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Abstract

Cryptocurrencies, such as Bitcoin, witnessed a surge in popularity during recent years.

With the rise of attention, the discussion about a better design of these cryptocurrencies

also increased, to solve issues like security problems and network congestion. Many

suggested solutions require a total redesign of the cryptocurrency. This thesis looks

into ways to redesign the cryptocurrency Bitcoin in a more subtle way, by only optimiz-

ing its current parameters. For that reason an agent-based computation model is used

to simulate the Bitcoin market and its transaction system. Its parameters are optimized

and compared to the real Bitcoin parameters. The results suggest a trade-off between

security and economic efficiency, and that the real parameter values of Bitcoin are sub-

optimal.

Keywords: Cryptocurrency, Bitcoin, Agent-Based Computation, Evolutionary Multi-

objective Optimization
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1 Introduction

1.1 Research Motivation

Online or digital transactions have historically relied on a third party. Examples for such

services are Paypal or during more recent days Apple Pay or Alipay. These providers

serve as a centralized ledger keeper, which keeps track of all transactions and therefore

prevents users from double spending their currency. This trust based system generally

comes at a cost (Williamson, 1975) , either in form of transaction fees or as with many

providers today, the provision of a user’s data, hence a lack of privacy (Sholtz, 2001;

Hoofnagle et al., 2012). This problem, as it was found out later, could be solved by using

cryptocurrencies, which instead of a central authority, relies on a distributed ledger,

called blockchain and the solving of cryptographic problems using computer hardware

with an extrinsic incentive in form of new coins. The first of this kind, called Bitcoin,

was invented by the person under the pseudonym Satoshi Nakamoto in 2009 (Satoshi

Nakamoto, 2009), and was successful in removing the third party, hence essentially

creating a trustless matter of transaction.

Even though trust is no longer necessary for transacting a currency, the system instead

relies heavily on the network’s security, which is considered to be equal to the combined

computing power of the network (Pagnotta, 2018). Therefore, it is theoretically possible

for a person or an entity to acquire enough computing power to take over the network,

a so called majority attack. Thus, to make such an attack less likely, the network’s

computing power needs to be increased and maintained.

The security of a blockchain comes with a cost. As already mentioned, verificators

receive a reward in the form of new Bitcoin, in addition to the transaction fees user

attach to their transaction. During recent years the popularity of Bitcoin surged and so

did transaction fees due to a higher level of congestion. With higher popularity many

problems are discussed, such as the energy consumption issues due to the required

hardware, the degree of decentralization with the degree of anonymity and the economic

efficiency of cryptocurrencies, in comparison to the conventional trust-based systems in

terms of high fees and mining costs. This thesis focuses only on the latter as well as the

security issues mentioned earlier. While it appears inevitable that users of Bitcoin need

to pay in some way for the service to maintain the security, it raises the question on how

1
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to optimally design a cryptocurrency facing these two objectives of network security

and the economic efficiency.

1.2 Contribution

Many solutions to the security and efficiency problems in Bitcoin have been suggested.

However, most of these require a total redesign of the cryptocurrency. This thesis aims

to look into a more subtle design approach and tries to analyze the parameters of cryp-

tocurrencies using the example of Bitcoin. The first relevant parameter for the Bitcoin

currency is the block size of its blockchain, which directly influences the transaction

limit of it. The other important parameter is the Bitcoin generation rate, which is the

amount of Bitcoins created and given to the miners (i.e., validators) of the system at

periodical time steps. The real parameters were picked by Bitcoin creator Nakamoto

in 2009, who never justified both of these numbers, thus gives more reason to analyze

these and see what would be better values for these parameters. For that purpose, an

established agent-based model of a cryptocurrency is adapted and extended. The model

includes different types of agents simulating users, chartists and miners, who interact

in a near-realistic market for Bitcoin. Miners are able to invest in new hardware and

sell their received Bitcoin to do so. Users and chartist buy and sell Bitcoin depending

on specific rules. In addition, this thesis makes a contribution in creating a transaction

system that mimics the real Bitcoin transaction system and letting users bid for their

transaction in form of transaction fees. After the model has been established, a genetic

algorithm is used to optimize the parameters of it.

According to the knowledge of the author, this writing is the first to analyze the trade-

off between security and economic efficiency using a multi objective optimization ap-

proach. The findings of this paper suggest that there is a trade-off between network

security and economic efficiency, and that no matter the preferences of designers and

users of a cryptocurrency like Bitcoin, the currently used parameters are sub-optimal.

1.3 Organization

The second chapter of this thesis begins with an explanation of the technology and econ-

omy behind cryptocurrency, especially Bitcoin. It also introduces previous research on

agent-based modeling in cryptocurrencies. The third chapter presents the agent-based

2
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model by detailing the different agent types, the market and the transaction system.

This chapter will also cover the calibration of this model, which is divided into the fol-

lowing three parts. The first part is the calibration of the model with the currently used

parameters of the real Bitcoin. It serves as a baseline to compare the effects of later im-

provements. In the second part, the model is being optimized for economic efficiency.

In the last part, the model is being optimized for the two objectives of efficiency and

network security combined. The fourth chapter presents and discusses the findings of

this thesis. Finally, the last chapter concludes this thesis, summarizing the findings,

mentioning its limitations and explain future work.

3
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2 Literature Review

This chapter has two main sections. Section 2.1 explains the technology of Bitcoin,

including its blockchain or distributed ledger, its signature system, mining process and

general recent developments. Section 2.2 summarizes economic literature dealing with

Bitcoin, its design, limitations and economic implications. A literature review on agent-

based modeling in cryptocurrencies and Bitcoin is also presented. Lastly, Section 2.3

gives a summary of the chapter.

2.1 Cryptocurrencies

The main difference between cryptocurrencies and standard online transaction services

is that the former does not rely on trust or any third parties. Instead, it relies on a

system of distributed verification of a ledger, which keeps track of all transaction in-

and outputs (Chiu & Koeppl, 2017). This distributed ledger is often referred to as a

blockchain, which is explained in the next section.

2.1.1 Blockchain

While Nakamoto might have invented the first working cryptocurrency in 2009, the

underlying concept of a blockchain is much older. The first time blockchain was men-

tioned was by Haber & Stornetta (1991). Their idea was to implement a sequential

archive, which would be able to verify the integrity of a digital file (e.g., a video or

picture file). Every entry of this sequential archive includes a time stamp and a record

of the file. In the Bitcoin blockchain, these files are the transactions. An entry also in-

cludes a hash value of the previous entry. See figure 1 for an example of such structure.

Figure 1: The structure of a sequential archive

A hash value is returned by a so-called hash function. Such functions are able to take

4
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any content of any length and transform it into a hexadecimal number of fixed length.

The security of the blockchain relies on the fact that this transformation is irreversible,

i.e., there is no way of inverting this process (Yermack, 2017). In addition, the chance

that two contents have the same hash value is nearly equal to zero (Goldwasser & Bel-

lare, 1996). Even a small modification of the content results in a complete different

hash value. The consequence for a blockchain is, that if somebody tries to change a

previous entry in the blockchain, s/he would also need to change all other following

entries, since every block includes the hash value of the previous block and so forth

(Yermack, 2017).

2.1.2 Signature of Transactions

To prevent other users from adding transactions that use one’s own funds, a signature

system was added to Bitcoin’s protocol. It was proposed already in 1990 by Rompel

(1990). Nakamoto used this idea. It works by means of asymmetric encryption with a

two part key pair, one part called public key and the other private key. Each message

encrypted with public part of the key can only be decrypted using the private key-part.

A sender who desires to use his/her funds for a transaction, will use her/his private key

and the receivers public key to sign a transaction, which is used again in a hash function,

so that other users can confirm using his public address and his/her hash to show, that

s/he actually received the funds at one point in time before. Looking at the blockchain

all others can also confirm that s/he has not spent it yet (Satoshi Nakamoto, 2009).

Additionally, all transactions are hashed individually and those hashes are then com-

bined and hashed again, where only the root hash is actually being added to a block.

The hash values are stored in a Merkle tree. The structure of such Merkle tree is visual-

ized in figure 2 together with a blockchain similar to the one presented in figure 1.

In order to validate transactions, it must be possible to reference all transactions ever

made within the system, which requires the saving of the total blockchain on a com-

puter’s hard drive. The maximum size of a block was set to one megabyte (MB) by

Nakamoto in 2010 (Yermack, 2017; Pappalardo et al., 2018). This block size limit of

one MB, given an average transaction size of 250 bytes (Bitcoinfees.info, 2019) implies

that the total transaction limit per block is set to around 4000. The maximum size of a

5
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Figure 2: The original Bitcoin blockchain design
The blockchain as designed by Nakamoto with a Merkle tree for transactions.

WikiMedia (2013)

block was chosen arbitrarily and will be discussed in a later section.

Lastly, the total required disk space is growing steadily. Nakamoto predicted, given that

there were no transactions, the blockchain size would grow by 4.2 MB a year. Since

all the newly created blocks do have transactions included, the Bitcoin blockchain is

actually currently growing by an increasing speed, with a growth of 50 GB since last

year (as of 2019). The current size of the blockchain is close to 220 GB at the moment

(Blockchain.com, 2019b).

2.1.3 Bitcoin Mining

A blockchain allows to verify the integrity of a file or in the case of Bitcoin the integrity

of transactions. However, Haber & Stornetta (1991) stressed that in order to realize such

a ledger system, it would need to be decentralized, meaning that each modification to the

chain would have to be broadcasted into the public, so that everyone could access it and

therefore control its integrity. A solution to this would be something like the inclusion of

newspaper articles tp produce the hash values. Because newspaper articles are assumed

to be hard to alter after they have been printed and because they are available in public

this guarantees a high level of immutability of a sequential ledger. The immutability

is an important feature for any cryptocurrency as it prevents anyone from changing the

transaction history in their favor. Nakamoto however used a different approach to solve

this problem. Instead of using real life events published in a newspaper, he implemented

a ”Proof-of-Work”-system, which was inspired by the hashcash idea from Back (2002).

6
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It involves the solving of a cryptographic problem, that is the search for a value, called

nonce, which when included in a hash function, returns a hash value with a specific

number of leading zeros. This guarantees that once a nonce has been found and the

nonce produced hash value is included in a block, the content of the block can only be

changed with redoing the mining. The chance of finding this nonce would only increase

with the increase of computational power, i.e., the hashing capability of the network.

However, the difficulty of this task was set by Nakamoto, so that on average every

10 minutes a new block can be mined. The difficulty will adjust dynamically, if the

actual mining time differs from ten minutes (Satoshi Nakamoto, 2009) . The difficulty

is defined as:

Difficulty =
Expected time for mining 2016 blocks

Last time for mining 2016 blocks
(1)

where the expected time for mining 2016 blocks is exactly two weeks. Therefore, on

average the difficulty will be adjusted that, given a constant network power, the next

2016 blocks would need two weeks to be mined.

