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Abstract

Consider a d-type (d < ∞) Galton–Watson branching process, conditioned on the event
that there are at least k ≥ 2 individuals in the nth generation, pick k individuals at random
from the nth generation and trace their lines of descent backward in time till they meet.
In this paper, the limit behaviors of the distributions of the generation number of the most
recent common ancestor of any k chosen individuals and of the whole population are
studied for both critical and subcritical cases. Also, we investigate the limit distribution
of the joint distribution of the generation number and their types.
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1. Introduction

1.1. Branching processes

Let Zn = (Zn,1, Zn,2, . . . , Zn,d) be the population vector in the nth generation, n =
0, 1, 2, . . . , where Zn,i is the number of individuals of type-i in the nth generation and let
|Z0| = 1. We assume that each individual of type-i lives a unit of time and, upon death, pro-
duces children of all types according to the offspring distribution {p(i)(j) := p(i)(j1, j2, . . . ,

jd)}j∈N
d
0

and independently of other individuals, where Nd0 := {j := (j1, j2, . . . , jd) : ji ∈ N0,

1 ≤ i ≤ d}, N0 is the set of nonnegative integers, and p(i)(j1, j2, . . . , jd) is the probability
that a type-i parent produces j1 children of type 1, . . . , jd children of type-d.

Let mij be the expected number of type-j offspring of a type-i individual in one generation
for any 1 ≤ i, j ≤ d . Then

M := {mij : 1 ≤ i, j ≤ d}
is called the mean matrix. For a nonsingular and positive regular process, by the Perron–
Frobenius theorem (see Athreya and Ney [3]), the matrix M has a maximal eigenvalue ρ which
is positive, simple and has associated strictly positive right and left eigenvectors u and v which
can be normalized so that

u · v = 1 and u · 1 = 1, (1.1)

where 1 = (1, 1, . . . , 1) in Nd0 . The process is said to be supercritical, critical, or subcritical
according to 1 < ρ < ∞, ρ = 1, or ρ < 1, respectively.
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1.2. The coalescence problem

For any integer k ≥ 2, conditioned on the event {|Zn| ≥ k}, pick k individuals at random
from the nth generation by simple random sampling without replacement and trace their lines
of descent backward in time till they meet. Let Xn,k be that generation number called the
coalescence time of these k individuals of the nth generation. We call the common ancestor
of these chosen individuals in the Xn,kth generation their most recent common ancestor. Also,
let Tn be the coalescence time of the whole population of the nth generation (Tn is also called
the total coalescence time). The coalescence problem is to study the properties related to the
most recent common ancestor such as the limit behaviors of the distributions ofXn,k and Tn as
n → ∞. The coalescence problem has been studied for different branching processes. Athreya
[1], [2] stated the results for the single-type Galton–Watson processes. Hong [4], [5] extended
them to multitype Galton–Watson processes and also to supercritical and subcritical cases for
Bellman–Harris processes.

This paper is organized as follows: two classical limit theorems for multitype Galton–Watson
processes are stated in Section 2 and notations established will be used for the proofs. The main
results for the critical cases are presented in Section 3 and are proved in Section 5. For the
subcritical case, the theorems are in Section 4 and proofs are provided in Section 6.

2. Preliminaries and notation

Note that, when we need to consider the type of the initial ancestor, i.e. the process is initiated
with an individual of type-i, we denote the process {Zn}n≥0 by

Z(i)n = (Z
(i)
n,1, Z

(i)
n,2, . . . , Z

(i)
n,d),

where Z(i)n,j is the number of type-j individuals in the nth generation, 1 ≤ j ≤ d.
To describe the growth rates of the populations in the critical and subcritical cases, we need

their probability generating functions and some settings about their second moments.
Let fn := (f

(1)
n , f

(2)
n , . . . , f

(d)
n ) be the probability generating function of Zn. Also, when

the second moments exists, we let

q(r)n (i, j) = E(Z
(r)
n,iZ

(r)
n,j − δi,jZ

(r)
n,i ), 1 ≤ i, j, r ≤ d,

the quadratic forms

Q(r)
n [s] = 1

2

d∑
i=1

d∑
j=1

siq
(r)
n (i, j)sj for 1 ≤ r ≤ d,

the vectors of quadratic forms

Qn[s] = (Q(1)
n [s],Q(2)

n [s], . . . ,Q(d)
n [s]), (2.1)

and let Q[s] = Q1[s], which plays an important role in the limit theorems.
In addition, throughout this paper, we adopt the following notation:

(i) the absolute value of the vector x is |x| = |x1| + |x2| + · · · + |xd |;
(ii) the uniform norm of the vector x is ‖x‖ = max{|x1|, |x2|, . . . , |xd |};

(iii) the vector ei means the vector with 1 in the ith component and 0 elsewhere.

The following two well-known theorems describe the growth rates for the critical and
subcritical branching processes.
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Theorem 2.1. (Critical case [6].) Let ρ = 1 and E‖Z1‖2 < ∞. Then,

(i) we have

lim
n→∞ nP(Zn 	= 0 | Z0 = i) = i · u

v · Q[u] .

(ii) If w · v > 0 then Zn · w/n, conditioned on Zn 	= 0, converges in distribution to the
random variable Y with density f (x) = (1/γ1)e−x/γ1 , x ≥ 0, where γ1 = v ·w/v ·Q[u].

Theorem 2.2. (Subcritical case [6].) Let ρ < 1. Then

(i) there exists a random vector Y such that (Zn | |Zn| > 0)
d−→ Y . Furthermore,

E‖Y‖ < ∞ ⇐⇒ E‖Z1‖ log ‖Z1‖ < ∞.

