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In investigating human mental processes
and mental representations, a cognitive model
represents a theoretical view, provides expla-
nations to the observed phenomena and
makes predictions about an unknown future.
When evaluating how well a theory can
account for the phenomenon of interest, mod-
eling is a powerful research tool.  However,
local (Taiwanese) psychology students have
limited exposure to what cognitive modelling
is, how to do implement cognitive models, and
why cognitive modelling is important.  This is
partly due to a lack of university courses that
teach cognitive modelling and partly due to the
demands that modelling places on one’s skills.
The purpose of this article is to provide a con-
ceptual guideline of how to do modeling, by fit-
ting two neural network models - ALCOVE and
ATRIUM to the data from the study of Yang
and Lewandowsky (2003), which tested the
theoretical concept of knowledge partitioning

in categorization.  The modeling results show
that ATRIUM outperforms ALCOVE in
accounting for the knowledge partitioning
results.  Some relevant theoretical-level dis-
cussions, such as the heterogeneity of catego-
rization, are also included.

Keywords: cognitive modeling, cateogrization,
neural network

In cognitive psychology, it is not new to pro-
pose models to explain and predict human
behavior.  These models, while not always compu-
tational, tend to describe human behavior with the
language of mathematics.  The local (Taiwanese)
psychology students have limited exposure to what
cognitive modelling is, how to implement cogni-
tive models, and why cognitive modelling is
important.  This is partly because modeling courses
are not provided in university for psychology stu-
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dents and partly because modeling requires addi-
tional skills, such as computer programming, that
might decrease the students’ motivation to under-
take cognitive modeling.  The present article seeks
to provide (1) a general introduction to cognitive
models including the neural network models in cat-
egorization, (2) demonstration of the implementa-
tion of models, and (3) evaluation of and compari-
son between the models with the empirical data.
This article proceeds as follow.  First, the charac-
teristics of models are introduced.  Second, two
specific neural network models in categorization as
well as a general scheme of doing modeling are
outlined.  Third, the results fitting the two models
to empirical data collected by Yang and
Lewandowsky (2003) are provided as a demonstra-
tion of model evaluation.

Introduction to Cognitive Models

In the past decades, cognitive psychologists
have proposed a large variety of models to account
for the difference aspects of human behavior.  A
model represents the theoretical idea about the
process and/or the representation underlying the
observed behavior.  For instance, an early memory
model separates human memory into two parts -
primary memory and secondary memory, and the
information in the primary memory can be trans-
ferred to secondary memory by rehearsal (Waugh
& Norman, 1965).  This model clearly describes
the inner structure of memory and proposes a
process for information transformation.  An alter-
native memory model is the LOP (Level-Of-
Processing) approach, which captures the basic
idea that the deeper an item is processed, the better
it will be recalled (Craik & Lockhart, 1972).
Notably, the LOP account represents the memory
trace on a continuous scale rather than a dichoto-
mous scale which is used in the Primary-Secondary
(or STM-LTM) account.  It is also important to
note that a model is nothing but a window for us to
understand the target behavior of interest.
Different models provide different perspectives to
realize particular aspects of cognition; however,

none of them can totally capture the many aspects
of real human behavior.  Why then do we need
models? There are at least two reasons for develop-
ing models.  First, a model provides a platform to
understand why people perform a cognitive task in
a particular way.  Although we can collect many
physical and behavioral data using technologically
advanced instruments (e.g., MRI) to dig out more
information underneath the behavior, we still need
to organize these data into a coherent system to
help us to understand the process we are interested
in.  After all, knowing why is a fundamental need
of human beings as well as the goal of scientists.
Second, with a model, it becomes possible to
reproduce human intelligence.  If we already know
the elements and the processes that humans use to
accomplish a particular task, then we must be able
to build a machine be capable of performing the
same behavior as humans, which would facilitate
our life and civilization in the future.

Verbal vs. Computational Models

We need to know how well a model can
account for observed data; otherwise, a model is
just like a religious belief not a falsifiable scientific
proposition.  A normal method to evaluate a
model’s performance is to see whether participants
behave as predicted by the model.  A straightfor-
ward way to test the model’s predictions is to con-
duct an experiment and see if the predicted effect
occurs or not.  Furthermore, quantitative evaluation
of a model’s fit to the data is even better.  That is,
we want to know not only whether the predicted
effect occurs, but also how large is the discrepancy
between the human data and the model’s predic-
tions.  However, quantitative evaluation becomes
relatively difficult to achieve for verbal models,
such as the memory models instantiated
previously.  This is because verbal models do not
provide the mathematical functions which afford
the model the ability to make quantitative predic-
tions.  By contrast, in a computational model, sev-
eral mathematical functions are inter-connected
with the output of one function forming the input
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of another function and with all of the functions
working together to generate the final output.
Thus, when an input is received by the computa-
tional model, the signal is passed through and con-
veyed by those functions until the final response is
made.  With the functions representing the mental
processes and the format of the signal in the func-
tions as the mental representation, the computa-
tional model has more rigorous constraints from
psychology and mathematics and can tell us more
information about how a behavior is performed,
hence increasing the validity of the model beyond
that of a verbal model.

