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Abstract

This investigation establishes the global synchronization of an array of coupled memristor-based
neural networks with delays. The coupled networks that are considered can incorporate both the internal
delay in each individual network and the transmission delay across different networks. The coupling
scheme, which consists of a nonlinear term and a sign term, is rather general. In particular, it can be
asymmetric, and admits the coexistence of excitatory and inhibitory connections. Based on an iterative
approach, the problem of synchronization is transformed into solving a corresponding linear system of
algebraic equations. Subsequently, the respective synchronization criteria, which depend on whether the
transmission delay exists, are derived respectively. Three examples are given to illustrate the effectiveness
of the theories presented in this paper. The synchronization of the systems in two examples cannot be
handled by existing techniques.
© 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, neural networks (NNs) have attracted considerable interest
from researchers. Time delays, which occur in the transmission of a signal among neu-
rons, are ubiquitous, and have been incorporated into neural network modeling, cf. [1]. It
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is worth noting that taking delays into account in the coupling terms usually increases the
mathematical complexity associated with the dynamics of a nonlinear system. The collective
behavior in coupled NNs has received tremendous interest from researchers. In particular,
the synchronization of coupled NNs has been extensively investigated by virtue of its wide
application in different fields including secret communication [2], pattern recognition [3], and
parallel image processing [4].

The memristor, which is the fourth fundamental two-terminal circuit element, was pro-
posed by Chua [5]. The memristor was first realized as a physical device by Hewlett-Packard
Laboratories [6]. The term memristor is a contraction for memory resistor, which reflects
its property that the value of a memristor, known as memristance, depends on the history
of the voltage across the component. It has been discovered that a memristor could mimic
the human brain in that it can behave similar to a biological synapse, and thus has poten-
tial applications for building brain-like neural computers, cf. [7]. The memristor has been
utilized in neural network models known as memristor-based NNs (MNNs). Contrary to con-
ventional NNs in which the connection weights are implemented using resistors, MNNs utilize
memristors to function as the synaptic connection weights. MNNs have been widely applied
in many scientific fields, such as image processing, pattern recognition, and pseudorandom
number generators, and have attracted increasing interests from researchers, see [8—14]. In
particular, the synchronization control of coupled MNNs have potential applications including
super-dense nonvolatile computer memory and neural synapses, cf. [15,16].

Many existing studies on synchronization of coupled MNNs focused on the synchronization
of master-slave MNNs using control schemes. The exponential synchronization of master-
slave MNNs with a linear feedback controller was established in [16—-19]. The studies in
[15,20-22] established the synchronization of master-slave MNNs by imposing feedback con-
trollers that have a linear term and a sign function. Studies on the adaptive synchronization
of master-slave MNNs can be found in [20,21,23-25]. The studies in [26,27] established
the synchronization of master-slave MNNs with state coupling and output coupling, where
Guo et al. [27] also considered dynamic state coupling and dynamic output coupling. The
exponential synchronization of master-slave MNNs with periodically intermittent control was
investigated in [28]. Studies on the synchronization of stochastic master-slave MNNs can be
found in [29,30]. Studies on the lag synchronization of master-slave MNNs can be found in
[24,31]. The work in [32] established the existence of periodic solutions and synchroniza-
tion for master-slave MNNs. The paper [33] studied the general decay synchronization of
master-slave MNNs. Master-slave synchronization has promising applications including the
control of chaos and chaotic signal masking, cf. [34]. On the other hand, the synchronization
of multiple (more than two) networks has promising applications in information processing
and cognition behavior of the brain, cf. [35]. The literature contains far fewer studies on
the synchronization of multiple MNNs than on master-slave MNNs. In terms of research on
the synchronization of multiple MNNs, the studies in [36] and [37] established the global
synchronization of multiple MNNs coupled under linear couplings and couplings that have a
linear term and a sign function, respectively. The robust synchronization of multiple MNNs
with nonidentical uncertain parameters was also studied in [38]. The synchronization of an
array of linearly coupled MNNs with impulses and delays was investigated in [39]. The work
in [40] established the synchronization of multiple linearly coupled stochastic MNNs with
probabilistic delay coupling and impulsive delay.

A survey of existing studies on synchronization of coupled MNNs indicates that many
coupled networks that were considered are with linear couplings [16-19,28,36,39,40], or with
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couplings consisting of a linear term and a sign function term [15,20-22,30,31,37,38]. In
addition, the coupled networks that were considered commonly have internal time delays
within individual networks, and have no transmission delays across different networks, cf.
[15,17-23,25-28,36,38,39]. Thus, the global synchronization of MNNs coupled under general
coupling schemes still deserves to be further investigated.

A single MNN model using memristors in the circuit implementation of the neural network
connections can be described as follows (cf. [22,28]):

B(t) = —dexi () + ) [akl(xl(f))fl(xl(l)) + b O (¢ — 1)) fi (a2 — Tl))] + I (1) e))
lek
with

My My
an (x (1)) = T, < S b —1)) = T, XS
k k

1, k#I,
S8 = {—1 k=1
for t>1y and k € K :={l1,..., K}, where x;(¢) corresponds to the voltage of capacitor Cy

at time t; di > 0 represents the neuron self-inhibition rate; t;>0, [ € KC, denote the internal
delays; and f;, [ € IC, are the neuron activation functions which are continuous and satisfy

i) — fim)] < 51§ — | for all £, n € R. (2
Here, I;(¢) denotes the external input to the kth neuron at time ¢ and satisfies
| ()| < I, for all ¢t > t. (3)

Further, My, and 1\7[1(1 are the memductances of memris}ors Ry and I~{k1, respectively, where
Ry; denotes the memristor between fi(x;(r)) and xi(f); Ry; represents the memristor between
fitx(t — 1)) and xp(f). ay(-) and by(-) are the synaptic connection weights implemented
using memristors without and with delays, respectively. Several types of memristors have
been reported in the literature. Here, according to the feature of the memristor and current—
voltage characteristic, ay(-) and by(-) are described by

a;d’ |xl(t)| < T}? b;(p |xl,l(t - Tl)' < T}’
ag (x; (1)) = § ay, ;@) > T, by —1)) =15, lxi (¢ — )| > Tp,
ay or ay, |x@®)| =T, by, or by, |xit—1) =1,

in which switching jumps 7;>0 and a;,, a;, by, b}, € R are constants relating to memris-
tances, cf. [23,28]. More information about the circuit realization and physical properties of
memristors can be found in [18,19,21-23,30,37-40]. In this paper, we consider an array of
N coupled MNNs as follows:

ia(t) = —dixix(t) + ) [akl (i1 (D) 1 (xi (1)) + bia (i (¢ — 7)) fy (xia (8 — T/))}

lek
+ L (1) + Ui () 4)
with
a]/{lv |xi,l (t)| < T}’
ag (xi; (1)) = {ag. X () > Tp, bt — 1))

a;(l or a]/(/[a |xi,l(t)| =T,
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by lxi ¢ — )| <Tp,
=10 |xi0 ¢ — )| > T, (5)
by, or by, |xi ¢t — )| =T,

Uin(t) = vk Z wij |:hk(xj,k(t — 1)) — he(xix (@) + s(x (1) — xi,k(t))i| (6)
JeEN

for t>1y and (i, k) € A, :={(j,1): j € N, | € K}, where A, is the subscript set of x;; and
Ni={l,....,N}; (xi1(), xi2(t), ..., x,x ()T is the state of the ith MNN; U;(¢) represents
the coupling term for x;; at time #, in which y; >0 signifies the coupling strength; w;; € R
is the coupling coefficient from the jth network to the ith network; h; is a smooth and
nondecreasing function; 77 >0 represents the transmission delay across different networks;
s(-) is defined by

1, £E>0,
s(§) =sxsign(§):=sx 1—-1, & <0, @)
0, §=0,

for some s > 0. For later use, from Eq. (5), we define

aw = max{ay,, a},}, dw = min{ay,, aj}}, by := max{b,,, b},}, by := min{b,, b},}, )

aw = max{lay,|, la},1}, df == du — dw, by := max{|b, |, 1,1}, d}, := by — bu.

In the literature, many investigations considered coupled MNNs that are in the form of
system (4) or its similar form. Among these studies, many memristor types considered are
in the form of Eq. (5), or its similar forms, see [15-17,19,21-23,26,28,40]. The approach
presented in this paper can be applied to other types of memristors other than those mentioned
above, such as those considered in [20,27,30,36-39]. The coupling terms U;;(#) in system
(4) are with a sign function sign(-). The concept of including the sign function in the coupling
scheme to synchronize coupled MNNs was reported in many studies, see [15,20-22,27,29—
32,37,38]. The studies in [15,20-22,37,38] considered controllers or coupling functions in the
form of U;x(#) in Eq. (6), with linear function /; and without transmission delay (z7 = 0). The
matrix W := [w;;]1< j<n is referred to as a connection matrix. The connection from the jth
network to the ith network is excitatory if w;; > 0, and inhibitory if w;; < 0. In the literature,
the connection matrices considered for synchronization of multiple MNNs commonly satisfy
the condition that all nonzero off-diagonal entries have the same signs, cf. [36—40]. It is worth
noting that such a condition is not necessary for the approach presented in this paper.