(ii) There exists a nonincreasing and positive Q(·) such that v · [1 − fn(s)]/ρn ↓ Q(s) as
n → ∞, 0 ≤ s ≤ 1, if and only if E‖Z1‖ log ‖Z1‖ < ∞;

(iii) limn→∞((1 − fn(s))/ρ
n) = Q(s)u;

(iv) limn→∞ ρ−nP(Zn 	= 0 | Z0 = i) = Q(0)(i · u), where Q(0) = 1/u · EY .

3. Main results for the critical case (ρ = 1)

For any t < n, let {Z(l)t,i,n−t = (Z
(l)1
t,i,n−t , Z

(l)2
t,i,n−t , . . . , Z

(l)d
t,i,n−t )}n≥t be the branching process

initiated by the ith individual of type-l in the t th generation and let J (l)t,n be the set of all

i ∈ {1, 2, . . . , Z(l)t } such that |Z(l)t,i,n−t | > 0, 1 ≤ l ≤ d.

Theorem 3.1. Let ρ = 1 and E‖Z1‖2 < ∞. On the event An := {|Zn| > 0}, for t < n,
consider the random point process

Vn :=
{

Z
(l)
t,i,n−t
n− t

∣∣∣∣ i ∈ J (l)t,n, 1 ≤ l ≤ d

}
.

Let n → ∞, t → ∞, and t/n → α for α ∈ (0, 1). Then, conditioned on An, the random
point process Vn converges in distribution to a random point process V := {Yi | 1 ≤ i ≤ Nα},
where {Yi = (v1Yi, v2Yi, . . . , vdYi)}i≥1 are independent and identically distributed (i.i.d.)
random vectors with Yi ∼ exp(1/v · Q[u]), Nα is a random variable independent of {Yi}i≥1
with distribution P(Nα = j) = (1 − α)αj−1 for j ≥ 1, Q is the quadratic form as defined in
(2.1), and u and v are as in (1.1).

In Theorem 3.1 we showed the convergence of a point process constructed from the original
branching process and, by this theorem, we are able to prove the results on the coalescence
problems in Theorems 3.2 and 3.3.

Theorem 3.2. Let ρ = 1 and E‖Z1‖2 < ∞. Then, for k = 2, 3, . . . , there exists a random

variable X̃k such that (Xn,k/n | |Zn| ≥ k)
d−→ X̃k as n → ∞ and, for any α ∈ (0, 1),

P(X̃k < α) = 1 − (1 − α)F (1, 2; k + 1;α) := Hk(α),

where F is a hypergeometric function. Furthermore, limα↑1Hk(α) = 1.
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From Theorem 3.2 we see that the generation number of the most recent common ancestor
grows like n. That is, the coalescence timeXn is not close either to the beginning of the tree or
to the present time when n gets large.

Theorem 3.3. Let ρ = 1 and E‖Z1‖2 < ∞. Then(
Tn

n

∣∣∣∣ |Zn| > 0

)
d−→ T̃ as n → ∞,

where T̃ has a uniform distribution in (0, 1).

4. Main results for the subcritical case

For the subcritical case, Theorem 4.1 shows that the difference n − Xn,2 between the
coalescence timeXn,2 and the current generation number n converges in distribution as n → ∞
and it tells us that the coalescence time does not go right back to the beginning of the tree. Instead,
it is close to the present time. Theorem 4.1 can be extended to the case for any k = 2, 3, . . . .

Theorem 4.1. Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ < ∞. Then there exists a random
variable X̃2 such that (n−Xn,2 | |Zn| ≥ 2)

d−→X̃2 as n → ∞, and, for any r = 0, 1, 2, . . . ,

P(X̃2 ≤ r) = 1 − 1

ρrP(|Y | ≥ 2)
E(φ(Y (1), Y (2), . . . , Y (d), r)) := H2(r),

where

φ(t1, t2, . . . , td , r) = E

(∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i ||Z̃(l)r,j | + ∑d

l 	=p=1
∑tl
i=1

∑tp
j=1 |Z̃(l)r,i ||Z̃(p)r,j |

(
∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i |)(

∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i | − 1)

× 1{∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i |≥2}

)
,

where I is the indicator function. Furthermore, {Z̃(l)r,i : i ≥ 1}r≥0 are i.i.d. copies of {Z(l)r }r≥0,
and limr→∞H2(r) = 1.

Theorem 4.2. Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ < ∞. Then there exists a random

variable T̃ such that (n− Tn | |Zn| > 0)
d−→ T̃ as n → ∞, and, for any r = 0, 1, 2, . . . ,

P(T̃ ≤ r) = ρ−rE
( d∑
l=1

Y (l)(1 − f (l)r (0))(f (l)r (0))Y
(l)−1

∏
p 	=l
(f (l)r (0))Y

(p)

)
:= π(r),

where Y is the random vector with distribution {b(j)}j∈R
d+ defined as in Theorem 2.2(iv). Also,

limr↑∞ π(r) = 1, i.e. T̃ is a proper random variable.

Next, we look at the limit of the joint distribution of the generation number Xn,2, the
type of the most recent common ancestor, and the types of two randomly chosen individuals.
In addition to Xn,2, we let ηn be the type of this common ancestor and ζn,i the type of the ith
chosen individual.

Theorem 4.3. Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ < ∞. Then

lim
n→∞ P(Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2 | |Zn| ≥ 2) := ψ2(r, j, i1, i2)

exists and
∑
(r,j,i1,i2)

ψ2(r, j, i1, i2) = 1.

