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Abstract This work is motivated by a nephrology study in Taiwan, where, after shunt
implantation, dialysis patients may experience one of the two types, acute and non-
acute, of shunt thrombosis, and each of them may alternatively recur in a patient. In
this work, treating the two types of shunt thrombosis as competing risks, we assess
covariate effects on the cumulative incidence probability function, or subdistribution,
of gap times to the occurrences of acute shunt thrombosis. To accommodate poten-
tially time-varying covariate effects, we extend a varying-coefficient subdistribution
regression model to recurrent event analysis and propose associated estimation proce-
dures. The inverse probability of censoring weighting technique is employed to ensure
consistent estimation of the regression parameter. Asymptotic distributional theory is
derived for the proposed estimator. Simulation results confirm that the proposed esti-
mator performs well in finite samples. Application of the proposed analysis to the
shunt thrombosis data reveals that dialysis patients with graft shunts and hypertension
are associated with significantly increased incidence of acute shunt thrombosis.
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1 Introduction

Recurrent events are commonly encountered in biomedical studies. Examples include
repeated infections after surgery and tumor recurrences. It is often of great interest
to examine factors influencing times since enrollment to recurrent events and/or gap
times between recurrent events. Regression analysis of recurrent events using either
the calender time (time since enrollment), which is typically termed “total time” in
the literature, or the gap time as the time index has drawn increasing attention; see for
example Prentice et al. [10], Andersen and Gill [1], Wang et al. [17], Zeng and Lin
[16] for analysis based on total time, and Huang and Chen [7], Schaubel and Cai [11],
Lu [9], Sun et al. [15], and Huang and Liu [8] for that based on gap time. Cook and
Lawless [4] provide an excellent review of recurrent event data analysis.

Our work is motivated by a nephrology study conducted by a large hospital in
northern Taiwan, where dialysis patients coming from local hemodialysis clinics were
treated shunt thrombosis arisen as a complication of dialysis. In those patients, there
were two types of shunt thrombosis observed: “acute” and “non-acute” thrombosis.
The two types of thrombosis may alternatively recur in a dialysis patient. Figure 1
depicts several observed patterns of recurrence of shunt thrombosis in the study. The
researchers in this study are mainly interested in the occurrence of the acute shunt
thrombosis, since it would lead to a more aggressive treatment such as surgery. In
contrast, a non-acute thrombosis can be handled by a simpler non-invasive treatment.
Identification of factors influencing the acute shunt thrombosis in dialysis patients is
the major goal of this study.

In the dialysis data mentioned above, the two types of recurrent events, namely the
acute and non-acute shunt thrombosis recurrences, can be viewed as bivariate (multi-
variate) recurrent event data. The data can thus be analyzed by existing methods for
multivariate recurrent events data (e.g., Spiekerman and Lin [14]; Cai and Schaubel

Fig. 1 Possible patterns of recurrences of shunt thrombosis in dialysis patients
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[2]; Schaubel and Cai [12]), which are usually based on cause-specific hazards mod-
els. However, these methods usually require modeling assumptions for all types of
the events considered. In the shunt thrombosis study, however, such assumptions are
unnecessarily strong since we are only interested in one of the multiple types of the
events, i.e., the acute thrombosis. To relax this limitation, we take an alternative view
of the data and pursue a more flexible analysis framework.

Note that, at each time point, each patient may experience at most one of the two
types of thrombosis. This implies that we may view the two thrombosis events as
two competing risk events. Analysis of competing risks has been a very active area
in biomedical practice, and there have been very flexible analysis tools in this area,
including the subdistribution hazards regression model proposed by Fine and Gray
[6], the mixture regression model by Fine [5], and the binomial regression model by
Scheike et al. [13]. These methods, unlike the models based on cause-specific hazards,
allow us to specify models only for the event types of interest, and to leave models
for other event types fully unspecified. In particular, compared to the subdistribution
hazards regression of Fine and Gray [6] and the mixture regression of Fine [5], the
binomial regression approach provides direct and flexible estimation of the covariate
effects on the overall or cumulative risk for the event of interest, including the time-
varying covariate effects (Scheike et al. [13]). In addition, in the shunt thrombosis
study, physicians are most interested in factors affecting the cumulative risk of the
occurrence of the acute shunt thrombosis reflected in the gap time from the previous
thrombosis event to the next one that is of the acute type. We therefore extend the
binomial regression model in Scheike et al. [13] from the non-recurrent event analysis
to the recurrent event analysis based on gap time, and apply the extended method to
the shunt thrombosis data.