Since every miner mines his own head block, there are actually more than one chain

head at any given time. The majority decides which blockchain is the correct one by

choosing the longest one, i.e., the chain with most blocks. Sometimes, there might be

a disagreement between miners on which chain is the longest. This can happen, when

two or more miners at the same time mine a new block.

Figure 3: A Blockchain
A blockchain with the genesis block in green, the longest chain in black and the orphan blocks

in purple.
Bitcoin Wiki (2019a)

7
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As an example shows in figure 3, these miners continue to mine the next block, which

leads to more than one head, this process is called forking. Eventually a forked chain

will be longer than all others and the network will agree to use that chain (here in black).

The miner who lost the race, will undo his changes, abandon his version of the chain

and also use the longest chain from now on. The blocks, which are not used anymore

as a consequence of this, are referred to as orphan blocks (here in purple) and will be

discarded by the miner (Decker & Wattenhofer, 2013).

A blockchain like this has the advantage that if a malicious users wants to change a

previous block, s/he not only has to rework that block, but also all the blocks following,

in the same time as everyone else is solving the newest block. Figure 4 summarizes this

well.

Figure 4: Why you can’t cheat at Bitcoin
Montgomery (2015)

A requirement for the blockchain to work is that a sufficient number of miners are

actually mining at any given time. Technically one miner would be enough to run the

protocol by himself. But the higher the number of miners, the higher the degree of

decentralization. Also, the more miners, the higher would also be the hashing power of

8
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the Bitcoin protocol. This directly effects the security of the blockchain, as a malicious

miner would need more capital to buy enough hashing power to outmine all other miners

in the system. In order to incentivize the mining, Nakamoto added a reward for it in

form of new Bitcoins. ”The steady addition of a constant of[sic] amount of new coins

is analogous to gold miners expending resources to add gold to ciculation.” (Satoshi

Nakamoto, 2009) Hence, the name mining was introduced shortly after. Furthermore,

he made it possible to attach transaction fees to transactions. Nakamoto forsaw that an

incentive would increase the networks support. He initially set the Bitcoin reward to 50

Bitcoins for mining one block and also determined that this reward should half every

210,000 blocks, which is roughly equal to 4 years. As this is equal to a geometrically

decreasing function, the rewards will eventually run against zero and the overall supply

of Bitcoins will stop growing at around 21 million bitcoins as shown in figure 5. This

implies that in the future the incentives to mine the nonce are solely depending on the

transaction fees.

Figure 5: Bitcoin Controlled Supply
Bitcoin Wiki (2019b)

2.1.4 Development of Bitcoin

Similar to stock exchanges, the Bitcoin professional online exchanges allowed many

people to purchase Bitcoins with fiat currencies, just like any other currency do. A

rising demand during the last years has increased the value of Bitcoin. This increase

in price also increased the mined block reward expressed in US-Dollar. Even with the
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lowest price during the last two years of around 2,000 US-Dollars, with the inclusion of

transaction fees, there is a mining reward of 5 million US-Dollar every block (i.e., every

ten minutes) (Blockchain.com, 2019h). This led to an arms race by the miners, who

kept investing in their hashing capability in order to increase their chance of finding

the nonce in the next block and therefore receiving the block award. As mentioned

in the previous section, the difficulty of finding the nonce adapts dynamically to the

hashing power of the network. Figure 6 shows the development of this difficulty and

the corresponding network hashing power from mid 2016 to mid 2019. With the rising

investment occurred another phenomenon. In order to decrease their risk, miner begun

to work together in finding a nonce. This collaboration is called a Mining Pool. These

pools make up to around 90.4% of the total network as of today (Blockchain.com,

2019d).

The raise of hashing power was accompanied by a rise of energy consumption. Dur-

ing its peak time in August 2018, the total Bitcoin network had an estimated energy

consumption of 73 tera watt hours per year (Digiconomist.net, 2019). For comparison:

That is more than the whole country of Austria consumed in 2016 (CIA, 2016). Due

to the surge in demand since 2017, the network also witnessed a huge congestion prob-

lem. Since the Bitcoin protocol has a limited block size capacity, which was discussed

in the previous section, the transaction fee rose substantially. The mean transaction fee

increased to 1.89 US-Dollar. However, for short periods of time, the transaction fee did

increase to 37.49 US-Dollars per transaction (Bitcoinfees.info, 2019).

2.2 Economic Literature

2.2.1 Economic Analysis of Bitcoin

With raising popularity of cryptocurrencies and Bitcoin, the amount of economic lit-

erature on Bitcoin also grew. This subsection will introduce several topics. First, it

introduces literature on Bitcoin adoption. The second part will introduce the literature

on mining games including selfish mining. The third part of literature will cover trans-

actions and their fees. The fourth part introduces the literature on security concerns in

Bitcoin and the last part will cover the literature of design issues in Bitcoin.

This first part will begin discussing the literature on Bitcoin adoption as a currency.

Luther (2016) writes that due to switching costs, the widely acceptance of Bitcoin is

10
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Figure 6: Bitcoin Hashing Power and Difficulty since 2016
Data from Blockchain.com (2019c) & Blockchain.com (2019a)

unlikely, unless there exists governmental support or the occurrence of hyperinflation.

This is due to network effects and a possible lack of coordination. Since his writing,

an example for a broader adoption due to hyperinflation actually has been witnessed

in the case of Venezuela, where inflation rates of over 300,000% (Di Salvo, 2019)

drove people towards the adoption of Bitcoin. Athey et al. (2016) analyzed the geo-

graphic distribution of Bitcoin users and they were able to differentiate them by their

behavior patterns and times of usage. Catalini & Gans (2016) believed that Bitcoin and

other cryptocurrencies theoretically can reduce the costs of verification and networking,

hence the blockchain is challenging existing business models and opens up new ones at

the same time.

A larger amount of research is committed to Bitcoin mining and its games. Altman

et al. (2018) analyzed the mining procedure from a congestion game approach. They

believed, that more miners increase the security of the overall network of a blockchain,

since a higher hashing capability makes it harder for a single malicious miner to take

over the blockchain. This higher robustness could increase the real value of the under-

lying cryptocurrency. On the other hand, the more miners there are on a given chain,

11
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the higher the negative mining externalities for all miners, because everyone’s chance

of mining a block (finding the correct nonce) decreases with the amount of miners in the

network. This rises the risk of the investment of miners, find Cong et al. (2018). They

write that as a consequence miners are inclined to collaborate in mining pools in order

to decrease their overall risk. Since a bigger pool leads to a lower risk, mining pools

tend to centralize. Nonetheless, they self-regulate themselves in not becoming too big,

as in fear of a majority attack, the whole currency might collapse, self damaging the

pools.

Another aspect of mining falls under the term of selfish mining, where the assumption,

that every miner always mines the newest block and broadcasts his findings immedi-

ately, is dropped. Carlsten et al. (2016) say that only relying on transaction fees, as it

is currently planned in the future of Bitcoin, would harm the overall security of the Bit-

coin network, as miners would only mine a block when the transaction fees in prospect

would outvalue the mining cost. They state that their hypothesis only holds in a world

where the block size remains vastly larger than the demand for transactions. Given the

developments of recent years, it can be said though that this assumption is not always

true. Goren & Spiegelman (2019) confirm that selfish mining, or smarter mining as

they call it, will lead to a reduction of the network security, but also has the potential

to decrease the energy consumption as a consequence. Sapirshtein et al. (2016) find

that selfish mining is a real threat to Bitcoin. Given that the total amount of miners

and their hashing power is not too large, it becomes profitable and feasible for miners

to mine selfishly. The selfish mining strategy outlaid by the authors includes an inten-

tional forking of the blockchain in order to force other miners to abandon their currently

mined block.

The following literature focuses more on the transactions and their fees inself. Kroll

et al. (2013) say that they do not believe that transaction fees will play any important

role in the future of the Bitcoin ecosystem, given the current protocol, since miners

will always underbid their competitors and therefore decreasing the fees.1 Easley et al.

(2019) included the waiting time for a transaction to be picked up by a miner in their

analysis and concluded that even if there is a high amount of transaction fees that this

1It appears, that the authors did not foresee the increase of demand of transactions on such a big
magnitude as one could observe during recent years.
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does not guarantee a long term equilibrium for the network security. If the waiting time

for a transaction of users becomes too long, they might leave the blockchain all together

in order to optimize their personal utility in a similar fashion as a miner which leaves

a blockchain to optimize his revenue. Therefore, fees are also a way to balance the

demand for transactions and decrease the waiting time for users, which gives the trans-

action fee a crucial role to stabilize the network security. Pappalardo et al. (2018) point

out that the Bitcoin protocol in its current form is not efficient. Miner tend to ignore

transactions with smaller fees, leaving 42% of all transactions still unprocessed after the

first hour of issuing and discover that 20% of transactions still have not been processed

after 30 days. The majority of these transactions have a small volume, therefore the

nominal efficiency of the Bitcoin blockchain is still on an ”acceptable” level. However,

the authors questions how well Bitcoin is suited as a time stamping system for small

transactions with a condition as described.

There is also a focus on security concerns in the literature. Pagnotta (2018) writes that

the Bitcoin price and the network security are positively correlated and jointly deter-

mined. Users value a higher security of the network and are willing to pay a higher

price for it, while miners respond positively to a higher Bitcoin price and invest in more

hashing power, therefore increasing the network security. Budish (2018) believed that

the continuous flow of payments for miners must be large enough to prevent a majority

one-off attack of the system. Buterin (2016) states that the costs for security in form

of the verificators or miners are inevitable. He argues that there should be an optimal

combination of inflation and transaction fees which minimizes the dead weight loss for

the transaction market. Furthermore, he discusses other ways for the redistribution of

the transaction fees. He proposes the idea to either distribute the fees among all miners

no matter who mined a block or to burn the fees all together (therefore appreciating the

currency). He concludes that eventually it is a tradeoff. If the fees are distributed, there

is a high level of certainty of Bitcoin supply, but the level of security is less certain and

if the fees are burned the Bitcoin supply is less certain, but the level of security is.

The last section of economic research focuses on the design questions in regard to scal-

ability and economic performance of Bitcoin and blockchain. According to Ma et al.

13
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(2018), free entrance to the Bitcoin mining market is the main cause for the high energy

consumption. The authors suggest two possibilities to reduce the energy waste. Firstly,

restrict miners from entering the blockchain freely.2 Alternatively, removing the infla-

tion (i.e., the new Bitcoin generation) and relying solely on transaction fees. Croman

et al. (2016) find that a reparameterization of the current Bitcoin protocol should only

be the beginning and is not sufficient to solve the scalability problem of Bitcoin in the

long term. They propose a variety of technical improvements and additions to the pro-

tocol that might be better suited to address Bitcoins problems. Huberman et al. (2019)

also find that Bitcoin does not scale enough with its current protocol. They argue for

a flexible block size limit, which reacts to the demand of transactions. Therefore, bal-

ancing the delay costs for users and the revenue for the miners. Lastly, Chiu & Koeppl

(2017) analyze how well Bitcoin is serving as means of payment. Their analysis finds

that with peak demand, Bitcoin is 500 times more costly than other traditional curren-

cies. Given the welfare as the overall surplus of a modeled market, using Bitcoin as a

currency, the welfare loss totaled with 1.41%. The authors then proceed to establish an

equation-based model to calculate the parameters for optimal welfare and conclude that

a Bitcoin protocol with zero transaction fees and a small inflation would minimize the

mining costs and maximize the total welfare.