The next result is an extension of the above theorem for k ≥ 2.
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Theorem 4.4. Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ < ∞. Then

lim
n→∞ P(Xn,k = r, ηn = j, ζn,1 = i1, . . . , ζn,k = ik | |Zn| ≥ k) := ψk(r, j, i1, . . . , ik)

exists and
∑
(r,j,i1,...,ik)

ψk(r, j, i1, . . . , ik) = 1.

5. Proofs of the main results for the critical case

Proof of Theorem 3.1. To prove the convergence of the random point process {Vn}, we
consider the Laplace functional of Vn, i.e.

ϕn(θ1, θ2, . . . , θd , f1, f2, . . . , fd) := E

(
exp

(
−

d∑
l=1

∑
i∈J (l)t,n

d∑
p=1

θpfp

(
Z
(l)p
t,i,n−t
n− t

)) ∣∣∣∣ |Zn| > 0

)
,

where θ1, θ2, . . . , θd > 0 and f1, f2, . . . , fd : R+ → R+ are bounded and continuous func-
tions. Let

Yn,t = exp

(
−

d∑
l=1

∑
i∈J (l)t,n

d∑
p=1

θpfp

(
Z
(l)p
t,i,n−t
n− t

))
,

then, we have

ϕn(θ1, θ2, . . . , θd , f1, f2, . . . , fd)

= E(Yn,t | |Zn| > 0)

= E(Yn,t1{|Zn|>0})
P(|Zn| > 0)

= E(E(Yn,t1{|Zn|>0} | Zj , j ≤ t))

P(|Zn| > 0)

= E(E(Yn,t1{|Zn|>0} | Zt ))

P(|Zn| > 0)
(by the Markov property)

= E(E(Yn,t1{|Zn|>0}1{|Zt |>0} | Zt ))

P(|Zn| > 0)
(since 1{|Zn|>0} ⊆ 1{|Zt |>0})

= P(|Zt | > 0)E(E(Yn,t | Zt )− E(Yn,t1{|Zn|=0} | Zt ) | |Zt | > 0)

P(|Zn| > 0)
.

If we let g(l)j (θ) = E(exp(− ∑d
p=1 θpfp(Z

(p)
j /j)1{|Zj |>0}) | Z0 = el ), θ = (θ1, θ2, . . . , θd),

and let q(l)j = P(|Zj | = 0 | Z0 = el ) for j ≥ 1, then the above quantity is equal to

P(|Zt | > 0)

P(|Zn| > 0)
E

( d∏
l=1

(g
(l)
n−t (θ))Z

(l)
t −

d∏
l=1

(q
(l)
n−t (θ))Z

(l)
t

∣∣∣∣ |Zt | > 0

)
. (5.1)

For the convergence of the fractional coefficient of (5.1), by Theorem 2.1(i), we know that,
as t, n → ∞,

P(|Zt | > 0)

P(|Zn| > 0)
= tP(|Zt | > 0)

nP(|Zn| > 0)

n

t
→

[(
ui0

v · Q[u]
)(

ui0

v · Q[u]
)−1] 1

α
= 1

α
. (5.2)
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Next, we prove the convergence of the minuend of (5.1), i.e.

g
(l)
j (θ) = P(|Zj | = 0 | Z0 = el )

× E

(
exp

(
−

d∑
p=1

θpfp

(
Z
(p)
j

j

)
1{|Zj |>0}

) ∣∣∣∣ |Zj | = 0, Z0 = el

)

+ P(|Zj | > 0 | Z0 = el )

× E

(
exp

(
−

d∑
p=1

θpfp

(
Z
(p)
j

j

)
1{|Zj |>0}

) ∣∣∣∣ |Zj | > 0, Z0 = el

)

= q
(l)
j + (1 − q

(l)
j )E

(
exp

(
−

d∑
p=1

θpfp

(
Z
(p)
j

j

)
1{|Zj |>0}

) ∣∣∣∣ |Zj | > 0, Z0 = el

)

= 1 + (1 − q
(l)
j )

[
E

(
exp

(
−

d∑
p=1

θpfp

(
Z
(p)
j

j

)
1{|Zj |>0}

) ∣∣∣∣ |Zj | > 0, Z0 = el

)
− 1

]

and, hence, as a result of Theorems 2.1(i) and 2.1(ii), and the definition of the constant e, when
j → ∞,

(g
(l)
j (θ))

j =
(

1 + j (1 − q
(l)
j )

× [E(exp(− ∑d
p=1 θpfp(Z

(p)
j /j)1{|Zj |>0}) | |Zj | > 0, Z0 = el )− 1]

j

)j

→ exp

(
ul

v · Q[u] (g(θ)− 1)

)
,

where g(θ) = E(exp(− ∑d
p=1 θpfp(vpY ))). The same idea can be applied to the subtrahend

of (5.1). Therefore,

E

( d∏
l=1

(g
(l)
n−t (θ))Z

(l)
t −

d∏
l=1

(q
(l)
n−t (θ))Z

(l)
t

∣∣∣∣ |Zt | > 0

)

= E

( d∏
l=1

(g
(l)
n−t (θ))(n−t)[(t/(n−t))(Z

(l)
t /t)]

−
d∏
l=1

((1 − (1 − q
(l)
n−t ))n−t )[(t/(n−t))(Z

(l)
t /t)]

∣∣∣∣ |Zt | > 0

)

→ E

(
exp

( d∑
l=1

ul

v · Q[u] (g(θ)− 1)
α

1 − α
vlY

)
− exp

(
−

d∑
l=1

ul

v · Q[u]
α

1 − α
vlY

))

= E

(
exp

(
1

v · Q[u] (g(θ)− 1)
α

1 − α
Y

)
− exp

(
− 1

v · Q[u]
α

1 − α
Y

))

= 1 − α

1 − αg(θ)
− (1 − α) (5.3)
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808 J. HONG

since

Y ∼ exp

(
1

v · Q[u]
)

as n → ∞, t → ∞, t/n → α,

for 0 < α < 1. Hence, by (5.2) and (5.3),

ϕn(θ1, θ2, . . . , θd , f1, f2, . . . , fd) → 1

α

(
1 − α

1 − αg(θ)
− (1 − α)

)

= (1 − α)g(θ)

1 − αg(θ)

=
∞∑
j=1

(1 − α)αj−1(g(θ))j as t, n → ∞.