Of course, much of the time, evaluating the
functions of a computational model by hand or by
spread sheet (e.g., EXCEL) is very time-consuming
and error prone.  It is strongly suggested to use
computer software or any computer language to
implement a computational model.  How well the
model accounts for a behavior depends on how
similar the model’s predictions are to the empirical
data.  Modeling with a computer can help us to
explore novel ideas or complex models and provide
us a chance to find out the relationships between
superficially unrelated phenomena (Lewandowsky,
1993).  For the sake of demonstrating how these
aims can be achieved, I am going to fit two models
to the data of a category-learning experiment
reported by Yang and Lewandowsky (2003).

There are many sorts of computational mod-
els, yet,  in order to make a fair comparison
between model fits to the experimental data of
Yang and Lewandowsky (2003), two neural net-
work models in categorization (ALCOVE;
Kruschke, 1992; ATRIUM; Erickson & Kruschke,
1998) are chosen as examples of the computational
models.  I will briefly introduce the basic structure
and the learning in a neural network and then intro-
duce these two models in more detail.

Neural Network Model

A neural network is created by establishing a
number of inter-connected nodes which imitate the
functions of the real neurons to achieve some goal

(see Anderson, 1995).  The most attractive charac-
teristic of a neural network is that it can learn and
acquire knowledge (or form memory) from experi-
ences, without being fed in advance a pre-estab-
lished database as done for the traditional AI.

According to the learning type, the neural net-
work can be classified to two types: supervised
learning and unsupervised learning networks.  The
supervised learning network normally has an input
and an output layer.  In the normal case, there are
connections between layers but no connections
within a layer.  The supervised neural network
processes an input through to the output layer, and
activation of the output layer is compared to the
target activation; the difference between output
activation and target activation becomes the error
signal.  The supervised learning network uses the
error signal to adjust the associative weights
between layers in order to increase the probability
of correctly predicting the target activation when
the same input is received again.  A well-known
error-driven learning algorithm is the backpropaga-
tion algorithm (Rumelhart, Hinton, & Williams,
1986).  The unsupervised learning network, in
which all the nodes are inter-connected and the
associative weights between the nodes are adjusted
by the outer product of input patterns (e.g.,
Hebbian Rule; Hebb, 1949), has no obvious input
and output layers and no targets.  In this article,
only the supervised learning network is used.

Here, I provide two neural network models,
which are built honestly following their respective
psychological theories for category learning and
have strong psychological meanings.  The first is
ALCOVE and the second is ATRIUM.  These two
models are also fit to the experimental data of
Yang and Lewandowsky (2003) to demonstrate
modeling.

ALCOVE

ALCOVE is a neural network model proposed
by Kruschke (1992) to explain how categorization
is accomplished.  The basic assumption of
ALCOVE is that an item would be more likely
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assigned to a category containing exemplars which
are more similar to that item.  This assumption is
widely shared by different exemplar models (e.g.,
the context model; Medin & Schaffer, 1978; the
generalized context model; Nosofsky, 1986, 1987).
In addition, ALCOVE assumes selective attention
to diagnostic dimensions in order to optimize cate-
gorization performance.

Following these assumptions, ALCOVE
adopts a three-layered architecture which can be
seen in Figure 1.  The first layer is the input layer
which is responsible for receiving the outer input.
The second layer is the hidden layer in which each
node represents an exemplar.  The third layer is the
output layer in which the nodes correspond to the
categories.  The input node corresponds to the
dimensions of stimulus; if the stimulus consists of
three dimensions, then there will be three input

nodes.  Similarly, the number of the hidden nodes
matches the number of the training stimuli used for
human participants.

According to the similarity-based assumption,
ALCOVE computes the similarity between an
input a in

m and an exemplar H hid
j based on the psycho-

logical distance between them, d mj, which is the
sum of the distance on every dimension i with a
learned selective-attention weight, αi, as

d mj = (Σiαi︱a in
m－H hid

j ︱
p) 1/p

,                 E1

where p = 1 is used for psychologically separable
dimensions and p = 2 is used for psychologically
integral dimensions (see Kruschke, 1992).

This similarity is then weighted by a sensitivi-
ty constant C and negatively transformed by the
exponential function to the activation of the j th hid-
den node, a hid

j , as

a hid
j = exp-Cdmj .                                            E2

As shown in E2, when the psychological dis-
tance between items is large, indicating that the
two items are quite dissimilar to each other,
a hid

j becomes small (with a minimum of 0) as d mj→

∞; when the distance is small, indicating that the
two items are similar to each other, a hid

j becomes
large (with a maximum of 1) as d mj→0.  The hid-
den activations are propagated from the hidden
nodes to each output node, a out

k , via their individual
associative weights, wkj, as

a out
k = wkja hid

j .                                               E3

The final output is the predicted probability of
one category, which can be computed by dividing
the transformed activation of the output node by
the sum of all transformed output activations as 

p(A︱input) =                                               E4

where φ is the determinant coefficient; increasing
the determinant coefficient results in increased
deterministic responding.