It is known that MNNs, such as system (4), are differential equations with discon-
tinuous right-hand sides, in which solutions in the conventional sense may not exist, cf.
[15,19,20,28,36]. Based on the Filippov regularization approach, differential equations with
discontinuous right-hand sides can be transformed into differential inclusions, cf. [1,41]. By
utilizing the theories of set-valued maps of differential inclusions [41-43], many studies in-
vestigated the dynamics of MNNs under the framework of a Filippov solution [41]; for
examples, see [15-17,19-23,26,28,29,32,36,40]. We denote in this paper, Ix = {ax : a € I},
I+J={a+b:acl,beJ},andl —J={a—b:aecl,beJ} for sets [,J C R and a real
number x € R. By considering the solutions of the system (4) in the Filippov sense, system
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(4) can be written as the following differential inclusions:
ik(t) € — dixin(t) + ) [co[akz (0 (O)1fi Gei (1)) + colbu (xig (8 — T fi (xia (¢ — n))}

lek
+ 1)+ Ui (1) 9

for almost everywhere (a. e.) >ty and all (i,k) € A,, where each x;(f) is an absolutely
continuous function on any compact interval of [y, 00), and

ay, [ O] < T,
colan (xi )] = { @ i ()] > T, co[br (xii(t — 1))]
law, du], |xa@)] =T,
by, lxi i (t — )| < T,
— 10y, lxi i (t — )| > T,
[i)kz, i’kl], [xi (¢ — )| =T,.

Notably,
colan (xi 1 (1)] € [, ] S [—aw. aul; colbu(xiit — )] € [Bkz, Ekl] € [~bu, bu] (10)

for all t>1y, (i,k) € A, and [ € K. We denote by (x;(¢),...,xy(#))" an arbitrary solution
of Eq. (9), where x;(t) = (x;1(¢), ... ,x,-,K(t))T, i € N. System (4) is said to attain global
(complete) synchronization if

Zik(®) =X (1) — xi414 () — 0 as t — oo for (i, k) € A,

for every solution (x;(¢),...,xy())" of Eq. (9), where A, :={(j,[):je N —{N}, | € K}
is the subscript set of z;;.

As discussed above, existing studies on synchronization of coupled MNNs commonly con-
sidered linear couplings or couplings consisting of a linear term and a sign function term. The
coupled MNNs that were considered commonly have internal time delays within individual
networks, and have no transmission delays across different networks. In addition, there exist
far fewer studies on the synchronization of multiple MNNs than on master-slave MNNs. The
studies that considered the synchronization of multiple MNNs required that all nonzero off-
diagonal entries of the connection matrix have the same signs. To the best of our knowledge,
the global synchronization of multiple MNNs (4) with a transmission delay or nonlinear /; in
coupling terms U, (t), or which admits the coexistence of excitatory and inhibitory connec-
tions is not yet established. In this paper, we develop a novel approach to establish the global
synchronization of multiple MNNs (4). In the proposed approach, system (4) can involve both
the internal time delays within individual networks and transmission delays across different
networks. The function 7, in the coupling term U;.(¢) can be nonlinear. Moreover, the off-
diagonal entries of connection matrix can have mixed signs; hence, the coupling scheme can
admit the coexistence of excitatory and inhibitory connections. The paper is organized as fol-
lows. Section 2 provides the basis for investigating the global synchronization of system (4).
In Section 2.1, analyses of the asymptotic behavior of a type of scalar differential inequality
and a type of scalar differential equation are presented. We establish the global dissipativity
of system (4) in Section 2.2. Herein, the global dissipativity is a property that indicates the
existence of a globally attracting set for a system, cf. [10]. A system of differential equations
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associated with the synchronization of system (4) is derived in Section 2.3. We establish
the global synchronization of system (4) in Section 3. Section 4 demonstrates the theories
presented using three numerical examples. The paper is concluded in Section 5.

2. Preliminaries.

In this paper, for a real-valued function y(f) and an interval [a, b], we say that y(¢#) — [a,
blast— oo if dist(y(¢), [a, b]) tends to zero as t— oo, or equivalently, a < liminf,_, o y(¢) <
limsup,_, . ¥(t) < b, where dist(y(t), [a, b]) :=inf{|y(t) — ¢|: ¢ € [a, D]} is referred to as
the distance from y(f) to [a, b]. For a function f(r), to indicate the magnitude of f{r)
at time ¢ subsequent to 7T, we set |f|™*(T):=sup{|f(t)|:t>T} for T>1,. Notably,
LA™ (1) <|f™™*(T2) if Ty > T,. We further set || (00) :=limy_, ool /™ (7).

2.1. A differential inequality and a differential equation.

Let us now introduce a type of differential inequality. Assume that g* are strictly decreas-
ing real-valued functions, with g~ (£) < g+ (&) for all £ € R, and have unique zeros at g*.
Let u(f) be an absolutely continuous function on any compact interval of [y, co) that satisfies

g (u(®) <u@t) < g"(u@t)) forae. t =1 > 1. (11)
Proposition 2.1. If u(t) satisfies (11), then u(t) — [q~, q*] as t— oc.

Proof. Recall that g* is a strictly decreasing function, and has a unique zero at g*. If u(t) €
(g, 00) for te[ty, 1], where 1, > t; > £, then g (u(t)) < 0 for €[z, 1], and

t t
u(t) — u(fy) =/ i(s)ds 5/ ghu(s))ds <0
131 n

for all 71, % € [t1, 2] with &, > f;. Thus, u(?) is strictly decreasing if u(f) remains in (g%, 00).
This reveals that (—oo, ¢] is a positively invariant set for u(z) for any ¢ > g*. Suppose that
u(t) € (g*,00) for t =3 € (f, 00), then for an arbitrary € >0 with € < u(t3) — g™, let us
claim that u(f) eventually enters, and then remains in (—o0, g™ + €]. Assume otherwise that
u(t) € (g* + €, 00) for all t>13. Then, it follows that

u(r>=u<z3>+f u(s)ds5u<z3)+/ g+(u(s>>ds5u<r3)+/ ¢ (g + e)ds

for r>t;, which contradicts u(t) € (¢ + €, 00) since ftz gr(gt +e)ds | —o0o as t— oo.
From the above arguments, it follows that lim sup, , ., u(t) < g*. Applying similar arguments
reveals that liminf, o u(t) > ¢~. U

Next, let us introduce a type of scalar differential equation. Let z(f) be an absolutely
continuous function on any compact interval of [fy, 00), and satisfy that there exist some
7,4,q >0, with 0 < ¢ < ¢, and some fo >ty + 7, such that

2(t) € [-2q.2q] if t =1 — 7, and z(t) > [-2G,2G] C [-24.2q] as 1 > oc. (12)
Consider that z(7) satisfies the scalar differential equation:

Z(t) = —Asign(z(t)) + a()z(t) + B()z(t — 1) + Y (Dz(t — 1) +w(t) + e(t) (13)
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for a. e. t>1g, where 14, 7, € [0, T], sign(-) is defined in Eq. (7), w(¢) is a bounded function,
and

a(t) € [a,a], B) € [-B.B]. v@) € [-7.7]. le®)| <A for t > 1, (14)
where B, 7,1 >0, and &, & € R.
Lemma 2.1. If z(?) satisfies Eq. (13), then

2(0) < a()z(t) + B2t — Tp) + Y (D)2t — 7)) + w(t) + {g’+ e[ oy igi - 8’ (15)
H0) = @20 + BO)E — ) + 7 ()2t — T,) + (D) — {g’Jr ey o (6

for a. e. t > 1.

Proof. Recall that |e(f)| <A for all ¢t > #y, which implies —X + |e|™ (fy) < 0. Subsequently,
as seen from Eq. (13), it can be directly observed that Egs. (15) and (16) hold. [

Define

~ — &57 E > 0’
h(€) == 2q(B +7) + W™ (@) + | @&+ +lel™ (1), & <0,

h(g) := —h(=§).

If @ <0 and B +y > 0, then iz(é) > iz(é) for £ € R; moreover, h and hh are strictly de-
creasing, and have unique zeros at AV” and A", respectively, where Al = —Ah = 2G(B+7) +
[w|™(#5)]/(—&) > 0. From h and h, the following lemma draws a preliminary estimate on
the asymptotic dynamics for z(f), which satisfies Eqs. (12)-(14).

Lemma 2.2. Consider z(t), which satisfies Eqgs. (12)—(14). If @ <0 and B+ 7 > 0, then there
exist some sufficiently small &, >0 and some T, > ty such that

h(z(t)) + en < 2(1) < h(z(t)) — &, for a. e. t > T,. a7
Subsequently, there exists some T > T, + T such that z(t) € [—Ah,Ah] forall t > T — 7.