2.2.2 Agent-Based Computational Economics in Blockchains

The literature on agent-based computation of blockchains or cryptocurrencies is com-

paratively small. Terna et al. (2016) simulated the adoption of Bitcoin wallets. The

authors adapted an epidemic model lent from health care research to analyze the spread

of trust and adoption of Bitcoin. One of their findings is the lack of trust in cryptocur-

rency which is correlated with the amount of transactions and the amount of agents in

an agent’s proximity that uses a cryptocurrency as well. Due to a lack of confidence in

cryptocurrencies, agents do not like to hold a cryptocurrency for a long time, selling it

therefore quickly. This leads to a higher amount of transactions, which then allows for

the generation of confidence in cryptocurrencies in the model.

Cocco et al. (2017) modeled the Bitcoin blockchain with a trading system using two

kinds of agents. The first one called random trader, trades Bitcoin for diversification or

2This would imply a smaller degree of decentralization of the blockchain.
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liquidity, similar to the zero-intelligence agent by Gode & Sunder (1993) without any

real constraints besides their own budget. The other category is called chartist, which

used different strategies involving genetic algorithms to optimize its revenue. They

could confirm that the daily trading returns of absolute prices are indeed autocorrelated

and follow a negative exponetialy shaped cumulative distribution function with a fat

tail. In their next work, Cocco & Marchesi (2016) modeled the Bitcoin blockchain in-

cluding the mining system. It added the new agent type miner. This category could

acquire mining hardware and generate new Bitcoins. Its goal is also to maximize its

revenue. The authors were able to reproduce stylized facts, such as the unit root and

volatility clustering. This thesis is based on this model. In their newest publication,

Cocco et al. (2019) solely focus on the mining aspect of Bitcoin and ignores the trading

aspect. It compares the profitability of mining Bitcoin to that of mining gold and comes

to the finding that mining Bitcoin is superior compared to mining gold. The authors

state that if everything included, the costs of using Bitcoin might actually be smaller

than those of a traditional currency.

Zhou et al. (2017) use a simple agent-based model to try to capture the effect of the

amount of agents. Their findings, while limited, say that the amount of agents directly

affects the Bitcoin price and the deal rate of transactions. A high number of agents

decreases the price fluctuation and the overall deal rate is higher. Finally, Lee et al.

(2018) first use inversed reinforced machine learning to deduct trading rules from the

real Bitcoin transactions. In a second step they applied these rules to an agent-based

model in order to forecast the price and performance of Bitcoin. They were able to

establish an 80% directional accuracy of their price prediction within the first six days

of forecasting.

2.3 Summary

This chapter gave an introduction to the technology and design of Bitcoin, including

its blockchain and parameters such as the block size and the Bitcoin generation. It also

discussed current developments of Bitcoin and the resulting problems, such as conges-

tion, high electricity consumption and security concerns. The second part summarized

the economic literature of cryptocurrencies and Bitcoin. Several papers come to the

conclusion, that the current protocol is not efficient from different point-of-views. Dif-
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ferent approaches have been theorized and proposed, such as totally new protocols and

different parameters for the blockchain. Lastly, some literature has been introduced

on agent-based modeling of a cryptocurrency. The model used in this thesis will be

explained in the next chapter.

16



DOI:10.6814/NCCU201900519

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

3 Methodology

In order to get more insight into the design of a cryptocurrency and its calibration, an

agent-based model is created. The goal of the model is to find a better way to design

a cryptocurrency that allows for a high security and high economic efficiency simul-

taneously in a Pareto optimal fashion. Such an agent-based model approach has been

shown to be successful in the economic literature on policy design. Chen & Chie (2008)

for example used an agent-based model for the design of a lottery market, while Marks

(2006) introduces market design in agent-based modeling in a more general fashion.

In the first step, a model was created that tries to simulate the real cryptocurrency Bit-

coin. This chapter will describe the model and its agents in detail.3 Section 3.1 will

begin describing the model by giving an overview of its core features and agents. Sec-

tion 3.2 will explain the different types of agents used. Section 3.3 will describe the

model with its market and transaction system. Section 3.4 describes the initialization of

the model. After the model has been created, it will get calibrated and optimized which

is described in Section 3.5. Lastly, in Section 3.6, the chapter will be summarized.

3.1 Model Overview

The model used is based on an existing one by Cocco & Marchesi (2016), which was

then adapted and extended. The core features of the original model include a Bitcoin

market, where agents can sell and buy Bitcoin in a realistic fashion. Furthermore, agents

are able to create (i.e., mine) new Bitcoins. The full list of the features of the original

model is:

• Three kinds of agents, including chartists, random traders/users and miners;

• A realistic order book to imitate a real cryptocurrency market;

• Agents join over time and decide to engage in the trade and/or to mine Bitcoins;

• A power law wealth distribution for existing and later added agents;

• Miners are all in mining pools, meaning that they have a steady stream of income.

This is because since 2010 miners collaborate in groups to share their hashing
3The full code can be found under https://www.comses.net/codebases/3d2dfc87

-78e0-47ff-ad8f-7c8f5f13fcdd/releases/1.0.0/
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power to decrease their investment risk by avoiding unnecessary mining (Cocco

& Marchesi, 2016). The miner agents also can decide at given time points to

invest in or divest their hardware.

This list of features was then extended by a transaction system, similar to the one used

in Bitcoin as of today. It includes a transaction capacity limit, that allows users to

submit transactions and set a fee for their transactions as well as letting miners take

fees in general into their investment consideration. This transaction system allows us to

analyze the development of the transaction fees as well as a better representation of the

mining network hashing power. The model simulates each day between February 23rd

in 2014 and April 3rd 2018 in a single time step, totaling 1500 simulation steps, where

one step is equal to a whole day. This particular time frame was choosen as it was used

by the creators of the underlying model from Cocco et al. (2017). It also captures the

time before and during the time of Bitcoins highest congestion around the end of 2017

(Bitcoinfees.info, 2019).

3.2 Types of Agents

The model used in this thesis includes three types of agents: Chartists, users and miners.

These will be explained in the following sections in more detail.

3.2.1 Chartist

A chartist is an agent who trades for profit. S/he will place a buy order when s/he

speculates that prices will rise and a sell order otherwise. Both of these orders are place

on the artificial exchange market. Every chartist has a time window T , that has a mean

of 20 and a standard deviation of 14 to be used for buy and sell decisions. This approach

has been firstly introduced by Arifovic (2002). If the price increases in T was over the

threshold of 0.01, s/he will place a buy order and a sell order if otherwise. 10% of

the chartists follow a contrary strategy, meaning the chartist will sell when the price

increase is over 0.01 and buy if it is not the case. Every chartists entering the market

always places a buy order. This approach can also be found in Raberto et al. (2003). In

contrast to the user agents, chartist do not participate in the transaction system.

4A list of all variables used in this thesis can be found in appendix A.
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3.2.2 User

A user is an agent who participates in the market either for diversification of his/her

portfolio and/or for the usage of Bitcoin as a form of currency. S/he does not follow any

trends with his/her orders. In fact, the probability for sell and buy order is the same for a

user at any given time after s/he has entered the market. Every user who is entering the

market, issues a buy order. Since one of the reasons for his/her participation in the mar-

ket is the usage of Bitcoin as a currency, s/he also has the ability to make a transaction

using his/her own Bitcoin funds, at any given time step. Since the capacity of transac-

tions per time step is limited, s/he will always add a fee that allows the transaction to be

picked up by miners. More on transactions is provided in section 3.3.2.

3.2.3 Miner

Miners are agents that participate in the model by generating new Bitcoins with their

mining hardware. They only participate in the market by selling their Bitcoins, if they

require more cash in order to invest in hardware or to pay their electricity bills. At

the beginning of the simulation, the total hash power of the total Bitcoin network was

28,314 giga hash/s (GH/s) (Blockchain.com, 2019e). This number, as well as other

following variables, have been divided by the factor of 5000. This was done as to ad-

just the model, so that it could be run within computational limits. This hash rate was

then divided by the expected initial amount of miners (i.e., 9) to calculate the initial

hashing capability of one miner, resulting in a hashing capability of 0.629 GH/s per

miner5. The hashing power of available hardware is getting cheaper over time, as the

technology continues to improve, whereas the power consumption per hashing capabil-

ity is decreasing over time. Cocco & Marchesi (2016) collected the average hashing

power for the existing hardware with corresponding prices and electricity consumption

in the time frame between 2011 and 2015. They estimated two curves through their

aggregated data with the following forms:

R(t) = 8.635 · 104 · e0.006318·t (2)

528,314GH/s / 5,000 / 9 = 0.629 GH/s
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where R(t) is the average hash rate per second and US-Dollar with
H

s · $
.

ξ(t) = 4.649 · 10−7 · e−0.004055·t (3)

where ξ(t) is the average electricity consumption for one hour in Watts per hash and

second with
W

H/s
.

ξ(0) times the initial 0.634 GH/s per Miner gives the initial electricity consumption

per miner with 1697.11 W. New miners entering the market as well as existing miners,

who are able to upgrade their hardware use these two equations to determine their new

purchased hashing power ri,u(t) (with i for the miner and u for the hardware) and its

corresponding electricity consumption ei,u(t). The total hashing power of a miner is

consequently the sum of all his/her purchases or

ri(t) =
t∑

s=tEi

ri,u(s)

where tEi is the entry time of a given miner. The corresponding electricity consumption

can be expressed as:

ei(t) =
t∑

s=tEi

ε · ξ(s) · ri,u(s) · 24 (4)

where ε is the electricity price per W/h. It is fixed to 0.07 US$, which was the average

during the model time frame in China, where the majority of miners today are located

(CEIC, 2019). The 24 refers to the hours of the day, since one time step in the model is

a whole day. Miners who are already in the model and make the decision to invest, use

a fraction γ1,i(t) of their fiat cash. Additionally, they will sell a fraction γi(t) of their

Bitcoin and use the revenue as well. Hence, the new purchased hardware will have a

hashing power of:

ri,u(t) = [γ1,i(t)ci(t) + γi(t)bi(t)p(t)]R(t) ; if t > tEi . (5)

where ci is the fiat cash and bi the Bitcoins held by Miner i and p(t) is the current

Bitcoin price.