In addition to simply generating probabilities
of different categories, ALCOVE as a supervised-
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learning neural network can learn from the errors
to adjust the associative weights between the out-
put and the hidden layers by E5 and to adjust the
selective attention weights on the input nodes by
E6.  These two equations are shown as

E5

E6

where λw and λα are the learning rates for associa-
tive weights and attention weights which are small
and positive rational numbers and ak

Target is max (1,
a out

k ) if the target value on the kth output node is 1
and min (o, a out

k ) if the target value on the   kth out-
put node is 0.

The associative weights linking the hidden
nodes to the output nodes represent the likelihoods
of the hidden nodes to activate each of the cate-
gories; also, the attention weights reveal the rela-
tive importance of a stimulus dimension for the
current categorization task.  In other words, with
error-driven learning, ALCOVE learns, based on
inter-item similarities weighted by dimensional
attention weights, to assign the exemplars (hidden
nodes) to their correct categories during training
and applies the same knowledge (i.e., the associa-
tive weights and the attention weights) to classify-
ing the novel items in the transfer phase.

The parameters used in ALCOVE include the
sensitivity constant, C, determinant coefficient, φ,
and the learning rates for associative weight, λw,
and for the selective attention weight,  λα .
Understanding the meanings of these parameters is
quite important for handling ALCOVE.  When C is
small, a large psychological distance between
objects is decreased, thus the exemplars are not
that sensitive; whereas when C is large, even a
small distance between objects is amplified, thus
the exemplars are quite sensitive.  Similarly, when
the determinant coefficient φ is large, the decision
making becomes more deterministic; whereas
when it is small, the decision making becomes

more probabilistic.  The learning rates are normally
constrained to the range {0, 1}.

In order to implement ALCOVE, we need the
aid of computer programming.  The program con-
sists of at least four parts: initializing the parameter
values, the associative weights and the attention
weights; forming the output probability; learning;
and outputting the results into a file.  Any comput-
er language can be used for this aim, such as
C/C++, DELPHI, Visual Basic, and so on.  In addi-
tion, some powerful software, such as R and MAT-
LAB, are also recommended.  The detailed proce-
dure of implementing a model within a computer
language will be introduced after the discussion of
another neural network model, ATRIUM.

ATRIUM

ATRIUM (Erickson & Kruschke, 1998, 2002)
is a neural network model which makes different
assertions than ALCOVE about category represen-
tation; namely, ATRIUM assumes that categoriza-
tion is accomplished by exemplar similarity as well
as by categorization rules.  The basic assumption
of ATRIUM is that different kinds of the represen-
tations are processed in different modules, and the
final outcome is the sum of the outputs of the mod-
ules weighted by a gating mechanism.  Hence,
ATRIUM is a hybrid model comprised of several
smaller neural network models.

The architecture of ATRIUM can be seen in
Figure 2.  The exemplar module actually can be
viewed as ALCOVE and has three layers with the
hidden layer containing the exemplars.  In addition
to the exemplar module, there are two rule
modules1.  Each of the rule modules learns to pre-
dict the outcome by using a particular rule (or cate-
gory boundary).  The rule module is a two-layered
neural network model, in which the input signal is
directly linked to the output layer via the associa-
tive weights.  Since the two-layered structure can

Δwkj =－λw (ak
Target－a out

k )a hid
j and

Δαi =λαCΣjΣk (ak
Target－a out

k )wkj a
hid
j dijai

in,

1 The number of the rule modules depends on the category structure.  Because the category structure of Yang and Lewandowsky

(2003) needs two rules, I include two rule modules here.
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only afford a neural network an ability to learn lin-
ear boundaries, all the rules in ATRIUM are linear.
Besides the exemplar and the rule modules, there is
a gating mechanism which is used to determine
how to weight the output activations from different
modules when generating the system’s output acti-
vations.

Category learning in ATRIUM is different
from ALCOVE.  When ATRIUM receives a stimu-
lus, the input nodes will be activated according to
the physical intensities of the stimulus.  Thereafter,
the rule and exemplar modules independently
process that input signal through the associations
between layers and generate the output activations
of their own.  The gating mechanism then assigns
different gains for the output activations of differ-
ent modules based on the activations of the hidden
nodes in the exemplar module.  The gain for a
module, which ranges between 0 and 1, is the pro-
portion that each module’s output contributes to
the final output.  Thus, if a module has a gain of
zero, that module does not contribute to the final
output.  Since the activation of a hidden node in the
exemplar module positively correlates with the
similarity between the input and the exemplars, the
job of the gating mechanism is apply the gain dis-
tribution for the most similar exemplar to weight
the rule and the exemplar modules for classifying

the current input.  Therefore, ALCOVE assigns the
same category label to similar items; whereas
ATRIUM assigns the same categorization strategy
to similar items.