Proof. Recall from Eqs. (12)—(14) that |B(¢)| < B and |y (t)| < 7 for all ¢ > fy, and z(1) —
[—24,24] C [—24,24] as t — oo. In addition, B + 7 > 0 implies G(8 + 7) > 0. Thus, there
exist some sufficiently small &, >0 and some T, > fy such that |8(t)z(t — 78) +y(t)z(t —
7,)| < 2G(B + 7) — &5 for t>T,. Accordingly, it follows from Lemma 2.1 that

az(t), z(t) > 0,

40 S2(P 7)) e+ {o?za) + 3+ e™ ), 2(1) <0,

which yields that z(t) < h(z(t)) — &, for a. e. t>T,. That z(t) > h(z(1)) + &, for a. e.
t>T, can be verified similarly. We hence verify Eq. (17). Applying Proposition 2.1 and
Eq. (17) reveals that z(r) — [A”, A"] as t — oo, where A" (resp., A") is the unique solution
of h(-) — e, =0 (resp., h(-) + &, = 0). Recall that [A”", A"]  [—A", A"]. Thus, there exists
some T, > T, + T such that z(¢) € [—A", A" for all ¢ > T—t. O

Let us introduce the following condition:
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Condition (Sg): —& — B — y — |w|m“"(t0)/(2q) > 0.
We note that conditions (Sg) and B+ 7 > 0 imply @ < 0 and (B + y)Ah < 2q(,3 +7);
hence, there exists an gy > 0 with g9 < ¢, such that

(B+7)A" + 9 <24(B + 7). (18)

For each T>1t,, we introduce the following functions:

ag, £>0,

A(O) o h max
hOE T) = (B+7)A" + |w] <T>+80+{ Y€+ + le| ™ (), & <0,

WO T) = ~h(=£.T).
From Eq. (18) and |w|™(T) < |w|™*(fy) for T > f, it follows that
hE) <O, T) < hE, T) < hE) (19)

for all £ R and T > fy, under the conditions (Sg) and B+ > 0. Let pO(T) (resp.,
pO(T)) be the unique solution of 2@ (-, T) =0 (resp., (., T) = 0). Notably, pPOT) =
—pO(T) <0 and [—pO(T), pO(T)] C [—A", A" for all T > fo.

Lemma 2.2 shows a preliminary estimate on the asymptotic dynamics for z(7) based on
Eq. (17). Therein,A Eq. (17) refers to an estimation on z(¢) via the lower bound A(:) + &
evmd upper bound h(;) — ¢, Based on Egs. (19) and (20), the following lemmg reveals that
hO, T)+ gy and h'9 (-, T) — gy provide lower and upper bounds finer than /(-) + &, and
iz(-) — &y, respectively, for the dynamics of z(f), as time increases.

Lemma 2.3. Consider z(t), which satisfies Eqs. (12)—(14). If conditions (Sy) and B+ 7 > 0
hold, then for an arbitrary fixed T > T/, there exists some To>T such that

O G(), T) +e0 < 2(t) < hO(z(1), T) — &0 (20)

for a. e. t>T,. Hence, there exists some Ty > Ty + T such that z(t) € [—p O (T), pO(T)] for
all t > Ty — ©. Herein, T, and & are introduced in Lemma 2.2 and Eq. (18), respectively.

Proof. Fix an arbitrary 7 > 7. By Lemma 2.2, we obtain that z(s) € [—Ah,fih] for all s >
Ty — 7 if To>T. Consequently, applying Lemma 2.1 yields that

: 2 —\ Ah max &Z(l), z(t) > 0,

1) = (B4 7)A + W™ + {o?z(t) A [l ™ ), =) <0,

which yields z(t) < h© (z(t), T) — & for a. e. t>Ty. Similarly, z(t) > K (z(t), T) + & for
a. e. t>T, can be verified. Thus, there exists some T > T such that Eq. (20) holds. Applying
Proposition 2.1 and Eq. (20) yields that z(t) — [pO(T), pO(T)] as t — oo, where pO(T)
(resp., p©(T)) is the unique solution of A (-, T) + gy = 0 (resp., K* (-, T) — gy = 0). No-
tably, [pO(T), pO(T)] C [—pO(T), pO(T)]. Thus, there exists some T; > Ty + T such that
z2@) € [-pO), pO(T)] fort > T, — . O

Lemmas 2.2 and 2.3 demonstrate the formulation of lower and upper bounds for the
dynamics of z(f), which satisfies Eqs. (12)—(14) in succession. In the same spirit, we shall
formulate finer lower and upper bounds iteratively to capture the asymptotic dynamics of z(z).
Now, let us set a decreasing sequence {e;}2, with &1 <¢&¢ and that ex— 0 as k— oo. We
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then define the following functions iteratively. For k € N and T> ¢,

&E’ é >0,

WOET) = (Bw)ﬁ“‘”(T>+|w|m“(T)+ek+{ GE + A+l (), £ <0

KO E, T) = —h® (=&, 1),

where p*~D(T) > 0 is the unique solution of iz(k“)(;, T) = 0. Notably, p®(T) := —p*(T)
is the unique solution of 2 (., T) = 0. Functions (-, T) and h® (., T) are formulated
to provide more delicate control on the dynamics of z(#) as k or T increases. More pre-
cisely, A®) (-, T) (resp. h®)(-, T)) decreases (resp. increases) with respect to k and T; ac-
cordingly, [p®(T), pO(T)] = [-p®(T), p©(T)] shrinks to some interval, say [—p, pl,
as k—oo and T— oco. Moreover, it can be shown that for each 7 > 7/ and k € N,
2(t) = [-p*(T), pX(T)] as t— oco. Consequently, z(t) — [—p, p] as t— co. We summa-
rize these properties in the following lemma and proposition.

Lemma 2.4. Assume that conditions (Sy) and ,3 +y > 0 hold. Then, for each T>ty, the
sequences {ﬁ(k)(T)}kzo can be defined iteratively, where ﬁ(k) (T) > 0. Moreover, (i) for any
fixed k e NU {0}, p®(T) is decreasing with respect to T> to; (ii) for any T > ty, there exists
p(T) >0 such that p®(T) — p(T) decreasingly as k— oo; (iii) there exists p > 0 such that
p(T) — p decreasingly as T— o0o; (iv) 0 < p(T) < |w|™(T)/(—& — B — ¥) for any T> ty;
(v) N1 [=p(T), p(T)] = [—p, pl, and 0 < p < [w["™(c0) /(=& — B — ¥).

Proof. Assume that condition (Sp) holds. By mathematical induction and Eq. (19), we can
show that

WOE TY <h®*VE, T) <hE) forall § eR, ke N, and T > 1. Q1

As h® (., T) is the vertical shift of (-) and lim_o+ h® (£, T) > & > 0, p®(T) is well
defined, with 0 < p®(T) < A", for all k € NU {0} and T> 1, recalling Eq. (21). Recall that
the term |w|™(T) in h® (-, T) satisfies

w|™ (1)) < W™ (1) if Ty = Ta. (22)
By Egs. (21) and (22), p®(T) is decreasing with respect to both T and k, which yields
assertions (i)—(iii). Obviously, assertion (v) follows from assertions (iii) and (iv).

Next, let us verify assertion (iv) to complete the proof. It is obvious that 0 < p(T) <
Al for T>1,. Below, let us assume that p(7)>0 since assertion (iv) hold§ if p(T)=0.
For any fixed T>1y, {h® (-, T)|z, k=1 and {h® (-, T)|z, }x=1, where T, := [-A", —p(T)] and
T, := [p(T), A"], are uniformly bounded and equicontinuous since W0 (&, T)| < h(A") and
(h®Y (&, T) < |&| for & € I, U 7, and k € N. In addition, h® (-, T) decreases with respect to
k. Applying the Ascoli-Arzela Theorem, there exists a continuous function 2 (-, T') defined
on 7, UZ, such that

h® (., T) | h® (., T) uniformly on Z, UZ, (23)

as k— oo. With Eq. (23), pX(T) — p(T), the continuity of 2% (., T)|z,uz, and 7 (), and
the fact that ¢ — 0 as k— oo, we can derive the following properties for iz(oo)(~, T):

. 7(c0) _ (R v max &‘i:’ "EGI’
(PL): h®9 (. T) = (B +7)p(T) + [w™(T) + {&Hkﬂelma%), tel.
(P2): h®) (p(T), T) = 0.
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Applying (P1) and (P2) yields p(T) = |w|™*(T)/(—& — B — y). We have justified asser-
tion (iv). O

Proposition 2.2. Consider z(1), which satisfies Eqs. (12)—(14). If condition (Sp) holds, then
z(t) = [—p, pl as t — oo, where 0 < p < |[w|"™(c0)/(—& — B — 7).

Proof. Let us first consider the case 8 + 7 > 0. By the spirit in concluding Lemma 2.3, we
can verify by induction that for an arbitrary fixed 7 > T, and n € N, there exists an increasing
sequence {T;};_,, with T4y > Tx + 7 for k=0,1,...,n—1 and Tp>7, such that

WO (z(t), T) +ep < 2(t) <h®(z(t), T) —er fora. e.t > Ty, k=0,1,....n—1,
2(t) € [-p0(T), p®(T)] for all t > Tiyy — T, k=0,1,...,n— 1.
(24)

Recall from Lemma 2.4 that p®(T) — p(T) decreasingly as k— oo, and p(T') — p decreas-
ingly as T— oo, where 0 < p < |w|™*(c0)/(—& — B — 7). Based on Eq. (24), we obtain that
for T > T/, z(t) = [—p(T), p(T)] as t— oo. Thus, z(t) — [—p, p] as t— oco.

If B+7% =0, then B(r) = y(t) =0, which yields that for T > 7,

g(),T) <z(t) < 8z(), T) (25)
for a. e. t>T, recalling Lemma 2.1, where

&E7 s > 05
@& + 1+ le[™(f), £ <0,

Applying Proposition 2.1 and Eq. (25) reveals that z(t) — [—p(T), p(T)] as t— oo for T >
fo, where p(T) = |[w|™*(T)/(—&) > 0. Notably, p(T) is decreasing with respect to T. It
follows that z(t) — [—p, p] as t— o0, where 0 < p =lim7_ o p(T) < |W|™(c0)/(—& —
B — 7). Thus, the proof is completed. [

8G.T) = |w|™(T) + { §¢.T):=—8(=§.T).