Miners entering the market will always make a purchase of mining hardware, this time

only using the fraction γ1,i(t) of their fiat cash. Hence, the hashing power of the initial
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bought hardware for miners is equal to:

ri,u(t) = γ1,i(t)ci(t)R(t) ; if tEi > 0 (6)

The values for γ1,i(t) and γi(t) are the same as in Cocco & Marchesi (2016) and both

have a log normal distribution. γ1,i(t) has a mean of 0.15 and a standard deviation of

0.15, whereas γi(t) has a mean of 0.175 and a standard deviation of 0.15. Since miners

are not allowed to take a credit, their γ are always set to 1 in case that γ > 1.

Miners are not able to purchase at any given time. Instead, they make a decision whether

to invest or divest on average every 60 days, which is another value taken from Cocco

& Marchesi (2016). This average has a normal distribution and a standard deviation

of 6 days and the next decision time step is determined by each individual miner every

time an investment decision has been made by him/her. Since by assuming all miners

belong to a mining pool, their generated revenue is proportional to their hashing power

in comparison to the total networks hashing power. The total daily income of miners

is the sum of the newly mined Bitcoins per day plus the total sum of transaction fees

within the transaction limit submitted at that time step, which can be expressed as:

bTot(t) = B(t) +
tlimit∑
j=1

fj(t) ; if L(t) ≥ tlimit (7)

bTot(t) = B(t) +

L(t)∑
j=1

fj(t) ; if L(t) < tlimit (8)

where B(t) is the amount of Bitcoins mined per day, fj(t) is the fee of transaction j

at time t and
∑tlimit

j=1 fj(t) or
∑L(t)

j=1 fj(t) is the total sum of fees depending if L(t), the

amount of transactions in that time step, exceeds the transaction limit or not.

This revenue is now distributed among the miners in proportion to their hashing power.

bi(t) =
ri(t)

rTot(t)
bTot(t) (9)

where rTot(t) is the networks total hashing power.

At any decision time step, every miner decides whether the revenue of the new hardware
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outweighs the connected costs. This constraint is expressed as follows:

ei,u(t) <
ri,u(t)

rTot(t)
bTot(t)p(t) (10)

where ri,u(t) is the hashing power and ei,u(t) the electricity consumption of hardware

u of miner i. If s/he decided against the investment, s/he will issue a sell order equal to
γi(t)

2
bi(t) to cover his/her electricity expenses.

Additionally, every miner is able to divest his/her hardware for the price of R(t). S/he

will do so, if the electricity expenses are 20% larger than the revenue associated with

that specific hardware. That means a miner keeps track of all his/her hardware individ-

ually. The constraint for divest is fulfilled if:

1.2ei,u(t) ≥
ri,u(t)

rTot(t)
bTot(t)p(t) (11)

3.3 The Model

The model used in this thesis has two main components:

• A Bitcoin market which is similar to a real life cryptocurrency exchange, where

traders can place buy and sell orders.

• A transaction system, which allows users to send Bitcoins to other users and

attach a transaction fee to it.

The following sections will explain these components in greater detail.

3.3.1 The Bitcoin Market

The first main component of the model is the Bitcoin market. It is modeled after real life

Bitcoins exchanges or other trading exchanges in general. More specifically, an order

book is created. This approach has also been used previously in Raberto et al. (2005)

and Cocco & Marchesi (2016).

Order Book

The order book keeps record of all the buy and sell orders with their respective amount

in Bitcoin, the remainder of the transaction for partial transactions, the corresponding
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limit prices and the expiration time of an order. The following will explain these terms

in more detail.

Buy Order: The amount of a buy order is proportional to the available fiat cash ci(t)

of a trader i. That excludes any fiat cash that is currently used in pending orders. The

amount of a buy order is defined as:

buyi(t) = ci(t) · β (12)

where β is a variable pulled from a log normal distribution with average 0.25 and stan-

dard deviation of 0.2. In the case that β > 1, β is set to 1, since a trader is not able to

take any credit.

Sell Order: Similar to equation (12) is the amount for a sell order determined.

selli(t) = bi(t) · β (13)

β is the same as in equation (12), bi(t) is the Bitcoin held by agent i. Short selling is

also not possible.

Limit Prices: The limit price is a price at which a trader wishes to perform his/her

order. This mechanism works similar to a limit price from a real world exchange plat-

form. A limit price can also have a value of zero, in which case it is regarded as the

market price, meaning that a trader wishes to perform his/her order with the best avail-

able price. Each agent category has their own probability to issue an order with a market

price. 0.2 for users, 0.7 for chartists and 1 for miners. These numbers are chosen and

picked by Cocco & Marchesi (2016), who argue, that chartists and miners are the types

of agent who have the greatest desire to trade at the best price, chartists for profit and

miners for liquidity reasons.

An agent is willing to perform his/her buy order only if the sell limit is below or equal

to his/her buy limit. The limit price for a buy order is given as:

buylimi(t) = p(t) ·Ni(1.05, σi) (14)

23



DOI:10.6814/NCCU201900519

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Similarly, an agent is only willing to perform his/her sell order if the buy limit is greater

or equal to his/her sell limit. The limit price for a sell order is given as:

selllimi(t) = p(t)/Ni(1.05, σi) (15)

For both equations (14) and (15), p(t) is the current Bitcoin price and Ni(µ, σi) is a

Gaussian distribution with a mean of 1.05. This distribution with this mean is supposed

to represent limit prices, that are not fully rational. Additionally, agents are on average

willing to pay a small amount more than the market price would suggest. σi is supposed

to represent the volatility of the price in the model. This approach has been used in

Raberto et al. (2001). The standard deviation of the Gaussian distribution is given by:

σi = Kσ(ϕi) (16)

where K is a constant set to 2.5 and σ(ϕi) is the standard deviation of the price in the

time window ϕ which is set to 20. Furthermore, σi has the following constraint:

σmin = 0.003 ≤ σi ≤ 0.01 = σmax (17)

where the same values as in Cocco & Marchesi (2016) for σ have been used.

Expiration Time: Every order has an associated expiration time. It has the following

form:

Expi(t) = Round(t+ pati) (18)

where t is the day of the order and pati is the patience of the ordering agent i. It is 0 for

chartists, meaning their order will expire if not performed in that time step. This is the

case since chartists wish to follow market trends. Users have a log normal distribution

from which they retrieve their patience for each time they issue an order. It has a mean

of 3 and a standard deviation of 1. Miners who always issue market price orders, have

an infinite patience, meaning their order will stay in the market until it is executed and

can not be cancelled (even though the investment decision would be different at a later

time). Round is a function that always rounds the expiration to the nearest integer.

Price Clearing
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The price clearing mechanism used in this model is similar to the one from Raberto et

al. (2005).

In every simulation step, after all agents were able to issue their order, the order book

is sorted in respect to the limit prices. For buy orders, the list is sorted in descending

order, and for sell orders in ascending order. The model now compares the two top or-

ders from the buy and the sell order list. A match occurs if at least one of the following

conditions is fulfilled:

buyi(t) ≥ sellj(t) (19)

sellj(t) ≡ ”0” (20)

buyi(t) ≡ ”0” (21)

where buyi(t) is the limit price of the buy order and sellj(t) is the limit price of the sell

order.

Paraphrased, this means that either the buy limit price needs to be greater or equal to

the sell limit price and/or at least one of the orders is a market price order.

In case that the amount of Bitcoins in the buy and sell order does not match, the order

with the smaller amount is fully executed. The fully executed order will be removed

from the order book and the non-fully executed one will remain with the remainder

of that transaction. This process will be repeated until the top orders of the two order

books do not match anymore. After the last match has occurred, all expired orders will

be removed.

Price Formation: the price for a matched transaction pT is formed by the following four

rules:

1. If both sides are taking a limit order:

pT =
buyi(t) + sellj(t)

2
(22)

2. If only buyi(t) ≡ ”0”:

pT = max(sellj(t), p(t)) (23)
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3. If buyi(t) > 0 and sellj(t) ≡ ”0”:

pT = min(buyi(t), p(t)) (24)

4. If buyi(t) ≡ ”0” and sellj(t) ≡ ”0”:

pT = p(t) (25)

where p(t) is the current Bitcoin price. Every time pT has been determined, it is hence-

forth used as the new p(t).

3.3.2 The Transaction System

The second main component of the model is the transaction system. It aims to repli-

cate the occurrence of transaction fees in the real Bitcoin network. Transactions are

processed on the blockchain of Bitcoin, in contrast to all buy and sell orders which are

processed on a market exchange that occurs off the blockchain.

The transaction system in this model is essentially a list of all transactions that have

been broadcasted by the user agents. It is always sorted in descending order by the fees

fi. As the real Bitcoin protocol, the model has a transaction limit called tlimit. Only

transactions which are within tlimit are able to be executed in that simulation time step.

In every simulation step, a user agent has a fixed probability of 20% to make a transfer.

In terms of the number of transactions made by each agent, the median value of three

weeks of daily transactions added to the real Bitcoin network was used and then divided

by the amount of user agents at that time (the data used was from 24th April 2016 as no

earlier data is available) (Blockchain.com, 2019g).

All other transactions are considered to happen over a Bitcoin exchange which therefore

are not appended to the transaction system of the Bitcoin network. The amount of

Bitcoins a user sends within a single transaction is determined by a normal distribution

with an average of 143 US-$ and a standard deviation of 20. The values of this mean

was taken from the median of the transaction volume of all transaction in the modeled

time frame (BitInfoCharts, 2019b), whereas the standard deviation was picked by the

author to include a small degree of stochasticity. Even though all the transaction fees

are expressed in US-Dollar, the model internally uses the corresponding amount of
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Bitcoin6. The recipient of the transaction is randomly chosen from the pool of users.

Fee determination: A user will attach a fee to his/her transaction based on the number

of transactions L(t) and the following rules:

1. If L(t) ≥ tlimit : fi = (flast(t) + α) ·N(µ, σ) (26)

2. If L(t) < tlimit : fi = (flast(t)− α) ·N(µ, σ) (27)

3. If L(t) = 0 : fi = (flast(t− 1)− α) ·N(µ, σ) (28)

where N(µ, σ) is a normal distribution with the mean of 1 and standard deviation of

0.01. flast(t) is the fee of the last transaction of this time step still within tlimit,

whereas flast(t − 1) was the last fee within tlimit of the last time step. α is a con-

stant set to 0.01US-$. Using these rules, a user always tries to have his transaction

picked up by miners. If the number of transactions is larger than the transaction limit

he will increase his fee just by a small amount to outbid the lowest fee currently still

within the transaction limit. If the number of transaction is lower than the transaction

limit he will offer a fee slightly lower than currently lowest fee. The user is not offering

a minimal fee, since s/he still expect other users to make a transaction. This way fees

are able to lower in times of low demand. Lastly, if there are no other transactions a user

has no current fee to compete with, but still attaches the lowest fee within limit from the

previous day lowered slightly as s/he expects a lower, yet prevelant demand for trans-

actions. As mentioned, all transactions have their fees attached in Bitcoin, however a

transaction also holds the information of a fee expressed in US-Dollar, which is actually

the information used for flast(t).