During learning, ATRIUM also adopts the
backpropagation algorithm to adjust the associative
weights in each module and the attention weights
on the input nodes in the exemplar module.  The
parameters of ATRIUM include all parameters of
ALCOVE plus the learning rates in the rule module
and the gating mechanism and the determinant
coefficients for the gating mechanism and for the
final decision-making.  As in ALCOVE, these
parameters should be freely estimated by fitting the
model to the experimental data.  To facilitate expo-
sition, all of the functions of ATRIUM are not list-
ed here due to their complexity and because the
exemplar module is a repetition of the ALCOVE
model presented above.  The readers who have fur-
ther interest in ATRIUM are encouraged to read
the original paper (e.g., Erickson & Kruschke,
1998).  

ALCOVE and ATRIUM represent different
theoretical perspectives regarding human catego-
rization.  Comparing their abilities on predicting
human categorization performance in an empirical
task is the best way to compare these two models.
To this end, I will first introduce some general pro-
cedures about modeling.

Modeling

Once we have data and models that can make
predictions, using the same stimuli we can fit the
model predictions to the data to see how precisely
the models can predict the data.  This is the basic
logic of modeling.  To accomplish this goal, we
need to know computer programming to a certain
extent; for example, we need to know how to
declare variables, how to use loops, how to con-
struct the subroutines, and how to read and create
files2.  Note that the models introduced in this arti-

  
  

  

Dimensional Inputs

X Y    C

Z = Y - X 

Gating Mechanism 

Exemplar Module 
Ascending-Rule 
Module 

Descending-Rule 
Module 

Figure 2.  The architecture of ATRIUM.

2 Sometimes, a computer program of the model can be obtained from the authors or the internet.  However, it is still recommend-

ed to learn some computer programming skills to allow modification of the model according to our specific needs.
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cle are too complex to estimate the parameter val-
ues analytically.  Hence, we need parameter-esti-
mation procedures to help us to estimate the values
of the parameters that optimize the model’s perfor-
mance.  Therefore, we need two parts in our com-
puter program: model implementation and parame-
ter estimation.  The scheme for the process of mod-
eling can be seen in Figure 3.

Model Implementation

In the model implementation stage, the user
must translate the mathematical functions of a
model into the computer programming language.
When implementing the model, the stimuli for the
experiments are fed into the model in the same ran-
dom sequences as used in the experiment.  On each
trial, the model receives a stimulus and generates
an outcome which is the probability of a particular
response (e.g., Category A) and the category prob-
abilities of all items are recorded in a file by anoth-
er subroutine.

Parameter Estimation

The aim of modeling is to see whether a
model can predict the human data and how differ-
ent the model predictions are to the human data.
This procedure is referred to as model fitting.  If a
model can capture the pattern of the human
responses, we say that this model can fit the data
well.  On the contrary, if a model cannot capture
the pattern, then the model cannot fit the data.
When fitting a model to the human data, we change
the parameter values which consequently change
the model’s outcomes in order to make the model
predictions as close to the human data as possible.
Whenever the model performance is improved, the
parameter values used at that time become the best
current parameter values and a new combination of
parameter values are then used to test the model’s
performance.  This loop is repeated until the model
performance cannot be significantly improved or
the expected round times have been achieved.

There are several algorithms which can be

used to estimate parameters, such as hill-climbing
(see Wickens, 1982) or the genetic algorithm
(Coley, 1999).  The hill-climbing algorithm is
referred to a searching process for the optimal
parameter combination in the parameter space
where the model performance is most similar to
humans.  The hill-climbing algorithm starts the
searching at one point in the parameter space and
gradually moves to the optimal parameter values.
However, the searching sometimes will be bound
in a locally optimal point which is not the globally
optimal solution but better than the other points in
that local area.  This is the main disadvantage of
the hill-climbing algorithm.  The genetic algorithm
instead uses a population of hypothetical genes
representing the parameter combinations to gener-
ate the model’s predictions at each round and grad-
ually selects the winner from the population, name-
ly the parameter combination providing the optimal
performance.  During the gene selection, some ran-
dom change (mutation) is allowable to the genes
(i.e., parameter values), which consequently pro-
vides opportunities for the selection process to
escape from the locally optimal combinations.  The
algorithm used in this study is the genetic algo-
rithm.  A more detailed comparison between these
algorithms will not be introduced here as they are
beyond the scope of this article.

The index of how well a model fits the
observed data is called the goodness-of-fit.  The

Parameter Estimation

Model ImplementationStimuli Input Response Output 

Main function

Parameter Values Goodness-of-Fit
Recode into a file all 
information about 
the best fitting, 
including the best 
parameter values, 
GOF, etc. 

