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COALESCENCE IN SUBCRITICAL BELLMAN–HARRIS
AGE-DEPENDENT BRANCHING PROCESSES

JYY-I HONG,∗ Waldorf College

Abstract

We consider a continuous-time, single-type, age-dependent Bellman–Harris branching
process. We investigate the limit distribution of the point process A(t) = {at,i : 1 ≤
i ≤ Z(t)}, where at,i is the age of the ith individual alive at time t , 1 ≤ i ≤ Z(t), and
Z(t) is the population size of individuals alive at time t . Also, if Z(t) ≥ k, k ≥ 2, is
a positive integer, we pick k individuals from those who are alive at time t by simple
random sampling without replacement and trace their lines of descent backward in time
until they meet for the first time. LetDk(t) be the coalescence time (the death time of the
last common ancestor) of these k random chosen individuals. We study the distribution
of Dk(t) and its limit distribution as t → ∞.
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1. Introduction

1.1. Definition of Bellman–Harris branching processes

We consider a single-type, continuous-time, age-dependent branching process such that each
individual lives for a random amount of time, say L, with distribution function G and, upon
death, produces a random number ξ of children according to the offspring distribution {pj }j≥0
with L and ξ independent. All individuals live and produce children independently of each
other and with the same distributions. (See [3, Chapter 4].)

Let Z(t) be the population at time t , i.e. the number of individuals alive at time t . Then
{Z(t) : t ≥ 0} is called a continuous-time, single-type, age-dependent Bellman–Harris
branching process with lifetime distribution G(·) and offspring distribution {pj }j≥0.

Letm ≡ ∑∞
j=1 jpj .The Bellman–Harris branching process is called a supercritical, critical,

or subcritical process according to whether 1 < m < ∞, m = 1, or m < 1.
For the lifetime distribution G, we assume throughout that G(0+) = 0. This together with

finite mean (i.e.m < ∞) guarantees the almost-sure finiteness of the process for all time t > 0,
i.e. P(Z(t) < ∞) = 1 for all 0 < t < ∞.

Definition 1.1. The Malthusian parameter for m and G is the root α in R (provided it exists)
such that

m

∫ ∞

0
e−αx dG(x) = 1.
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Due to the monotonicity of the left-hand side of the above equation as a function of α, such
a root, when it exists, it is always unique. Also, such a Malthusian parameter α always exists
and is necessarily nonnegative when m ≥ 1.

Let f be the generating function of the offspring distribution, i.e.

f (s) =
∞∑
j=0

pj s
j , 0 ≤ s ≤ 1.

Let

F(s, t) ≡
∞∑
j=0

P(Z(t) = j | Z(0) = 1)sj , 0 ≤ s ≤ 1.

Thus,

F(s, t) ≡ E(sZ(t) | a newborn ancestor at time 0) = E(sZ(t) : L0 > t)+ E(sZ(t) : L0 ≤ t),

where L0 is the lifetime of the ancestor. On the event {L0 ≤ t},

Z(t) =
ξ0∑
j=1

Zj (t − L0),

where ξ0 is the number of offspring of the ancestor and {Zj (t −L0) : t ≥ L0} is the branching
process initiated by the j th offspring of the ancestor, j = 1, 2, . . . , ξ0. Thus,

F(s, t) = s(1 −G(t))+
∫

[0,t]
f (F (s, t − x)) dG(x);

F(s, t) can be shown to be the unique bounded solution of the above integral equation (see [3,
pp. 139–140]). Thus, F is fully determined by the pair (f,G).

We now present some well-known results for Bellman–Harris processes. (See [3] for proofs.)
Let q be the probability of extinction, i.e.

q ≡ P(Z(t) = 0 for some 0 < t < ∞ | Z(0) = 1).

It is known that q = 1 in the critical and subcritical cases (0 < m ≤ 1).

Theorem 1.1. If m �= 1, 0 < γ = f ′(q), G is nonlattice, the Malthusian parameter α for γ
and G exists, and µα = γ

∫
te−αt dG(t) < ∞, then

lim
t→∞ e−αt (q − F(s, t)) ≡ Q(s) exists for 0 ≤ s ≤ 1.

Furthermore,

Q(s) ≡ 0 ⇐⇒ m < 1 and
∞∑
j=1

(j log j)pj = ∞.