Even though there is no minimum fee required by Bitcoin protocol (Kaskaloglu, 2014),

a user will always attach a minimum fee to prevent miners from being indifferent to

process their transaction. The absolute minimum fee for a transaction is set to 1 · 10−8

Bitcoin (called one satoshi). Therefore:
6Therefore, each user uses to the current Bitcoin price to calculate the amount s/he wants to send even

if the value he initially wanted to send might change in the future due to appreciation.
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For
fi
p(t)

< 10−8, fi =
p(t)

108
. (29)

As with orders, transaction have an expiration date, which is set to:

ExpOrdi(t) = Round(t+ patOrdi) (30)

where t is the current simulation step, patOrdi is a log normal distribution with a mean

of 1 and standard deviation of 0.01 and Round is a function that always round to the

nearest integer.

At the end of every time step, all transactions within tlimit are executed. The recipient

receives his/her designated amount. The total sum of all fees within tlimit will be

distributed among all miners in proportion to their hashing power. All executed and

expired transactions will be removed, all other transactions remain in the list, still in

sorted order for the next time step.

3.4 Initialization

3.4.1 Number of Agents and their Type Distribution

The amount of agents entering the model at any simulation time step is determined by

a generic exponential function, which was taken from Cocco et al. (2017). The authors

estimated the amount of participants in the Bitcoin network based on observations over

time. The amount was slightly adapted to fit with the time frame used in this model,

2014.02.23 to 2018.04.03, and has the following form:

N(t) = 1.77 · 104 · e0.002465·(t+1878) (31)

where N(t) is the total amount of agents at simulation step t.

There is little data available for the distribution of the kind of participants in the Bit-

coin network. As for 2019, there were nearly 35 million Bitcoin wallet users (Statista,

2019). It is estimated that the current amount of miners in Bitcoin is around one million
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(Buybitcoinworldwide, 2019). Therefore, the probability for an agent at any time step

to be a miner is set to 0.025.

Cocco & Marchesi (2016) stipulated that of all the agents which are not miners, 70%

are users (in their paper generally referred to as a random trader) and 30% are chartists.

Table 1 gives the fractions of agents, their average initial and average final number. Fig-

ure 7 shows average the development of the agents number per type.

Table 1: Agent Type Fraction

Agent Type Fraction Average Initial Amount Average Final Amount
Miner 2.5% 9.21 358.09
User 68.25% 245.1 9802.14

Chartist 29.25% 103.69 4221.77

Figure 7: Number of Agents per type during Simulation

3.4.2 Agent’s Wealth

The wealth distribution of the agents is following a power law distribution. This ap-

proach has also been used in Cocco & Marchesi (2016) and Raberto et al. (2003). A
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power law has the general form of:

z(x) =
C

xδ
(Newman, 2005) (32)

Rewritten for the purpose of this thesis, it has the following form:

bi,0 =
bmax
iδ

, i belongs to j|tEj = 0 (33)

where bi,0 are the initial Bitcoins of initial agent i, bmax the initial Bitcoins of the wealth-

iest agent and δ is a constant for the power law. The total amount of Bitcoins for t = 0

is equal to:

b(0) =

N(0)∑
i=0

bmax
iδ

=

N(0)∑
i=0

bi,0 (34)

where N(0) is the initial amount of agents.

Equation (33) is used several times. Once for the Bitcoins of the agents at the beginning

of the simulation. Here, like in Cocco & Marchesi (2016), δ is set to 1.

bmax is calculated by solving equation (34) for bmax with b(0) set to 60% of the actual

amount of the day at the beginning of the simulation, since like in Cocco & March-

esi (2016), it is assumed that only 60% of the Bitcoins are in circulation. N(0) was

retrieved from equation (31). This gives a bmax of 1,156,094 Bitcoins, which is then

divided by the computational factor of 5000.

The second time it was used to calculate the cash for the initial agents with the same

delta and a maximum cash of 20,587. The last time the equation was used, was for the

cash of all the agents which are entering at a later point. For that purpose δ was set to

0.6 and the cash of the richest trader was set 10 times higher as the cash from the rich-

est initial trader. Their initial Bitcoins are zero. A pool of cash values was generated in

advance with the size of the number of agents which will join the model later. Every

time a new agent joins, a random value is pulled and removed from the pool and then

assigned to that agent. This approach and the parameters used are all similar to Cocco

& Marchesi (2016).
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3.5 Calibration

This thesis aims to analyze optimal design possibilities of a cryptocurrency. For that

purpose, the two parameters, the transaction limit tlimit and the initial Bitcoin gener-

ation B(0), henceforth called bitgen, were picked. These two variables were chosen,

because both of these are part of the original protocol of Bitcoin and were never really

justified by their creator Satoshi Nakamoto. Additionally, these two variables can be

adjusted comparatively easily, by a new consensus of all Bitcoin participants who run a

full version of the Bitcoin protocol on their computer, implementing a hard fork. The

following sections will describe the three different calibration approaches of this thesis.

3.5.1 Realistic Parameters

The first calibration process involved using the real Bitcoin parameters to have a base-

line value to compare the other calibration processes against. As described in section

2.1.2, the current Bitcoin block has a size limit of 1 MB. Since an average transaction

has a size of 250 bytes, this results in a block transaction size limit of 4000. As the

model simulates on a daily basis, this number is multiplied by 144 (6 blocks per hour

and 24 hours a day). Afterwards, it is divided by the computational factor of 5000.

Therefore, tlimit is set to 115 for this calibration.

The amount of Bitcoins mined per block was already described in section 2.1.3. As

described, the block mining reward halves every 210,000 blocks, which equals approx-

imately 4 years. Therefore, the mining reward does not stay the same during the whole

simulation. However, for simplicity reasons, bitgen is only expressed in its initial value,

even though it always halves after 210,000 blocks. Table 2 shows the values used for

the mining reward during the simulation runs.

Table 2: Daily Mining Reward in Simulation

Date Real Bitcoin Reward Simulated Bitcoin Reward
2014.02.23 - 2014.11.11 3600 0.72
2014.11.12 - 2018.04.03 1800 0.36

31



DOI:10.6814/NCCU201900519

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

3.5.2 Optimization for Economic Efficiency

The second calibration step is the optimization for economic efficiency in the model.

Economic efficiency can be considered as the sum of the economic benefits minus the

costs (Varian, 1996). For this thesis the economic efficiency is therefore considered as

the total wealth in the model’s system. This optimization objective is similar to the one

from Chiu & Koeppl (2017). In their paper, Chiu & Koeppl used a theoretical model

to optimize the welfare of a market which uses Bitcoin as a currency. They defined

welfare as the aggregated surplus of the market minus the expenditures, i.e., the mining

costs. The aim of this optimization process is now to verify their finding, which is

that the optimal calibration of a blockchain to maximize the welfare is a low mining

block reward and no transaction fees. This thesis uses a similar function to measure the

economic efficiency, which is considered as the overall wealth and it is defined as:

Π(t) =
n∑
i=1

bi(t) · p(t) + ci(t) +
rtot(t)

R(t)
(35)

where bi(t) are agent i’s Bitcoins, ci(t) his fiat cash, p(t) the Bitcoin price at time t and
rtot(t)

R(t)
the current worth of the miners’ hardware in US-Dollar.7

Since the relation between the parameters and the wealth is not known and might not be

linear, a brute force approach would be very computation-intensive and therefore unfea-

sible. Instead, a multi-objective evolutionary algorithm (MOEA) is used to maximize

the wealth. This approach has been used for multi-objective optimization of agent-

based model before by Narzisi et al. (2006) and is still used in this case here with only

one objective due to its very efficient nature.

The multi-objective evolutionary algorithm used in this thesis is called Non-dominated

Sorting Genetic Algorithm II (NSGA-II), developed by Deb et al. (2002) and will be

briefly explained in the following:

Generally NSGA-II, just like any other MOEA optimizes f with m objectives and the

following form:

Optimize: f(o) = (f1(o), ...fm(o)) (36)

7As users and chartists can not purchase hardware, thus their hardware’s value is equal to 0.

32



DOI:10.6814/NCCU201900519

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Subject to: ol < o < ou

where o is a vector of optimization variables with the lower and upper limit of ol and

ou (Seah et al., 2012). A solution oi dominates solution oj if the following conditions

are fulfilled: 1. oi is better or equal in all objectives as oj . 2. oi is better than oj in

at least one objective. Thus, a solution that is not dominated by any other solution is

called non-dominated.

Just like most other evolutionary algorithm, NSGA-II starts by picking a random set of

parameters (their genetic code here) and uses the outcomes for the creation of a new

generation, that is a new set of parameters. The new offspring is created using mutation

and crossover including a tournament selection to determine which parameters to use

for the crossing. NSGA-II has the following special features: First of all, for the fitness

evaluation, all results are sorted into classes of Pareto fronts, that is by how many other

candidate solutions they are being dominated. For candidate solutions of the same front,

a crowding distance is used which tries to diversify the offspring and prefers results

that are further away from other solutions (in terms of their euclidean distance of their

parameters to that of other) (Calle, 2017). Secondly, it follows an elitist principle,

i.e., only the top performing 50% of the candidate solutions in terms of their fitness

evaluation will be included for the crossover and mutation for the next generation (Deb

et al., 2002).

To make the optimization process feasible, some compromises have to be made. First

of all, the NSGA-II have been reduced to 1000 from the original 1500 simulation steps.

Additionally, the number of Monte Carlo simulation runs for each NSGA-II candidate

solution has been picked, that allows for a robust mean, but could decrease the overall

computational time. Each candidate solution is then run for the amount of Monte Carlo

runs and the outcomes passed back to the algorithm. This approach has also been used

in Narzisi et al. (2006). We conducted a series of simulation runs using the model

calibrated with the real tlimit and bitgen values. Table 3 shows the average for both

the wealth and the overall hashing power, as the latter will be used in the last calibration

process. Based on the results, 25 Monte Carlo runs were chosen to estimate the wealth

and hashing power of each candidate solution during the NSGA-II optimization process,

as the average wealth and hashing power appeared to sufficiently stabilize at that amount

of runs. The upper limit for tlimitwas set 70 times larger than the real one and 10 times
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for bitgen.

Table 3: Model’s Stochasticity per amount of Monte Carlo Runs

No. of Monte Carlo runs
for each candidate solution Average wealth (Std.) Average hashing power (Std.)

1 14794 13,277,608
5 13476 (2763) 11,885,676 (1,855,772)

25 12672 (2277) 11,073,409 (1,390,767)
50 12904 (2226) 11,168,782 (1,352,951)

100 12795 (2295) 11,047,399 (1,418,213)

For the implementation of NSGA-II the python package pymoo by Blank & Deb (n.d.)

was used. All default parameters have been used, including a binary tournament selec-

tion, a crossover rate of 0.9 and a mutation rate equal to 0.5 (1 divided by the number

of parameters). All other meta-parameters have been listed in table 4.