Finally, let V := {Yi | 1 ≤ i ≤ Nα}, where {Yi = (v1Yi, v2Yi, . . . , vdYi)}i≥1 are i.i.d.
random vectors with Yi ∼ exp(1/v ·Q[u]) andNα is a random variable independent of {Yi}i≥1
with distribution P(Nα = j) = (1 − α)αj−1 for j ≥ 1. Then, for any θ1, θ2, . . . , θd > 0
and any bounded, nonnegative and continuous functions f1, f2, . . . , fd , the Laplace functional
of V is

E

(
exp

(
−

Nα∑
i=1

d∑
p=1

θpfp(Y
(p)
i )

))
=

∞∑
j=1

(1 − α)αj−1(g(θ))j .

Therefore, by the continuous mapping theorem for random measures (see [7]), the sequence
of random point processes {Vn}n≥1, conditioned on {|Zn| > 0}, converges in distribution to the
random point process V := {Yi | 1 ≤ i ≤ Nα} as n, t → ∞, t/n → α. �

Proof of Theorem 3.2. For almost all trees T and for any α ∈ (0, 1), let r = [nα] + 1.
Conditioned on the set {|Zn| ≥ k}, the event {Xn,k ≥ r} occurs if and only if all k individuals
in the nth generation are chosen from the decedents of a single ancestor in the rth generation.
So, we have

P

(
Xn,k

n
< α

∣∣∣∣ |Zn| ≥ k)

)

= 1 − E(P(Xn,k ≥ r | Zn) | |Zn| ≥ k)

= 1 − E

(∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |(|Z(l)r,i,n−r | − 1) · · · (|Z(l)r,i,n−r | − k + 1)

|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

∣∣∣∣ |Zn| ≥ k

)
.

If we expand the numerator in the expectation, we have

1 − 1

P(|Zn| ≥ k | |Zn| > 0)

× E

(( ∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

+
k−1∑
s=1

(
(−1)s

( ∑
1≤q1<q2<···<qs≤k−1

q1,q2,...,qs∈Z

q1q2 · · · qs
) d∑
l=1

Z
(l)
r∑
i=1

|Z(l)r,i,n−r |k−s
)

× [|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)]−1
)

1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)
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= 1 − 1

P(|Zn| ≥ k | |Zn| > 0)

× E

(([ d∑
l=1

∑
i∈J (l)r

( |Z(l)r,i,n−r |
n− r

)k( d∑
l=1

∑
i∈J (l)r

|Z(l)r,i,n−r |
n− r

)−k]
1{|Zn|≥k}

+
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

−
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|k

+
k−1∑
s=1

(
(−1)s

( ∑
1≤q1<q2<···<qs≤k−1

q1,q2,...,qs∈Z

q1q2 · · · qs
) d∑
l=1

Z
(l)
r∑
i=1

|Z(l)r,i,n−r |k−s
)

× [|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)]−1
)

1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)
.

Now, we prove the convergence of the above equation. First, we know that

P(|Zn| ≥ k | |Zn| > 0) → 1 as n → ∞.

Next, we show that the second and the third parts of the equation converge to 0. Thus,

E

(∣∣∣∣
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

−
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|k

∣∣∣∣1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)

= E

(∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|k

× 1{|Zn|>k}
∣∣∣∣ 1

(1 − 1/|Zn|) · · · (1 − (k − 1)/|Zn|) − 1

∣∣∣∣
∣∣∣∣ |Zn| > 0

)

≤ E

(∣∣∣∣ 1

(1 − 1/|Zn|) · · · (1 − (k − 1)/|Zn|) − 1

∣∣∣∣
∣∣∣∣ |Zn| > 0

)

= P

( |Zn|
n

< ε

∣∣∣∣ |Zn| > 0

)

+ E

(∣∣∣∣ 1

(1 − 1/|Zn|) · · · (1 − (k − 1)/|Zn|) − 1

∣∣∣∣1{‖Zn|/n≥ε}
∣∣∣∣ |Zn| > 0

)

≤ P

( |Zn|
n

< ε

∣∣∣∣ |Zn| > 0

)
+

∣∣∣∣ 1

(1 − 1/nε) · · · (1 − (k − 1)/nε)
− 1

∣∣∣∣
→ 1 − exp

(
− v · 1

v · Q[u]ε
)

as → ∞

for any arbitrarily small ε > 0.
Hence, we have, as n → ∞,

E

(∣∣∣∣
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

−
∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k
|Zn|k

∣∣∣∣1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)

→ 0.
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810 J. HONG

Similarly, for s = 1, 2, . . . , k, and for any arbitrarily small ε > 0,

E

( ∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k−s
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)

≤ E

( |Zn|k−s
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)

≤ kk

k! E(|Zn|−s1{|Zn|≥k} | |Zn| > 0)

≤ kk

k!
(
(nε)−s + P

( |Zn|
n

≤ ε

∣∣∣∣ |Zn| > 0

))

→ kk

k!
(

1 − exp

(
− v · 1

v · Q[u]ε
)

as n → ∞.