Theorem 1.2. Let 0 < m < 1 and
∑∞
j=1(j log j)pj < ∞. Assume that the Malthusian

parameterα form and the lifetime distributionG exists and that
∫ ∞

0 te−αt dG(t) < ∞. Then

(a) for all j ≥ 1,
lim
t→∞ P(Z(t) = j | Z(t) > 0) = bj

exists,
∑∞
j=1 bj = 1, and

∑∞
j=1 jbj < ∞,

(b) P(Z(t) > 0) ∼ ceαt for some 0 < c < ∞.
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1.2. The age chart

Since, by Theorem 1.2(a), conditioned on the event of nonextinction, the population Z(t) of
a single-type, continuous-time, age-dependent subcritical branching process will converge to a
proper real-valued random variable in distribution as t → ∞, the question of the convergence
of the age chart of the individuals alive at time t is of interest. Let at,i be the age of the ith
individual alive at time t , 1 ≤ i ≤ Z(t). Then, {A(t) ≡ {at,i : 1 ≤ i ≤ Z(t)}, t ≥ 0} is a
point process. In this paper, the limit distribution of A(t) as t → ∞ conditioned on the event
{Z(t) > 0} will be discussed.

1.3. The coalescence problem

Suppose that, for t > 0, Z(t) ≥ k. Now, pick k individuals at random from the population
alive at time t by simple random sampling without replacement. Trace their lines of descent
backward in time till they meet. Let Dk(t) be the coalescence time of these k individuals alive
at time t . We call this common ancestor who died at time Dk(t) their last common ancestor.
In this paper, the limit behaviors of the distributions of Dk(t) as t → ∞ for k ≥ 2 is studied
for the subcritical age-dependent Bellman–Harris branching process.

The analog of Theorem 2.2 (below, the result on the coalescence time) for the discrete-time,
single-type Galton–Watson branching processes has been addressed in [1] (for supercritical
and explosive cases) and [2] (for critical and subcritical cases). Also, Lambert [7] considered
the discrete and continuous (time and state space) settings for subcritical cases and Hong dealt
with continuous-time, age-dependent supercritical Bellman–Harris branching processes in [5].
For the results on multitype discrete-time processes, see Hong [5] for supercritical, critical, and
subcritical cases.

2. Main results

The first result we establish for the subcritical case is the convergence of the age chart of the
population.

Theorem 2.1. Let 0 < m < 1 and
∑∞
j=1(j log j)pj < ∞. Assume that the lifetime

distribution G is nonlattice, G(0+) = 0 and such that the Malthusian parameter α exists,
and

∫ ∞
0 te−αt dG(t) < ∞. Then the following statements hold.

(a) Conditioned on the event {Z(t) > 0}, the point process

A(t) ≡ {at,i : 1 ≤ i ≤ Z(t)}
converges in distribution as t → ∞ to a point process

Ã ≡ {ãi : 1 ≤ i ≤ Y }, (2.1)

where Y is the random variable with distribution {bj }j≥0 as defined in Theorem 1.2. The
distribution of Ã is determined by its Laplace functional ϕ(s) in (3.10) below.

(b) Moreover, let rt,i be the remaining lifetime of the ith individual alive at time t . Let

R(t) ≡ {rt,i : 1 ≤ i ≤ Z(t)}.
Then, conditioned on the event {Z(t) > 0}, the point process R(t) converges in
distribution as t → ∞ to a point process

R̃ ≡ {r̃i : 1 ≤ i ≤ Y },
where Y is as in (a) above. The distribution of R̃ is determined by its Laplace functional
in (3.2) below.
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The above theorem can be used to prove Theorem 2.2 below on the coalescence problem for
a subcritical Bellman–Harris branching process.

Theorem 2.2. Let 0 < m < 1 and
∑∞
j=1(j log j)pj < ∞. Assume that the lifetime distribu-

tionG is nonlattice,G(0+) = 0, the Malthusian parameterα exists, and
∫ ∞

0 te−αt dG(t) < ∞.
Let Dk(t) be as defined in Section 1.3. Then, conditioned on {Z(t) ≥ 2},

t −D2(t)
d−→ D̃2 as t → ∞,

where D̃2 is a positive random variable such that P(0 < D̃2 < ∞) = 1. For any u ≥ 0,

P(D̃2 ≤ u) = 1 − 1

eαuP(Y ≥ 2)
E(φ(Ã, u)) ≡ H2(u),

where Ã and Y are as defined in Theorem 2.1,

φ((a1, a2, . . . , ak), u) = E

( ∑k
i �=j=1 Z̃i(ai + u)Z̃j (aj + u)

(
∑k
i=1 Z̃i(ai + u))(

∑k
i=1 Z̃i(ai + u)− 1)

1{∑k
i=1 Z̃i (ai+u)≥2}

)

for any positive integer k and any positive real numbers a1, a2, . . . , ak , and {Z̃i(t) : t ≥ 0}i≥1
are i.i.d. copies of {Z(t) : t ≥ 0} with newborn initial ancestors.

Remark 2.1. Coalescence thus takes place close to the present.

By the same lines as the proof of Theorem 2.2, we can extend the result to any integer k ≥ 2.