2.2. Global dissipativity of system (4).

We first consider the following condition:
Condition (S1)*: For each [ € K, there exist some ,5{, ,51h > 0 such that |f;(§)] < ,6<lf and
| ()| < pf for all £ € R,

With ﬁlf and ,5;‘ in condition (S1)*, we successively define

ék L= |:I_k =+ ykﬁ(Zp_,i‘ + 5) + Z (C_lkl + l;kl)/s[fi|/dk’

lek

gk = |:I_k + e (267 +5) + Z (an + Bkl)ﬁzf:|/dk7 (26)
lek

He:=sup {h (&) : £ € [~G. k]} = 0. Hp:=1inf {h(§) : & € [-qe. @]} = 0 @7

for k € IC, where

@ := max Z|w,-j|:ie./\/, (28)
jeN
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ol i=max {|l ()] : & € [~ana]} <. 5 =max{lfi®l:&e[-q.al}<h. @9

Obviously, gr < gx for k € K. Let us consider the following condition, which is slightly
stronger than (S1)*:

Condition (S1): Condition (S1)* holds, and ¢, < g; for all k € K.

The following proposition provides an estimated globally attracting region for system (4).

Proposition 2.3. Assume that condition (S1) holds. If X(t) = (x1(t), ..., xy@))T is a solution
of system (9), where x;(t) = (x;1(t), ..., xix ()T, i € N, then

Xk () = [=Gk. Gx] € [~k Gi] as t — o0

for all (i, k) € Ay. Thus, there exists some ty > to + Ty such that x; ;(t) € [—qx, ] for all t >
fo — wy and (i, k) € A, where 1y := max{max{t; : [ € K}, 7).

Proof. Under condition (S1), X(¢) satisfies
colan (xi ()] fi(xii (1)) € [—c_lkz,élf, dk“élf], co[bu (xii (t — )] fi(xia (t — )
< [—Bklﬁlf, 1_71(1,5{], (30)
Uik ()] < v (20 +5)

for t>1y, (i, k) € A, and | € K based on Egs. (6), (7), (10), and (28). Applying Egs. (3) and
(30) reveals that x;(¢), where (i, k) € A,, satisfies

8 (i (1)) < X (1) < gf (xix (1)) for a. e. 1 > 1, (31

where g5 (&) i= —di& £ [l + v 2} +5) + (@ + bu)p) 1. The functions g& are
strictly decreasing and have unique zeros at £g;. Applying Proposition 2.1 and Eq. (31) yields

X (t) = [—G, qx] as 1 — o0 (32)
for all (i, k) € A,. From Egs. (29) and (32), it follows that
Sein ) > [=5L. 3 | and i) —> [=5L, 5l] as 1 > oo (33)

for all (i, k) € A,, which yields that for an arbitrary € > 0, there exists some ?, >ty such that

& (i (1) — € < X (t) < gf (xix (1)) + € (34)

for a. e. t>1. and all (i, k) € Ay, where & (&) := —di& £ [l + v 25 +35) + Yo @ +
l_akl)ﬁlf ] based on Egs. (3), (6)—(10), (28), and (33). The functions §f are strictly decreasing
and have unique zeros at £g;. Applying Proposition 2.1, Eq. (34), and the condition (S1),
we get x; . (t) = [—Gk, i) C [—qx, gkl as t — oo for all (i, k) € A,. O

2.3. Differential equations associated with the synchronization of system (4).

Throughout this subsection, suppose that X(#) = (x;(z), ..., Xy(t))7 is an arbitrary solu-
tion of system (9), where x;(¢) = (x; 1 (¢), .. .,x,;;((t))T, i € N; then set

AL = felxin(®) = filois @), AL () =l (0) — he(xisr (1)), (35)
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and

Al (1) = coag (xi ()] — colan (xir11 ()], ALy @) = co[bu (xii (1))] — co[bu (xis1,(t))]
(36)

for t >tg— 1y, i € N —{N}, and k,l € K, where 1) is defined in Proposition 2.3. Con-
sider Z(1) = (z1(t), ..., zy—1(1))", where z;(t) = (2,1 (1), ..., zxk ()T = X;(1) — Xi41 (1),
i=1,...,N — 1. Then Z(r) satisfies the following differential inclusions:

Zik(t) € — dizix(t) + Uik (1) — U1 4 (1) + ZCO[% (it ()] fi (xi0 (1))

lek

- Z colap (xi1.0 (D) ] fi (xig1. (D))

lek

+ > co[bu(xia ¢ = ) filia (¢ — 1)) = Y co[bu(xivr st — o) filxiprat — 1)) (37

lek lek

for t>1, and (i, k) € A;. Notably, system (4) attains global synchronization if z;4(f)— 0 as
t— oo for all (i, k) € A;. Define a synchronous set corresponding to system (4) as

S:={(@,....®)" e C([—. 0], R"¥) : @ € C([—u, 01, R¥)}, (38)

where t), is defined in Proposition 2.3. For a coupled system, the invariance of the syn-
chronous set under the evolution generated by the system is a prerequisite to the synchroniza-
tion of the system. We note that the invariance of S is guaranteed if system (4) is without a
transmission delay (t7 = 0); however, the invariance may be lost if system (4) has a trans-
mission delay, cf. Example 2 in Section 4. We ensure the invariance of S for system (4) with
transmission delay by imposing the condition:

Xi IZZWij=X for all i e \V. (39)
jeN

Thus, this paper considers system (4), which satisfies the condition:

Condition (S2): Eq. (39) holds if t75#0.

Now, let us explain the main idea of our approach to establish the global synchronization
of system (4). First, we show that Z(¢) satisfies differential equations of the form:

Zige(t) = —Aiasign(zia (1)) + @ik (Dzix @) + Bix Oziat — T)
+Vik(Ozik @ — 7)) + wir(t) + eix(t) (40)

for a. e. t>1y and (i, k) € A,, where
Nik := Sve[wis) + warni] 41)

with y, Wwigsn), and weypy defined in Eq. (6) and § in Eq. (7). The precise formula-
tions and properties of o;x(t), Bik(t), Yix(t), wik(t), and e;x(f) are derived through Lem-
mas 2.5 and 2.6. Notably, each component in Eq. (40) takes the form Eq. (13). Then, ap-
plying Proposition 2.2 yields that for each (i, k) € A;, there exists some p;; > 0 such that
Zix(t) = [—Pik, Pix] as t — oo. In Proposition 3.1 and Theorem 3.1, we perform an iterative
argument to establish that p;;, = 0, which yields that z; () > Oast— oo for all (i, k) € A;;
hence, system (4) attains global synchronization.
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Using the connection matrix W = [w;;]1<; j<v and x; defined in Eq. (39), we define W=
[Wijli<i j<n, Where

- fwi—xi. i=j€eN,
Wij = {w,,-, i,jeNandi#]. “42)
We then define the matrix W derived from W as follows:
W= [Wij]1<i,j<1v71 = CWCT(CCT)_I’ (43)
where
1 -1 0 0
C:= o 1 -1 : e RIW=DxN,
P R ()
o --- 0 1 -1
Referring to [44], W is well defined, and satisfies CW = WC, which yields
D Dy — W) = D Wy AlL©) (44)

JeN JEN—{N}

for all (i, k) € A; and t >ty — 1, based on Eq. (35). From Eq. (44), we derive the following
lemma.

Lemma 2.5. If condition (S2) holds, then Z(t) satisfies
G(t) € —Aisign(ziw () + I (0) + I () + I, () + I (6) + I5.(1) (45)
for a. e. t>1ty and (i, k) € A;, where Ay is defined in Eq. (41),

Wiy Al (1), T =0,

I (1) = —dizig () + cola (xix (1)) | AL, () + {_m Ab ), T 20,

Ifk (t) = co bk (xix (t — Tk))]A,j-jk (t — ),

[}’ (l) _ O’ T = O’
BT v + )AL @ —tr), T #0,
e = " colau(xia®)]AL, @)+ Y colbu(xiit — m)]Al, ¢ — )
leK—{k} leK—{k}
+ Yk Z WijA?,k(f —17),
JEN—{i,N}
I =Y A filxigra ) + Y AL (= 1) fixipa(t — 1))
lek lek

+ Yk Z [wijs(xx (@) — xik (1)) = wiiznyjs () (1) — xip16(0))].
JEN—{i,i+1}

Proof. As seen from Eq. (6) and x; = ZjeA/ w;; in Eq. (39), we observe that

Ui @) = v y_ wij[e(xjac(t = 71)) + 5 (7 (0) = xix(0)) ] = vioxibu (xi.x (1))
JeN
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= veWii — x)he (%t — 1)) + Wi Z wijhi(xj.(t — T7))
JeN—{i}

+ Yk Z wiis(xjx(®) = xik @) = vixi[ e (xix @©)) — hi(xi (0 — 7)) ]
JeN

for all (i, k) € A, and t>ty. This yields that
Uik() = v Z Wijhi (X (t — 1)) + i Z wis (X (1) — Xi k(1))
jeN JeN
—viexi[ i (xix () — hi(xix (0 — T7))] (46)

for all (i, k) € A, and 1> 1, recalling that w;; = wy; if i#j and Wy = wy; — x;, cf. (42).
Assume that condition (S2) holds. If 7 = 0, it follows from Eq. (46) that