Figure 3.  The scheme of the model ing

procedures.
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goodness-of-fit can be measured by the distance
between the model predictions and the observed
data, such as RMSD (Root Mean Squared
Deviation)3; smaller distances indicate better
model performance.  Additionally, the goodness-
of-fit can be measured by the similarity between
the model predictions and the observed data, such
as the percentage of the data explained by the
model prediction (e.g., R2) or the maximum likeli-
hood (Wicken, 1982); the larger the similarity is,
the better the model performs.  Normally, a model
with more parameters should be better able to cap-
ture the data pattern.  Thus, we want to use a good-
ness-of-fit index which accounts for the number of
parameters used by the model.  In this study, I use
AIC (Akaike Information Criterion) = -2LogL +
2N ( Akaike, 1974), where LogL is the log of max-
imum likelihood and N is the number of parame-
ters.4 Smaller the AIC values indicate better model
performance.  Therefore, even though two models
may have equivalent performance in terms of max-
imum likelihood, the model with more parameters
will receive a larger penalty in the AIC measure of
goodness-of-fit.  The next section demonstrates to
students how to do modeling with the data from a
real experiment and how to interpret modeling
results.

For implementing the procedures in the mod-
eling scheme shown in Figure 3, one could use
computer languages, such as C/C++.  However,
these computer languages normally do not have
any pre-installed parameter-estimation functions
and the users would need to create their own func-
tions, which can be a very time-consuming and
error-prone endeavour.  These troubles can be
avoided by using computer software, such as
MATLAB, that have pre-installed parameter-esti-

mation routines.  Thus far, the models used in this
article and the general modeling procedures have
been introduced to students already.  Starting from
the next section, I will introduce an empirical study
by Yang and Lewandowsky (2003) and introduce
how to fit the two neural network models to their
data.

Knowledge Partitioning in
Categorization

Knowledge partitioning is the theoretical con-
cept that knowledge might not be integrated and
well-organized, but instead knowledge might be
separated into different independent parcels and
gated by context cues where are normatively irrele-
vant to the response.  Since the pioneer study of
Lewandowsky and Kirsner (2000) revealed that
expert fire fighters make contradictory predictions
to the identical fires in different contexts, an
increasing number of studies support the occur-
rence of knowledge partitioning in a variety of
domains including function learning (Kalish,
Lewandowsky, & Kruschke, 2004; Lewandowsky,
Kalish, & Ngang, 2002), and category learning
(Lewandowsky, Roberts, & Yang, 2006; Yang &
Lewanodwsky, 2003, 2004).  Specifically, the
occurrence of knowledge partitioning in category
learning provides a good platform to evaluate the
contemporary categorization models (Yang &
Lewandowsky, 2004).  For this reason, I adopt the
data from the second experiment of Yang and
Lewandowsky (2003) to demonstrate how model-
ing can be done.

In the second experiment of Yang and
Lewandowsky (2003), the participants were asked
to classify hypothetical fish to two categories A

3 RMSD =                     ,  where P i
o b s is the observed probability of response A for stimulus i  and P i

p r e is

the predicted probability of response A for stimulus i.

4 LogL =                                                    ,  where f i k is the frequency of the i t h item being classified

as the kth category and pi(k) is the predicted probability of category k.

Σ(Pi
obs－Pi

pre)2

n

Σlog〔Σfik〕!－ΣΣ(log fik!)＋ΣΣ( fik log pi (k))
i k i k i k
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and B, given the environmental information of the
depth where the fish was found, the density of the
fish’s food, and the season (winter or summer)
when the fish was found.  All of this information is
presented as numbers on the center of the computer
screen.  Therefore, this is a conceptual category
learning task.  The category structure these authors
used can be seen in Figure 4.  Every point in
Figure 4 represents a stimulus whose X and Y val-
ues represent for the density and the depth infor-
mation respectively.  The true category boundary is
Y = 500 - |X - 400|.  All items below the boundary
belong to Category A and other items belong to
Category B.  The experiment has two phases.
During the training phase, 40 training items which
are in the region below Y = 300 are presented in
different random sequences in 10 blocks.
Specifically, these training items can be separated

into two clusters by X = 400 and each cluster of the
training items is presented with one context cue
(i.e., season).  Because there are half of the items
in each clusters belonging to different categories,
context (i.e., season) cannot predict the category
label on its own.  However, a perfect categorization
is also possible if people rely on context to gener-
ate two rules for categorization: the ascending
boundary is used for classifying items in the left
season5 and the descending boundary is used for
classifying items in the right season.

During the transfer phase, every item is pre-
sented twice; once in each context.  If people learn
to ignore context, they would tend to respond with
Category B to the transfer items about the category
boundary regardless of their context.  However, if
people rely on context to generate two rules for
categorization, knowledge partitioning occurs.
That is, they would apply the ascending boundary
(Y = X + 100) for categorization in the left context
and the items in Area 1 and Area 4 would be clas-
sified as category A and the items in the other
areas would be classified as category B; the
descending boundary (Y = 900 - X) would be
applied in the right context and the items in Area 1
and Area 2 would be A and the items in the other
areas would be B.  Therefore, the items in Area 2
and Area 4 are diagnostic for detecting the occur-
rence of knowledge partitioning.  Yang and
Lewandowsky (2003) ran two additional condi-
tions, in which only the left or the right cluster of
the training items is present in its corresponding
context during training.  For simplicity, I discard
these two single-context conditions in this study.