The meta-parameters for the NSGA-II in this calibration are listed in table 4.

Table 4: Meta-Parameters for NSGA-II of Wealth Optimization

Objective Maximize: Π(t)
bitgenl 0
bitgenu 7.2
tlimitl 0
tlimitu 8,050
No. of Monte Carlo runs
for each candidate solution 25

No. of simulation steps per run 1000
Size of the population 20
No. of generations 20

3.5.3 Optimization for Economic Efficiency and Hashing Power

The last calibration step is the optimization for economic efficiency and hashing power.

The optimization of a cryptocurrency just for the economic efficiency or in this case

the overall wealth might be not a feasible solution, since the network’s security is ne-

glected. In the case of Bitcoin and similar cryptocurrencies, the network’s security

relies completely on its hashing power (Pagnotta, 2018). It is therefore a vital aspect

of the design and should also given a high degree of attention. The network’s hashing
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power, introduced in section 3.2.3, is defined as:

rtot(t) =

j∑
i=1

ri(t) (37)

where ri(t) is the hashing power of miner i and j is the amount of all miners at t. This

time the NSGA-II algorithm optimizes for two objectives, which is the maximization of

Π(t) and rtot(t), where wealth and NSGA-II both have been introduced in the previous

section. The optimization in this step will not return one optimal value, but instead an

optimal Pareto front of values, that are all not dominated by each other. This is expected

to result in a function that represents the trade-off between wealth and hashing power of

a cryptocurrency. For that reason, the population size of this optimization was increased

in order to receive a larger number of optimized outcomes that can be used to derive a

more accurate function. The final meta-parameters for the NSGA-II are the following:

Table 5: Meta-Parameters for NSGA-II of Wealth and Hashing Power Optimiza-
tion

Objective Maximize: Π(t)
Maximize: rtot(t)

bitgenl 0
bitgenu 7.2
tlimitl 0
tlimitu 8050
No. of Monte Carlo Runs for each candidate solution 25
No. of Simulation steps per run 1000
Size of the population 40
No. of generations 20

3.6 Summary

This chapter described the model used in this thesis. It was created to mimic the real

Bitcoin, its market and transaction system. Initially, it was also calibrated with the

real Bitcoin parameters. Furthermore, the model was optimized in two parts using a

multi-objective genetic algorithm. First only for the maximization of the total wealth

and second for the maximization of both total wealth and network hashing power in a

multi-objective fashion. The results of these three calibrations will be presented in the

next chapter.
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4 Findings

This chapter will describe the findings of this thesis. Section 4.1 presents the simulation

results of the model calibrated with the real Bitcoin parameters. It will explain in detail

the findings for the different outcomes, such as price, wealth and hashing power of

the Bitcoin network. Section 4.2 describes the results of the optimization for wealth

of the model. It will explain the optimization results of the genetic algorithm and the

outcomes of the model using the optimized parameters. Section 4.3 describes the results

of the second optimization for wealth and network hashing power. It will also explain

the relation between the input parameters and outcomes as well as the Pareto optimal

relation between the two outcomes. Lastly in section 4.4, a summary will be made.

4.1 Real Parameters

The first calibration used the real Bitcoin parameters. That means a daily block reward

of 0.72 Bitcoins and a transaction limit of 115. The following will present the results of

this first calibration.

4.1.1 Price Development

Figure 8 shows the average price development of the Monte Carlo simulation. It reached

an average of 10,116 US-Dollar in the last simulation step. One can observe, since new

agents with new cash enter the market at every period, that the price is generally always

rising. However, since this figure is only representing the average this is actually not

the case in all runs of the simulation. Figure 9 shows the Bitcoin price development

of a single simulation run in comparison to the development of the real Bitcoin price

development.

One can observe that the simulated Bitcoin price of that run initially has a higher degree

of volatility, while later on it does not match the volatility degree of the real Bitcoin

price. The degree of volatility of the model is created by the chartists, which pick up

small upwards and downward trends and amplify them. The average continuous upward

trend of the simulation price is caused by the nature of the model. More specifically,

as shown in equation (31), new agents will continue to join at each simulation step,

bringing more wealth in form of cash and have no choice but to acquire Bitcoin, hence
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Figure 8: Simulated Average Bitcoin Price

the price always continues to increase in the long run. This clearly is a too simplistic

assumption and would need to be modified in the future to reflect the reality more

accurately.

4.1.2 Hashing Power Development

Figure 10 and 11 show the simulated average of the hashing power and its standard

deviation. The final average hashing power level of the simulated network is 7.38 · 1017

H/s, which is equal to 730,000 tera-hash per second. This number can be explained by

the on average continuously rising Bitcoin price, which also increases the reward the

miners receive daily. Falling hardware prices and increasing hardware efficiency over

time allowed for miners to increasingly invest in hashing power.

Figure 12 shows the hashing power development of the real Bitcoin network and a

single simulated run remultiplied with the computational factor of 5000 for comparison

reasons. While the model is able to capture the upward trend of the real network hashing

power, it outgrows it by a power degree of two, since the real hashing power of the

network at the last simulated day was only 2.82 · 1019 H/s, compared to the 3.68 · 1021

H/s of the simulated one.
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Figure 9: Real and Simulated Bitcoin Price of a single Run
Data from Blockchain.com (2019f)

Figure 10: Simulated Average Hashing
Power

Figure 11: Standard Deviation of Sim-
ulated Hashing Power

Figure 12: Real and Simulated Hashing Power of a single Run
Data from Blockchain.com (2019e)
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This difference might be explained by the models underlying exponential functions

(2) and (3) for the hashing power per US-Dollar and the electricity consumption per

Hash/s, which might not be realistic enough to reproduce real values. Additionally, the

generated revenue plays an important role for the miners and their investment in hashing

power. The simulated Bitcoin price was also higher on average than the real one, hence

the simulated miners did have a higher incentive to invest more.

The average electricity consumption corresponding to the network’s hashing power is

shown in figure 13 and 14. It continues to increase with an exponential growth, since

the decreasing electricity costs per hash per second can not outset the increasing hash

per dollar and the miners continuous investment. The simulated electricity consumption

reaches a value of 4.9 million kilo watt per hour.

Figure 13: Simulated Average Electric-
ity Consumption

Figure 14: Simulated Electricity Con-
sumption Standard Deviation

4.1.3 Transaction Fee Development

A major addition to the model was the transaction system. Figure 15 shows the average

transaction fee with the corresponding standard deviation. Until the 620th simulation

step, the transaction fee stays at under two cents US-Dollar. After that step, it contin-

uously rises until the end, where it reaches a transaction fee of 22.54 US-Dollar. This

pattern can be well explained by figure 16. It shows the average unprocessed transac-

tions at every time step, meaning the amount of transactions that were not within tlimit

at the end of each simulation step. It becomes greater than zero for the first time on the

374th simulation step. Therefore, it can be observed that these two figures are highly

related, as the amount of unprocessed transactions with a certain time delay influences

the transaction fee.
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Figure 15: Simulated Average Transac-
tion Fee

Figure 16: Unprocessed Transactions
during the Simulation

Figure 17 shows the real average transaction fee during the simulated time frame. The

simulated model was able to reproduce some of its patterns. One can observe that the

real fees also stayed low until they suddenly begun to raise. The model, however, did not

accurately reproduce the time step at which the real fees begun to raise. Also, the real

fee level was not fully reached and lastly, the simulated fees continued to rise, despite

what happened for real Bitcoin. This might be explained by the continuous addition of

users to the model with a fixed tendency to make a transaction, therefore smoothing the

growth of the transaction fees unrealistically.

Figure 17: Real Bitcoin Transaction Fees
BitInfoCharts (2019a)

4.1.4 Wealth Development

Figure 18 and 19 show the development of wealth per agent type and the corresponding

standard deviation. As described in section 3.5.2, the wealth is defined as the sum of

cash and the number of held Bitcoins multiplied by the current Bitcoin price at that

simulation time step. Figure 20 and 21 separate the wealth into cash and Bitcoins at any

given time step.

As one can see, the wealth of chartists and users is continuously rising, while the wealth
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Figure 18: Simulated Average Wealth
per Agent Type

Figure 19: Simulated Wealth Standard
Deviation per Agent Type

Figure 20: Simulated Average Cash per
Agent Type

Figure 21: Simulated Average Bitcoin
per Agent Type

of miners experiences initially a lower volatility until nearly the end of simulation where

the volatility nearly reaches the same level as that of chartists and users. This might be

explained by the fact that miners sell their Bitcoin at a lower frequency than users and

chartists and never place buy orders. Also, the number of chartists and users is rising at

a higher pace than that of miners. Since all new agents bring new cash, the wealth of

those overall groups will always increase. The high standard deviation is likely caused

by the volatile Bitcoin price, which has a great impact on the wealth.

Figure 22 and 23 show the wealth development per capita and the corresponding stan-

dard deviation (See figure 7 for the development of the agents number per type). The

wealth of a single miner increases initially and then drops below the level of wealth of

the chartists and users. It stays rather low until during the last 200 simulation steps, then

it steeply grows and outweighs the wealth per capita of the chartists and users drasti-

cally. This also seems to be explained by the fast growth of the Bitcoin price in the later

simulation steps. Interestingly enough, the wealth per capita of the chartists initially

was larger than the one from the users, but at the end of the simulation it was slightly
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Figure 22: Simulated Average Wealth
per capita

Figure 23: Simulated Wealth Standard
Deviation per capita

lower.

4.2 Optimized Wealth

This section summarizes the findings of the model, which was calibrated to maximize

the economic efficiency that was considered to be the overall wealth in the model.

Therefore, as described in section 3.5.2, the NSGA-II was used. Figure 24 shows how

the algorithm converged for the later generations. The overall wealth converges to 12.6

million US-Dollars for a simulation with 1000 simulation steps.

Figure 24: Convergence of the Optimization for Wealth

Figure 25 shows the selection of parameters during different generations. As one can

observe, daily block reward tends to go against zero and the daily transaction limit

between 2000 and higher. The final parameters for the best result of the last generation

are 0.0048 Bitcoin per day and a daily transaction limit of 1414, which would be equal

to a block size of 12.3 MB. These parameters would imply a decrease of the Bitcoin

generation per day by 99.3 %, nearly abolishing all inflation and an increase of the block

size by 1229.6 %, allowing the protocol to mitigate the whole demand for transactions.
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Figure 25: Parameters used by Generation for Wealth Optimization

After the optimization, the model was run in a Monte Carlo simulation with 100 runs

for 1000 time steps each. Table 6 summarizes the results.

As one can see, transaction fees decreased to nearly zero and the average Bitcoin price

increased to 3,832US-$. The overall wealth also increased by around 587,000 US-

Dollar when optimized for wealth. However, the distribution of wealth has changed.

Since the transaction fees have turned nearly zero, the users wealth increased but the

wealth of the miner has decreased, since they no longer receive the fees as a mining

reward at every time step. Due to the lower income of the miners, who then lost the

incentive to invest in mining, the network hashing power has also decreased to 3.07·1014

H/s.

