzy classification and a gener- 
alization of Inclan and Tiao's result [J. Am. Statist. Assoc. 89 (1994) 913]. Simulation 
results show that the performance of the proposed procedure is efficient and successful. 
Finally, an empirical application about change periods detecting for Taiwan monthly 
visitor's arrival is demonstrated. © 1999 Elsevier Science Inc. All rights reserved. 

Keywords: Change periods; Nonlinear time series; Revised centered cumulative sums of squares 
(RCUSUM); Fuzzy statistics 

1. Introduction 

Trad i t i ona l  me thods  on the mode l  cons t ruc t ion  for  a t ime series are  based  
on  the Bayesian experience by choos ing  a " g o o d "  model ,  which  will sat isfac-  
tor i ly  expla in  its dynamic  behavior ,  f rom a mode l -base .  But a f undamen ta l  
ques t ion  tha t  is of ten asked  is: D o  there exist switching regimes in the  series? 
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Can a single model fit the dynamic all the time? If there exists significant 
changes for the underlying time series, it seems natural to find out those change 
points or change periods before modeling the whole process. 

The investigation of change points detection can be found in many papers. 
For example, Tsay (1986, 1990) proposed some procedures for detecting out- 
liers, level shifts and variance changes in a univariate time series. The proce- 
dures he outlined are particularly useful and relatively easy to implement. 
While Balke (1993) pointed out that Tsay's procedures do not always perform 
satisfactorily when level shifts are present. Inclan and Tiao (1994) proposed an 
iterative procedure to detect variance changes based on a centered version of 
the cumulative sums of squares presented by Brown et al. (1975). 

Those testing statistics dealing with change points detection include: 
MPAGE (Modified PAGE) proposed by Page (1955), CUSUM (Cumulative 
Sum) proposed by Hinkey (1971). Hsu (1977, 1979, 1982) investigated the 
detection of a variance shift at an unknown point in a sequence if independent 
observations, focusing on the detection of points of change one at a time be- 
cause of the heavy computational burden. Menzefricke (1981) presented a 
Bayesian analysis of a change at a unknown time point. Wosley (1986) used 
ML methods to test a change in mean for a sequence of independent expo- 
nential family random variables. Saatri et al. (1989) presented a study of 
performance comparison for six time-series change detection procedures. Barry 
and Hartigan (1993) demonstrated a Bayesian analysis for change point 
problems. 

However, those detecting techniques are based on the assumption that the 
underlying time series conducts a significantly change point characteristic. 
Nevertheless, we must indicate that in dealing with the time series with 
switching regimes, we had better not only consider the change points detec- 
tion, but also take into account the properties of change periods. Because 
many patterns of change structure in time series exhibit a certain kind of 
duration, those phenomena should not be treated as a mere sudden turning at 
a certain time. For instance: (i) The exchange rate may go up or down 
gradually after a new financial policy perform. (ii) The supply of M1 or M2b 
may change their trend at different period of time according to the national 
economic conditions. In fact, the semantics of the term "change point" is not 
very clear and well understandable (interesting readers may refer to any 
popular dictionary such as Webster's New Dictionary or Oxford Comtem- 
porary Dictionary). 

Hence, in order to meet the real situation, it had been better to employ the 
concept of "change period" instead of "change point". In this paper, we 
propose a procedure about change periods detection for nonlinear time series. 
This paper is organized as follows. In Section 2, we develop three detecting 
methods and present the detection procedure with fuzzy logic to identify 
change periods for nonlinear time series. The performance of the proposed 
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statistics is investigated by means of  simulations in Section 3. In addition, we 
applied the detecting algorithm to discriminate the real case of Taiwan 
monthly visitor's arrival in Section 4. Section 5 gives the conclusion and 
suggestions. 

2. Detecting statistics and procedure 

2.1. Statistics for centered cumulative sums o f  squares 

Kao and Ross (1995) proposed a modified CUSUM test, which was as- 
ymptotically significant for structural change with an unknown change point in 
a linear model with serially correlated disturbances. Their idea was based on 
the consideration of posterior recursive residuals. In other words, it was pri- 
marily assumed that there exists a model with the estimable parameters that 
can be found out by statistical or numerical methods. However, in a nonlinear 
time series analysis, there are various types of  nonlinear model families. It is 
thus very difficult for us to decide which model will we apply in the following 
model fitting process. Especially, when the pattern of  a nonlinear time series 
changed significantly after certain time. 