Since ε > 0 is arbitrarily small, we have

E

( ∑d
l=1

∑Z
(l)
r

i=1 |Z(l)r,i,n−r |k−s
|Zn|(|Zn| − 1) · · · (|Zn| − k + 1)

1{|Zn|≥k}
∣∣∣∣ |Zn| > 0

)
→ 0 as n → ∞.

Therefore, by the continuous mapping theorem and Theorem 3.1,

P

(
Xn,k

n
< α

∣∣∣∣ |Zn| > 0

)
→ 1 − E

( ∑Nα
i=1 Y

k
i

(
∑Nα
i=1 Yi)

k

)
:= Hk(α) as n → ∞.

Let Gi(x, k) = Y ki /(
∑x
i=1 Yi)

k , so Hk(α) = 1 − E(
∑x
i=1Gi(Nα, k)). Next we determine

the distribution of Gi(x, k). Since {Yi}1≤i≤x are i.i.d. exponential random variables, Zi :=∑
j 	=i Yj is independent of Yi and has gamma(x−1, 1/v ·Q[u]) distribution for i = 1, 2, . . . , x.

So, the joint probability density function (PDF) of Yi and Zi is

fYi,Zi (y, z) = 1

(v · Q[u])x�(x − 1)
zx−2 exp

(
− y + z

v · Q[u]
)
.

Let U = (
∑x
i=1 Yi)

k = (Yi +Zi)
k and V = Gi(x, k), then the Jacobian of the transformation

of U and V is |J | = (1/k2)u2/k−1v1/k−1. So, the joint PDF of U and V is

fU,V (u, v) = fYi,Zi (y, z)|J |

= 1

k2(v · Q[u])x�(x − 1)
ux/k−1v1/k−1(1 − v1/k)x−2 exp

(
u1/k

v · Q[u]
)

and, hence, the PDF of V = Gi(x, k) is

fGi(x,k)(v) =
∫ 1

0
fU,V (u, v) du = x − 1

k
v1/k−1(1 − v1/k)x−2, 0 < v < 1.

Therefore, by letting t = v1/k and from the definition of the beta function, we have

E(Gi(x, k)) =
∫ 1

0
vfGi(x,k)(v) dv = (x − 1)

∫ 1

0
tk(1 − t)x−2 dt = k! (x − 1)!

(k + x − 1)!
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Coalescence on multitype branching processes 811

and then, since Nα has the geometric distribution with parameter 1 − α,

Hk(α) = 1 − E

( Nα∑
i=1

E(Gi(Nα, k) | Nα)
)

= 1 − E

(
Nα

k! (Nα − 1)!
(k +Nα − 1)!

)

= 1 − E

(
k!Nα!

(k +Nα − 1)!
)

= 1 −
∞∑
n=1

k! n!
(k + n− 1)! (1 − α)αn−1

= 1 −
∞∑
n=0

k! (n+ 1)!
(k + n)! (1 − α)αn

= 1 − (1 − α)

∞∑
n=0

n! (n+ 1)!
(k + 1)(k + 1) · · · (k + n)

αn

n!
= 1 − (1 − α)F (1, 2; k + 1;α),

where F is the hypergeometric function.
Note thatNα → ∞ with probability 1 as α → 1. So, by the bounded convergence theorem,

limα→1Hk(α) = 1 − 0 = 1. Moreover, Hk(0) = 0. Therefore, Hk is a proper probability
distribution and the proof is complete. �

Proof of Theorem 3.3. For any α ∈ (0, 1) and any n ∈ N, let r = [nα] + 1. The event
{Tn ≥ r} conditioned on {|Zn| > 0} occurs if and only if all the individuals in the nth generation
come from the (n − r)th generation of the tree initiated by exactly one individual in the rth
generation. That is, |Z(l)r,i,n−r | = 0 for all but one l = 1, 2, . . . , d and one i = 1, 2, . . . , Z(l)r
and |Zr | > 0. Hence,

P

(
Tn

n
> α

∣∣∣∣ |Zn| > 0

)

= P(Tn ≥ r | |Zn| > 0)

= 1

P(|Zn| > 0)
P(|Z(l)r,i,n−r | = 0 for all but one l = 1, 2, . . . , d

and one i = 1, 2, . . . , Z(l)r and |Zr | > 0)

= 1

P(|Zn| > 0)
E

( d∑
l=1

Z
(l)
r∑
i=1

P(|Z(l)r,i,n−r | > 0)
∏
j 	=i

P(|Z(l)r,j,n−r | = 0)

×
∏
p 	=l

Z
(p)
r∏
j=1

P(|Z(p)r,j,n−r | = 0)1{|Zr |>0}
)

= P(|Zr | > 0)

P(|Zn| > 0)
E

( d∑
l=1

Z(l)r g
(l)
n−r (1 − g

(l)
n−r )Z

(l)
r −1

∏
p 	=l
(1 − g

(p)
n−r )Z

(p)
r

∣∣∣∣ |Zr | > 0

)
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812 J. HONG

= P(|Zr | > 0)

P(|Zn| > 0)
E

( d∑
l=1

Z
(l)
r

r
(n− r)g

(l)
n−r

× r

n− r

(
1 − (n− r)g

(l)
n−r

n− r

)(n−r)((Z(l)r −1)/r)(r/(n−r))

