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Abstract

We consider a system subject to shocks which occur according to a non-
homogeneous pure birth process. The system has two types of failures. Type-I
failure can be removed by a repair. Type-II failure can be removed by an unplanned
replacement. We assume that the inter-arrival time between consecutive shocks
follows phase-type distributions. For example, under a special PH-distribution
that is a hypo-exponential distribution, we find the conditions of the existence
of stationary probability. Under this model we investigate the age replacement
policy. We derive the expected cost rate of a replacement cycle. To find the optimal
planned replacement age that minimizes the expected cost rate, we give an efficient
algorithm and develop a MALAB tool for implementation. A series of numerical
examples motivate us to write a new theorem. That is simpler, more practical, and
more intuitive than a previous theorem. This theorem shows the existence of the

optimal planned replacement age.

Keywords: Shock model, Phase-type distribution, Non-homogeneous pure
birth process, Renewal process, Markov process, Age replacement policy, Station-

ary probability
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Chapter 1

Introduction

Sheu et al. [13] present a non-homogeneous pure birth shock model. Assume the
probability that a machine undertakes repairable failure or deterioration will increase with age.
Through preventive maintenance policy, we can minimize operational costs and catastrophic
failure risks. One well-known preventive maintenance policy is age replacement which is widely
used and easy to implement. As a shock occurs, the system gets into failure state. Hillier
and Lieberman [8] introduce an example of a machine which have four states: (i) new, (ii)
minor deterioration, (ii1) major deterioration, and (iv) breakdown. With the random variable X}
denoting the state of the machine at week ¢, the stochastic process {X; : ¢t = 0,1,2,---} is
a discrete time Markov chain. With the different one-step transition probabilities among states
of the process, the machine reaches different operation modes. Without loss of generality, in
this thesis, we only consider the system has two types of failures: (i) minor failure, and (ii)
catastrophic failure.

There are many literatures which deal with the replacement of a system subject to shocks.
According to the inter-arrival time between consecutive shocks, these model can be divided
into (1) homogeneous Poisson process (PP), (i1) nonhomogeneous Poisson process (NHPP), (iii)
nonhomogeneous pure birth process (NHPBP), and (iv) renewal process.

Cox [6] defines the fundamental shock model which is called the ordinary renewal process.
Start a new system at zero time. The system fails at time X; and is immediately replaced
by a new system with failure time X5,. Then the second failure will occur at time X; + Xo.
Let this process continue. This system is called an ordinary renewal process if { X7, Xs, -}

are independent identically distributed random variables, all with probability density function
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f(z). But this model does not consider the accumulation of shocks. Esary et al. [7] provide
a more complicated model. They consider a system subject to shocks which occur according
to a PP. Each shock causes a random damage. The damages on shocks are independent and
identically distributed. The system will breakdown when the accumulated damage exceeds a
specified threshold. A-Hameed and Proschan [1] extend the results obtained by Esary et al. [7]
and consider a system subject to shocks which occur according to a NHPP. A-Hameed and
Proschan [2] extend the above two results and consider a system subject to shocks which occur
according to a nonstationary pure birth process: given k shocks have occurred in [0, ¢], the
probability of a shock occurring in (£, + A] is AgA(2)A + o(A). Sheu et al. [13] investigate the
maintenance or replacement policies under the NHPBP shock process.

For a shock model, the probability of an event occurring during an arbitrarily small interval
is defined by Py 41(h) = Pr{X(t + h) — X(t) = 1| X(t) = k}. We compare Py ;11(h) of
the four cases: (i) PP, Py x+1(h) = A+ o(h) as b — 0, (i) NHPP, Py, ;.1 (h) = A(t)h + o(h)
as h — 0, (iii) homogeneous pure birth process (PBP), Py y11(h) = A\ch + o(h) as h — 0,
(iv) NHPBP, Py ;. 41(h) = \g(t)h + o(h) as b — 0. The definition of Poisson process and pure
birth process can be found in Taylor and Karlin [14]. Note that the hazard rate of PP is constant
but that of NHPP is dependent on the age of the system, so is PBP which is dependent on the
number of shocks. Moreover the hazard rate of NHPBP not only depends on the age of the
system, but also depends on the number of shocks. Therefore the NHPBP is more appropriate
for prescribing the system’s deterioration process.

The NHPBP is more suitable for charactering the practical system’s deterioration process
than the PP and the NHPP. However, the cumulative probability function of the lifetime of
the system is not easy to calculate. In order to make the calculation easier, a proper assumption
about the distribution of the inter-arrival time between consecutive shocks should be considered.
One suitable distribution is the phase-type distribution since it can be represented as matrix
exponential forms with closure property, see Buchholz et al. [5]. Under this assumption, we
investigate the age replacement policy and give an algorithm to compute the optimal planned
replacement age.

Under the age replacement policy, the system is replaced at the planned replacement age
or at failure, whichever occurs first. Barlow and Hunter [4] provide the standard model of

the classical age replacement policy. Its objective is to minimize the expected cost rate of a
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replacement cycle which is the ratio of expected cost over areplacement cycle to expected length
of a replacement cycle. The optimal planned replacement age corresponds to the minimum of
the objective function.

Although Sheu et al. [13] provide an appropriate model for the system’s deterioration
process, the distribution of the inter-arrival time between any consecutive shocks is given by
a general assumption without specific form which may cause computational difficulties when
evaluating an optimal replacement policy. In this thesis, we give an analysis of how a phase-
type distribution can be used to provide an efficient algorithm in order to evaluate the optimal
policy, e.g., the optimal planned replacement age.

Both continuous (CPH) and discrete (DPH) phase-type distributions were first described
in detail by Neuts [11]. They are widely used in distribution approximation due to their
computational advantages and easy integration in complex stochastic models. It is known that
the PH-distribution can approximate an arbitrary probability distribution with high accuracy
by Asmussen et al. [3]. Weibull distribution is on of the functions for which it is easy to
find the satisfactory PH-approximation. Maier and O’Cinneide [9] has proved that phase-
type distribution is closed under convolutions and mixtures. Detailed calculation can refer to
Buchholz etal. [5, pp. 24-25] and Nielsen [12, pp. 15-17]. Montoro-Cazorla et al. [10] consider a
shock model whose inter-arrival times between any consecutive shocks follow phase-type (PH-)
distributions. They apply the closure property of PH-distribution to express the lifetime of the
system as PH-distribution. PH-distribution has matrix exponential form, and therethrough we
can use numerical computation to solve the problems of shock models.

This thesis is organized as follows. In Chapter 2, a system subject to NHPBP shocks with
phase-type distribution is considered. In Chapter 3, we find the conditions of the existence of
stationary probability. In Chapter 4, the expected cost rate of a replacement cycle is formulated
and the optimization of the age replacement policy has been developed. In Chapter 6, several
numerical examples are given to the shock model to illustrate the algorithm and we find a new
theorem which shows the existence of the optimal planned replacement age. Finally, Chapter 7

concludes this thesis.
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Chapter 2

Model Formulation

2.1 Definitions of NHPBP and Phase-Type Distributions

In this thesis, we consider a system subject to shocks which occur according to a non-

homogeneous or non-stationary pure birth process defined below.