This paper is organized as follows.After introducing themotivation and background
of this work, in Sect. 2 we describe the data and the model considered. The estimation
procedure is presented in detail in Sect. 3. Section 4 reports results from a series of
simulations under various scenarios. The application of the proposed method to the
shunt thrombosis data motivating the current work is provided in Sect. 5. Section 6
contains some concluding remarks.

2 Data and Model

Suppose there are K types of competing risk events under consideration. Without loss
of generality, set K = 2, which is the case in the shunt thrombosis study. Let Y j be the
time to the j th occurrence of the event measured from enrollment, and � j ∈ {1, 2}
denote the type of the j th event. In the shunt thrombosis data, � j = 1 or 2 means that
the patient suffers from the acute or non-acute thrombosis at the j th event, respectively.
Denote byZ a p-dimensional time-independent covariate vector with the first element
being 1. LetC be the time between enrollment and the censoring event due to drop-out
or the end of study. We assume that C is completely observable and is independent
of Y j ’s and Z. Let Ỹ j = Y j ∧ C and �̃ j = � j I (Y j < C) for 1 ≤ j ≤ M , where
M satisfies YM−1 < C < YM . Consequently, a total of M − 1 events are observed
exactly over the study period. For j ≥ M , set �̃ j = 0.
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Let Y0 = 0, Tj = Y j − Y j−1 denote the gap time between the ( j − 1)th and
j th events for j ≥ 1. Owing to the existence of the censoring event, Tj may not be
observable.What are observable for the gap times are T̃ j = Ỹ j − Ỹ j−1 for 1 ≤ j ≤ M .

For k = 1, 2, let N (k)
j (t) = I (Tj ≤ t,� j = k) be the underlying counting process

for the j th event of type k; here and in the sequel, unless otherwise stated, the time
index t is defined in the gap time scale, namely t is reset to 0 at the occurrence of each
of the events.

Consider the cumulative incidence function (CIF), also termed the subdistribution
of the gap time Tj for type-k competing risk event (k ∈ {1, 2}):

F (k)
j (t) = E(N (k)

j (t)) = Pr(Tj ≤ t,� j = k).

Suppose that the conditional CIF of the gap time Tj given Z follows a transformation
model:

F (k)
j (t |Z) = g(k)

{
Z′β(k)

j (t)
}
, (1)

where g(k)(·) is a known monotone link function, β(k)
j (t) is the vector of time-varying

effects of Z on the cumulative incidence function of Tj at time t , and a prime denotes

transposition. Although g(k){Z′β(k)
j (t)} is required to be nondecreasing in t by defi-

nition, β(k)
j (t) is not restricted to be nondecreasing in model (1). Note that in (1) we

have made the simplification that the link function is the same for each recurrence of
competing risk k. Although the proposed procedure will be described under such a
simplified setting, its extension to the general setting where the link function can vary
with j is obvious.

The model (1) is a generalization of the model in Scheike et al. [13] from non-
recurrent event analysis to recurrent event analysis under competing risks. Note that
the CIF F (k)

j (·) can be viewed as a subdistribution function for the improper random
variable T ∗

j = Tj × I (� j = k) + ∞ × I (� j 	= k). In our analysis of the shunt
thrombosis data, we adopt model (1) for directly modeling the CIF conditional on the
covariates of interest, and propose an estimating equation-based approach for inference
on model (1), as detailed in the next section.

Here we introduce several special cases for model (1). If g(k)(x) = 1 −
exp(−x), then F (k)

j (t |Z) = 1 − exp{−Z′β(k)
j (t)}, implying an additive cumula-

tive subdistribution hazard model, namely − log{1 − F (k)
j (t |Z)} = Z′β(k)

j (t). If

g(k)(x) = 1 − exp{− exp(x)}, then we have a multiplicative cumulative subdistri-
bution hazard model, namely − log{1 − F (k)

j (t |Z)} = exp{Z′β(k)
j (t)}. If g(k)(x) =

exp(x)/{1 + exp(x)}, (1) leads to proportional subdistribution odds model given as

log

{
F (k)
j (t |Z)

1−F (k)
j (t |Z)

}
= Z′β(k)

j (t).