×
∏
p 	=l

(
1 − (n− r)g

(p)
n−r

n− r

)(n−r)((Z(p)r /r)(r/(n−r)) ∣∣∣∣ |Zr | > 0

)
,

where g(l)n = P(|Zn| > 0 | Z0 = el ). First, following similar lines as in the proof of
Theorem 3.1, we have P(|Zr | > 0)/P(|Zn| > 0) converges to 1/α as n → ∞. Secondly,
let hn be the function defined by

hn(x1, x2, . . . , xd) :=
d∑
l=1

xl(n− r)g
(l)
n−r

r

n− r

(
1 − (n− r)g

(l)
n−r

n− r

)(n−r)(xl−1/r)(r/(n−r))

×
∏
p 	=l

(
1 − (n− r)g

(p)
n−r

n− r

)(n−r)xp(r/(n−r))

then, by Theorem 2.1(i), as n → ∞, hn converges to

h(x1, x2, . . . , xd) :=
d∑
l=1

xl
ul

v · Q[u]
α

1 − α
exp

(
− ul

v · Q[u]xl
α

1 − α

)

×
∏
p 	=l

exp

(
− up

vQ[u]xp
α

1 − α

)
.

Finally, sincehn → h uniformly on any compact set sincehn andh are continuous and bounded,
and, hence, as n → ∞,

E

(
hn

(
Z
(1)
r

r
,
Z
(2)
r

r
, . . . ,

Z
(d)
r

r

) ∣∣∣∣ |Zn| > 0

)
→ E(h(v1Y, v2Y, . . . , vdY ))

then the limit on the right-hand side is equal to

E

( d∑
l=1

vlY
ul

v · Q[u]
α

1 − α
exp

(
− ul

v · Q[u]vlY
α

1 − α

) ∏
p 	=l

exp

(
− up

v · Q[u]vpY
α

1 − α

))

= E

(
Y

v · Q[u]
α

1 − α
exp

(
− Y

v · Q[u]
α

1 − α

))
.

So, for α ∈ (0, 1),

lim
n→∞ P

(
Tn

n
> α

∣∣∣∣ |Zn| > 0

)

= 1

α
E

(
Y

v · Q[u]
α

1 − α
exp

(
− Y

v · Q[u]
α

1 − α

))

= 1

α

1

v · Q[u]
α

1 − α

∫ ∞

0
y exp

(
− 1

v · Q[u]
α

1 − α
y

)
1

v · Q[u] exp

(
− 1

v · Q[u]y
)

dy

= 1 − α.
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Coalescence on multitype branching processes 813

Hence, (Tn/n | |Zn| > 0)
d−→ T̃ as n → ∞, where T̃ is a uniform(0, 1) random variable, and

we prove Theorem 3.3. �

6. Proofs of the main results for the subcritical case

Proof of Theorem 4.1. For any r ≥ 0, conditioned on {|Zn| ≥ 2}, the event {Xn,2 < n− r}
occurs if and only if these two individuals are chosen from two trees initiated by two different
ancestors who are either of the same type or of two different types in the (n− r)th generation.
So,

P(n−Xn,2 > r | |Zn| ≥ 2)

= P(Xn,2 < n− r | |Zn| ≥ 2)

= E

(∑d
l=1

∑Z
(l)
n−r
i 	=j=1 |Z(l)n−r,i,r ||Z(l)n−r,j,r |+

∑d
l 	=p=1

∑Z
(l)
n−r
i=1

∑Z
(p)
n−r
j=1 |Z(l)n−r,i,r ||Z(p)n−r,j,r |

|Zn|(|Zn|−1)

∣∣∣∣ |Zn| ≥ 2

)

= 1

P(|Zn| ≥ 2, |Zn| > 0)

× E

(∑d
l=1

∑Z
(l)
n−r
i 	=j=1 |Z(l)n−r,i,r ||Z(l)n−r,j,r | + ∑d

l 	=p=1
∑Z

(l)
n−r
i=1

∑Z
(p)
n−r
j=1 |Z(l)n−r,i,r ||Z(p)n−r,j,r |

|Zn|(|Zn| − 1)

× 1{|Zn|≥2}1{|Zn−r |>0}
)

since {|Zn| ≥ 2} ⊆ {|Zn−r | > 0}. Also, the random variable Z
(l)
n−r,i,r is the branching process

that is initiated by the ith individual of type-l in the (n−r)th generations of the original process
and has been evolving for r generations, and, therefore, it has the same distribution as Z

(l)
r ;

hence, the quantity can be written as

P(|Zn−r | > 0)

P(|Zn| ≥ 2||Zn| > 0)P(|Zn| > 0)

× E

(∑d
l=1

∑Z
(l)
n−r
i 	=j=1 |Z̃(l)r,i ||Z̃(l)r,j | + ∑d

l 	=p=1
∑Z

(l)
n−r
i=1

∑Z
(p)
n−r
j=1 |Z̃(l)r,i ||Z̃(p)r,j |

(
∑d
l=1

∑Z
(l)
n−r
i 	=j=1 |Z̃(l)r,i |)(

∑d
l=1

∑Z
(l)
n−r
i 	=j=1 |Z̃(l)r,i | − 1)

× 1
{∑d

l=1
∑Z

(l)
n−r
i=1 | Z̃(l)r,i |≥2}

∣∣∣∣ |Zn−r | > 0

)

= P(|Zn−r | > 0)