In order to identify the switching regimes for a nonlinear time series, we 
propose a revised centered CUSUM test, which is a revision of an iterated 
centered cumulative sums of  squares presented by Inclan and Tiao (1994), and 
will be used in an identification procedure for multiple change points/periods in 
a nonlinear time series process. 

Consider a general nonlinear time series model 

r+l 

Yt-m)_, = ZIj[hj(Yt-,~j_,-1,Y,... ,Yt-mj+l, et-mj_l-l, et-mj_,-2,''', 8t-mi+l) 
j=l 

-}- ~t-mj-1], (2.1) 

where rn0 = 0, % is a white noise process, i.e. a sequence of  independently 
distributed random variables with mean #j and variance a 2, hj is a (nonlinear) 
real valued function for specified j (j = 1 ,2 , . . . ,  r + 1), and 

1 ifyz E {Yt-mj , , Y t -m j_ , - l , . . . , Y t -m ,+ l }  j =  1 , 2 , . . . , r +  1. (2.2) 
lj---- 0 elsewhere 

The revised CUSUM statistic defined below will be used to detect multiple 
thresholds {ms.} for the considered time series. 

Definition 2.1 (RCUSUM). Let {yt, t = l , 2 , . . . , N }  be a time series, 
k Yk = Y]tk=lYt/k, k = 1 ,2 , . . .  ,N, and CCk = ~t=l(Yt -37k) 2 be a centered cu- 

mulative sum of  squares. Then 
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CCk k 
CD~ CCv T '  k =  1 , 2 , . . . , N ,  

is called Revised Centered Cumulative Sums of Squares (RCUSUM). 

(2.3) 

The plot of  CD~ against k will oscillate around 0 for series with homoge- 
neous mean. When there is a change in mean, the plot of  CDk will exhibit a 
pattern with upward or downward trend going out of  some specified bound- 
aries with high probability. That  is, the slope of  CDk takes a drastic change in 
trend. It leads to a peak or a trough according to the changes of  the structure of 
the series. The use of CDk will help us to detect a priori change periods different 
from that of  CCk and in Section 3 we will give more detailed discussion about 
the behavior of CDk. 

While in some cases, especially when the underlying time series contains 
outliers, the performance of  RCUSUM statistic might not be sensitive and 
efficient for change periods. Several extreme observations may just exhibit a 
jump. It will return to the historical behavior after the intervention is over. For  
nonparametric reasons, it is reasonable to transform the original series into an 
ordered one to avoid misspecifying the outliers or sudden changes as change 
points/periods. Therefore we will also use the statistics CDRk defined at Def- 
inition 2.2 to detect the change points or periods. 

Definition 2.2 (ORCUSUM). Let {y~, t = 1 ,2 , . . .  ,N} be a time series. Rank 
{yt} in order to magnitude by assigning 1 to the smallest observation in {yt}, 2 
to the second smallest observation, and so on. Denote the new series as {zt}. 
Let ~k = k k ~~t=l zt/k (k = 1 ,2 , . . . ,  N), and CCR~ = ~--~t=l (zt - ~)2 be the revised 
centered cumulative sums of  squares of ordered time series {zt}. Then 

CCRk k 
C D R k -  CCR~ r '  k = 1 , 2 , . . . , N ,  (2.4) 

is called as the (Ordered RCUSUM) (ORCUSUM) of  {yt}. 

2.2. Detection procedures for change periods 

The procedures about switching regimes for a time series are based on the 
threshold value identified by the RCUSUM or ORCUSUM statistic. We use 
the unsupervised method to find how many changes this time series by the plot 
of CDk or CDRk against time k. Suppose there exist r peaks or troughs in the 
plot of CDk or CDRk against k. 

2.2.1. Rules for classification 
Let ACDk = CDk - CDk_I, be the indifference between CDk and CDk_1 for 

k = 2 , . . . ,  N. Given 2-level confidence limits for ACDk, based on the threshold 
values of  a set of  classifiers Ck of ACDk, we classify the time series as follows: 
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0 if ACDk c ( -e~,L~),  

Ck = 1 if ACDk E [L;, U)~], 

2 if ACDk E (U2, ~x~), 

245 

(2.5) 

where L~ and U~ stand for the confidence limits for a significant level 2. Usually 
we take L). and Ua as the two standard deviation confidence limits for ACDk, 
i.e. Lx = mean of ACDk + 2O'aco~ and Ua = mean of  ACDk + 2a~CDk. 