4.3 Optimized Wealth and Hashing Power

This section summarizes the findings of the model, which was calibrated to maximize

two objectives: the economic efficiency which is considered to be the overall wealth in

the model and the network hashing power using the NSGA-II again.
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Table 6: Simulation Results with Wealth optimized and real parameters

Outcome
Parameters

Wealth Optimized
bitgen: 0.0048
tlimit: 1414

Real Parameters
bitgen: 0.72
tlimit: 115

Price ($) 3,832.32 2,796.35
Transaction Fee ($) 0.00004 4.25
Network
Hashing Power (H/s) 3.07 · 1014 1.26 · 1016

Overall Wealth (M$) 11.88 11.29
Miner Wealth (M$) 0.11 (0.93%) 0.32 (2.83%)
User Wealth (M$) 8.43 (70.96%) 7.78 (68.91%)
Chartist Wealth (M$) 3.37 (28.36%) 3.20 (28.34%)

4.3.1 Parameters

Figure 26 shows all candidate solutions the genetic algorithm produced during its opti-

mization process (800 in total). The candidate solutions depicted by a cross represent

the optimal solutions, meaning that the outcome of those simulation runs using these

parameters are not dominated by other outcomes. The parameter pairs resulting in the

extreme outcomes are (tlimit1 : 2, 520, B1(t) : 0.134) for the highest hashing power

and (tlimit4 : 3, 871.93, B4(t) : 9.65) for the highest wealth.

Figure 26: Parameters found by NSGA-II for Wealth & Hashing Power Optimiza-
tion

800 candidate solutions from all generations found by NSGA-II (The points overlap due to
parameters having the same values in different generations).
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Table 7 lists the mean and standard deviation for both parameters. Both have a relatively

high standard deviation. This is caused by the nature of the NSGA-II, which tries to

diversify the candidate solutions, hence choosing parameters which are less similar.

The average of tlimit is a lot higher than the real parameter of 115. It would imply

an increase by 3372% or an increase of the block size to 33.72 MB. Nearly all tlimit

values are large enough to mitigate the whole demand for transactions of around 600

transactions per time step. The implication will be discussed in the next subsection.

The average of bitgen is also significantly larger than the real parameter of 0.72 with

an increase of 396.5%.

Table 7: Mean and Standard Deviation of Optimized Parameters

tlimit bitgen
Mean 3,877.82 2.855
Standard Deviation 1,807.43 2.161
Min 194 0.0008
Max 7808 7.177

Figures 27, 28, 29 and 30 show each of the parameters in comparison to each of the

outcome variables. It can be observed that tlimit does not seem to have any obvious

relationship to either of the outcome variables. However, the relationship becomes very

clear for bitgen. There appears to be a positive relationship between bitgen and the

network hashing power and a negative one between bitgen and the total wealth.

Figure 27: Daily Transaction Limit
against Network Hashing Power

Figure 28: Daily Transaction Limit
against Total Wealth

To further analyze the relationship between the optimized parameters and the corre-

sponding outcome variables, two quadratic multiple regressions, one for each outcome

variable, have been run. The first one is run against the network hashing power. Its

output can be found in table 8.
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Figure 29: Daily Bitcoin Generation
against Network Hashing Power

Figure 30: Daily Bitcoin Generation
against Total Wealth

Table 8: Regression Results - Optimization Parameters against Hashing Power

Dep. Variable: Hashing Power R-squared: 0.962
Model: OLS Adj. R-squared: 0.961
Method: Least Squares F-statistic: 4975.
No. Observations: 800 Prob (F-statistic): 0.00
Df Residuals: 795 Log-Likelihood: -28971.
Df Model: 4

coef std err t P>|t| [0.025 0.975]

Intercept 2.999e+15 2.39e+14 12.570 0.000 2.53e+15 3.47e+15
tlimit2 -1.159e+08 1.44e+07 -8.042 0.000 -1.44e+08 -8.76e+07
tlimit 8.886e+11 1.11e+11 7.980 0.000 6.7e+11 1.11e+12
bitgen2 -6.777e+14 1.21e+13 -55.880 0.000 -7.01e+14 -6.54e+14
bitgen 7.325e+15 8.51e+13 86.113 0.000 7.16e+15 7.49e+15

The regressions has a high fit with an R-squared of 0.962. All coefficients are significant

on a 99% confidence interval. Nonetheless, the effect of tlimit is significantly smaller

than the effect of bitgen. To make the difference clearer, the regression coefficients will

be expressed as the partial derivation (Wooldridge, 2015).

∆ ̂HashingPower

∆tlimit
= 8.89 · 1011 − 2.318 · 108 · tlimit (38)

∆ ̂HashingPower

∆bitgen
= 7.33 · 1015 − 1.36 · 1015 · bitgen (39)

Since for both tlimit and bitgen the value 0 was not within the observations, it can
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not be used to compare the effect. Instead, the mean value (see table 7) is used8. This

results in a mean effect onto the network hashing power of −9.88 · 109 for tlimit and

3.45 · 1015 for bitgen. The effect of tlimit is outweighed by the effect of bitgen by

a magnitude of 6 and therefore nearly irrelevant. It can be therefore concluded, that

the Bitcoin generation is mainly responsible for controlling the hashing power with a

positive, yet diminishing effect as the slopes is decreasing with higher bitgen.

Table 9 shows the result of the second regression with the total wealth as the dependent

variable. Again, the R-squared was very high with a value of 0.941. This time however,

tlimit is no longer significant, hence requires no farther analysis, but bitgen remains

significant on a 99% confidence level. The partial derivative is used again to express

the effect of bitgen.

∆ ̂TotalWealth

∆bitgen
= −6.81 · 105 + 9.11 · 104 · bitgen (40)

Using the mean value for bitgen, the average effect onto the total wealth is −4.21 · 105.

Thus, it can be concluded that as long as tlimit is large enough to mitigate demand for

transactions (which is on average at around 623 transaction at that time step), solely the

Bitcoin generation is responsible for controlling the total wealth with a negative and

decreasing effect as the slope decreases with higher bitgen.

Table 9: Regression Results - Optimization Parameters against Total Wealth

Dep. Variable: Total Wealth R-squared: 0.941
Model: OLS Adj. R-squared: 0.940
Method: Least Squares F-statistic: 3155.
No. Observations: 800 Prob (F-statistic): 0.00
Df Residuals: 795 Log-Likelihood: -10932.
Df Model: 4

coef std err t P>|t| [0.025 0.975]

Intercept 1.214e+07 3.85e+04 315.573 0.000 1.21e+07 1.22e+07
tlimit2 -0.0034 0.002 -1.444 0.149 -0.008 0.001
tlimit 25.2858 17.956 1.408 0.159 -9.960 60.532
bitgen2 4.556e+04 1955.285 23.302 0.000 4.17e+04 4.94e+04
bitgen -6.818e+05 1.37e+04 -49.710 0.000 -7.09e+05 -6.55e+05

8The reasoning of this methodology and its explanation is discussed by Wooldridge (2015)
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4.3.2 Outcomes

The outcomes of this optimization can be seen in figure 31. This figure represents the

Pareto front. Again, a cross depicts the non-dominated solutions from the NSGA-II. As

shown, there seems to be a linear relation between the wealth and the network hashing

power. The extreme values for this Pareto front are a wealth of 12.68 million US-Dollars

with a network hashing power of 2.52 · 1015 H/s, and on the other side of the front a

wealth of 9.85 million US-Dollars with a hashing power of 2.43 · 1016 H/s.

Figure 31: Pareto Front of Optimization Objectives found by NSGA-II
800 outcomes pairs (There is some overlapping, since parameters can be taken over to the next

generation)

Figure 32 only shows the 18 non-dominated solutions from the results. The linear

relation can be explained by the wealth distribution from the outcomes (which can be

found for some of them in table 11). The higher the overall wealth, the less the wealth

miners obtain. Thus, with higher overall wealth and less miners wealth, the miners

invest less in hashing power, since their investment is proportional to their wealth. As

a result, the hashing power is reduced. To capture this linear effect, a linear curve has

been fitted, which regression results have been summarized in table 10.

The slope of this Pareto front is −1.51 · 1010, meaning that an increase of the net-

works hashing power by 1015 H/s (1 Petahash/s) would mean a decrease of 150,755
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Figure 32: Non-Dominated Pareto Front of Optimization Objectives

Table 10: Regression Results - Hashing Power against Total Wealth

Dep. Variable: Total Wealth R-squared: 0.9689
Model: OLS Adj. R-squared: 0.9669
Method: Least Squares F-statistic: 497.8
No. Observations: 18 Prob (F-statistic): 0.000
Df Residuals: 16 Log-Likelihood: -240.84
Df Model: 1

coef std err t P>|t| [0.025 0.975]

Intercept 1.360e+07 1.275e+05 106.62 0.000 1.332e+07 1.387e+07
Hashing Power -1.508e-10 6.757e-12 -22.31 0.000 -1.651e-10 -1.364e-10

US-Dollars of wealth. Furthermore, the model outcome with the real parameters were

plotted next to the non-dominated ones as a green triangle. It can be observed in the

figure, also by the numerical values in table 11 that the outcome with real parameters

is dominated by all optimized outcomes by at least one objective, and it is also strictly

dominated by two parameter pairs which are marked as (2)(3) in figure 32. Table 11

lists these two results (Outcome (2) and (3)) as well as the outcome for the maximal

wealth and the maximal hashing power (Outcome (1) and (4)). The Bitcoin generation,
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as well as the transaction limit for the results (2) and (3), were significantly larger than

the real parameters.

Table 11: Different Pareto Efficient Simulation Results compared with Real pa-
rameters

Outcome
Parameters

(1) Maximum
Wealth

bitgen: 0.134
tlimit: 2,520

(2) Dominating
Result

bitgen: 1.44
tlimit: 4,411

(3) Dominating
Result

bitgen: 1.861
tlimit: 2,722

(4) Maximum
Hashing Power

bitgen: 9.64
tlimit: 3,872

Real
Parameters
bitgen: 0.72
tlimit: 115

Price ($) 4,258.72 2,817.09 2,463,20 846.95 2,796.35
Transaction Fee ($) 0.00004 0.00003 0.00002 0.000008 4.25
Network
Hashing Power (H/s) 2.52 · 1015 1.32 · 1016 1.46 · 1016 2.43 · 1016 1.26 · 1016

Overall Wealth (M $) 12.68 11.78 11.40 9.85 11.29
Miner Wealth (M $) 0.06 (0.47%) 0.21 (1.78%)) 0.23 (2.02%) 0.39 (3.95%) 0.32 (2.83%)
User Wealth (M $) 8.91 (70.27%) 8.14 (69.10%) 7.99 (70.09%) 6.48 (65.79%) 7.78 (68.91%)
Chartist Wealth (M $) 3.71 (29.26%) 3.43 (29.12%) 3.20 (28.07%) 2.99 (30.36%) 3.20 (28.34%)

Once more, it can be observed that no matter what optimization criterion is chosen,

the transaction fees always stay close to zero, meaning the tlimit was always chosen

by the genetic algorithm, to be large enough to mitigate the transaction demand. The

main difference for all four outcomes is the Bitcoin generation which is the largest for

the maximum hashing power with 9.64 Bitcoins and decreases with the hashing power

until it is the lowest with 0.134 Bitcoins for the maximum wealth outcome. The higher

the Bitcoin generation, the higher the inflation. Hence, the Bitcoin price does decrease

as higher the Bitcoin generation is. Again, the wealth distribution has also changed.