The transfer results are shown in Figure 5.
Apparently, participants tend to classify the items
in Area 1 as Category A regardless of the items
context.  Importantly, the diagnostic areas (Area 2
and Area 4) show a significant difference on proba-
bility of Category A between contexts.  In Area 2,
participants tend to make a response of B in the left
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Figure 4.  Category structure used in the

second experiment of Yang and Lewandowsky

(2003).  The training i tems are denoted by

crosses ( for  Category B) and circ les ( for

Category A). The transfer items are denoted by

diamonds. The true boundary is the sol id

triangular line separating Area 1 and Area 2 and

Area 4.

5 In their experiment, the season is counterbalanced across participants.  Thus, here I use the left and right instead of summer and

winter to refer to context. 
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context and a response of A in the right context to
the identical item.  On the contrary, this response
pattern is reversed in Area 4.  The unexpected sig-
nificant difference on the probability of Category
A between contexts might result from poor learn-
ing of the right context boundary.  In the left con-
text, the participants clearly tend to respond
Category A to the items in Area 1 and Area 4 but
respond Category B to the items in Area 2 and
Area 3.  This indicates that the ascending boundary
is learned well by the participants.  If the descend-
ing boundary is learned well also, then the partici-
pants should tend to make the A response to the
items in Area 1 and Area 2 but make the B
response to the items in Area 3 and Area 4.
However, this tendency is relatively blurred, that
indicates that the descending boundary is not well
learned6.

The results shown in Figure 5 might be the

blend of different individual performances.  Thus,
Yang and Lewandowsky (2003) also conduct the
K-means cluster analysis to analyze the partici-
pants’ transfer responses.  The result indicates that
there are two groups of participants who perform
very differently in the transfer phase; one exhibits
performance consistent with the use of the true
boundary (TB) and the other exhibits performance
consistent with knowledge partitioning (KP).  The
transfer performance of both groups is shown in
Figure 6.  It is clear from the transfer profile of the
KP participants that the items in Area 1 are always
classified as Category A and the context-dependent
difference on probability of Category A on the
items in Area 2 and Area 4 become more salient.
However, the TB participants show no context-
dependent difference on the items in all areas.
These results support the occurrence of knowledge
partitioning in categorization and also highlight the
group differences on learning categories.

The theoretical implication of these results is
that people can attend to an irrelevant context cue
and generate different categorization strategies (or
rules) in different contexts.  This finding might
challenge ALCOVE’s basic assumption about
selective attention in categorization - namely, that

Figure 6.  The group di f ferences in the

experiment of Yang and Lewandowsky (2003).

The left and the right panels represent the KP

and the TB groups, respectively.
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Figure 5.  The transfer results from the second

experiment of Yang and Lewandosky (2003).

The averaged probability of Category A for the

items in each area is shown in two contexts.  The

data are replotted from the report of Yang and

Lewandowsky (2003).

Left

Right

P
r(

A
)

Area 1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 Area 2 Area 3 Area 4

6 Yang and Lewandowsky (2003) suggest that this unbalanced learning of the two boundaries is affected by the characteristic of

function learning in that the ascending function is easier to learn than the descending function.
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only the predictive dimensions are attended.
Therefore, it can be expected that ALCOVE should
always learn to ignore context and learn the true
boundary.  However, ATRIUM does not have such
a constraint on selective attention.  Furthermore,
the modularized structure of ATRIUM suits the
framework of knowledge partitioning.  Thus,
ATRIUM can be expected to better accommodate
the experimental data than ALCOVE.  By contrast,
if ALCOVE can perform equally well or even out-
perform ATRIUM, the present results cannot be
used to draw the conclusion that knowledge parti-
tioning occurs in categorization, given that we a
pure exemplar-based account (i.e., ALCOVE) can
explain the results.  No conclusion can be drawn
until we have compared the modeling performance
of these two models.

Results and Discussion

Both ALCOVE and ATRIUM are fit to the
transfer data from the second experiment of Yang
and Lewandowsky (2003).  The hypothesis is that
ALCOVE will always learn to ignore context; thus,
ALCOVE should be able to account for the TB
group’s responses but not the KP group’s respons-
es; however, ATRIUM should be able to learn to
attend to context for categorization and, hence, be
better able to account for both types of transfer
responses.  Therefore, these two models are fit to
the KP and the TB groups’ data respectively.  As
the stimulus dimensions are perceptually separable
and the participants can easily attend to one dimen-
sion regardless of the others, the city-block mea-
sure is used for computing the psychological dis-
tance, which is then transformed to a measure of
similarity (see Nosofsky, 1986; Shepard, 1987).
Additionally, in accordance with the concept of
knowledge partitioning, I set up two rule modules
in ATRIUM; one for the ascending boundary and
the other for the descending boundary.  The predic-
tions of both models are shown in Figure 7.