2.2.2. Identification of change periods 
To identify the change periods, we need the following definitions. 

Definition 2.3 (vague points). For  a time series {yt, t =  1 , 2 , . . . , N } .  Let 
{Ai, i = 1 ,2 , . . .}  be a set with each Ai containing a run for the category Q, 
i.e. Ai is an unbroken sequence of the same classifiers. Let #(Ai) be the length of  
Ai. Given 2-level and a prior number  of  change periods r, we say that the 
elements of  Ai are vague points if #(Ai) < [N2] and ~l~(Ai)/~:~(Ai_l) ~< 4. Where 
[x] stands for the greatest integer which is less than or equal to x, N is the 
number  of observations and r + 1 is the total number of  sub-series. 

In order to classify the vague points, we use the following process and assign 
them into a closest set of  A~: let V be the set of  vague points for time series 
{yt,t = 1 , 2 , . . . , N } .  I f  4¢(A~)/#(A~_I) < 1 for ] i - j l  = 1, we join the A~ into 
A~_l and rearrange this new set sequence as {AT, i = 1 ,2 , . . .} ,  i.e. A7 is the ith 
set with the same elements after clustering of  vague points. 

Examples 2.1. Let A = {00000000011000000000010111111111 . . .}.  Then 
the corresponding sets {Ai} will be Al = {000000000}, A2 = {11}, 
A3 = {0000000000} and A4 = {1} . . .  Suppose N = 80 and 2 = 0.1. It follows 
that #(A2) = 2 < 5 and #(AI)/#(A2) = 4.5, which is greater than 4. Hence we 
say that the elements in set A2 are vague points and joint A2 into A 1. That  is, the 
elements in A2 are 0 after vague point clustering #A~ = 21. 

Definition 2.4 (change periods). Let {Yt} be a time series and k a pseudo change 
point. A significant a-level (0 < ~ < 1) change period for specified k is defined as 

[k - ~ ,  k + 0oN]. (2.6) 

Consider the testing hypothesis for 

H0: There is no change during time interval (ti, tj) (2.7) 

versus 

Ha: There exists a change period during time interval (ti, tj), (2.8) 

where t j - t ~  ~> 0 and (ti,tj) c {(ti, tj) ]t,,tj = 1 , 2 , . . . , N } . .  
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Consider the rearranged run sets A~.,Ai+ l and Ai+ 2. Suppose the corre- 
sponding time sequence for sets A~, Ai+ l and Ai+ 2 a r e  {Yt,_~+l,...,Yti), 
{Yt,+l,...Yt,+~} and {yt,_t+l,... ,Yt,+2}, respectively. If  the number of these two 
consecutive sets A~, and A~+~, is greater than or equal to [aN] for level a, then we 
conclude that there exists a sudden change at time point t~ or t~ + 1. Given ~, if 
# A~+ l is less than [aT], and the number of elements of the others are greater 
than or equal to [aTl, then we conclude that there exists a change period during 
time interval (t~, t~+l + 1). Choose Med (t~ + 1, ti + 2 , . . . ,  t/+l} to be the pseudo 
change point k in formula (2.6), and the 100(1 - a)% change periods will then 
be defined. 

An a-level identification algorithm is suggested as follows: 

Algorithm for Detecting Change Periods 
1. Given a time series {yt}. Calculate the RCUSUM statistics CDk or ORCU- 

SUM statistics CDRk. Plot CD~ or CDRk against k and initially identify the 
prior number of change periods r. 

2. Classify {Yt} according to the value of ACDk 
3. Rearrange the series {Ai,i = 1,2, . . .}  as {AT} at the 2-level. 
4. From {AT} we can clearly decide the change periods at the significant 

a-level. 