Definition. (Sheu et al. [13]) If a counting process {N(t) : ¢ > 0} is a non-homogeneous
continuous time Markov process with following conditions:
(i) N(0) =0,
(ii) Pr{N(t + h) — N(t) = 1|N(t) = k} = M(t)h + o(h),
(iii) Pr{N(t + h) — N(t) > 2|N(t) = k} = o(h),
(iv) the process has independent increments,
then the process is called a non-homogeneous or non-stationary pure birth process (denoted

by NHPBP or NSPBP) with the intensity function {\,(¢),k =0,1,2,--- }.

We only consider the case that the inter-arrival times between any consecutive shocks

follow phase-type distributions.

Definition. The distribution H(-) on [0, 00) is a phase-type distribution with representation

(B, A), if it is the distribution of the time until absorption in a Markov process on the states

o i)

and initial probability vector (5, 3,,+1), where /3 is a row m-vector. We assume that the states

{1,---,m,m + 1} with generator

{1,--- ,m} are all transient and the state {m + 1} is an absorbing state. Throughout this thesis

4
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1 denotes a column vector with all components equal to one. The dimension of 1 is determined
by the context. The matrix A of order m is non-singular with negative diagonal entries and non-
negative off-diagonal entries and satisfies —A1 = a > 0. The vector a is called the absorption

vector. The distribution H(+) is given by
H(t) =1— aexp(At)l,t > 0.

It will be denoted that H(-) follows a PH(«, A) distribution.

2.2 Assumptions of the System

Consider a system subject to shocks which occur according to a non-homogeneous pure
birth process (denoted by NHPBP). As a shock occurs, the system enters one of two types of
failure:

(1) type-I failure (minor failure), which is removed by a repair.

(11) type-II failure (catastrophic failure), which is removed by an unplanned replacement.
Let {s; }72 , be the sequence of the failure type at every shock since the last replacement, defined
by si € {1,2},Vk € N, where 1 represents the type-I failure and 2 represents the type-II failure.
The sample space is denoted by

Q={s|s={s1,52, -}, sy € {1,2},Vk € N}.

Let M : ©2 — N be the number of shocks until the first type-II failure since the last replacement,

which is a random variable defined by
M(s) =min{k € N|s, =2},Vs € Q.

Now, we define the probability of survival of the system. Forall £ > 1, the kth shock carries
out either the type-I failure with probability g or the type-II failure with probability 6, = 1 — ¢;.
Note g = Pr{sy = 1} and 0, = Pr{sy = 2}, Vk > 1. Let p;, be the probability that the system
breakdown when the kth cumulated shocks occurs for all & > 1. Note p, = Pr{M = k},
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Vk > 1. The py, is defined by
k—1
Pr = <H Qi> Or, k> 1, 2.1)
i=1

and p; = 6;. Note {px}72, is a discrete probability distribution and > p, = 1. The survival
k=1
function P, of M is defined by

Py =Pr{M >k} _ﬁqz-, k>1, (2.2)
i=1
which is the probability that the first £ cumulated shocks carry out type-I failures. Therefore we
have Pyy1 = qri1 P

The system update strategy is the age replacement policy. There are two types of

replacements:

(1) unplanned replacement, which is caused by type-II failure.

(i1) planned replacement, which occurs when the system reaches age 7.
Therefore, the system is replaced at any type-II failure or at age 7". A replacement cycle is the
time interval between two consecutive replacements.

The cost of unplanned (due to type-II failure) and planned (due to planned replacement
time) replacement is given by R; and R,. We denote by c(t), the cost of the kth repair at time
t, and denote by r(t) = F[ck(t)], the expected cost of the kth repair at time ¢ for all £ > 1. Let
my(t) be the cost per unit time of maintenance of the system at time ¢ and the cumulated shocks
is k for all £ > 0.

The system satisfies the following conditions:

(1) The system is monitored continuously and failures are detected immediately.
(2) Repairs and replacements are completed instantaneously.
(3) The system becomes new after a replacement, i.e., N (¢) = 0.

(4) We assume that M is independent of the shock process { N (¢) : t > 0}.
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2.3 Lifetime of the System

Let X*) be the inter-arrival time between the kth and the (k + 1)th shocks, for all & > 0,
where X (©) is the time until the arrival of the first shock. These inter-arrival times follow PH-
distributions represented by PH(3®*) A®), for all k > 0 of order n;. We focus on a special

PH-distribution that is a hypo-exponential distribution and the intensity matrix is

_agk) agk)

Let T™) be the time point of the occurrence of the kth shock, which is defined by

k—1
T® =3 "X0 k> 1.

1=0

Let T© be the initial time of the system, clearly 7(®) = 0. These random variables follow the
PH-distributions which are represented by PH(g®, G*®)), for all k > 1. The random variable
T®) is the convolution of X, XM ... X*=1) thys the matrix G*) is

A g0 51)
AL g

¢ = . k> (2.3)
Ak=1)
and the initial vector is given by ¢ = (5 0,--- ,0), k > 1. The cumulative distributions of
these 7% are
Hi(t) = Pr{T® <t} =1 — ¢® exp(GP1)1, k > 1. (2.4)

Denote by Ay (t) the probability density function of 7).
Let 75 be the lifetime (natural death) of the system. The distribution of 7 is a mixture of
PH-distributions Hy(t) for all £ > 1, which is represented by PH(v;, V;) with

1) (2)7...)

vs = (p19""”, D2y
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and the cumulative distribution of 7} is

Hy(t) =Pr{T, <t} =1—vsexp(Vit)1 =1— Zpkg(k) exp(GHH)1. (2.5)
k=1

Denote by h(t) the probability density function of 7.
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Chapter 3

The Stability of the System

In Chapter 2, we define a system with PH-distribution subject to NHPBP. The system has
two types of failures and becomes new after a replacement. Now we consider the case that the
system without planned replacement, i.e., 7' = oo. Then the system is replaced only due to
type-II failure. When we look at this system for a long time, we will find that the system breaks
naturally and becomes new over and over again.

We consider a system subject to NHPBP which is a recurrent Markov process. We will

give the transition rate matrix of the system and find the stationary probability of it.

3.1 The Stationary Probability

Under the assumptions in Chapter 2, we denote by X (®) the inter-arrival time between the
kth and the (k + 1)th shocks, for all £ > 0. These inter-arrival time which follow special
PH-distributions, given by hypo-exponential distributions, represented by PH(5®*) A*)) for
all k > 0 of order nj. We may assume that 3%) = (1,0,---,0), forall k > 0, i.e., X start at
the first phase. We may assume that nj, = m, for all k& > 0, for some m € N, i.e., X*) have the
same number of phases.