Both models can capture the TB response pat-
tern very well (RMSD = 0.05 and AIC = 58.96 for
ALCOVE; RMSD = 0.05 and AIC = 67.50 for

ATRIUM) with ALCOVE performing better than
ATRIUM because of fewer freely-estimated para-
meters.  However, as expected, ALCOVE performs
worse (RMSD = 0.44 and AIC = 295.12) than
ATRIUM (RMSD = 0.08 and AIC = 70.76) when
fit to the KP pattern.  The estimated parameter val-
ues are shown in Table 1.  For ALCOVE, four
parameters are freely estimated: the specificity, c,
the decision constant, φ, the learning rate for asso-
ciation weights between exemplars and output
nodes, λw, and the learning rate for dimensional
attention weights represented by λα.  Similarly, for
ATRIUM, nine parameters are freely estimated: the
specificity, c, the decision constant, φ, the deci-
sion constant for the gating mechanism, φg, the
bias of the rule boundary, γr, the learning rate of
the exemplar module, λe, the learning rates of the
rule 1 module and the rule 2 module, λr1 and λr2,
the learning rate of the gating mechanism, λg, and
the learning rate of the attention weights, λα.

ALCOVE's Predictions 

ATRIUM's Predictions 

Figure 7.  The transfer predictions of ALCOVE

and ATRIUM fit to the KP and the TB groups in

the second exper iment of  Yang and

Lewandowsky (2003).
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Visual inspection of the model predictions
reveals that ALCOVE always predicts the same
probability of Category A regardless of context.
The initial attention weight on context of
ALCOVE is always set to .33 in the simulations for
both groups; however, at the end of training, the
attention weight is estimated to be 0 when fit to the
TB pattern and .03 when fit to the KP pattern.  This
is the main reason why ALCOVE cannot account
for the KP response pattern.  However, the learned
attention weights of ATRIUM, despite starting at
.33 as in ALCOVE, are .03 and .66 at the end of
training when fit to the TB and the KP patterns,
respectively.  Apparently, the ability of ATRIUM
to account for the KP pattern comes from the abili-
ty to maintain a reasonable amount of attention on
context.

Although it is evident that ALCOVE has diffi-
culty accounting for the KP pattern under the nor-
mal learning situation, it is still interesting to know
if there is any possibility for ALCOVE to fit the
KP pattern.  For this simulation, the initial atten-
tion weight to context is set to .98, and the atten-

tion weights on the other two dimensions are set to
.01.  The modeling results are shown in Figure 8.
Visual inspection indicates that the difference on
the probability of Category A on the items in Area
2 and Area 4 becomes larger between two contexts.
The model performance is now improved with
RMSD = 0.28 and AIC = 121.08.  However, it still
performs worse than ATRIUM, possibly because
ALCOVE cannot accurately capture the response
pattern in the left context; it overestimates the
probability of Category A for the items in Area 3
and underestimates that for the items in Area 4.

To sum up, both ALCOVE and ATRIUM
have no difficulty accounting for the TB response
pattern.  However, only ATRIUM can accommo-
date the KP pattern well.  This is because ATRI-
UM does not learn to ignore context despite the
fact that context is not predictive of the category
labels at all.  How can ATRIUM do that? This is
mainly because of the architecture of ATRIUM.  In
ATRIUM, the exemplar module is just l ike
ALCOVE which presumably should learn to ignore
context.  However, the attention weight on context
is learned to be .66 which is higher than the initial
status of .33.  This means that the exemplar module

Figure 8.  The predictions of ALCOVE when fit

to the transfer data of the KP group with the

initial attention weight to context set to .98.
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Table 1
The Best Fitting Parameter Values for ALCOVE
and ATRIUM.

Parameter TB KP

ALCOVE

C 2.03 3.68

φ 3.06 1.59

λw 0.01 0.03

λα 0.01 0.02

ATRIUM

C 7.01 9.44

φ 9.79 7.71

φg 0.30 0.45

γr 0.27 4.72

λe 0.06 0.55

λr1 1.25 1.86

λr2 1.14 0.01

λg 1.34 0.80

λα 0.58 0.14
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increases the attention weight on context.
Although this adjustment of the attention weight on
context decreases the power of the exemplar mod-
ule to predict the outcomes, it helps the gating
mechanism to make a fast shift between the two
rule modules.  Consequently, the use of the two
rule modules becomes more context-dependent;
exactly what is expected by knowledge partition-
ing.