2.3. Using fuzzy entropy 

Fuzzy set theory, which was first proposed by Zadeh (1965), has received 
much attention recently. It has fruitful achievements not only theoretically but 
also in applications. For instance, the classical clustering methods separated 
the data to c categories, while in many cases there are elements, which cannot 
be contained in a specific category. They belong to two or more categories 
simultaneously. Applying fuzzy statistical detection techniques may constitute 
a new trial for this problem. Wu and Hwang (1995) are two of the pioneers that 
proposed a detecting procedure for the a-level of fuzzy change period classi- 
fication. 

In this section, the proposed method for detecting change periods may be 
applied by using the fuzzy entropy. The term "entropy" comes from thermo- 
dynamics. Entropy can be thought of as a measure of how close a system is to 
equilibrium; it can also be thought of as a measure of disorder in the system. 
Before proceeding with the procedure, we should illustrate some concepts of 
fuzzy cluster centers, a-level of fuzzy point, and fuzzy entropy. 

Definition 2.5 (fuzzy cluster centers). Let {Yt, t - -  1 ,2 , . . . ,  n} be a time series. 
Giving positive integer k, if the set C =  {6,.; min{yt} _< Ci~< max{yt}, 
i = 1 ,2 , . . . ,  k} is to minimize the sum of squared Euclidean distance, i.e. 
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k 

min ~ ~ [l#it- Cd[ 2, (2.9) 
i = l  ~itECi 

where #it measures the degrees of yt belonging to each cluster Ci. Then we call 
C = (Ci, i = 1 ,2 , . . . ,  k} a set of Fuzzy cluster centers for the time series,{yt}. 

Definition 2.6 (a-level o f  fuzzy change point). Let {Yt, t =  1 , 2 , . . . , N }  be a 
time series. Suppose we decompose {yt} into k clusters according to a set of  
fuzzy cluster centers; where #it is the degree of membership that yt holds for 
cluster center Ci. For each yt, t = 1 ,2 , . . . ,  N, if 

max{#it } - min{#it } < 1 - k~, a E (0, l /k),  (2.10) 

then we call Yt an a-level of fuzzy change point. Moreover, if 
max{~tit}-min{#i~} = 0, we call Yt an absolutely fuzzy point. If  
max{#it} - min{#it} = 1, we call y, a crisp point. 

Definition 2.7 (fuzzy entropy). Let Itit be the membership of yt to the  cluster 
Ci, i = 1,2 , . . .  ,k. The fuzzy entropy ofyt is defined as 

1 k 
6(yt) = - ~  _~#it ln(1 - #,). (2.11) 

The proposed fuzzy detecting procedures of fuzzy change periods with a- 
level include (1) fuzzy-clustering, (2) deciding a-level of  fuzzy point, (3) de- 
tecting a-level of fuzzy change periods. A detailed algorithm is illustrated be- 
low: 

1. Input the time series {Yt}. Find Ci (i = 1,2, 3), the set of  cluster centers for 
{yt}. Classify {Yt} into three categories. 

2. Let izit be the degree of  membership of each observation Yt to each cluster Ci. 
Compute the membership of  #it by 

(Yt-Cit)2 i =  1 , . . . , 3 ;  t =  1 , . . . ,U .  (2.12) 
# i t = l  E~=1Cvt - Cit): ' 

3. Calculate the fuzzy entropy of yt by using its memberships: 

1 3 
6(y,) = --~ ~ # , t ( 1  - #,t). (2.13) 

4. Calculate the average of  cumulative fuzzy entropy for each t by: 

MS(6(yt)) = 6(Yt), t =  1 ,2 , . . . ,N ,  (2.14) 
= 

and find Med (MS(8(y~)), the median of  MS(6(yt)). 
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5. Choose a proper 2 threshold level and classify the fuzzy time series as: 

0 if Med (MSr(yt)) E [0, Med (MSJ(yt)) - 2], 

1 if Med (MSJ0,t)) E [Med (MSb(yt)) - 2, (2.15) 
C• = Med (MSr(y,)) + 2], 

2 if Med (MSrCvt)) E [Med (MSfi(y,)) + 2, 1]. 

6. Decide the a-significant level of change periods; i.e., for each categories 0, 1 
and 2, if the elements of category 1 contain sample points (successive data) 
greater than [aN], then we reject the hypothesis that there is no structural 
change. 