Uik () — Uit (1)
= Vk Z [Wij — Waigny [ (1))

jeN
+ Vi Z [wijs (%) () — xi1 (1)) = Wiit1);s (X (1) — Xig1. (1)) ]
JeEN
=V Z WijA?_k(t) + % Z [wijs(xjx (1) = xi k() = Wiy s () (1) = xigr @) ]. 47
JeEN —{N} JjeN

where the latter equality in Eq. (47) holds due to Eq. (44).
If T7#0 and Eq. (39) holds, using Egs. (35) and (46) reveals

Uik (0) = U4 (6) = —=xvi[ Al () = Al =) )+ v D Wi = Wiy Je (xjc (2 = 7))
JEN

+ Vi Z [wijs (6 (1) = xis (1)) = Wiy s (0 (1) — xip16 ()] (43)
JeN

Applying Eqgs. (44) and (48) then yields

Uik ) = Uik (t) = —xn[ AL () = Al — )]+ Y Wil (¢ —1r)

JjeEN—{N}
+ Vi Z [wijs(xjx () — xi k(1)) = Wiy (xj (1) = Xiz1.£(0))]. (49)
JEN
We note that if /,J C R and x,y € R, then
Ix—JyCIx—y)+U—J)y. (50)

The property in Eq. (50) holds because if u € Ix — Jy, then u =sx —ty =s(x —y) + (s —
tyyel(x—y)+ (I —J)y for some sel, teJ. From Eq. (50), we can derive

> colan (xia )] fiGxin () =Y colar (eisr ()] fi(xi1.())

lek lek

< Y cofau i) ]AL @0 + Y ALy O filxiz (1)), (51)

lek lek
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and
Zco[bkl (i (0 = o)) ] fi(xia (0 — 1)) — Zco[bkl (xip1.0 (¢ — ) fi (Kigra ¢ = )
lek lek
c ZCO[bkz (i (2 — Tl))]A,{, (t—u)+ Z AL =) fi(xip 6 — ). (52)

lek lek
Applying Egs. (7), (47), and (49)—(52), it can be verified that Z(r) satisfies Eq. (45). O

Lemma 2.5 revealed that differential inclusions (37) can be recast into differential inclusions
(45). In the following lemma, we further show that Z(#), which satisfies differential inclusions
(45), can satisfy certain differential equations. To prepare for such a lemma, by using H, and
Hy in Eq. (27), x in Eq. (39), and w;; in Eq. (43), we first define

I:IW {I:Ik, wii Z 07 ﬁw {ﬁkv wii Z 07 HX {I—Vllm X Z 03 I:IX {ﬁk’ X Z 0,

ik I:Ik, w;i < 0, ik I:Ik, w;i < 0, ke I:Ik, x <0, ke I;Vk, x < 0.
(53)
Then, we further set
v HY -
&i,k = _dk — dkkl_)kf + {VkWHH}\’];(, T 07 (54)
—xvH, 1t #0,
5 | yovaBY, =0,
O = —dy +av, + L 55
ik k + Qi Vi {—kaHX, o £ 0. (55)
= - _ 0 r = 0
o =buv!, =1 _ N ’ 56
Prie = buvie: - Vi {Vk|wii + x|Hy, T #0, (56)

pﬁk=2[ > (au+bu)d +vpt Y |v‘vi_,-|], (57)

leK—{k} JjeN—{i.N}
ple =D (dy +db)al +5sm D0 (wil + waenD (58)
lek JeEN—{i,i+1}

where w;; and y; are introduced in Eq. (6), 17,{ in Eq. (2), s in Eq. (7), ax, l_)kl dy;, and d,fl
in Eq. (8), H, in Eq. (27), ,61h and ,6{ in Eq. (29), x in Eq. (39), and w;; in Eq. (43).

Lemma 2.6. Assume that conditions (S1) and (S2) hold. There exist real-valued functions
aix(®), Bix(®), vik(D), wir(t), and e (t) for all (i,k) € A, and t> 1ty such that Z(t) satisfies

Zik(t) = —Aigsign(z; (1)) + i g (ODzik () + Bix@)zix(t — 1) + Vir(@)zix (t — T7)
+wir(t) +eir(t) (59)

for a. e. t>1ty and (i, k) € A;, where a;;(t), Bix(D), vix(t), and w;,(t) satisfy
aix(t) € [Gin, @ir] Bin(®) € [=Bik, Bix]s vin(®) € [~Fik, Vi), (60)
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and

i@ = Y |@ud] 1zl +badf @ = o)l |+ bl Y Wllzat =) 6D
leK—{k} JEN—{i.N}

for all t >ty and (i, k) € A,. In addition,

Iwi k™ (f0) < o' leir™ (f0) < pf (62)

where 1y is defined in Proposition 2.3.

Proof. Recall condition (S2). We merely prove the case that t7# 0 and Eq. (39) holds, and the
case that 7 = 0 can be treated similarly. Applying Proposition 2.3, Egs. (29) and (35) reveals
that x;;(s) € [—qi, qi]; hence,

i D] < 8] ()] < B (63)
for all s > fy — tyy and (j, 1) € A,, and
AT ()] <25], 1A% ()] < 25) (64)

for all s > fy — 1a and (j, 1) € A, under condition (S1). Recall Eq. (35) and 1) =x,() —
Xj+1,:(-). From Eq. (2), for each (j,1) € A; and s> 1, there exists some 7;;(s) with

150 ()| < 5] (65)
such that

AL () = §14(9)Z(5). (66)
In addition, applying the mean-value theorem yields

Al () = B (€1 ())20(5) (67)

for all (j,!/) € A; and s> 1y, where &; /(s) is some value between x; ;(s) and x;;1,(s). Recall
Eq. (27). Notably,

H(&0(s)) € [ i) < [~ i) (68)
for all (j,1) € A, and s > 19, as &;,(s) € [—qy, g;] for all s > 7. Recall from Lemma 2.5 that
Z(1) satisfies Eq. (45) under condition (S2). As seen from Egs. (8), (10), and (36),

ALy @) S [=df. di], ALy — ) S [—dyy, diy] (69)

for i e N—~{N}, k,l € IC, and t>1ty. From Egs. (10), (66), (67), and (69), there exist some
Gin (@) and by (t) for i e N, k,1 € K, and 1> 1y, with

i (1) € colan (xi.1(1))] S [—au, aul, i) e colbr (xii(t — )] S [—burs bu], (70)
and some Sgkl(t) and Sib’kl(t) fori e N —{N}, k,I € K, and t>1tq, with

80 (1) € ALy (1) C [—dy. dfy ). 87 () € ALyt — ) S [—dfy. dfy]. (71)
such that Z(r), which satisfies Eq. (45), now satisfies

Zik (@) = —Aixsign(zix () + aix Ozin @) + Bix(Ozix(t — w) + ik ®)zix @ — 1)
Fwir(t) + e (t) (72)
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for a. e. t>1g and (i, k) € A,, where

ok (t) = —di + Ai OV () — xvihy Eix (1)), (73)
Bik(t) = bis()Tix(t — T0). (74)
Yik(t) = vie Wi + Ol & (t — T7)), (75)

wik® = 3 @ OO0 + b Tl = )z = )]

leK—{k}

+ Z wiihi (€t — 7)) zjk (¢ — 1), (76)
JEN—{i,N}

eir(t) = Z [Sfsz @) fi(xig1@)) + Sfsz(l‘)fl(xml,z(l - fl))]

lek

v D s @) = xie@®) = wesns(x@) = xipe®)]. (77)
JeEN—{i,i+1}
Accordingly, Z(¢) satisfies Eq. (59), as seen from Eqs. (72)—(77). Applying Egs. (53)—(56),
(65), (68), and (70) yields that «;x(f), Bix(?), Yix(®), and w;,(t) in Eqs. (73)-(76) satisfy
Egs. (60) and (61). As seen from Egs. (64), (66), and (67),

[V;1(8)zj1(s)] < 2/5{, |y (§.1(5)z;.0 ()] < 27), (78)
for all s > fy — 7y and (j, 1) € A.. As seen from Eq. (7),
lsCji(s) —xii(s)) <§ (79)

for s>1y, i, j € N, and [ € K. By Eqgs. (57), (58), (63), (70), (71), (78), and (79), w;,(¢) in
Eq. (76) and e;x(7) in Eq. (77) satisfy that w; (1) < p;, and e;x(t) < pj, for 1 > fy, which
yields Eq. (62). Thus, we complete the proof. [

3. Main results.

This section establishes the global synchronization of system (4). Recall
that (x;(),...,xy@))7 is an arbitrary solution of system (9), where x;(t) =
(1@, ..., xix@)T, i € N. Applying Lemma 2.6 shows that (z;(¢),...,zy_1(t))T sat-
isfies system (59), where z;(¢) = (zi1(t), ..., zig ()T =x;(t) — %11 (t), i=1,...,N — 1.
In the following discussion, let us preview the main process for showing z;;(t) =
Xi,(t) — X1 (&) > 0 as t - oo for all (i,k) € A,. This then establishes the global
synchronization of system (4). Let us first relabel the two-dimensional indices in system
(59) to one-dimensional indices through the bijective mapping ¢: A, — {1,..., K(N — 1)}
defined by

i, k) =@ —1)x K +k. (80)
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The assignment of the label £(i,k) corresponds to the sequence (i,k) generated by considering
the order of i and k in succession; more precisely,

L3, k) <€(j, 1) ifi<yj;, €d,k)<£3,1) if k<. 81)
By labeling z¢x) =2z, system (59) becomes

Zegi) () = —Airsign(zegp (1)) + ik ()ze i @) + Bix @)ze k) (¢ — )
+VirkOze ) — Tr) +wik () + e x (1) (82)

for a. e. t>1y and (i, k) € A,, where each z,y satisfies

Zen (1) € [—2Gk. 2gx] for all 1 > 7y — tyy, and zeqiy (1) = [—2Gk, 24k ]
C [—2qk.2qk] as t — oo

based on Proposition 2.3.