P(|Zn| ≥ 2||Zn| > 0)P(|Zn| > 0)
E(φ(Z

(1)
n−r , Z

(2)
n−r , . . . , Z

(d)
n−r , r) | |Zn−r | > 0),

where Z̃
(l)
r,i ∼ Z

(l)
r for all i and l = 1, 2, . . . , d, and where

φ(t1, t2, . . . , td , r) = E

(∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i ||Z̃(l)r,j | + ∑d

l 	=p=1
∑tl
i=1

∑tp
j=1 |Z̃(l)r,i ||Z̃(p)r,j |

(
∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i |)(

∑d
l=1

∑tl
i 	=j=1 |Z̃(l)r,i | − 1)

× 1{∑d
l=1

∑tl
i=1 |Z̃(l)r,i |≥2}

)
.
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814 J. HONG

Since φ(·, r) is continuous and bounded, by Theorem 2.2(i), there exists a random vector
Y := (Y (1), Y (2), . . . , Y (d)) such that, as n → ∞, for any fixed r ≥ 0,

E(φ(Z
(1)
n−r , Z

(2)
n−r , . . . , Z

(d)
n−r , r) | |Zn−r | > 0) → E(φ(Y (1), Y (2), . . . , Y (d), r)).

Also, by Theorems 2.2(i) and 2.2(iv), as n → ∞, it follows that P(|Zn| ≥ 2 | |Zn| > 0)
converges to P(|Y | ≥ 2) and P(|Zn−r | > 0)/P(|Zn| > 0) converges to ρ−r . Hence, for any
r ≥ 0, the probability P(n−Xn,2 > r | |Zn| ≥ 2) converges to

1

ρrP(|Y | ≥ 2)
E(φ(Y (1), Y (2), . . . , Y (d), r)) := 1 −H2(r).

Now, it remains to show that 1 − H2(r) → 0 as r → ∞. Recall that f (l)r (0) is the
probability of extinction for the individuals of type-l in the rth generation. Since the event
that two individuals can be chosen from the rth generation implies that there are at least two
individuals in the rth generation, we have

0 ≤ 1

ρr
E(φ(Y (1), Y (2), . . . , Y (d), r))

≤ 1

ρr
E

(
1 −

d∏
l=1

(f (l)r (0))Y
(l)

−
d∑
l=1

Y (l)(1 − f (l)r (0))(f (l)r (0))(Y
(l)−1)

∏
p 	=l
(f

(p)
r (0))Y

(p)

)

= E

(
1 − ∏d

l=1(f
(l)
r (0))Y

(l)

ρr

)

−
d∑
l=1

1 − f
(l)
r (0)
ρr

E

(
Y (l)(f (l)r (0))(Y

(l)−1)
∏
p 	=l
(f

(p)
r (0))Y

(p)

)
. (6.1)

First, by Theorem 2.2 and the monotone convergence theorem, as r → ∞,

E

(
1 − ∏d

l=1(f
(l)
r (0))Y

(l)

ρr

)
= E(ρ−rP(Zr 	= 0 | Z0 = Y )) → E

(
u · Y

u · EY

)
= 1.

Secondly, by Theorem 2.2(iii), we have

EY (l) < ∞ and
1 − f

(l)
r (0)
ρr

→ ul

u · EY
as r → ∞.

Also, f (l)r (0) → 1 as r → ∞. So, by the bounded convergence theorem, as r → ∞, the
subtrahend of (6.1) converges to

∑d
l=1(ul/u · EY )EY (l) = 1. Therefore, we obtain

1 −H2(r) → 1 − 1 = 0 as r → ∞. �

Proof of Theorem 4.2. Since, conditioned on {|Zn| > 0}, the event {Tn ≥ n−r} occurs if and
only if the whole population comes from exactly one individual in the (n− r)th generation and
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Coalescence on multitype branching processes 815

the trees initiated by other individuals in the same generation die out before the nth generation
except this one, for any r ≥ 0,

P(n− Tn ≤ r | |Zn| > 0) = P(Tn ≥ n− r | |Zn| > 0)

= E

( d∑
l=1

Z
(l)
n−r∑
i=1

P(|Z(l)n−r,i,r | > 0)
∏
j 	=i

P(|Z(l)n−r,j,r | = 0)

×
∏
p 	=l

Z
(p)
n−r∏
j=1

P(|Z(p)n−r,j,r | = 0)

∣∣∣∣ |Zn| > 0

)

= P(|Zn−r | > 0)

P(|Zn| > 0)
E

( d∑
l=1

Z
(l)
n−r (1 − f (l)r (0))(f (l)r (0))Z

(l)
n−r−1

×
∏
p 	=l
(f (l)r (0))Z

(p)
n−r

∣∣∣∣ |Zn−r | > 0

)
.

Let

h(x1, x2, . . . , xd) = E

( d∑
l=1

xl(1 − f (l)r (0))(f (l)r (0))xl−1
∏
p 	=l
(f (l)r (0))xp

)
,

then h is continuous at (x1, x2, . . . , xd). So, by the continuous mapping theorem, as n → ∞,

E(h(Z
(1)
n−r , Z

(2)
n−r , . . . , Z

(d)
n−r ) | |Zn−r | > 0) → E(h(Y (1), Y (2), . . . , Y (d)))

and, hence, P(n−Xn ≤ r | |Zn| > 0) converges to

ρ−rE
( d∑
l=1

Y (l)(1 − f (l)r (0))(f (l)r (0))Y
(l)−1

∏
p 	=l
(f (l)r (0))Y

(p)

)
:= π(r).