Corollary 2.1. Let 0 < m < 1 and
∑∞
j=1(j log j)pj < ∞. Then, under the same hypotheses

as in Theorem 2.2, for any k ≥ 2, t −Dk(t)
d−→ D̃k as t → ∞, where D̃k is a positive random

variable such that P(0 < D̃k < ∞) = 1.

3. Proofs of the main results

3.1. Proof of Theorem 2.1(a)

Let Z(t) be a continuous-time, single-type, age-dependent Bellman–Harris branching
process withZ(0) = 1. Letat,i be the age of the ith individual alive at time t , i = 1, 2, . . . , Z(t).

To establish Theorem 2.1, it suffices (see Theorem 4.2 of [6]) to show that, for any bounded
and continuous function h : R+ → R+ and s ≥ 0,

ϕ(s) ≡ lim
t→∞ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

] ∣∣∣∣ Z(t) > 0

)

exists and ϕ(0+) = 1.
Now, 0 ≤ s < ∞, t > 0,

H̃ (s, t) ≡ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

] ∣∣∣∣ Z(t) > 0

)

= 1

P(Z(t) > 0)
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

]
1{Z(t)>0}

)

= 1

P(Z(t) > 0)

[
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
− E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

]
1{Z(t)=0}

)]
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= 1

P(Z(t) > 0)

[
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
− E(1{Z(t)=0})

]

= 1

P(Z(t) > 0)

[
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
− 1 + 1 − P(Z(t) = 0)

]

= 1

P(Z(t) > 0)

[
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
− 1 + P(Z(t) > 0)

]

= 1

P(Z(t) > 0)

[
E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
− 1

]
+ 1. (3.1)

Let the ancestor be newborn. Then

H(s, t) ≡ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])

= E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

]
: L0 > t

)
+ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

]
: Lo ≤ t

)

= e−sh(t)
P(L0 > t)+

∫
[0,t]

f (H(s, t − u)) dG(u)

= e−sh(t)(1 −G(t))+
∫

[0,t]
f (H(s, t − u)) dG(u), (3.2)

which implies that, for any s ≥ 0, H(s, t) satisfies the integral equation

H(s, t) = e−sh(t)(1 −G(t))+
∫

[0,t]
f (H(s, t − u)) dG(u), H(s, 0) = e−sh(0).

Moreover,

H(∞, t) ≡ lim
s→∞H(s, t) = P(Z(t) = 0).

Then, by (3.1) and (3.2),

E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

] ∣∣∣∣ Z(t) > 0

)

= 1 − 1

P(Z(t) > 0)
[1 −H(s, t)]

= 1 − 1

P(Z(t) > 0)

[
1 − e−sh(t)(1 −G(t))−

∫
[0,t]

f (H(s, t − u)) dG(u)

]

= 1 − 1

P(Z(t) > 0)

[
(1 − e−sh(t))(1 −G(t))+

∫
[0,t]

[1 − f (H(s, t − u))] dG(u)

]
.
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For any fixed s ≥ 0, let

H(t) ≡ 1 −H(s, t), (3.3)

ξ1(t) ≡ (1 − e−sh(t))(1 −G(t)), (3.4)

ξ2(t) ≡
∫ t

0
[1 − f (H(s, t − u))−mH(t − u)] dG(u), (3.5)

ξ3(t) ≡ ξ1(t)+ ξ2(t). (3.6)

Then

H(t) = ξ3(t)+m

∫
[0,t]

H(t − u) dG(u).

Before we proceed to the proof of the theorem, we require the introduction of direct Riemann
integrability and some lemmas about the properties of the functions defined above.

Definition 3.1. A function ξ is directly Riemann integrable if

(a)
∑∞
n=0 δ(supnδ≤t<(n+1)δ ξ(t)) and

∑∞
n=0 δ(infnδ≤t<(n+1)δ ξ(t)) converge absolutely for

sufficient small δ > 0; and

(b) (
∑∞
n=0 δ(supnδ≤t<(n+1)δ ξ(t))− ∑∞

n=0 δ(infnδ≤t<(n+1)δ ξ(t))) → 0 as δ → 0.

Remark 3.1. Some sufficient conditions for the direct Riemann integrability of ξ are

(a) ξ ≥ 0, bounded, continuous, and
∑∞
n=0(supn≤t<n+1 ξ(t)) < ∞;

(b) ξ ≥ 0, nonincreasing, and Riemann integrable in the ordinary sense;

(c) ξ is bounded by a directly Riemann integrable function;

(d) ξ is constant on the intervals (n, n+ 1) and absolutely integrable.

Lemma 3.1 is a well-known result in renewal theory. See [4, pp. 362–363].