The system state is the cumulated shocks & and begin at £ = 0. For all £ > 0, if the next

shock is type-I failure, then the state becomes to k£ + 1. If the next shock is type-II failure, then
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the state becomes to 0. Therefore the transition rate matrix () is

AP A0 AW
Q= AD AR A®

where

3.1)

A(()k) = 9k+1a(k)5(0) and Agk) = C]k+1a(k)5(k+1)>Vk > 0.

The matrix Aék) means that the system state is &£ and the next shock is type-II failure, so the

system is replaced by a new one and the state becomes to 0. The matrix Agk) means that the

system state is k£ and the next shock is type-I failure, so the state becomes to k£ + 1.

Letm = (mg, 71,2, - - - ) be the stationary probability of (), where m, = (7x1, Tra, * ** , Thm)

for all £ > 0. Since 7() = 0, we have

mA® + 3 m Al =0,
k=0
AP 4 1 ARTD = 0, vE > 0.
From equations (3.2a) and (3.2b), we get

(k+

Thm@rs10%) — Thi110d D= 0,vk > 0.

and

Wk,lagk) - Wk,zaék) =0,Vk >0,
Wk,gozgk) — 7Tk,3Oé:(3k) =0,Vk >0,

Wk,m—lag:),l - Wk,mags) = 07Vk > 0.
From equation (3.4), we get

NG NORNG

o

1
T = Wﬂkl,ij Z 0 and T = Tkl ]—7 k) (k) )

j Q" Q3

10

o

(3.2a)

(3.2b)

(3.3)

(3.4)

Yk > 0. (3.5)
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From equations (3.3) and (3.5), we have

(k—1) (k—1)
Tl = Thtmh g~ = Th-119%k g5 Vk > 1.
ay aq

Thus, by Mathematical Induction, we get

aﬁ‘” k
Tk = To1 gy (H Qi> ,VE > 1. (3.6)

i=1

From equations (3.5) and (3.6), we have

L= > ™

k=0 j=1
(0) (0) (0) o (k) (k) (k)
_ sl ! o oy o oy
= To1 <1+W+Tm+"'+w> +Z7Tk1 (1%—%—1—%—}—---—{—%)
0o k
— 7'('010650)[)0 + 7T01Oé§0) Z bk (H qz>
k=1 =1
o) k
= To1 [Oégo)bo + 0450) Z by (H (Jz)] ;
k=1 =1
where
b, = L L { Vk >0 3.7
k ZBE7‘+’ZJES'+"' +'Z;E7, = U. ( ,)
1 2 m
Hence

) k -1
Tor = {04(10)50 +o” Y b (H q)] . (3.3)
k=1 i=1

3.2 The Conditions of the Existence of Stationary Probability

In this chapter, we will find the condition such that the stationary probability exists. In
Chapter 3.1, we find the solution of ;. From equation (3.8), we only need to find the condition

such that the following series exists:

> (1 1 1 i
1 m i=1

k=1 2

11
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The following theorem gives the sufficient conditions for the existence of the series (3.9).

Theorem 1. The series (3.9) is convergent under the the assumption that either
k)
(1) the limit I}l)ngo ﬁ exists and less than one, forall j =1,2,--- ,m, or
(ii) the sequence {¢;} is decreasing with ¢,, < 1 for some ny > 1, and the following sets
{agk) |k > 0}, {agk) |k >0}, - {am) |k > 0} are bounded below by a positive real number b.

k
Proof. (i) Since g; is probability, so ¢; < 1,Vi > 1. Thus [] ¢; < 1. Therefore
=1

> 1 1 1
_——t ——+ - q; < +...+_ ,
> (o) (o) < (v o)

and we only need to show the right hand side is convergent.

Foreach1 < j < m, {1/a§k)}z‘;1 is a sequence and aé‘? > 0,Vk > 1. By hypothesis, we

have . "
I o)’ ~ EAS 1LV1<j<
eioe [ QD |~ ke oD S Jjsm.
J J

Therefore by Ratio Test, we have Z k) converges absolutely, Vj = 1,2, --- ;m. Then

> NG NG SZW‘LZ Z N0
k=1 1 2 m k=1 1 k=1 2 k= Qm

is convergent. Therefore the series
i( S RN )
k k k
2P T

is absolutely convergent and also is convergent. Hence the series (3.9) is converge.

(i1) By hypothesis, we have {a§k)|k: > 0} is bounded below, Vj = 1,2,--- ;m, by a

positive number b. So for each 7 = 1,2,--- ,m, we have b < agk), k > 0. Then for each

1 1
j=1,2,---,m,wehave — (k) < - z ,Vk > 0. Thus

]

1 1 1 m
+t—m ot < VE20
agk) ozgk) oa(ﬁ) b
12
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m
Therefore the set {5 + —5 + - -+ + — |k > 0} is bounded above by 7
oy o un

Now, we have

Z(F_{—W—F—i_W) <HQZ>S?Z<H%>’
1 , .

k=1 2 m

00 k
and we only need to show that the series » (H qZ) is convergent.
k=1 \i=1
By hypothesis, there is an ny > 1 such that ¢,, < 1, and we have

3 (11e) 5 (1) (1)

00 k
It is sufficient to show the series > (H qi) is convergent.
k=ng \i=1
Since the sequence {¢; }:2, is decreasing and ¢; < 1,Vi > 1, we have

o) k no—1 0o k no—1 00 00
> (ITa) - (Ta) 3 (1) < (To) ot < 3ot
k=no \i=1 i=1 k=no \i=no i=1 k=1 k=1
The right hand side is a geometric series with common ratio less than 1, thus it is convergent.

00 k
Therefore the series ( ql-) 1s convergent. Hence the series (3.9) is converge. ]
=1

k=ng

13
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Chapter 4

Age Replacement Policy

The Py (t) be the transition probability of the system at time ¢ given N (0) = 0, write
Pe(t) =Pr{N(t) = k| N(0) = 0},
which can be defined by

Py(t) =

{1—1{1(15), ifk =0, @

Hy(t) — Hia(8), ifk > 1.

Since Hy(t) is the cumulative distribution of 7*), we have
Hy(t) = Pr{T™ <t} = Pr{N(t) > k} = > Pi(t).
i=k

Hence Py (t) = Hy(t) — Hii1(t) forall & > 1.
Now, we will find the relationship between P (t) and the probability density function of
T*+1 One of the conditions of a NHPBP is

Pr{N(t +h) — N(t) = 1[N (t) = k} = \e(t)h + o(h),

14
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where A (1) is called the intensity function. Then we have

Pr{N(t+h) — N(t) =1land N(t) = k}
Pr{N(t) = k}

_ Pr{t < T <t 4+ h}

B Pr{N(t) = k}

Pr{N(t+h)— N(t) =1|N(t) =k} =

We know that
t+h
Pr{t < T®Y) <t 4} = / i1 (s)ds = hyp1(t)h + o(h)
t

where hy,1(t) is the probability density function of 7*+1). Therefore it gives

oh) _ hen(t)
h Pr{N(t) = k}

Ak(t) +

Taking h — oo we have
i1 (t)
Ae(t) = 4.2

which can be rewritten by

hii1(t) = \e(t) Pr(2).