3. Simulation study 

Threshold autoregressive (TAR) time series can be a typical nonlinear time 
series for switching regimes. A general TAR model for a time series {yt},  

TAR (r; q, t2 , . . . ,  tr-~) can be written as: 

tj-tj_t-1 

YtJ +/J(~b00) + Z ~b/~)Y'J -') = e~ )' j = 1 ,2 , . . . , r ,  (3.1) 
i=l 

where 

1, J = 1 ,2 , . . . , r ,  (3.2) 
i f  yt E ~Ytj_l+l }, 

lj = 0, elsewhere, 

2 The model and the e~ ) are a strict white noise process with finite variance cr. 
has many applications in various fields, such as control of birth rate, stock 
market index, exchange rate or GDP, etc. 

3.1. T w o  T A R  models  s imulat ion 

The purpose of this study is to investigate the efficiency of our statistics 
proposed in Section 2. We simulate two sets of TAR(3; tl, t2) time series pro- 
cess with models (3.3) and (3.4), 

10 + 0.8yt-1 q-/3t -- 0.8~t-I  

Yt = 10 + 0.5yt-i  + et - 0.5et_l (3.3) 

10 + 0.2yt_ l q- et -- 0 .2et - I  

10 + 0.8yt-i + et - 0.8et-I 

Yt = 8 + 0.Syt-t + ~t - 0.8e.t_l (3.4) 

6 + 0.Syt-i  + et - 0.8et_l 

if t < 51, 

if t = 51,52, . . . ,  100, 

if t > 100, 

if t <  51, 

if t = 51 ,52, . . . ,  100, 

if t > 100. 
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Fig. 1. Simulations for TAR models: (a) model (3.3); (b) model (3.4). 

Each set contains 150 observations with nonzero mean and has trend 
components. The normally distributed innovation et ~ N(0, 1) was generated 
by using Minitab 10.2 on a 586-PC. Fig. l(a) and l(b) are realizations of these 
two TAR models, respectively. 

3.2. Change periods detection and discussion 

In the performance-comparison tests of the simulation study, four change 
detection procedures were implemented. Sequences of the test statistics com- 
puted by these programs were output to Minitab data files for subsequent 
analyses. To avoid the effects of initialization transients, our detection per- 
formance analysis did not process the first observations. 

Fig. 2(a) and 2(b) illustrate the series of CDk and RCD~ for model (3.3). 
Fig. 2(c) and 2(d) illustrate the series of CDk and RCDk for model (3.4). From 
the plots we can find that both CDk and RCDk show a peak or a trough 
corresponding to the changing points/periods. 

A comparison with four change detection statistics, CUSUM, RCUSUM, 
ORCUSUM and ACFE (Average of Cumulative Fuzzy Entropy) is tabulated 
in Table l. 

Discussion: 
(i) The RCUSUM detecting statistics demonstrate the best accuracy in de- 

tecting change periods than those of CUSUM, ORCUSUM and fuzzy entropy 
methods for TAR model with the parameters change, model (3.4). While the 
ORCUSUM detecting statistics demonstrates the best accuracy in detecting 
change periods than those of CUSUM, RCUSUM and fuzzy entropy methods 
for TAR model with the scale change in model (3.4). 

(ii) It seems that there is not much difference in detecting change periods 
between RCUSUM and ORCUSUM methods for the series simulated here. 
For the TAR model with huge parameter change or scale change, the OR- 
CUSUM methods exhibit a more robust method for identifying multiple 
change periods. 
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Fig. 2. Revised centered cumulative sums of  squares plots: (a) CDk, (b) RCDk for model (3.3); (c) 
CDk, (d) RCDk for model (3.4). 

Table 1 
Comparison results for four detections 

T AR  with parameter change: 
Model (3.3) 

TAR with scale change: 
Model (3.4) 

Real values 50, 100 50, 100 
C U S U M  51 53 
R C U S U M  48-55, 96-103 46-54, 96-104 
O R C U S U M  54-63, 96-104 46-53, 98-102 
ACFE 58-61, 133-135 49--53, 10~109,  119-124 

(iii) It is more realistic for us to consider that a time series is changing during 
a period than at a time point, in view of  the behaviors of nonlinear economic 
series. The CUSUM statistic still could detect changes for correlated series, it 
only could detect one change at a time. 