With the quantities in Eqs. (26), (41), and (54)—(58), we introduce the following conditions:

Condition (S3): A;x > pf, for all (i, k) € A..

Condition (S4) Li,k = _&i,k — Igi,k — );i,k — plwk/(Zc}k) > 0 for all (l, k) S Az.

The reason why conditions (S3) and (S4) are needed in the synchronization theory can be
deduced from in the following. From Lemma 2.6 and condition (S3), o; (1), Bix(t), yix(?),
wik(t), and e;(f) in Eq. (82) satisfy Eqs. (60), (61), and |e; x(¢)| < pik < iy forall £ > 7y
and (i, k) € A;. Hence, each component equation of z in Eq. (82) satisfies Eqs. (12)—(14)
with z(t) = 2y (1) § = Gy § = Gis A = hig, @(t) = a;x(t), B(t) = Bix (@), v (1) = yix (1),
w(t) =wir(t), e(t) = e (t), 15 =, T =17, [&, &] = [dik, Aixkl, [—B, Bl = [—Bix, Bikl,
[—¥, 7] = [—¥ik, Vix]; moreover, condition (Sp) is satisfied under condition (S4). Applying
Proposition 2.2 then yields that zy; k) (t) = [—Peg.k), Pei] for each (i, k) € A;; moreover,

0 < Peiiy < Iwik]™ (00) /nix, (83)
where
Mk =~k — Bik — Vik- (84)

The following proposition shows that p,; ) in Eq. (83) can further be estimated iteratively.

Proposition 3.1. Assume that conditions (S1)—(S4) hold. Then, for each (i,k) € A,, there
exists a sequence {pe(l &) Ineos Which satisfies

0 < peipy < Pffé?,k) (85)
for n>0, where
pivfk/nl-,kv n:(),
k=1 (= 7 o\of @) K 7 b ) ol =D
P%) b= 2o (akl + bkl)"l pér(li,l) + 2kt (akl + bkl)"l Pzr(li,l) (86)

‘H’ka(ZJ 1 |Wz]|17[(,k) + Zj =i+l |W11|Pz(1k))i|/m,k’ n=t
Herein, yy is defined in Eq. (0), le in Eq. (2), ay and l_akl in Eq. (8), I:Ik in Eq. (27), w;j in
Eq. (43), pi‘j’k in Eq. (57), and n;x in Eq. (84).

Proof. Let us verify Eq. (85) by induction. First, we consider n =0 and (i, k) € A,.
Recall from Eq. (62) that [w;;|™(00) < |w;x|™* () < pj for all (i, k) € A,. Thus,
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Ofﬁz(,-,k)S,O;fk/fli,kzp%,k) for all (i,k) € A, based on Eq. (83). Next, we as-
sume that for some (i,k) € A, and no>1, 0 < py < P%,z) holds; hence, zy(;;)(t) —
[— p;'gl),pm,)] as t — oo, for ne{0,1,....,n0—1}, (j,)e A. and n=noy, (j,I)€

{(] D): Z(] D < £(i, k)}. Applying Eq. (61) and the order properties of mapping ¢, cf. (81),
yields

[wi ™ (00)
k=1

1
Z ay + bkl Vl pg(, 1) + Z ag + bkl)vl sz(?n)
=1 I=k+1

no—1
+Vka Z|W11|Pg’8)k)+ Z |Wu|pg(] )
j=1 Jj=i+1
_ (o)
= Pyiiyiks

which implies 0 < pyix) < [wir|™(00)/nix <p("°) based on Eq. (83). We thus verify
Eq. (85). O

For later use, we define the following matrix by mapping £.

M = Dm — Lm — Um = [myli<iy<kv-1) (87)
with
Miks 1=J =43, k),
o ) =@+ ) =Gk, = LG D, LAk, )
T ) =Bl r= G k), g = 03 k), i #
0, otherwise,

where Dy, —Ly, and —Uyy represent the diagonal, strictly lower-triangular, and strictly upper-
triangular parts of M, respectively. From Eq. (88) and the order properties of mapping ¢, cf.
(81), and labeling pgz)k) = p™ if £(i,k) =1 for all n € NU {0} and (i, k) € A, Eq. (86) can
be rewritten as follows:

K(N—1)

pf()) = px/k/ni,k; ,(n) = [ Zmup(n) Z mz/l’(n 1)]/7’”11, n= 1. (89)

J=i1+1

With p defined in Eq. (89), 1 <1< K(N —1) and n € NU{0}, {(p{"..... piin_1)T 120
is exactly the Gauss—Seidel iteration for solving the linear system

My = 0. (90)

The following theorem transforms the problem of global synchronization of system (4) into
solving linear system (90).

Theorem 3.1. Consider system (4) under conditions (S1)—(S4). Then, the system attains global
synchronization if the Gauss—Seidel iteration for solving the linear system (90) converges to
zero, the unique solution of (90), or equivalently,

Agyn 1= max {|k,| : X, : eigenvalue of (Dy —LM)’IUM} < 1. 1)
1<i<K(N—1)
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Proof. Assume that conditions (S1)—(S4) hold. Recall that (x;(¢), ..., Xy (t))7 is an arbitrary
solution of system (9), where x;(t) = (x; 1 (¢), . ..,x,;;((t))T, i € N. Recall that zp 4 () =
Xik () = Xij41(t) = [=Dedi iy, Peiioy] as t— 00, where 0 < py(ix) < Pg(l,);k) =p™ if £(i, k) =
1 for all n € N. Consequently, if {(p(”) P;?()N 1)) 152, the Gauss—Seidel iteration for
solving system (90), converges to zero, then py;x) = O for all (i, k) € A;. This then establishes
the global synchronization of system (4). Recall that condition (S4) implies that all diagonal
entries of M (i.e., n;x for (i, k) € A;) are positive. Accordingly, (Dy — Ly)~! and Agyn €XiSt;
moreover, the Gauss—Seidel iteration for solving system (90) converges to zero if and only if
Asyn < 1. Thus, we complete the proof. [J

Remark 3.1. (i) As seen from Eqs. (84), (88), and the definitions of &;, Bi,k, and y;; in
Egs. (55) and (56), the entries m, in matrix M are determined by d, yx, and 17,{ defined in
Eq@ (1), (2) and (6), ay and l_)kl in Eq. (8), fAIk in Eq. (27), x in Eq. (39), w;; in Eq. (43),

av iy and H/ in Eq. (53), where di, v, 17,{, I:Ik, Hl‘”k, I-VI,:‘, ay;, and by are nonnegative. In
general, posmve and sufficiently large diagonal entries of M (i.e., 0,y = — Qi — ,3, kK — Viks

cf. (84)) promote the convergence of the Gauss-Seidel iteration for system (90). Accordingly,
in general, the criterion in Theorem 3.1 prefers: positive dj + kaH with large magnltude

small akkv[, small bkkvk, and small yi|w;; + X|Hk if T7#0; and positive dj, — ykw,,Hi.k with

large magnitude, small &kk\")[, and small Bkkﬁ,{' if T =0, such that in each case, 1 is
positive and large. (ii) The criterion in Theorem 3.1 is independent of the network scale
(N) and the magnitudes of the delays 7, and 77 (if t7#£0). (iii) As seen from (6), the
coupling terms U;i(f) in system (4) are formulated with a sign function sign(-). The sign
function was also utilized in the design of the discontinuous controllers to investigate the
finite-time synchronization problem of coupled systems; for instance, see [45]. (iv) System
(4) has discrete-time delays t; (/€K) and t7. The present approach in this paper may also
be extended to treat memristor-based neural networks with distributed delays, cf. [46].