Lemma 3.1. Let G be a probability distribution function, and let G∗n denote its n-fold
convolution. Let U = ∑∞

n=0G
∗n. If ξ is directly Riemann integrable and G is nonlattice,

then

lim
t→∞(ξ ∗ U)(t) =

∫ ∞
0 ξ(u) du∫ ∞
0 u dG(u)

.

Lemma 3.2. If the Mathusian parameter α of m and G exists, if e−αt ξ(t) is directly Riemann
integrable, and if G is nonlattice, then the solution H of the integral equation

H(t) = ξ(t)+m

∫ t

0
H(t − u) dG(u), t ≥ 0,

satisfies

H(t)e−αt →
∫ ∞

0 e−αuξ(t) du

m
∫ ∞

0 ue−αu dG(u)

as t → ∞.

The proof of Lemma 3.2 can be found in [3].
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Lemma 3.3. LetH be the function defined in (3.3). Then, under the hypotheses of Theorem 2.1,

sup
s,t≥0

e−αtH(t) < ∞.

Proof. For any fixed s ≥ 0 and any t ≥ 0, we have

|H(t)| = |1 −H(s, t)|
=

∣∣∣∣(1 − e−sh(t))(1 −G(t))+
∫

[0,t]
[1 − f (H(s, t − u))] dG(u)

∣∣∣∣
≤ |1 − e−sh(t)||1 −G(t)| +

∣∣∣∣
∫

[0,t]
[1 − f (H(s, t − u))] dG(u)

∣∣∣∣.
Note that f (1) = 1, 0 < H(s, t − u) < 1, and f is a continuous function. Then, by the

mean value theorem, there exists c such that H(s, t − u) < c < 1 and

f ′(c) = f (1)− f (H(s, t − u))

1 −H(s, t − u)
.

Therefore,

|H(t)| ≤ |1 − e−sh(t)||1 −G(t)| +
∣∣∣∣
∫

[0,t]
f ′(c)(1 −H(s, t − u)) dG(u)

∣∣∣∣
≤ |1 −G(t)| +

∫
[0,t]

|f ′(c)||1 −H(s, t − u)| dG(u)

≤ (1 −G(t))+m

∫
[0,t]

|H(t − u)| dG(u) (3.7)

since f ′ is nondecreasing.
Let me−αt dG(t) = dGα(t) and gα(t) ≡ e−αt (1 −G(t)). Note that

∫ ∞
0 te−αt dG(t) < ∞

implies the Riemann integrability of gα . So, gα ≥ 0 is nonincreasing and Riemann integrable,
and, hence, gα is directly Riemann integrable by Remark 3.1(b). Moreover, thatG is nonlattice
implies that Gα is also nonlattice.

Let G∗n
α be the n-fold convolution of Gα , and let Uα = ∑∞

n=0G
∗n
α . Then, by Lemma 3.1,

we have

lim
t→∞ gα ∗ Uα(t) =

∫ ∞
0 gα(u) du∫ ∞
0 u dGα(u)

< ∞.

Multiply both sides of (3.7) by e−αt . Then

e−αt |H(t)| ≤ e−αt (1 −G(t))+m

∫
[0,t]

e−αt |H(t − u)| dG(u)

= gα(t)+
∫

[0,t]
e−α(t−u)|H(t − u)| dGα(u)

= gα(t)+Hα ∗Gα(t)
≤ gα(t)+ (gα +Hα ∗Gα) ∗Gα(t)
= · · ·
= gα(t)+ gα ∗Gα(t)+ gα ∗G∗2

α (t)+ gα ∗G∗3
α (t)+ · · ·

= gα ∗ Uα(t),
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and, hence, limt→∞ e−αt |H(t)| is bounded by a constant for any s ≥ 0. So,

sup
s,t≥0

e−αtH(t) < ∞.

Lemma 3.4. Let ξ1 be the function defined in (3.4). Then, under the hypotheses of Theorem 2.1,
e−αt ξ1(t) is directly Riemann integrable.

Proof. Note that

|e−αt ξ1| = |e−αt (1 − e−sh(t))(1 −G(t))| ≤ e−αt (1 −G(t)) ≡ gα(t),

where gα is known as a directly Riemann integrable function from the proof of Lemma 3.3.
So, e−αt ξ1 is directly Riemann integrable by Remark 3.1(c).

Lemma 3.5. Let ξ2 be the function defined in (3.5). Then, under the hypotheses of Theorem 2.1,
∫ ∞

0
e−αt |ξ2(t)| dt < ∞.

Proof. Recall that

H(t) = ξ1(t)+ ξ2(t)+m

∫
[0,t]

H(t − u) dG(u)

implies that

e−αtH(t) = e−αt ξ1(t)+ e−αt ξ2(t)+m

∫
[0,t]

e−αtH(t − u) dG(u).