4.1 Expected Cost Functions

Let H,(t) be the cumulative distribution of T, we have defined before, H,(t) = 1 — H,(t)
be its survival function, and h4(t) be its density function.

Let 7" be the planned replacement age. Consider the lifetime of system 7 and the planned
replacement age 7" together. Let 7" = min{7, T’} be the length of a replacement cycle. Then

the expected length of a replacement cycle is given by

S

L(T) = E[T"] = E[min{T,, T}] = /OTt-hs(t)dtJrT-ﬁs(T) _ /OTﬁs(t)dt.

In Section 2.2, we have defined the parameters of cost. The cost of unplanned and planned
replacement is given by Ry and R,. Denote by r(t), the expected cost of the kth repair at time
t for £ > 1. Denote by my(t), the cost per unit time of maintenance of the system at time

t € [T® T*+D) for all k > 0 (note T = 0).

15
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Now, we can defined the cost function. Let W be the all costs over a replacement cycle 77

which is defined by
W = Rolig,>m) + Rilip,<m) + i k(T Mnrswlypao <y + / m ) (s n ey dt.
k=1
Therefore, the expected cost over a replacement cycle is given by
C(T) = E[W] = RyH(T) + Ry H,(T) + Z/ 7 (t) Pl (t dt+/ ka(t)FkPk(t)dt
=0
From (4.2), we have shown that hj 1 (t) = A, (f) Px(t). Thus, we have

=Ry + (R — Ry)H,(T) + /Zrk+1 ) Pria i (t) Pr(t) dt+/ ka ()P Py (t

In Chapter 2.2, we have shown that P, = q4.1P:. Thus, it yields

o) = Ry + (B~ RN+ [ Z i ()i () + ()] Pi(t) Pt
=0
c(T)
The expected cost rate of a replacement cycle is given by Jo(T') = m, that is
Ry + (Ry — Ry) et t)] Py (t) Pydt
Jo(T) = 2 (R — R)Hy(T) + Jy szo 1 () @1 A (8) + 11 (6)] Po(t) Pt @3)
Jo Hs(t)at
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4.2 The Optimal Planned Replacement Age

We want to determine the optimal planned replacement time 7™, by using the first derivative

test. Taking the first-order derivative of Jo(7"), we get

/OT H,(t)dt

)

(Rl Rg)h —I— Z Tk—l—l )C_Ik-i-l)\k(T) + mk(T)] Pk(T)ﬁk

=0

Jo(T) = {

Ry + (R — / Z [Pt (8) Qg1 A (8) + g (8)] Pe(t) Prdt

X (/OT Fs(t)dt)

Setting J{(T") = 0, we find the optimal condition for planned replacement time

—2

) [ ot
/ (4.4)
— (- / Zm+l<t>qkm<t>+mk<m P(t)Pudt| = Ry,
where denoting
po(T) = Flm (B = B)hT) + 3 [t (T M(T) + mn(T)] PP | . (45)

In order to find the optimal 7™, we consider the relationship between ¢ (7") and J(T"). Taking

T — 0o, we have

A, ) = Jsgr v

Rt [75 beanaw(t) + m) PP

Now, we take a theorem to check weather a problem have a finite and unique 7.

Theorem 2. (Sheu et al. [13]) Assume that
(1) 751 (t)qrs1 Ak (t) +my(t) is non-decreasing in (k, t) and 7411 (¢)qrr1 Ak () +me(t) — cr
uniformly as £ — oo.
(2) Ax(t) is increasing in (k, t).
(3) Py is a discrete increasing failure rate (IFR) function.

If T}im oc(T) > Tlim Jo(T), then there exists a finite and unique 7 which minimizes J(7")
— 00 — 00

17
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and such that oo (T*) = Jo(T*). Otherwise, the optimal age replacement policy is T* = oo,

i.e., there is no planned replacement.

Proof. In order to find the optimal planned replacement time 7™, we take the first-order
derivative of (4.3) and set it equal to zero. Then we obtain the equation (4.4). Let Q(7") be
the left-hand side of (4.4), that is

7) / CHL (1t

(4.6)
- - rym + [ Z[rm(qumka)+mk<t>1 PPt

If Py, is a discrete IFR and )\, (t) is increasing in (k, t), then H,(T') is IFR, which is proved
by Theorem 2.4 in A-Hameed and Proschan [2]. Thus, under assumptions (1)-(3), oo (T) is
increasing in 7" and ¢} (7") > 0. Now, we prove that Q(7') is also increasing in 7". Taking the

first-order derivative of Q(7"), we have

Q'(T) =¢is(T) / (1)t +po(T)H(T)

(R~ ROBT) + 3 s (D)o M(T) + mal0)) B(T)P

— o (T) / .(t)dt

Since fo t)dt > 0 and ¢(T) > 0, then we can deduce that Q'(7") > 0. Hence Q(T') is
increasing.

Assume lim ¢c(T) > lim Jo(T'), then we have
T—o0 T—o0

lim Q(T) = lim o () / CHL ()t

(=)t [ fj (O () + (0] Pt Padt
> lim Jo(T) /0 Ooﬁs(t)d;
= R+ [T e D)+ 0] Pl P
=R,. .
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Therefore Tlglgo Q(T) > Ro.

Since Q(0) =0 < Ry < Tlgrolo Q(T), there exists a finite and unique 7* (i.e., 0 < T* < 00)
such that Q(7™) = R,. The optimal planned replacement age 7" minimizes Jo (7).

Finally, we prove that o (T*) = Jo(T™). Since Q(T*) = Ry, we have

-
po(T7) [ H(t)dt
0

(Ry — Ro)Hy(T™) +/0 Z [res1 () qepa e (t) + mi ()] Pi(t) Prdt | = Ro.

Then add the second term to the right-hand side and divide it by fOT* H,(t)dt, we get Jo(T).
Hence oo (T7) = Jo(T%). O
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Chapter 5

Algorithmic Computation

Before starting this chapter, we list the notations defined in previous chapters as follows.

Notation.
M the number of shocks until the first type-II failure since the last replacement;
qr: the probability that the kth carries out the type-I failure, Vk > 1;

0 the probability that the kth carries out the type-II failure, Vk > 1, 6, = 1 — qy;

Dk the probability that the system breakdown when the kth cumulated shocks occurs,
pr=Pr{M =k}, k> 1;

P the survival function of M, P, = Pr{M > k}, Vk > 0;

X®) " the inter-arrival time between any consecutive shocks, X ¥) ~ PH(B*), A®) vk > 0;

T™)  the time point of the occurrence of the kth shock, 7*) ~ PH(¢® G®)), Vk > 1;

T, the lifetime (natural death) of the system, T ~ PH(vs, V5);

H(t) the cumulated distribution function of 7, vk > 1;

hi(t)  the probability density function of T, vk > 1;

H(t) the cumulated distribution function of T;

hs(t)  the probability density function of 7;

H,(t) the survival function of T};

Pi(t) the transition probability of the system at time ¢ given N (0) = 0, Vk > 0;