4. Numerical examples

This section illustrates Proposition 2.3 and Theorem 3.1 using the following three examples.
Example 1 demonstrates the application of Proposition 2.3 to provide an estimated globally
attracting region for system (4). As seen from condition (S2), the synchronization criterion
in Theorem 3.1 depends on whether the transmission delay (r7) exists, and requires that Eq.
(39) holds if T7#0. In the following, Example 2 considers system (4) which is with 77 =0
and does not satisfy Eq. (39); Example 3 considers system (4) which is with t7#0 and
satisfies (39). The numerical simulation in Example 2 shows that the invariance of synchronous
set S of system (4), defined in Eq. (38), is lost if considering t77#0 instead of 7, = 0.
Examples 2 and 3 also show that the size of matrix M in the synchronization theory (cf. (87),
(90), and Theorem 3.1) is larger if the scale of the considered networks is larger. In Examples
2 and 3, for a solution of system (9), we define the corresponding synchronization error:

Err(t) := Z Z[x, k() — xip1 . ()12

ieN—{N} kek

Notably, the solution synchronizes if Err(tf) — 0 as t— oo; the solution is synchronous at time
tif Err(t) = 0.
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Example 1. Consider three coupled networks (4) in which each individual network (1) has
two neurons, and for which dy =d, = 0.5, 1 = 10 =20, fi(§) = f,(§) = (JE +0.5| — |€ —
0.5))/2, [(t) =L(t)=0, Ty =03, T, =0.1, and

ay i < T,
ay i (O = Tp,

by |xi =) <T,
bl xi(t =) =T,

an (%1 (1)) = { bu(xi(t —7)) = {

fori=1,2,3 and k,!/ =1, 2, where
(d}y, iy, dby, dby) = (0.03,0.01, —0.1,0.2), (a],, af,, dy,, a5,) = (—0.02, —0.02, 0.1, 0.1),
(b1, bl By, Byy) = (—0.6, —0.1,0.1, —0.1), (&},, b5, b5, bs,) = (—0.65,0.2, —0.1,0.1).
The coupling terms U;(f) in Eq. (6), i=1,2,3, k=1,2, have h(§)=mh(E)=
0.5tanh(2¢), y1 = > =0.1, § =0.01 in Eq. (7), 77 = 20, and w;;, 1 <1, j<3, satisfying

0 —04 —0.1
W =[wili<ij<s:=|005 0  —035
—0.1 -035 0

Notably, ,Elf and ,51” in condition (S1)* and I; in Eq. (3) can be chosen as

pl=pl=pl=pt=05T=0L=0. 92)

From Eq. (8), we obtain

(@, dn, a, ax) = (0.03,0.02,0.1,0.2), (b1, bi2, bay, br) = (0.65,0.2,0.1,0.1). (93)
We compute Eq. (28) to obtain

@ =0.5. 94
From Eqgs. (92)-(94), we compute Egs. (26) and (29) to obtain

q1 = 1.001, g, = 0.601, g; ~ 0.9974, g, ~ 0.5844. (95)

As seen from Eq. (95), condition (S1) holds. By Proposition 2.3, for any solution (x;(?), X»(?),
x3(1)7 of the system,

Xip () = [~ @] € [~ @] as 1 — oo, (96)

for i=1,2,3 and k=1,2, where x;(t) = (x;.1(t),xi2(t))7, G1 ~0.9974, G, ~ 0.5844,
g1 =1.001, and §, = 0.601. Accordingly, (x;(f), X2(f), X3())T eventually enters, and
then remains in set D = {(x1, y1, X2, y2, X3, y3)! : —1.001 < x; < 1.001 and — 0.601 <y; <
0.601,7i =1, 2, 3}. Fig. 1(a) and (b) demonstrate the evolution of two solutions, which evolve
from the constant initial conditions (-5, —5,5, —6, —6, 8)T and (4,5, -5, 5,6, —6)T at
to = 0, respectively. They show that these two solutions eventually enter, and then remain in,
some set contained in D.

Example 2. Consider four coupled networks (4) in which each individual network (1) has
four neurons, and for which d; =1, d, =2, ds=ds = 1.5, 1y =15, fi(§) = (€ +0.1| —
|E —0.1])/2, L(1)=0, I,(1)=0.15, I;(¢t) = 0.3sin(t/10), I4(t) = 0.2cos(t/5), T; = 0.1, and

a, x| <71,

a (xi1 (1)) = { "

ay lxi ()| > 11,

by Ixi@ -1 <7,
by, xigt =) =T,

bt —7)) = {
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Fig. 1. Numerical simulation for Example 1.

fori=1,2,3,4and k,/ =1,2,3,4, with

[a/,cz]15k,zg4 =

[‘41]151(,154 =

[%1]151(,154 =

[b;c/l]lgk,lg4 =

0.05
0.05
0
0.02

—0.05
—0.05
0.05
—0.03

—1.02
—0.04
0
—0.03

—1.03
0.01
0.05
0.02

05 02 0.5
0.05 0.3 0.05
0.05 0.01 0 ’
0 0.02 —0.05
04  0.15 0.45
0 0.2 —0.05
0 —-0.04 0.05
0.05 -0.03 0
0 0.15 0.05
—1.07 0.2 0
0.05 -0.11 -0.05
0.05 —-0.03 0.05
—0.05 0.2 —0.05
—-1.02 0.25 0.05
0.02 -0.12 0.05
0 0.02 0

’

The coupling terms U;x(¢) in Eq. (6), i =1,2,3,4, k =1, 2, are with s (§) = 50 tanh(£/50)
and yy =0.2 for k =1,2,3,4, §s=0.8 in Eq. (7), 7r =0, and w;;, 1 <i, j <4, satisfying

0 1.2 0 —0.01
08 0 04 0

W = [wijli<ij<4 = 0 08 0 0.05 or
0 0 1.2 0

Notably, the considered system satisfies condition (S2) because 77 = 0. In addition, ﬁlf and

,5[” in condition (S1)*, v; in Eq. (2), and I, in Eq. (3) can be chosen as

pl =01, pf =505 =1,1,=0,,=0.15,, = 0.3, 1, = 0.2, (98)

for [ =1, 2, 3, 4. The quantities in Eq. (8) now satisfy
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0.5 a0 |
04} X,20] |
= %150
LI.I;r 0.3 X1,4(|) q
— Err(t)
%, 02 q
X /\"“
& 0.1 | il
-0
x
MAVALY/ V/RVAWY/E
-0.2 - 4

0 20 40 60 80 100 120 140 160 180 200
time t

(@17 =0

Err(t)

. . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time t

(®) 77 =2

Fig. 2. Numerical simulation for Example 2.

005 05 02 05 103 005 02 0.05
_ 005 005 03 005]| - 004 1.07 025 005
[@ulisi=s= 005 005 004 005 | [Pelisi=e=]005 005 012 005]
0.03 005 003 005 0.03 005 003 005
99)
0.1 01 005 005 0.01 005 005 0.1

[d“] _ 101 005 01 0.1 [db] _10.05 0.05 0.05 0.05
kliski<a =™ 10.05 0.05 0.05 0.05]| U#liski<a ™ 10.05 0.03 0.01 0.1
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

(100)
From Eq. (97), W in Eq. (43) is now

] ~1.99 041 0.1
W =[] = 08 —12 005 |, (101)
0 08 125

and computing Eqgs. (28) and (41) yields
o = 1.21, (M,k, Aok, )L3yk) = (0.32,0.192,0.2), (102)
where k = 1,2, 3, 4. From Egs. (98)-(102), we compute Eqgs. (26)—(29) and (53) to obtain

{ql ~ 24.6516, §» ~ 12.3648, §3 ~ 16.4931, g4 ~ 16.4171,

G1 ~ 11.5018, §» ~ 3.1975, G5 ~ 5.4965, G4 ~ 5.3985, (103)
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pl =pl =5l = 5] =01, pl~22.8310, 5! ~ 12.1188, 5! ~ 15.9198, 5 ~ 15.8515,
(104)

{HZVI = H, ~0.7915, HY, = F, ~ 0.9413, A", = H; ~ 0.8986, ", = H; ~ 0.8995, (105)

e T e A A T
Hi,l_Hi,Z_Hi,S_HiA_ 1 =H,=H3=H, =1,

where i = 1,2,3. From Egs. (98) and (103), it follows that condition (S1) holds. From
Egs. (97)—(101), (104), and (105), we compute Eqs. (54)—(58) to obtain

6[1,1 ~ —1.3650, 6[12 ~ —2.4246, &1!3 ~ —1.8977, &1’4 ~ —1.9080,
&2_1 ~ —1.2400, &2,2 ~ —2.2759, &2,3 ~ —1.7557, (’)22,4 ~ —1.7659, (106)
Q31 & —1.2479, G2 & —2.2853, G35 &~ —1.7647, G3.4 ~ —1.7749,

Bi1 =103, B, =1.07, 83 =0.12, B4 = 0.05, yi; =0, (107)

Py~ 41356, py, ~ 2.1840, pl'y ~ 2.7345, p, & 2.7070,

p¥ |~ 8.0625, pY, ~ 4.2684, py; ~ 5.4727, p¥, ~ 5.4335, (108)
Py~ 7.6059, py, ~ 4.0260, pi 5 ~ 5.1543, p§, ~ 5.1165,

p¢ = 0.1166, p¢ , = 0.1206, pf , = 0.1046, p¢ , = 0.1056,
pS | = 0.1870, p¢ , = 0.1910, p$ 5 = 0.1750, p , = 0.1760, (109)
ps, = 0.1790, p¢, = 0.1830, p 5 = 0.1670, p , = 0.1680,

where i =1,2,3 and k =1,2,3,4. The application of Egs. (102) and (109) reveals that
condition (S3) holds. By Egs. (103) and (106)—(108), we compute L;; in condition (S4) and
nix in Eq. (84) to obtain

Liy ~ 02511, L1y ~ 1.2663, L3 ~ 1.6948, Ly 4 ~ 1.7756,
L2,1 ~ (0.0464, quz ~ 1.0333, L2!3 ~ 1.4698, L2,4 ~ 1.5504, (110)
L3,1 ~ 0.06306, L3!2 ~ 1.0525, L3’3 ~ 1.4884, L3,4 ~ 1.5690,