Let Hα(t) = e−αtH(t), ξ1α(t) = e−αt ξ1(t), and ξ2α(t) = e−αt ξ2(t). Then

Hα(t) = ξ1α(t)+ ξ2α(t)+
∫

[0,t]
Hα(t − u) dGα(u)

= ξ1α(t)+ ξ2α(t)+Hα ∗Gα(t). (3.8)

We know that ξ1α is bounded by 1 and, by Lemma 3.3,Hα is also bounded, so ξ2,α is bounded.
Taking Laplace transforms on both sides of (3.8) yields

Ĥα(θ) = ξ̂1α(θ)+ ξ̂2α(θ)+ Ĥα · Ĝα(θ),
which implies that

H̃α(θ)(1 − Ĝα(θ))+ (−ξ̃2α(θ)) = ξ̂1α(θ).

Note that
f (1)− f (H(s, t − u))

1 −H(s, t − u)
= f ′(c) < f ′(1) = m,

and, hence, ξ2(t) = ∫ t
0 [1 − f (H(s, t − u))−mH(t − u)] dG(u) < 0.

So, we have Hα ≥ 0, ξ1α ≥ 0, ξ2α ≤ 0, and Gα ≤ 1. Thus, Ĥα(θ)(1 − Ĝα(θ)) ≥ 0,
−ξ̂2α(θ) ≥ 0, and ξ̂1α(θ) ≥ 0.

Moreover, by the monotone convergence theorem,

lim
θ↓0

ξ̂1α(θ) = lim
θ↓0

∫ ∞

0
e−θt ξ1α(t) dt =

∫ ∞

0
ξ1α(t) dt =

∫ ∞

0
e−αt ξ1(t) dt < ∞,
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and, hence, limθ↓0(−ξ̂2α(θ)) < ∞ since Ĥα(θ)(1 − Ĝα(θ)), −ξ̂2α(θ), and ξ̂1α(θ) are of the
same sign. Therefore, by the monotone convergence theorem again,

∫ ∞

0
e−αt |ξ2(t)| dt =

∫ ∞

0
e−αt (−ξ2(t)) dt

=
∫ ∞

0
(−ξ2α(t)) dt

= lim
θ↓0

∫ ∞

0
e−θt (−ξ2α(t)) dt

= lim
θ↓0
(−ξ̂2α(θ))

< ∞.

Lemma 3.6. Let ξ2 be the function defined in (3.5). Then, under the hypotheses of Theorem 2.1,
e−αt ξ2(t) is directly Riemann integrable.

Proof. Note that α < 0. For n ≤ t < n+ 1, we have

e−αt |ξ2(t)| ≤ e−α(n+1)
∣∣∣∣
∫ t

0
[1 − f (H(s, t − u))−mH(t − u)] dG(u)

∣∣∣∣
= e−α(n+1)

∣∣∣∣
∫ n

0
[1 − f (H(s, t − u))−mH(t − u)] dG(u)

+
∫ t

n

[1 − f (H(s, t − u))−mH(t − u)] dG(u)

∣∣∣∣
≤ e−α(n+1)

∣∣∣∣
∫ n

0
[1 − f (H(s, n− u))−mH(n− u)] dG(u)

∣∣∣∣
+ e−α(n+1)

∫ t

n

|1 − f (H(s, t − u))−mH(t − u)| dG(u)

≤ e−αe−n|ξ2(n)| + e−αe−n(G(1)−G(n))

since 0 ≤ f ≤ 1, 0 ≤ H ≤ 1, and 0 < m < 1. Then

|1 − f (H(s, t − u))−mH(t − u)| ≤ 1.

Moreover, by Lemma 3.4, we know that
∫ ∞

0 e−αt |ξ2(t)| dt < ∞ and, by the assumption, we
also have

∫ ∞
0 e−αt (1 −G(t)) dt < ∞. So,

∞∑
n=0

e−αn|ξ2(n)| < ∞ and
∞∑
n=0

e−αn(1 −G(n)) < ∞,

and, hence,
∞∑
n=0

sup
n≤t<n+1

e−αt |ξ2(t)| < ∞.

Since e−αt |ξ2(t)| is continuous and bounded, by Remark 3.1(a), e−αt |ξ2(t)| is directly Riemann
integrable. Therefore, by Remark 3.1(c), e−αt ξ2(t) is also directly Riemann integrable.
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Now, we are ready to complete the rest of the proof.
By Lemma 3.4 and Lemma 3.6,

e−αt ξ3(t) = e−αt ξ1(t)+ e−αt ξ2(t) is directly Riemann integrable.