Also, along the same lines as in the proof of Theorem 4.1, we can prove that limr→∞ π(r) = 1
and which that π(r) is a proper probability distribution. �

Proof of Theorem 4.3. Let ξ in,j = (ξ
i(1)
n,j , ξ

i(2)
n,j , . . . , ξ

i(d)
n,j ) be the vector of offspring of the

j th individual of type-i in the nth generation. Let

Z
j,l
p,r,s,n = (Z

j,l,(1)
p,r,s,n, Z

j,l,(2)
p,r,s,n, . . . , Z

j,l,(d)
p,r,s,n)

be the branching process initiated by the sth child of type-l of the pth individual of type-j in
the rth generation. Also, let An,i be the type of the ancestor in the next generation of the most
recent common ancestor of the ith chosen individual, i = 1, 2. Then the event {n−Xn,2 = r,

ηn = j, ζn,1 = i1, ζn,2 = ii} is a disjoint union

E1 := {n−Xn,2 = r, ηn = j, ζn,1 = ζn,2 = i, An,1 = An,2} ∪ E2

:= {n−Xn,2 = r, ηn = j, ζn,1 = ζn,2 = i, An,1 	= An,2} ∪ E3

:= {n−Xn,2 = r, ηn = j, ζn,1 = i1 	= ζn,2 = i2, An,1 = An,2} ∪ E4

:= {n−Xn,2 = r, ηn = j, ζn,1 = i1 	= ζn,2 = i2, An,1 	= An,2}.
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First, conditioned on {|Zn| ≥ 2}, the eventE1 occurs if and only if these two individuals are
chosen from those of type-i in the nth generation and from two different trees initiated by two
children, who are of the same type, of an individual of type-j in the (n− r)th generation. So,

P(E1 | |Zn| ≥ 2)

= E

(∑Z
(j)
n−r
p=1

∑d
l=1

∑ξ
j (l)
n−r,p
s 	=t=1 Z

j,l,(i)
p,n−r,s,r−1Z

j,l,(i)
p,n−r,t,r−1

|Zn|(|Zn| − 1)

∣∣∣∣ |Zn| ≥ 2

)

= P(|Zn−r | > 0)

P(|Zn| ≥ 2 | |Zn| > 0)P(|Zn| > 0)

× E

(∑Z
(j)
n−r
p=1

∑d
l=1

∑ξ
j (l)
n−r,p
s 	=t=1 Z

j,l,(i)
p,n−r,s,r−1Z

j,l,(i)
p,n−r,t,r−1

|Zn|(|Zn| − 1)
1{|Zn|≥2}

∣∣∣∣ |Zn−r | > 0

)
. (6.2)

Let ξ j = (ξ j (1), ξ j (2), . . . , ξ j (d)) be i.i.d. copies of the vector of offspring of an individual
of type-j , then ξ j has the same distribution as ξ

j
n−r,p. Also, let Z̃lr−1,s = (Z̃

l(1)
r−1,s , Z̃

l(2)
r−1,s , . . . ,

Z̃
l(α)
r−1,s) be the i.i.d. copies of Zr−1 with Z0 = el , then Z̃lr−1,s has the same distribution as

Z
j l
p,n−r,s,r−1. So, the expectation in (6.2) is equal to

E

(∑Z
(j)
n−r
p=1

∑d
l=1

∑ξj (l)

s 	=t=1 Z̃
l(i)
r−1,s Z̃

l(i)
r−1,t

|Zn|(|Zn| − 1)
1
{∑d

j=1
∑Z

(j)
n−r
p=1

∑d
l=1

∑ξj (l)

s=1 |Z̃lr−1,s |≥2}

∣∣∣∣ |Zn−r | > 0

)
.

Let

ϕ1(x1, x2, . . . , xd, r)

= E

( ∑xj
p=1

∑d
l=1

∑ξj (l)

s 	=t=1 Z̃
l(i)
r−1,s Z̃

l(i)
r−1,t1{∑d

j=1
∑xj
p=1

∑d
l=1

∑ξj (l)

s=1 |Z̃lr−1,s |≥2}

(
∑d
j=1

∑xj
p=1

∑d
l=1

∑ξj (l)

s=1 |Z̃lr−1,s |)(
∑d
j=1

∑xj
p=1

∑d
l=1

∑ξj (l)

s=1 |Z̃lr−1,s | − 1)

)
,

then, since ϕ1(·, r) is continuous and (Zn−r | |Zn−r | > 0)
d−→ Y as n → ∞,

P(E1 | |Zn| ≥ 2) → 1

ρrP(|Y | ≥ 2)
E(ϕ1(Y

(1), Y (2), . . . , Y (d))).

Similarly, there exist ϕl , l = 2, 3, 4, such that, as n → ∞,

P(El | |Zn| ≥ 2) → 1

ρrP(|Y | ≥ 2)
E(ϕl(Y

(1), Y (2), . . . , Y (d))).

Let ϕ = ϕ1 + ϕ2 + ϕ3 + ϕ4, then, as n → ∞,

P(n−Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2 | |Zn| ≥ 2)

→ 1

ρrP(|Y | ≥ 2)
E(ϕ(Y (1), Y (2), . . . , Y (d)))

:= ψ2(r, j, i1, i2).
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Moreover, since (n− Xn,2 | |Zn| ≥ 2)
d−→ X̃2 as n → ∞, it follows that {n− Xn,2}n≥0 is

tight and, also, {ηn}n≥0, {ζn,1}n≥0, and {ζn,2}n≥0 only take values on the finite set {1, 2, . . . , d},
so {(n−Xn,2, ηn, ζn,1, ζn,2)}n≥0 is tight. Therefore, the limit ψ2(r, j, i1, i2) of

P(n−Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2)

is a probability mass function on N0 × {1, 2, . . . , d} × {1, 2, . . . , d} × {1, 2, . . . , d}. That is,∑
(r,j,i1,i2)

ψ2(r, j, i1, i2) = 1. �
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