Ak(t)  the intensity function of the system at time ¢ when the cumulated shocks is k, V& > 0;

20
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Notation. (Continue)
Ry the cost of unplanned replacement;
Ry the cost of planned replacement, Ry, < Rj;
r,(t)  the expected cost of the kth repair at time ¢, Vk > 1;
my(t) the cost per unit time of maintenance at time ¢ when the cumulated shocks is k, Yk > 0;
C(T) the expected cost over a replacement cycle;
L(T) the expected length of a replacement cycle;
Jo(T) the expected cost rate of a replacement cycle, Jo(7) = %;
wc(T) defined in equation (4.5);
Q(T) defined in equation (4.6);

T the optimal planned replacement time;

In this chapter, we give an efficient algorithm to calculate the optimal planned replacement
age. We define a shock model whose inter-arrival times between any consecutive shocks X (¥)
follow PH-distributions. Then the sequence {7°®)}2° | and T} all follow PH-distributions. Now,
Compute H,(t) by i peg® exp(GM1)1 is more convenient than by v, exp(V,t)1. Hence our
algorithm is efﬁcielft.ZIISy definition, the computation of CDF of a PH-distribution only involves
in matrix computation, especially is of the special type matrix exponential, refer to equations
(2.4) and (2.5). Let X be an n x n real matrix. The exponential of X is denote by exp(X ) which

is given by the following series

| —

Xk
! .

x

exp(X) =

Therefore the computation of CDF of a PH-distribution essentially is matrix multiplication.

In Sheu et al. [13], it starts from general intensity functions A\ (t) to express the shock
model. To determine the optimal age 7™, we must perform through complicated computation to
get survival function of the lifetime of system 7. Also the PDFs {h; ()}, of {T® )} are
not easy to be expressed under this definition.

We abandon the general definition of the shock model and define the distribution of inter-
arrival times between any consecutive shocks directly. Therefore, we can easily and efficiently

compute the CDFs and PDFs of 7®*) and 7.
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5.1 The Structure of the Algorithm

The input of our algorithm only needs {q;}3°, and {X(*)}2° . The parameters are R,
Ry, {r(t)}72,, and {my(t) }32,, which are defined as individual cost. We assume the sequence
{qx}32, is decreasing with ¢,, < 1 for some ny > 1. We assume ) = (1,0,---,0) and A®)
is of order m for all £ > 0. The goal is to calculate the optimal planned replacement age 7™ for
the system with PH-distribution under upper triangle intensity matrix.

We divide the algorithm into two parts: the first part is used to compute the basic elements
of the system; the second part is used to compute the the optimal planned replacement age 7 and
the optimal expected cost rate J¢ (7). The Basic elements include: {q}22 1, {0k }721, {Pr}i 1,
(P} {HE()}720 {hn(O)321, Ha(t), ha(t), Ho(t), {Pi(t) 170, and {17

The steps of the first part are listed in the following:

Input: {g;}22, and { X ¥} in terms of {B*) 120, and {AR) 12

1. From {q;}2°,, compute {0;}5,, {px}3, by equation (2.1) and {P;}3°, by equation
2.2).

2. From {p"1}2 "and { A} compute {g*)}22 | and {G®}3° | by equation (2.3).
3. Compute { Hy(t)}72, and {hx(t)}32, by equation (2.4).
4. Compute H,(t) and h,(t) by equation (2.5). Then compute H,(t) = 1 — H,(t).
5. From {H(t)}32,, compute { P.(t)}72, by equation (4.1).
Output: { P}, {hi(t)}52,, Hy(t), hs(t), Hy(t), and {Pp(t)}32,.

Since the computation of the second part involves A\, () (see equation 4.2), it has division
form. However, when we compute A\ (?) as ¢ is increasing and the error becomes larger and
larger (see Figure 5.1). It is due to the numerical accuracy.

From equation (4.5), we rewrite it as

celT) = g [ = R)I(T) + 6(T) + (D), 5.
where . .
(1) =Y ri(Dh(T)Py and ¢ (T) = > my(T)Pi(T) P
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Figure 5.1: An example of \(t).

From equation (4.6), we have

Q) = i) | ﬁs<t>dt—[<Rl—RZ>Hs<T>+ | et entnar|. 62

The steps of the second part are listed in the following:
Input: {g}721, {Pr}iZo {he(t) 1321 Hi(t), hs(t), Hi(t), and { Pe(t) }72,.
Given: Ry, Ry, {ri(1)}72,, and {my(t)}7,
1. Compute pc(T) by equation (5.1).
2. Compute Q(T') by equation (5.2).
3. Find the root of Q(7") — Ry = 0 and denote it by 7.
4. We have Jo(T*) = oo (T).

Output: 7™ and Jo(T™).

5.2 Summary of the Algorithm

To implement our algorithm, we develop a Matlab tool (see Appendix A). We will use the
codes which are described in Appendix A to execute the following two algorithms.

Given the minor failure probability sequence {g; }._, , the initial vector sequence {3} V- I,
and the intensity matrix sequence { A®)} "', for convenience, we ignore the indices of 3*) and

A® to k =1,2,--- , N. Denote ¢ = {q }2_,.
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First, we compute the basic elements of the system. Denote 0 = {0}, p = {pe}o_i>

F = {Fk}é\;l

Algorithm 1: Compute the Basic Elements of the System
Input : g, {B(k)}é\fzp {A(k)};qul

6 = MajorFailureProbSeq(q)

p = FailureDistribution(q, 0)

[Py, P] = SurvivalOfSystem(q)

{9}, {G®}LL] = Convolution({8™ }iL,, {A®}Y,)
t = TimeAxis()

{Hu(t)};; = CdfSequencePH({g™}i_;, {GM},. 1)
{hi(t)}iL, = PdfSequencePH({g" }iL,, {G® L, 1)
Hy(t) = CdfMixturePH(p, {Hy(H)})

hs(t) = PdfMixturePH(p, {h;.(t)}2.,)

[Po(t), { Pe(t)}2='] = TransitionProbOfSystem ({ H () }1_,)
Output: Py, P, {hy(t)}2_ 1, Hy(t), hs(t), Po(t), {Pe(t)}r )

= R e N

o
=

Finally, we run the optimal algorithm to get Q)(T") and J(T').

Algorithm 2: Compute the Optimal Planned Replacement Age

Input : g, Po, P, {hy,(t) 1104, Ho(t), ho(t), Po(t), {Pi(t)}25

Given : Ry, Ry, {rx(T)}2_, mo(T), {mx(T)} 1 _

[C.(T), ¢, (T)] = ExpectedRepairCost({r(T) }o_,, {he(T) 1, P)

[Con(T), €m(T)] = EMCost(mo(T), {mi(T) };5", Po(T), { Pe(T)};", Po, P)
SDC(T) = Pth(R17 R27 HS(T>7 hs(T)v CT<T)’ Cm(T))

Q(T) = Qfun(Ry, Ro, oc(T), Hs(T), Co(T), Cro(T))

Jo(T') = ExpectedCostRate( Ry, Ry, Hs(T), C.(T), Crn(T))

Output: Q(T), Jo(T)

N A W N =

Since the set S = {x € R|Q(x) = Ry} may contain more than one element, we can not

give an algorithm to compute all 7*. But one can find a 7™ in the set .S, since

Jo(T*) < Jo(z), forall z € S.