Then, by Lemma 3.2, we know that the solution H of the integral equation

H(t) = ξ3(t)+m

∫
[0,t]

H(t − u) dG(u)

satisfies
H(t) ∼ c(s)eαt as t → ∞,

where

c(s) =
∫ ∞

0 e−αuξ3(u) du

m
∫ ∞

0 ue−αu dG(u)
. (3.9)

Recall that ξ3(u) is a function of both s and u defined in (3.6). Then

lim
t→∞ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

] ∣∣∣∣ Z(t) > 0

)
= lim
t→∞

(
1 − 1

P(Z(t) > 0)
(1 −H(s, t))

)

= 1 − lim
t→∞

1

e−αtP(Z(t) > 0)
(1 −H(s, t))e−αt

= 1 − lim
t→∞

1

e−αtP(Z(t) > 0)
H(t)e−αt

= 1 − c(s)

Q(0)

≡ ϕ(s), (3.10)

where Q is as defined in Theorem 1.1 and c(s) is as defined in (3.9).
Moreover, since, by the bounded convergence theorem,

lim
s→0+H(s, t) = lim

s→0+ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

])
= 1,

we have
lim
s→0+H(t) = lim

s→0+ 1 −H(s, t) = 0

and
lim
s→0+ ξ1(t) = lim

s→0+(1 − e−sh(t))(1 −G(t)) = 0.

Again, by the bounded convergence theorem,

lim
s→0+ ξ2(t) = lim

s→0+

∫ t

0
(1 − f (H(s, t − u)))−mH(t − u) dG(u) = 0.

Hence, lims→0+ ξ3(t) = lims→0+(ξ1(t)+ ξ2(t)) = 0.
Also, for any s ≥ 0, |e−αt ξ3(t)| ≤ e−αt |ξ1(t)| + e−αt |ξ2(t)|, where e−αt |ξ1(t)| and

e−αt |ξ2(t)| are integrable. Then, by the dominated convergence theorem,

lim
s→0+

∫ ∞

0
e−αt ξ3(t) dt =

∫ ∞

0
lim
s→0+ e−αt ξ3(t) dt = 0,
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and, hence,

lim
s→0+ϕ(s) = lim

s→0+ 1 − c(s)

Q(0)
= 1 − lim

s→0+
1

Q(0)

∫ ∞
0 e−αuξ3(u) du

m
∫ ∞

0 ue−αu dG(u)
= 1 − 0 = 1.

Therefore, ϕ is a Laplace functional of a point process (see [4, pp. 429–434]).
Since, for any s ≥ 0,

ϕ(s) = lim
t→∞ E

(
exp

[
−s

Z(t)∑
i=1

h(at,i)

] ∣∣∣∣ Z(t) > 0

)

and, by Theorem 1.2,

Z(t) | Z(t) > 0
d−→ Y as t → ∞,

there exists a point process Ã ≡ {ãi : 1 ≤ i ≤ Y } such that

ϕ(s) = E

(
exp

[
−s

Y∑
i=1

h(ãi)

])

for any s ≥ 0, and, as t → ∞,

A(t) | Z(t) > 0
d−→ Ã.

This completes the proof of Theorem 2.1(a).

Remark 3.2. A more detailed study of Ã is an interesting open problem.

3.2. Proof of Theorem 2.1(b)

Let h : [0,∞) → [0,∞) be a continuous function. Let

K̃(s, t) ≡ E

(
exp

[
−s

Z(t)∑
i=1

h(rt,i )

] ∣∣∣∣ Z(t) > 0

)
.

Then

K̃(s, t) = E

(
E

(
exp

[
−s

Z(t)∑
i=1

h(rt,i )

] ∣∣∣∣ A(t), Z(t) > 0

) ∣∣∣∣ Z(t) > 0

)
.

Now, for t > 0,

E

(
exp

[
−s

Z(t)∑
i=1

h(rt,i )

] ∣∣∣∣ A(t)
)

=
Z(t)∏
i=1

ψ(s, at,i ),

where

ψ(s, x) ≡ E(e−sh(rt,i ) | at,i = x) =
∫

[0,∞)

e−sh(y) dG(x + y)

1 −G(x)

for 0 < x < ∞ and 0 ≤ s < ∞. So,

E

(
exp

[
−s

Z(t)∑
i=1

h(rt,i )

] ∣∣∣∣ A(t)
)

= exp

[
−
Z(t)∑
i=1

(− logψ(s, at,i ))

]
.
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Since − logψ(s, x) is a positive continuous function of x, by Theorem 2.1(a), we have, as
t → ∞,

K̃(s, t) = E

(
exp

[
−
Z(t)∑
i=1

(− logψ(s, at,i ))

] ∣∣∣∣ Z(t) > 0

)

→ E

(
exp

[
−

Y∑
i=1

(− logψ(s, ãi))

])
.