One theoretical concern revealed from these
modeling results is whether the learned categories
are heterogeneous.  Most of the contemporary cate-
gorization models (e.g., the GRT; Ashby & Gott,
1988; COVIS; Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; ALCOVE; Kruschke, 1992; the
GCM; Nosofsky, 1986, 1987, RULEX; Nosofsky,
Palmeri, & McKinley, 1994), although superficial-
ly different, all have a common assumption that the
category representation is homogeneous.  Take the
exemplar-based model as an example.  When
learning the categories, all items are classified fol-
lowing the same manipulation of the selection
attention.  That is, an exemplar-based model is not
able to selectively attend to one dimension for one
set of items and to another for another set of items
(see Aha & Goldstone, 1990).  Likewise, rule-
based models, such as the GRT, assume that the
category boundary define the relationship between
categories regardless of the items that are
presented.  However, knowledge partitioning in
categorization indicates that people learn different
relationships between categories in different con-
texts7, namely, that category representation can be
heterogeneous.  Since ATRIUM preserves the
uniqueness of every item by the gating mechanism,
it is able to account for heterogeneous representa-
tion.  It may be possible for other category learning
models, such as SUSTAIN (Love, Medin &
Gureckis, 2004), to predict knowledge partitioning
by classifying items through the creation of 4 clus-
ters representing the 4 types of the training items:
Category A + left context, Category A + right con-

text, Category B + left context, and Category +
right context.

Conclusion

In this article, the main purpose is to introduce
the local (Taiwanese) students to cognitive model-
ing, and explain how it can be done and why it is
important.  I use two neural network models to fit
to the data from the study of Yang and
Lewandowsky (2003).  The modeling results clear-
ly help to distinguish one model from another.  In
addition, these results might give us some inspira-
tion for future study.  For instance, since ALCOVE
can approximate to the KP pattern with a huge
attention weight on context at the onset of experi-
ment, we may want to empirically test this possi-
bility by instructing people to attend to context and
see whether this increases the occurrence of knowl-
edge partitioning.

The structure of program used for modeling in
this article is a typical structure.  Thus, people who
want to do their own modeling are welcome to
apply it to composing their own computer pro-
grams.  Of course, the structure can be adjusted
according to the users’ particular needs.  This arti-
cle provides an example of how to fit models to the
human data.  Computer modeling is a good way to
provide quantitative measurements to the models’
performances that is more precise than what the
verbal models can provide.

However, fitting a model to the data is not the
only way to evaluate a model.  For example, we
can set up different parameter values for different
experimental conditions and see how the model
will perform with those parameter values.  Based
on this observation, we can predict how real human
subjects will perform in the same conditions.  This
is extremely useful when we would like to know in
advance what people might react to a new experi-
mental treatment and when we cannot run some
experiments in reality due to the economical, sub-

7 Here, the relationship between categories is the categorization boundary.
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ject-recruiting, or theoretical reasons.
Finally, neural network models are not the

only models suitable for computer modeling.  In
contrast, any model, as long as it provides mathe-
matical functions, can be implemented in a com-
puter program and fit to the data.  The reasons for
choosing neural network models for demonstration
include (1) neural network models are widely
accepted as a decent account of psychological
processes, (2) neural network models are particu-
larly suitable for accounting for human learning
phenomena, and (3) neural network models con-
tains almost all elements of a computational model,
namely the mental processes, the mental represen-
tations, and their structural relationships.

For a prolonged impact on teaching and
researching cognitive modeling, it is suggested that
relevant undergraduate-level or graduate-level
courses are provided in university, such as cogni-
tive modeling, computer programming, mathemati-
cal methods, and probability.  Additionally, stu-
dents should be encouraged to utilize and practice
computer modeling.
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為了探索人類心理歷程與心智表徵，各種不同

的認知模型不斷地被研究者提出。這些認知模型代

表著不同的理論觀點，它們不僅可以對現象提出解

釋，還可以對未知進行預測。當我們想要檢視一個

理論模型對於現象的可以達到多好的解釋力，以實

徵資料進行電腦模擬就成為了一項強而有力的研究

工具。然而本地（台灣）的心理學背景的學生往往

缺少學習這項工具的管道，而不清楚什麼是電腦模

擬、不知道如何進行，不了解它的重要性何在。這

部分可能源自於心理系所鮮少開設相關的課程，也

或者是它需要較高的程式設計能力。因此，本文目

的在於提供進行認知模擬的概念性引導方針：文中

將首先介紹兩個在類別學習領域上相當知名的類神

經網路模型 ALCOVE與 ATRIUM，並以 Yang與
Lewandosky（2003）知識分化的研究為例進行電腦
模擬，透過此二模型與實徵資料的分別比對結果，

進一步對此二模型背後所支持的理論進行比較分

析。模擬結果顯示，ATRIUM對於在類別學習上的
知識分化現象的解釋力明顯高於ALCOVE。此外，
一些相關的理論層次的議題，如分類表徵的異質性

等，也因為獲得模擬的結果而能夠被更深入的討

論。

關鍵詞：認知模擬、類別學習、類神經網路

認知模擬在類別學習上的應用：以Yang 與Lewandowsky

（2003）之研究為例
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