(iv) The ACFE detecting method performs well here, we find that the de- 
tected change periods are all a little delayed comparing to the real values. The 
facts maybe result in the characteristic of fuzzy entropy for its slow reflection at 
the logarithm function. 
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(v) It liberates us from the modeling-based selection procedure and fewer 
assumptions of the sample data are made. The weakness of the change point 
philosophy clearly resides in the vague semantic agreements for the mutual 
understanding in the real world. 

4. An empirical example 

4.1. Identification of change-periods for Taiwan monthly visitor arrivals 

As an example, we apply the detection procedures to a real data set. The 
series analyzed is the Taiwan monthly visitor's arrival from January 1971 to 
June 1993. Fig. 3 plots the trend of the Taiwan monthly visitors' arrival. 
Fig. 4(a) and 4(b) illustrate the standard CUSUM, developed by Inclan and 
Tiao (1994), and RCUSUM statistics, respectively. 
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Fig.  3. T a i w a n  m o n t h l y  vis i tors  a r r iva l .  
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Fig.  4. C u m u l a t i v e  sums  o f  squares .  (a) C U S U M ;  (b) R C U S U M .  
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According to Section 2.2, we calculate the RCUSUM statistic CDk for the 
series of 276 observations. From Fig. 4(b), we initially identify that the prior 
number of  change-periods is two, that is, r = 2. Take xTCD~ to be the indif- 
ference between CDk and CDk_~ for k = 2 , . . . ,  276, and determine that [-0.04, 
0.04] is the two standard deviation confidence interval for ~TCDk. 

Classify the Taiwan monthly visitors arrival series, based on the threshold 
values of a set of classifiers Ck of X7CDk. Notice that the Ck are obtained as 
follows: 

0 if XTCD, E (-cx~,-0.04),  

Ck = 1 if ~TCDk E [-0.04, 0.04], 

2 if X7CDk E (0.04, ~ ) .  

Let {A,, i = 1 ,2 , . . .}  be a consecutive set such that each set contains the same 
classifiers. Consider sets with number of  elements less than or equal to three. 
Clustering those sets containing vague points by the procedures described in 
Section 2 and we identify (a) 1978ll to 1978/4 and (b) 1986/4 to 1986/9 to be 
our initial change-periods. Hence 1978/2 and 1986/6 are the corresponding 
pseudo change points. 

Finally we find out two change-periods, which are (a) October 1977 to May 
1978 and (b) March 1986 to September 1986, under the ~ = 0.05 level of  sig- 
nificance for detecting change-periods for Taiwan monthly visitors' arrival. 

5. Conclusions 

In this paper, we introduced three detecting procedures that can effectively 
detect multiple change periods for a nonlinear time series. The proposed al- 
gorithm also combines with the concept of fuzzy set. We have demonstrated 
how to find a 2-level change period to help modeling a time series model with 
multiple change periods. 

Simulation results show that our proposed techniques of  change period 
detection are very efficient. Our algorithm is highly recommended practically in 
detecting the a-level change period, which is supported from the empirical 
results. A major advantage of such framework is that our detecting procedures 
do not require any initial knowledge about the structure in the data and can 
take full advantage of  the model-free approach. 

From the above, it will be evident that the art of  identification and classi- 
fication of time series is still at the stage of infancy. 

Certain challenging problems still remain open, such as: 
1. Problems related to change periods 
(a) The semantics about the term "stationarity" needs to be redefined 

carefully. It seems that the term "change points", which may stand for the 
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change in mean, the change in variance, the change in parameter and the 
change in model, needs to be classified before performing a detecting process. 

(b) In the case of random walk, an appropriate detecting procedure needs to 
be developed for prior recognition and model identification. 

(c) What knowledge basis is required to obtain specific behavior of time 
series under certain multivariate endogenous variables. 

(d) The convergence of the algorithm for classification and the proposed 
statistics have not been well proved, although the algorithms and the proposed 
statistics are known as fuzzy criteria. This needs further investigation. 

2. Problems related to noises and interventions 
(a) In what way does the introduction of feedback affect the trend of the 

time series? In particular, how far does the time series react to noise and in- 
tervention? 

(b) For the case of interacting noise, the complexity of multivariate filtering 
problems still remains to be solved. 

(c) How to obtain information from chaotic trajectories about the nature 
trend of the time series. 

Though there remain many problems to be overcome, we think that fuzzy 
statistical methods will be a worthwhile approach and will stimulate more 
empirical work in the future in time series analysis. 
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