The observed data can be written as (Ỹi j , �̃i j ,Zi ,Ci , Mi ; j = 1, . . . , Mi , i =
1, . . . , n), which are n independent and identically distributed replicates of (Ỹ j , �̃ j ,

Z,C, M; j = 1, . . . , M). The corresponding gap times are defined as T̃i j = Ỹi j −
Ỹi( j−1).
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3 Parameter Estimation and Model Assessment

In this section, we apply the inverse probability of censoring weighting (IPCW) tech-
nique to establish estimating equations for model (1). For some k 	= 0, define the
counting process Ñ (k)

i j (t) = I (T̃i j ≤ t, �̃i j = k) in terms of the observed gap times.

Observe that for k 	= 0, Ñ (k)
i j (t) = I (Ti j ≤ t,�i j = k,Ci > Yi j ) = N (k)

i j (t)I (Ci >

Yi j ). Let G(s) = Pr(C > s) be the survival function of the censoring time C with the
calender time used as the time index. By applying double expectation, we have for
k 	= 0,

E

{
Ñ (k)

j (t)

G(Ỹ j )

∣∣∣∣Z
}

= E

[
E

{
N (k)

j (t)I (C > Y j )

G(Ỹ j )

∣∣∣∣Y j ,Z

} ∣∣∣∣Z
]

= E

[
E

{
N (k)

j (t)I (C > Y j )

G(Y j )

∣∣∣∣Y j ,Z

} ∣∣∣∣Z
]

= F (k)
j (t) = g(k)

{
Z′β(k)

j (t)
}
,

motivating us to construct the estimating equation of the form:

n∑
i=1

Zi

[
Ñ (k)
i j (t)

Ĝ(Ỹi j )
− g(k)

{
Z′
iβ

(k)
j (t)

}]
= 0, (2)

where Ĝ(s) is the empirical estimate of the survival function G(s) of the censoring
time C based on the data (Ci ; i = 1, . . . , n) (recall that C is always observable in our
setting). For obtaining the estimate β̂

(k)
j (t), it suffices to solve (2) only at the observed

gap times T̃i j with �̃i j = k for i = 1, . . . , n.
Note that the estimating equation (2) is based on the assumption that the censoring

distribution G is independent of the covariates. When G does depend on covariates,
it may be estimated by some regression model or the empirical estimates stratified on
discretized covariate values.

Let β̂
(k)
j (t) be the solution of β

(k)
j (t) to (2). Large sample theory of β̂

(k)
j (t)

can be obtained analogously to that provided in Scheike et al. [13]. In particular,
n1/2{β̂(k)

j (t)−β
(k)
j (t)} converges to a zero-meanGaussian process inB = (l∞[a, τ ])p,

where l∞[a, τ ] is the set of uniformly bounded functions on [a, τ ] with g(k)(a) and
G(τ ) bounded above from 0 for almost every covariate value. The asymptotic variance
matrix of n1/2{β̂(k)

j (t) − β
(k)
j (t)} can be estimated by

n
(
Ĥ (k)

j (t)
)−1

{
n∑

i=1

U (k)
i j (t)U (k)′

i j (t)

}(
Ĥ (k)

j (t)
)−1
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evaluated at the estimated parameters, where

Ĥ (k)
j (t) = ∂

∂β
(k)
j (t)

n∑
i=1

Zi

[
Ñ (k)
i j (t)

Ĝ(Ỹi j )
− g(k)

{
Z′
iβ

(k)
j (t)

}]

= −
n∑

i=1

ZiZ′
i ġ

(k)
{
Z′
iβ

(k)
j (t)

}

with ġ(k)(x) = dg(k)(x)
dx , and

U (k)
i j (t) = Zi

[
Ñ (k)
i j (t)

Ĝ(Ỹi j )
− g(k)

{
Z′
iβ

(k)
j (t)

}]
− 1

n
U (k)

∗ j (t)hi (Ỹi j )

with

U (k)
∗ j (t) =

n∑
i=1

Zi
Ñ (k)
i j (t)

Ĝ2(Ỹi j )
, hi (y) = I (Ci ≥ y) −

n∑
�=1

I (C� ≥ y)/n.

Details of the proof are relegated to the Supplementary Material.
Our proposal, like the original binomial modeling approach, estimates the cumu-

lative incidence regression model at each event (gap) time. In the terminology of
recurrent event data analysis, the modeling framework we adopt belongs to the so-
called marginal model, which aims at assessing factors influencing each occurrence
of the event of interest, without reference to any other occurrences of all types of the
events. When the inference related to multiple gap times is to be made, for example,
when a confidence interval is to be set for β

(k)
j1

(t1) − β
(k)
j2

(t2), the difference between
coefficient vectors at gap times t1 and t2 respectively for the j1th and j2th events, one
can simply apply the robust sandwich-type variance estimator of β̂

(k)
j1

(t1) − β̂
(k)
j2

(t2)
given as

(
Ĥ (k)

j1
(t1)

)−1
{

n∑
i=1

Ui j1(t1)U
′
i j2(t2)

}(
Ĥ (k)

j2
(t2)

)−1

to account for the dependence between the gap times, as in the popular generalized esti-
mating equation (GEE)-based procedure for general correlated data and multivariate
failure time data (Wei et al. [18]).