Remark. As the symbol used in MATLAB for Algorithms 1 and 2, we need to define legal

symbol in Matlab for these notation. For example, we can use Jc to define the symbol J (7).
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Chapter 6

Numerical Examples

In this chapter, we give several examples of shock models with Erlang distribution, hypo-
exponential distribution, Coxian distribution, hyper-Erlang distribution, and intensity matrices

are upper-triangle matrices.

Example 1. Consider shocks with Erlang distributions which are represented by PH(3®*) | A%)),
for all k > 0 of order 3. Let g, = 0.8 forall k > 1. Define ) = (1,0,0) and

—924 24 0
AW =1 0 —24 24 |, forallk>0.
0 0 —24

Let Ry = 1500 and Ry = 1000. Define constant ¢, by a randomly generated sequence, i.¢.,

{ce}22, = {1629.4,1811.6, 254, 1826.8,1264.7,195.1, 557, 1093.8, 1915, 1929.8,
315.2,1941.2,1914.3, 970.8, 1600.6, 283.8, 843.5, 1831.5, 1584.4, 1919,

2000, 2000, - - - },

let rx(t) = ¢ forall k > 1. Let my(t) = 0.5k 4+ 0.2 for all £ > 0.
We truncate the sequence at N = 40 and compute 7" = 23.4234 by our algorithm. The
graphs of Q(T") and J-(T') are shown at the Figure 6.1 and 6.2.

The proof of theorem 2 states that ()(7") is increasing. However, in the above case, observe
that Q(T) is not increasing, but Jo(7') still has minimum. This motivates us to find another

theorem.
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Figure 6.1: Q(7') of an Erlang distribution Figure 6.2: Jo(T') of an Erlang distribution

Theorem 3. Assume that

(1) 744+1(T") and my(T) are continuous and bounded above for all & > 0.

(2) {qx}2, is decreasing and there is some natural number 7 such that ¢,, < 1.

(3) Forall € > 0, there is a 7, > 0 such that forall z € [0,7}), H,(z) > e.
Given an € > 0, if there is a number u € (0, T}) such that Q(u) > Ry, then thereisa 7™ € (0, u)
which minimizes Jo(7") and oo (T%) = Q(T*). Otherwise, the optimal age replacement policy

is T = o0, i.e., there is no planned replacement.

Proof. Given an € > 0, we will show that Q)(7") is continuous on [0, 7%). Then by Intermediate
Value Theorem, there is a real number 7% € (0, u) such that Q(7*) = R, and minimizes
Jo(T), since we have Q(0) = 0 < Ry < Q(u). The proof of o (1) = Jo(T*) is the same as
in theorem 2.

Now, we prove that )(7") is continuous on [0, 7). First, we have
Pt (T) hes1 (T) Pregr + mi(T) Po(T) Py

is continuous on [0, co) and positive for all & > 0.

By assumption (1), we have 1 (7") and my(7") are continuous and bounded above for all
k > 0. Suppose 74.1(T") and my(T") are bounded above by B for all & > 0.

By assumption (2), we have i Py = i ﬁ g < i qﬁo. The right hand side is a

k=no k=ng =1 k=no

S —_—
geometric series with common ratio less than 1, thus Y P} converges. Therefore there is an
k=1
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N, € N such that
— €
j{: P < §E§.
k=N,
Since hy11(T) < land P,(T) < 1, forall T € [0, c0) we have
rk—&-l (T)hk-i—l(T)ﬁk-i-l + mk(T)P]ﬁ(T)ﬁk S Tk—l—l(T)?k—I—l —f- TI’Lk(Tv)?]C7 \V/k? 2 O
Since Pyy1 = g1 Pr, {Pr}32, is decreasing. Therefore for all T' € [0, 00) we have

ka1 (T) Prg1 + my(T) Py < [r1(T) + my(T)| Py, Yk > 0.

Let

n

su(T) = [Tk+1(T)hk+1(T)Fk+1 + mk(T)Pk(T)Fk}a

£
I
o

and

NE

(@) = 3 [Pest (D st (D) P + i (T)PU(T) P,

x~
I

0

From the above results, for all » > N, and for all 7" € [0, o) we have

Z [Tk-H (T)hit1 (T)Fkﬂ + my(T) Py, (T)Fk]

k=n+1

< k(T ha (T) Pryy + mi(T) Po(T) Py

k=N

|sn(T) = f(T)]

< Z (1 (T) +me(T)] Py,

k=N

SQBiﬁk<€

k=N,

Therefore s,, — f uniformly on [0, c0), and hence f(T") is continuous on [0, o).

By assumption (3), there is a 7, > 0 such that for all z € [0,7,), Hs(z) > €. Since Hi(T)

1
is continuous on [0, 00), = is continuous on [0, 7).
H(T)
Form above, we have ¢¢(T') is continuous on [0, 7, ). Hence QQ(T) is continuous on [0, 7).

]

Remark. It is easy to see that example 1 satisfies the assumptions of theorem 3.
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Example 2. Consider shocks with phase-type distributions which are represented by PH(5*), A(*)),

for all k > 0 of order 3. Assume the intensity matrix A®*) are upper-triangle matrix defined by

[—0.5000 0.1383  0.1203 ] [—1.8333 0.5677 0.5165 |
A — 0 —1.3000 1.0526 | ,AM = 0 —1.9545 0.9470 |,
0 0 —1.6429 ] |0 0 —2.0385 |
[—2.1000 0.3598  0.8861 ] [—2.2143 0.6136  1.1816 ]
A® = 0 —2.1471 1.2398 |, A®) = 0 —2.2391 1.6197 |,
0 0 —2.1842] |0 0 —2.2600 |
(22778 1.1315  0.3842 ] (23182 1.3518  0.7711 ]
AW = 0 —2.2931 1.0082 | ,A®) = 0 —2.3286 0.8546 | ,
0 0 —2.3065 | 0 0 —2.3378 |
(23462 1.0331  0.3125 ] [—2.3667 1.0384  0.5883 ]
A — 0 —92.3537 0.4887 | , A = 0 —2.3723  1.3416 | ,
0 0 —2.3605 | 0 0 —2.3776 ]
[—2.3824  0.4739  1.1197 ] [—2.3947 0.3810  1.0092 T
A® = 0 —2.3868 0.8944 | , A®) = 0 —2.3983  0.9622 | .
0 0 —2.3909 | 0 0 —2.4016 ]

For £ > 10, we set

~2.4048 0.2761  0.1964
AR = 0 —2.4077 1.0950
0 0 —2.4104

The other parameters are set the same as that in example 1.
Consider N = 40 and compute 7* = 5.4054 by our algorithm. The graphs of Q(7") and
Jo(T) are illustrated at the following Figures 6.3 and 6.4.