N, ~ 0.3350, N2~ 1.3546, N3~ 1.77717, N4~ 1.8580,
M1~ 0.2100, Ny &~ 1.2059, M3~ 1.6357, N4~ 1.7159, (111)
M1 A 0.2179, n30 & 1.2153, 135 & 1.6447, n3.4 ~ 1.7249,

where Eq. (110) reveals that condition (S4) holds. Notably, £ defined in Eq. (80) now satisfies

{((1, 1)=1,£(1,2) =2,£(1,3) =3,¢4(1,4) =4,£(2,1) =5,£(2,2) =6, (112)

£(2,3) =17,£(2,4)=28,£(3,1)=9,£3,2) =10,£(3,3) =11,£(3,4) = 12.
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Applying Eqgs. (88), (98)—(101), (105), (111), and (112) yields that M defined in Eq. (87) is
approximately [M;]; <j<2, which yields Agy,~0.9784, cf. (91), where

0.3350 -0.55 —-04 —-0.55 —0.082 0

—-0.09 13546 —-0.55 0.1 0 —0.082
—0.1 -0.1 17777 0.1 0 0
-0.06 —-0.1 —-0.06 1.8580 0 0
—0.16 0 0 0 0.2100  —0.55
My, = 0 —0.16 0 0 —0.09 1.2059
0 0 —0.16 0 —0.1 —-0.1 |’
0 0 0 —-0.16 —0.06 —0.1
0 0 0 0 —0.16 0
0 0 0 0 0 —0.16
0 0 0 0 0 0
0 0 0 0 0 0
0 0 —0.002 0 0 0
0 0 0 —0.002 0 0
—0.082 0 0 0 —0.002 0
0 —0.082 0 0 0 —0.002
—-0.4 -0.55 -0.01 0 0 0
My = —0.55 —0.1 0 —0.01 0 0
1.6357 —0.1 0 0 —-0.01 0
—-0.06 1.7159 0 0 0 —0.01
0 0 0.2179  —0.55 —-0.4 —0.55
0 0 —-0.09 1.2153 —0.55 —0.1
—0.16 0 —0.1 —0.1 1.6447 —0.1
0 —-0.16  —0.06 —0.1 —-0.06  1.7249

Thus, the coupled networks achieve global synchronization by Theorem 3.1. Fig. 2(a) shows
the evolution of the components of the first network (i.e., xj (¢), k =1,2,3,4) and the
corresponding synchronization error Err(f) for the solution, which evolves from the constant
initial condition (0.2, —0.2,0.3,0,0, —0.1,0.2,0,0.2, —0.2,0.3,0,0, —0.1,0.2,0)" at t) =
0. This shows that the solution synchronizes.

In this example, W does not satisfy Eq. (39); hence, condition (S2) does not hold if it is
considered that t7#0. Fig. 2(b) shows that by considering 77 = 2 instead of 77 = 0, then,
for the solution that evolves from the synchronous initial condition (®(f), ®(1), (1), (1),
@) = (e, —e ", e, —e )T at ty =0, Err(¢) fails to remain zero. This indicates that the
synchronous set S, cf. (38), is not positively invariant.

Example 3. Consider three coupled networks (4) in which each individual network (1) has
two neurons, and for which d; =2, d, =1.2, 11 =1 =20, fi(¢) = f,(§) = (& +0.1| —
& —0.1])/2, I;(£)=0.25, L,(t) = 0.1sin(¢/5), T} = T, = 0.05, and

a, x| <1,

Ayl (xi,l(t)) = { 1"

ay X @) =1,

fori=1,2,3 and k,] =1, 2, where

by lxi =)l <T,
b Ixi@ =) =T,

by (xi (t — 1)) = {
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(d}y, a},, ay, ayy) = (0.01,0.02, —0.02, —0.03), (daf,,a},,a,,a5,)
= (—0.01, —0.02, 0.02, 0.03),

(B, by By byy) = (—2.028,0.1,0.1, —0.2), (B, by, By, )
— (=2.026, —0.1, —0.1,0.2).

The coupling terms U (r) in Eq. (6), i=1,2,3, k=1,2, have h(§)=hy (&)=
200 tanh(&/200), 1 =0.28, »» =0.2, s=2 in Eq. (7), 77 =2, and w;;, 1 <i, j<3, sat-
isfying
0 08 02
W= [Wij]lfi,j§3 =103 0 0.7]. (113)
03 07 0

From Eq. (113), the considered system uses 77 = 2, and satisfies Eq. (39) with x = 1; he_nce,
condition (S2) is satisfied. Notably, ﬁlf and ,6{‘ in condition (S1)*, Elf in Eq. (2), and [} in
Eq. (3) can be chosen as

pl=p) =0.1,p0 = pl =200,0] =vf =1,I, =0.25,, = 0.1. (114)
From Eq. (8), we obtain

(@i, ap, @, ax) = (0.01,0.02, 0.02,0.03), (b1, b2, bar, by) = (2.028,0.1,0.1,0.2),
(dy,, dfy, gy, d%) = (0.02,0.04, 0.04,0.06), (a2, d¥, d2,, db) = (0.002,0.2,0.2,0.4).

(115)
From Eq. (113), W in Eq. (43) becomes
= - —-1.3 05
W = [wiliij<2 = < 0 _1'7), (116)
and we compute Eqgs. (28) and (41) to obtain
=1, A1 =0.616,1;, =0.44, Ay, = 0.784, 12, = 0.56. (117)
From Egs. (114)—(117), we compute Eqs. (26)—(29) and (53) to obtain
q1 ~ 56.5129, g, =~ 67.1125, ¢, ~ 15.9284, ¢, ~ 22.0132, (118)
~f _ ~f _ ~h ~h ~
py = p, =0.1, pf = 55.0554, p, ~ 64.7020, (119)
HY = H, ~0.9242, Hf = H, ~ 0.8953, H* = H, = H = H, = 1. (120)

As seen from Eqgs. (114) and (118), condition (S1) holds. From Eqgs. (113)—(116), (119),
(120), and x = 1, we compute Eqs. (54)—(58) to obtain

Qiq A~ —2.2488, G;0 ~ —1.3491, Biy = 2.028, B = 0.2, 1.1 = 0.084, 71, = 0.06,  (121)

721 =0.196, 722 = 0.14, pi', ~ 15.4395, pl¥, ~ 12.9644, p¥, ~ 0.0240, (122)
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Fig. 3. Numerical simulation for Example 3.

P 1 = 0.5302, pf , = 0.4300, p§ , = 0.3622, p5 , = 0.3100, (123)

where i = 1,2 and k = 1, 2. From Eqgs. (117) and (123), it follows that condition (S3) holds.
Using Eqgs. (118), (121), and (122), we compute L;; in condition (S4) and 7n;4 in Eq. (84) to
obtain

Ly ~0.0002, L,; ~ 0.0246, L; » =~ 0.9925, L, , ~ 1.0089, (124)

N1~ 0.1368, N1 ~ 0.0248, N ~ 1.0891, N2 =~ 1.0091. (125)

Notably, Eq. (124) reveals that condition (S4) holds. The mapping ¢ defined in Eq. (80) now
satisfies

£1,1)=1,2(1,2) =2,¢12,1) =3,£(2,2) = 4. (126)
From Eqgs. (88), (114)—(116), (120), (125), and (126), we obtain that M is approximately
0.1368 —-0.12 —-0.14 0

—0.12  1.0891 0 —0.1
0 0 0.0248 —0.12 |’
0 0 —0.12  1.0091

which yields Agn~0.5758, cf. (91). Subsequently, the coupled networks achieve global syn-
chronization by Theorem 3.1. Fig. 3 demonstrates the evolution of the components of the
first network (i.e., x| x(f), k = 1,2) and the corresponding synchronization error Err(t) for
the solution, which evolves from the constant initial condition (—0.1, —0.1, 0, —0.1, 0, 0)7 at
to = 0. This shows that the solution synchronizes.

Remark 4.1. As discussed in the Introduction, the existing work on synchronization of cou-
pled MNNs mostly considered linear couplings or couplings that consist of a linear term and
a sign function term. In addition, the work which considered multiple MNNs required that all
nonzero off-diagonal entries of the connection matrix have the same signs. Notably, the cou-
plings considered in Examples 2 and 3 consist of a nonlinear term and a sign function term;
moreover, the off-diagonal entries of the connection matrix considered in Example 2 have
mixed signs. To the best of our knowledge, synchronization of the systems in Examples 2
and 3 can not be concluded by existing techniques, even if the system in Example 2 is without
a transmission delay (i.e., 77 = 0).
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5. Conclusion

This study establishes the global synchronization of multiple MNNSs. Previous studies on
synchronization of coupled MNNs commonly considered linear couplings or couplings com-
prising a linear term and a sign function term; moreover, most studies did not consider
transmission delays across different networks. In addition, the work that considered multi-
ple MNNs required that all nonzero off-diagonal entries of the connection matrix have the
same signs. The model under consideration in this paper can have both internal delays and
transmission delay. The coupling functions consist of a nonlinear term and a sign term, and
the off-diagonal entries of the connection matrix can have mixed signs. The derived synchro-
nization criteria depend on whether the transmission delay exists, and it can be examined
by straightforward computations. We implemented our theories to study the global synchro-
nization of nonlinearly coupled MNNs in two examples, which cannot be treated by the
existing approaches, cf. Remark 4.1. In our future work, we are interested in establishing the
delay-magnitude-dependent synchronization criteria of multiple MNNs.
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