Also, by the bounded convergence theorem,

lim
s→0+ E

(
exp

[
−

Y∑
i=1

(− logψ(s, ãi))

])
= 1,

and, hence,

E

(
exp

[
−

Y∑
i=1

(− logψ(s, ãi))

])

is a Laplace functional of a point process. Therefore, there exists a point process R̃ ≡ {r̃i : 1 ≤
i ≤ Y } such that

E

(
exp

[
−s

Y∑
i=1

h(r̃i)

])
= lim
t→∞ E

(
exp

[
−s

Z(t)∑
i=1

h(rt,i )

] ∣∣∣∣ Z(t) > 0

)

for any s ≥ 0. That is, as t → ∞,

R(t) | Z(t) > 0
d−→ R̃.

This completes the proof of Theorem 2.1(b).

3.3. Proof of Theorem 2.2

Let {Zt,i(u) : u ≥ 0} be the branching process initiated by the ith individual alive at time t .
So,

Z(t) =
Z(t−u)∑
i=1

Zt−u,i(at−u,i + u). (3.11)

For any u ≤ t ,

P(t −D2(t) ≥ u | Z(t) ≥ 2)

= P(D2(t) ≤ t − u | Z(t) ≥ 2)

= E

(∑Z(t−u)
i �=j=1 Zt−u,i(at−u,i + u)Zt−u,j (at−u,j + u)

Z(t)(Z(t)− 1)

∣∣∣∣ Z(t) ≥ 2

)

= 1

P(Z(t) ≥ 2)
E

(∑Z(t−u)
i �=j=1 Zt−u,i(at−u,i + u)Zt−u,j (at−u,j + u)

Z(t)(Z(t)− 1)
1{Z(t)≥2}

)

= 1

P(Z(t) ≥ 2, Z(t) > 0)

× E

(∑Z(t−u)
i �=j=1 Zt−u,i(at−u,i + u)Zt−u,j (at−u,j + u)

Z(t)(Z(t)− 1)
1{Z(t)≥2} 1{Z(t−u)>0}

)
.
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By (3.11) and the definition of the conditional probability, we have

P(t −D2(t) ≥ u | Z(t) ≥ 2)

= P(Z(t − u) > 0)

P(Z(t) ≥ 2 | Z(t) > 0)P(Z(t) > 0)

× E

( ∑Z(t−u)
i �=j=1 Zt−u,i(at−u,i + u)Zt−u,j (at−u,j + u)

(
∑Z(t−u)
i=1 Zt−u,i(at−u,i + u))(

∑Z(t−u)
i=1 Zt−u,i(at−u,i + u)− 1)

× 1{∑Z(t−u)
i=1 Zt−u,i (at−u,i+u)≥2}

∣∣∣∣ Z(t − u) > 0

)

= P(Z(t − u) > 0)

P(Z(t) ≥ 2 | Z(t) > 0)P(Z(t) > 0)

× E

( ∑Z(t−u)
i �=j=1 Z̃i(at−u,i + u)Z̃j (at−u,j + u)

(
∑Z(t−u)
i=1 Z̃i(at−u,i + u))(

∑Z(t−u)
i=1 Z̃i(at−u,i + u)− 1)

× 1{∑Z(t−u)
i=1 Z̃i (at−u,i+u)≥2}

∣∣∣∣ Z(t − u) > 0

)

= 1

P(Z(t) ≥ 2 | Z(t) > 0)

P(Z(t − u) > 0)

P(Z(t) > 0)

× E(φ(A(t − u), u) | A(t − u) = (at−u,1, at−u,2, . . . , at−u,Z(t−u))),

where {Z̃i(t)}i≥1 are i.i.d. copies of Z(t) and

φ((a1, a2, . . . , ak), u) = E

( ∑k
i �=j=1 Z̃i(ai + u)Z̃j (aj + u)

(
∑k
i=1 Z̃i(ai + u))(

∑k
i=1 Z̃i(ai + u)− 1)

1{∑k
i=1 Z̃i (ai+u)≥2}

)

for any positive integer k and any positive real numbers a1, a2, . . . , ak .
Since, for any fixed u, φ(·, u) is bounded and continuous and by Theorem 2.1 (see also [6,

pp. 14–15]),

E(φ(A(t − u), u) | Z(t − u) > 0) → E(φ(Ã, u))

as t → ∞, where Ã is as in (2.1).
Moreover, by Theorem 1.2(b), i.e. P(Z(t) > 0) ∼ c(s)e−αt , we have

lim
t→∞ P(t −D2(t) > u | Z(t) ≥ 2)

= lim
t→∞

1

P(Z(t) ≥ 2 | Z(t) > 0)

c(s)eα(t−u)

c(s)eαt
E(φ2(A(t − u), u) | Z(t − u) > 0)

= 1

P(Y ≥ 2)
e−αu

E(φ(Ã, u))

≡ 1 −H2(u).