Example 3. Consider shocks with hypo-exponential distributions which are represented by

PH(B®), A®), for all k > 0 of order 3. For k > 0, the intensity matrix is defined by

—ozgk) agk) 0
I N C RN
0 0 —al

Fork = 0,1,2,---,9 and for i = 1,2,3, define a\") = 2.5 —

ro = L, and 23 = 2. For k > 10, af”) = 2.4048, o}

(k)

)

as that in example 1.

28

ri+k+05
= 2.4077, and o) = 2.4104. Actually,

1
where ;1 = 0,

«,;’ are the same as the diagonal elements of example 2. The other parameters are set the same
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The graphs of Q(T") and J(T") are shown at Figures 6.5 and 6.6. We find 7™ = 4.2042.

Example 4. Consider shocks with Coxian distributions which are represented by PH(3®*) A*)),

for all k£ > 0 of order 3. For £ > 0, the intensity matrix is defined by

—al? 032 0
AV =1 0  —a 032"
0 0 —al

For k£ > 0 and for: = 1,2, 3, o'*) are the same as that in example 2. The other parameters are

set the same as that in example 1. The graphs of Q(7") and J(7T') are shown at Figures 6.7 and
6.8. We find T™ = 4.3544.

Example 5. Consider shocks with hyper-Erlang distributions which are represented by PH(3®*), A(%)),

for all £ > 0 of order 3. The intensity matrices are given by

—12 1.2 0 0
0 -—-12 0
0 0 =24 24
0 0 0 —-24

AR = , forall & > 0.

The other parameters are set the same as that in example 1. The graphs of Q(7") and J(7") are
shown at Figures 6.9 and 6.10. We find 7 = 31.6817.

18000 : . : . : . : ; . . 1300
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Figure 6.3: Q(T) of A® being an upper-Figure 6.4: Jo(T) of A®) being an upper-
triangle matrix triangle matrix
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Figure 6.7: Q(T') of a Coxian distribution

Figure 6.8: J(T") of a Coxian distribution
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Figure 6.10: Jo(T') of a hyper-Erlang distribu-

Figure 6.9: Q(T') of a hyper-Erlang distribution tion
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Chapter 7

Conclusion

We study the non-homogeneous pure birth shock model under the methodology of the
matrix-analytic methods. We suppose the inter-arrival time between consecutive shocks follows
a PH-distribution. Then the cumulative distribution function of the lifetime of the system is easy
to express, see equation (2.5). The equation (2.5) is also one of the reasons why our algorithm
is efficient. For the case of the intensity matrix that is hypo-exponential, we find the sufficient
conditions of the existence of stationary probability of the shock model.

Under this model, we investigate the age replacement policy. The expected cost rate of a
replacement cycle is developed. We apply the Theorem of Sheu et al. [13] (theorem 2) to show
that the existence of the optimal planned replacement age which minimizes the expected cost
rate. However, in numerical example 1, we find a case that Q(7") does not satisfy the property
in proof of theorem 2, see Figure 6.1. Therefore we develop a new theorem which gives more

simple and practical conditions of the existence of the optimal planned replacement age.
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Appendix A

MATLAB Phase-Type Distribution Tool

We develop a tool which can implement our algorithm to compute the optimal planned

replacement age 7* and the optimal expected cost rate Jo (7).

A.1 Basic Program

A.1.1 Operators
1. C = AddMatrix(A, B) :

Let A, B be matrices. Output the matrix C' = A @ B = diag(A, B).

function C = AddMatrix (A, B)

= size (A);

3
s
I

)]

~

o+
|

= size(B);
C(l:m, 1:n) = A;

C(m+l:m+s, n+l:n+t) = B;

2. [g,G] = ConvoluteMatrix(«, A, 5, B) :
Let «, 3 be initial vectors and A, B be intensity matrices. Output the initial vector g and

the matrix G, where PH(g, ) is the convolution of PH(«, A) and PH(S, B). The matrix

G is defined by
A ap
=[5
where a = — A1 is the absorption vector. Note a is a column vector and (3 is a row vector.
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function [g, G] = ConvoluteMatrix(alpha, A, beta, B)
m = length (A);
n = length(B);

G = AddMatrix (A, B); % self-defined function

a = —-A*ones(m,1);
G(l:m, m+l:m+n) = a*beta;
g = [alpha, zeros(l,n)];

A.1.2 Functions

1. F(t) = MixtureDistribution(w, { P;(t)}¥,) :
Let w = {wy,ws, - ,wy} be a probability mass function and P;(¢) be a CDF for all
N
i=1,2,--- N. Output the mixture distribution F'(t) = > w; P;(t).
e

function F = MixtureDistribution(w, P)

F =20;

for 1 = 1:1length (w)
F=F +w(i)*P{i};

end

2. H(t) = CdfPH(y,G,t) :
Let g be an initial vector and GG be an intensity matrix. Output the CDF of PH(g, G) which

is defined by H(t) = 1 — gexp(Gt)1. Note g is a row vector.

function H = CdfPH (g, G, t)
for 1 = 1l:1length(t)
H(i) = 1 - g*expm(G*t(i)) *ones(length(G),1);

end

3. h(t) = PdfPH(g, G, 1) :
Let g be an initial vector and G be a intensity matrix. Output the the PDF of PH(g, G)
which is defined by h(t) = —gexp(Gt)G1. Note g is a row vector.
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function h = PdfPH(g,G, t)
for 1 = 1:1length(t)

h(i) = - g*¥expm(G*t (1)) *G*ones (length(G),1);

A.1.3 Support Program

1. t = TimeAxis() :

Output a time axis from a to b, i.e., t = {a = t; < ty < --- < tyy = b}. For all
1=1,2,--- M —1,wehavet;y; — t;, = ﬁ Leta =0, b = 150, and M = 1000.
function t = TimeAxis ()

a = 0;

b = 150;

M = 1000;

t = linspace(a,b,M);

A.2 Program for Basic the Elements of the System

1. § = MajorFailureProbSeq(q) :
Output a sequence § = {0 }7_, of major failure probability ;. Note 6 = 1 — g, for all

k=1,2,---,N. Where ¢ = {g.})_, is the sequence of minor failure probability.

function theta = MajorFailureProbSeq(q)
for k = 1:1length(q)
theta(k) = 1 - g(k);

end

2. p = FailureDistribution(g, 0) :
k-1
Output the sequence {pj }_, of failure probability p; = ( I1 Qi> 0.
i=1

function p = FailureDistribution (g, theta)
p(l) = theta(l);
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for k = 2:1length(q)
p(k) = 1;
for 1 = 1:k-1

end
p (k) = p(k)*theta (k) ;

end

. [Po, P] = SurvivalOfSystem(q)
_ k
Output the survival function of the system Py, = Pr{M >k} = [[ ¢;,Vk =1,2,--- N
=1
and Py = 1. Note P = { P, }1"_,. Where M is the number of shocks until the first type-II

failure since the last replacement.

function [PObar,Pkbar] = SurvivalOfSystem (q)

PObar

1;