The wealth distribution for the maximum of wealth was 0.47 %, 70.27 % and 29.26 %

for miners, users and chartists respectively. For the maximum of the hashing power, the

wealth distribution now becomes 3.95 %, 65.79 % and 30.36 % for miners, users and

chartists respectively. This means that with higher hashing power, the wealth of users

decreases, whereas chartists and especially miners gain wealth. The decreasing worth

of Bitcoin seems to be outweighed by the higher Bitcoin generation. Therefore, miners’

wealth increased with the higher Bitcoin generation. This miners’ higher wealth is also

the reason that the network hashing power is higher than the hashing power of the model

with the parameters for maximum wealth.
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4.4 Summary

This chapter described the findings of this thesis. Firstly, the results of the calibration

with the real Bitcoin parameters were described. The model was able to reproduce a

trend that is similar to the development of the real Bitcoin during part of the simulated

time frame, even though it failed to capture any long time downward trends. Secondly,

the results from the optimization for total wealth were explained. The optimal parame-

ter combination found by the genetic algorithm corresponds to a large block size (larger

transaction limit) and a lower Bitcoin generation than that used in the real Bitcoin net-

work. This calibration has also been suggested by previous research such as by Chiu

& Koeppl (2017) to improve current Bitcoin network. Lastly, for the two objective op-

timization the Pareto-front of optimal parameters and its corresponding outcomes have

been analyzed. It was found that when the block size is chosen large enough to mitigate

the whole demand for transactions, only the Bitcoin generation controls the desired

outcome levels for total wealth and hashing power. Also, a linear trade-off between

hashing power and total wealth could be demonstrated. The reason for this relation lies

in the income distribution between the different kind of agents. With lower wealth for

miner decreases the hashing power, but the overall wealth becomes larger.
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5 Conclusion

5.1 Review of Findings

This thesis’ aim was to shed some light onto the design of a cryptocurrency with the

example of Bitcoin, since many parameters used in today’s cryptocurrencies were cho-

sen arbitrarily or only picked with one specific objective to control for. As to the au-

thor’s knowledge, this thesis is the first writing that analyzed the calibration of the two

main parameters block size and Bitcoin generation for economic efficiency and security

with an agent-based computational approach. It also made the contribution to the cryp-

tocurrency field by simulating Bitcoin with a functioning market and mining process

in addition to a transaction system. In the first step, to control whether the model has

a realistic output, the real parameters for the block size and the Bitcoin supply were

used. The results of this Monte Carlo simulation were aligned with previous research

and could reproduce most of the variables realistically. In the second step, the model

was optimized for the maximum economic efficiency, which was considered to be the

wealth, using a genetic algorithm. The model was able to confirm other literature stat-

ing that in order to maximize the wealth, a low amount of inflation and no transaction

fees should be implemented (Chiu & Koeppl, 2017). It was observed that when op-

timizing for wealth, the distribution changes in favor of the users and in disfavor of

miners. Realistically, just optimizing for wealth might not be sufficient, as the network

security, i.e., the network’s hashing power, plays a significant role in Bitcoin usability,

since users will not use a cryptocurrency if the security risk is too high. Thus, the model

was optimized for wealth and hashing power in the last step, again using a genetic al-

gorithm. The result was a Pareto front of optimal parameter combinations. This result

indicates that there is a trade-off between network security and economic efficiency in

cryptocurrencies, which can not be avoided. The higher the overall wealth (the higher

the economic efficiency), the less wealth miners have, hence caused them to spend less

on hashing power.

5.2 Application of Findings

The findings show, that no matter what preferences the designer of Bitcoin had in mind,

the current real parameters used have much room for improvement. Since the current
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implementation of Bitcoin has a decreasing Bitcoin reward per block, it will solely rely

on transaction fees in the future (Bitcoin Wiki, 2019b). The findings of this thesis con-

trarily show that the overall transaction limit (i.e., the block size) should be increased to

a degree that it can mitigate the complete transaction demand and thus reduce the trans-

action fees drastically. Meanwhile, as found out by this thesis, the Bitcoin generation

is solely important for controlling the preferred Pareto optimal combination of wealth

and security.

5.3 Limitations

While the goal of this thesis was to use the current implementation of the Bitcoin pro-

tocol and try to optimize it by only changing its parameters, this approach has its lim-

itations. First of all, the fixed model parameters were chosen with the assumption that

there is an exponential growth of the number of agents participating in the model, which

is the main reason why the model can not capture any long term downward trends.

Furthermore, the model’s accuracy is not always high enough to capture all variables’

development realistically. On a broader note, the usage of a Proof-of-Work system is

already challenged since a higher network security always comes with a higher en-

ergy consumption, which in times of an imminent climate crisis might not be the most

supported choice. Furthermore, if the demand for Bitcoin transactions would further

increase in the future, thus creating further congestion, the suggested adjustment to the

Bitcoin parameters would not be enough and a constant increasing of the block size

would be required and might not technically be possible. To solve these kind of prob-

lems in the long run, a more thoroughly redesign of the Bitcoin protocol would be

required. Solutions to solve these problems are already being discussed. These include

a totally different trustless proof system, called Proof-of-Stake, which would abandon

the mining process and instead rely on the staking of funds for the verification process

(King & Nadal, 2012). The problem of the congestion could potentially also be solved

by a redesign of the blockchain. Some suggestions for example include a design of a

blockchain, that dynamically adjust its block size, depending on the current network

congestion (Huberman et al., 2019).
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5.4 Future Work

This thesis was able to give insight into the design of a cryptocurrency and provided

some vital information for the calibration of a cryptocurrency like Bitcoin, without the

need for complete structural changes. While it seems inevitable that one day the Bitcoin

blockchain needs a whole redesign, the solutions provided in this thesis could help in

the medium run to mitigate some problems cryptocurrencies are currently facing. Fur-

thermore, a model has been created that is able to reproduce realistic results. However,

its accuracy needs to be further improved and extended to support future research. More

data would need to be aggregated to better calibrate some parameters. Especially the

underlying exponential growth functions does not seem to reflect the reality accurately.

Future work could include the development of an improved model that allows agents

to decide whether to participate or not. More specifically, scholars from game theory

in cryptocurrency mining games could help to improve the decision process of miners,

giving miners further reasoning for their actions. If a higher level of accuracy can be

achieved, further investigations could and should be conducted using this thesis’ model,

to analyze the effect of more drastic changes mentioned in the previous chapter.
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A Table of Variables

Variable

Name

Notation Description

Simulation

Time Step

t Simulation time step of the model, where on step is equal to

one day.

Time Window

for Chartist

T Time window for chartist they consider to make their order

decision.

Hash Rate per

Dollar

R(t) Hash rate per Dollar for each simulation step with
H

s · $
.

Hash H A value returned by a hashing function.

Second s A time second.

Electricity

Consumption

ξ(t) The electricity consumption for one hour in Watts per hash

and second with
W

H/s
.

Watts W Physical unit for power.

Hardware

Hashing

Power

ri,u(t) The hashing power of hardware u of miner i bought at time

t .

Hardware

Electricity

Consumption

ei,u(t) The power consumption of hardware u of miner i bought at

t.

Entry Time of

Agent

tEi Entry time of agent i.

Electricity

Price

ε The electricity price per W/h in US-Dollar.

Fiat Cash

Fraction

γ1,i(t) The fraction of the fiat cash a miner uses for buying new

hardware.

Bitcoin Frac-

tion

γi(t) The fraction of Bitcoins a miner sells to buy new hardware.

Agent’s Fiat

Cash

ci Fiat cash held by agent i.
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Agent’s Bit-

coins

bi(t) Bitcoins held by agent i.

Bitcoin Price p(t) Bitcoin price at time step t.

Transaction

Limit

tlimit The daily transaction limit of the model’s blockchain.

Number of

Transactions

L(t) Number of transactions before the miners process them.

Bitcoin Gener-

ated per step

B(t) The number of Bitcoins generated by the Bitcoin protocol

every simulation step.

Total Bitcoin

Income

bTot(t) The total Bitcoin income for the whole network, including

newly generated Bitcoins as well as transaction fees.

Networks

total Hashing

Power

rTot(t) The networks total hashing power at step t.

Buy Order

Amount

buyi(t) The amount of a buy order from agent i at step t.

Sell Order

Amount

selli(t) The amount of a sell order from agent i at step t

Order Fraction β The fraction of either Bitcoin or fiat cash used for an order

depending on the type of it.

Buy Order

Limit

buylimi(t) The limit for the buy order of agent i at step t.

Sell Order

Limit

selllimi(t) The limit for the sell order of agent i at step t.

Gaussian Dis-

tribution

Ni(1.05, σi) A Gaussian distribution with a mean of 1.05 and a standard

deviation of σi.

Standard Devi-

ation

σi The standard deviation used for the Gaussian distribution. It

is defined as σi = Kσ(ϕ).

Standard Devi-

ation Constant

K Constant used for standard deviation which is set to 2.5..
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Previous Stan-

dard Deviation

σ(ϕ) The standard deviation for the last time steps with a time

window of ϕ which is set to 20.

Order Expira-

tion

Expi The expiration date of an order issued by agent i at step t.

Rounding

Function

Round Rounds a value to the nearest integer.

Patience pati The patience for orders of agent i.

Transaction

Price

PT Bitcoin Price used for a market transaction.

Transaction

Fee

fi Transaction fee attached by agent i in Bitcoin.

Last Transac-

tion Fee

flast(t) The fee of the transaction with the lower fee still within the

transaction limit at simulation step t.

Expiration of

Transaction

ExpOrdi(t) The expiration of a transaction issued by agent i at step t

Patience for

Transaction

patOrdi The Patience of agent i for a transaction.

Total Number

of Agents

N(t) The total number of agents at step t.

Agent’s Initial

Bitcoins

bi,0 The initial amount of Bitcoins of agent i.

Wealthiest

Agent’s Bit-

coins

bmax The amount of Bitcoins of the initial wealthiest agent.

Power Law

Constant

δ A constant used for the power law for the initial wealth dis-

tribution.

Parameter for

Bitcoin Gener-

ation

bitgen Similar to B(t) gives bitgen the amount of Bitcoins gener-

ated per day. For simplicity reasons only the initial value is

listed, even though it follows the same function as B(t).

Wealth Π(t) The total wealth in the model at step t.
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