It remains to show that H2 is a proper probability distribution, i.e. H2(u) → 1 as u → ∞.
It suffices to prove that

lim
u→∞ e−αu

E(φ(Ã, u)) = 0.
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First, we have

E(φ(Ã, u)) = E

( ∑Y
i �=j=1 Z̃i(ãi + u)Z̃j (ãj + u)

(
∑Y
i=1 Z̃i(ãi + u))(

∑Y
i=1 Z̃i(ãi + u)− 1)

1{∑Y
i=1 Z̃i (ãi+u)≥2}

)

= E

(
E

( ∑Y
i �=j=1 Z̃i(ãi + u)Z̃j (ãj + u)

(
∑Y
i=1 Z̃i(ãi + u))(

∑Y
i=1 Z̃i(ãi + u)− 1)

1{∑Y
i=1 Z̃i (̃ai+u)≥2}

∣∣∣∣ Ã
))

≤ E(P(there exist 1 ≤ i, j ≤ Y such that i �= j, Z̃i(ãi + u) > 0,

and Z̃j (ãj + u) > 0 | Ã))
≤ E(1 − P(Z̃i(ãi + u) = 0 for all i = 1, 2, . . . , Y | Ã)

− P(Z̃i(ãi + u) > 0 for some i and Z̃j (ãj + u) = 0 for all j �= i | Ã)).
For any 0 ≤ s ≤ 1 and t ≥ 0, let

F(s, t) =
∞∑
j=0

P(Z(t) = j)sj ,

and, by Theorem 1.1, we have

lim
t→∞ e−αt (1 − F(s, t)) ≡ Q(s) exists for 0 ≤ s ≤ 1.

So,
e−αu

E(φ(Ã, u))

≤ e−αu
E

(
1 −

Y∏
i=1

F(0, ãi + u)−
Y∑
i=1

(1 − F(0, ãi + u))
∏
j �=i

F (0, ãj + u)

)
.

Note that the assumption of
∑∞
j=1(j log j)pj < ∞ implies that 0 < EY < ∞ and, hence,

P(0 < Y < ∞) = 1.
Now, conditioned on the limit age chart Ã, we have

lim
u→∞ e−αu

(
1 −

Y∏
i=1

F(0, ãi + u)

)

= lim
u→∞ e−αu

(
1 −

Y∏
i=1

(1 −Q(0)eα(ãi+u))
)

= lim
u→∞

1 − ∏Y
i=1(1 −Q(0)eα(ãi+u))

eαu

= lim
u→∞

− ∑Y
i=1(−Q(0)eαãi αeαu)

∏
j �=i (1 −Q(0)eα(ãj+u))

αeαu

= lim
u→∞

Y∑
i=1

Q(0)eαãi
∏
j �=i
(1 −Q(0)eα(ãj+u))

= Q(0)
Y∑
i=1

eαãi
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and

lim
u→∞ e−αu

( Y∑
i=1

(1 − F(0, ãi + u))
∏
j �=i

F (0, ãj + u)

)

= lim
u→∞ e−αu

( Y∑
i=1

Q(0)eα(ãi+u)
∏
j �=i
(1 −Q(0)eα(ãj+u))

)

≥ lim
u→∞ e−αu

( Y∑
i=1

Q(0)eα(ãi+u)
∏
j �=i
(1 −Q(0)eαu)

)

= lim
u→∞ e−αu

( Y∑
i=1

Q(0)eα(ãi+u)(1 −Q(0)eαu)Y−1
)

= lim
u→∞

Y∑
i=1

Q(0)eαãi (1 −Q(0)eαu)Y−1

= Q(0)
Y∑
i=1

eαãi .

Hence, conditioned on Ã,

0 ≤ lim
u→∞ e−αu

(
1 −

Y∏
i=1

F(0, ãi + u)−
Y∑
i=1

(1 − F(0, ãi + u))
∏
j �=i

F (0, ãj + u)

)

= lim
u→∞ e−αu

(
1 −

Y∏
i=1

F(0, ãi + u)

)

− lim
u→∞ e−αu

( Y∑
i=1

(1 − F(0, ãi + u))
∏
j �=i

F (0, ãj + u)

)

≤ Q(0)
Y∑
i=1

eαãi −Q(0)
Y∑
i=1

eαãi

= 0 with probability 1.

Therefore, by the bounded convergence theorem,

lim
u→∞ e−αu

E(φ(Ã, u))

= lim
u→∞ e−αu

E

(
1 −

Y∏
i=1

F(0, ãi + u)−
Y∑
i=1

(1 − F(0, ãi + u))
∏
j �=i

F (0, ãj + u)

)

= 0.

This completes the proof.
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