Pkbar = zeros(size(q)):;
for k=1l:length(q)
Pkbar (k) = 1;
for i=1:k
Pkbar (k) = Pkbar (k) *g(i);
end

end

e R (G®) ] = Convolution({5W},, (AW

Output the initial vector g*) and the intensity matrix G¥) of the PH-distribution PH(g*), G*))
forall k = 1,2,---,N. Where PH(g®), G*)) is the convolution of PH(/3;, A;) for all
i=1,2 -k

function [g,G] = Convolution (beta,d)
g{l} = beta{l};
G{1l} = A{1l};

for k = 2:1length (beta)
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[g{k},G{k}] = ConvoluteMatrix(g{k-1},G{k-1},beta{k},A{k});

end

{H(}, = CdfSequencePH({g®}, (GO, 1)
Output the CDF sequence of the PH-distributions PH(¢*), G**)) forall k = 1,2,--- , N.

function H = CdfSequencePH (g, G, t)
for k = 1:1length(qg)
H{k} = CdfPH(g{k},G{k},t);

end

. {h(t)}_, = PdfSequencePH({g"} Y {G®IN | 1) :
Output the PDF sequence of the PH-distributions PH(g*), G*)) forall k = 1,2,--- | N.

function h = PdfSequencePH(g,G, t)
for k = 1:1ength(qg)
h{k} = PdfPH(g{k},G{k},t);

end

. H,(t) = CdfMixturePH(p, { H,(t) }_,) :

Let Hy(t) be the CDF of PH(¢), G™®) for all k = 1,2,---, N. Output the CDF of 7T,
N

which defined by H,(t) =1 — 3" prg® exp(G¥)1. Note p = {pi}2_,.
k=1

function Hs = CdfMixturePH (p,H)
Hs = MixtureDistribution(p,H) + 1 - sum(p);

end

. ha(t) = PdfMixturePH(p, {he(t)}Y,) :

Let hy(t) be the PDF of PH(¢®), G®) for all k = 1,2,---, N. Output the PDF of T,
N

which defined by h,(t) = — Y prg® exp(G®1)G*1. Note p = {pp}2_,.
k=1

function hs = PdfMixturePH (p,h)
hs = MixtureDistribution(p,h);

end
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9. [Po(t), { Pe(t)}2='] = TransitionProbOfSystem({ Hy ()}, :
Output the sequence of Py(t), the transition probability of the system at time ¢ given
N(0) = 0, which is defined by
1 — Hy(t), ifk =0,
Pi(t) = .
(?) { Ho(t) — Hon(t), itk > 1.
function [POt,Pkt] = TransitionProbOfSystem (H)
POt = 1-H{1l};
for k = 1l:1length(H)-1
Pkt{k} = H{k} - H{k+1l};

end

A.3 Programs for the Optimal Algorithm

In this section, we use the programs defined above to compute the function Q(7") and

Jo(T).

1. [C.(T),c.(T)] = ExpectedRepairCost({ry (1)}, {he(T)}_,, P) :
Output ¢, (T) = 3> (T (T) Py, and C(T) = [ ¢, (t)dt. Note P = {P,} .

k=1
function [Cr,cr] = ExpectedRepairCost (r,h,Pkbar)
t = TimeAxis();
cr = zeros(size(t));

for 1 = 1l:1length(r)
cr = cr + r(i).*h{i}*Pkbar(i);
end

Cr = cumtrapz(t,cr);

2. [Con(T), enm(T)] =
EMCost(mo(T )’{”l( Vhest's Po(T), { Pu(T )}ﬁzﬁiibfﬁ:

N—
Output c,,,(T) = Z 1(T)Py(T) Py and C,, ( fo cm(t)dt. Note P = { P} .
k=0
function [Cm,cm] = EMCost (m0O,mk,POt, Pkt, PObar, Pkbar)
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t = TimeAxis();
cm = zeros(size(t));
cm = m0.*POt*PObar;
for 1 = 1:1ength (mk)
cm = cm + mk(i).*Pkt{i}*Pkbar(i);
end

Cm = cumtrapz(t,cm);

. wo(T) = PhiC(Ry, Ry, Hy(T), hs(T), ¢, (T), cn(T)) :
Output (1) which is defined by
1

SOC’(T) v ﬁ (T) [(Rl - R2>hs(T) + CT(T) + Cm(T)} :

function phiC = PhiC(R1,R2,Hs,hs,cr,cm)

phiC = ((R1-R2)*hs + cr + cm)./ (1-Hs);

- Q(T) = Qfun(Ry, Re,pc(T), Hy(T), C(T), Crn(T)) -
Output Q(7") which is defined by

QT) = pe(T) / H,(t)dt — [(Ry — Ro)H,(T) + C(T) + Con(T)).

function Q = Qfun(R1,R2,phiC,Hs,Cr,Cm)
t = TimeAxis();

Q = phiC.*cumtrapz(t,1-Hs) - ((R1-R2)*Hs + Cr + Cm);

. Jo(T') = ExpectedCostRate( Ry, Ro, Hy(T'), C,.(T), Cpn(T)) :
Output J(7T') which is defined by

_ Rot (B — Ry)H(T) + Co(T) + Cm(T)‘

[ H(t)dt

Jo(T)

function Jc = ExpectedCostRate (R1,R2,Hs,Cr,Cm)

t = TimeAxis () ;
F' = cumtrapz(t,1l-Hs);
Jc = (R2 + (R1-R2)*Hs + Cr + Cm)./ F;
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Appendix B

Special Phase-Type Distributions

Definition. (Hypo-exponential Distribution) Let PH(, ©) be a PH-distribution. It is called a

hypo-exponential distribution if its intensity matrix has the following form

ST
0 —X\

0 0

0 0

00

0
A2

_)\n—Q
0
0

0 0
0 0
A2 0
1 )\n— 1 )\n—l
0 =\ |

Definition. (Erlang Distribution) Let PH(, E') be a PH-distribution. It is also an Erlang

distribution if its intensity matrix has the following form

[\ A
0 —=A
0 0
0 0
0 0
0 0

0 O
A0
-2 A
0 =X
0 O
0 O
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Definition. (Hyper-Erlang Distribution) Let PH(3, E},, ) be a PH-distribution. It is called a

hyper-Erlang distribution if its intensity matrix has the following form

F, O O - O O]
Ehyper _ : .. .. .. : :
O 0O . E,» O O
O O O E,.1 O
O O O O FE,]
where E; is an intensity matrix of an Erlang distribution, for all ¢ = 1,2,--- ,n. Note O is a

zero matrix.

Definition. (Coxian Distribution) Let PH(/3,C') be a PH-distribution. It is called a Coxian

distribution if its intensity matrix has the following form

-—)\1 pl)\l 0 e 0 0 T
0 —>\2 pg)\g 0 0
o o 3 . 7
0 0 3 - _)\n—2 pn—QAn—Q 0
0 0 U 0 _/\n—l pn—l)\n—l
0 0 -~ 0 0 )\

where p; € (0,1] foralli =1,2,--- ,n.
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