To assess the adequacy of a specified model g(k){Z′β(k)
j (t)} for the CIF F (k)

j (t |Z)

of the j th event with type k, let T j be the set of observed time points where the j th
event takes place, and consider a model assessment criterion based on the inverse
probability weighting Brier score given by

123



Stat Biosci (2017) 9:339–356 345

1

n

∑
t∈T j

n∑
i=1

[
Ñ (k)
i j (t)

Ĝ(Ỹi j )
− g(k)

{
Z′
iβ

(k)
j (t)

}]2

which is equivalent to the average of the squared errors Ñ (k)
i j (t)/Ĝ(Ỹi j ) −

g(k){Z′
iβ

(k)
j (t)} over all observed times for the j th event of type k, to compare different

subdistribution models such as the proportional subdistribution hazards model or the
proportional odds model. The use of this type of model assessment measure is based
on the fact that the Brier score is a well-known measure for accuracy of probability
forecasts (see for exampleWen and Chen [19]), which is suitable for our framework of
cumulative incidence function analysis. The inverse probability weighting is applied
when performing such model assessment to account for censoring.

4 Simulation Study

Simulations are performed to illustrate the finite sample performances of the proposed
analysis under several scenarios, where there are two types of competing risk events
and each of them can recur. To be focused, we consider only estimation results for
the regression parameters β̂

(1)
j (t), i.e., the coefficient function corresponding to type-1

competing risk. Both the multiplicative cumulative subdistribution hazard model, i.e.,
g(1)(x) = 1 − exp{− exp(x)}, and the proportional subdistribution odds model, i.e.,
g(1)(x) = exp(x)/{1 + exp(x)}, are considered.

A three-dimensional covariate vector Z is considered, where the first element is 1,
the second element is generated from a normal distribution with mean 1 and variance
0.49 and is truncated to have a range of (0, 2), and the third element is a bernoulli
distribution with success probability 0.5. The corresponding regression parameters for
the first occurrence of the event, β(1)

1 (t) = (β
(1)
10 (t), β(1)

11 (t), β(1)
12 (t))′, is set to:

β
(1)
10 (t) = h(γ · {1 − exp(−1.25t)}),

β
(1)
11 (t) = 0.5(1 − exp(−t)),

β
(1)
12 (t) = 0,

where h(·) is the inverse function of g(1)(·), and γ = 0.5, 0.6 or 0.8 is the proportion
of type-1 competing risk at t = ∞. The coefficient function β

(1)
2 (t) for the second

occurrence of the type-1 competing risk is set to

β
(1)
20 (t) = h(γ · {1 − exp(−1.25t)}),

β
(1)
21 (t) =

⎧⎪⎨
⎪⎩

0, when γ = 0.8,
exp(3t)−1

2(1+exp(3t)) , when γ = 0.6,

0.5t
t+1 , when γ = 0.5,

β
(1)
22 (t) = 0.
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In all the settings considered, we examine the bias, simulation standard deviation
(SD), the mean of the estimated standard errors (SE), and the empirical coverage prob-
abilities (CP) of the point-wise Wald-type 95% confidence interval for the regression
coefficient functions at four specified time points, which correspond to time points at
which the survival function for the second gap time Pr(T2 > t |Z = (1, 1, 0.5)′) =
0.8, 0.6, 0.4, and 0.2. An independent censoring time is generated from a uniform
distribution in (0, A), where A is chosen such that the censoring rates for (T1, T2)
from the type-1 competing risk is about (15, 30 %) or (20, 40 %).

Following Cheng and Fine [3], for the type-1 competing risk, the event times are
assumed to have a positive correlation, and are conditionally independent given the
frailty variable W which is generated from a gamma distribution with both the mean
and variance being 2. Specifically, given the specified type-1 CIF model of F (1)

j (t |Z),
the simulated covariate value z and the frailty variable value w, the conditional type-1
CIF given W = w is

F (1)
j (t |w, z) = Pr(Tj ≤ t,� j = 1|Z = z,W = w) = exp

{
− w · q

{
F (1)
j (t |z)

}}

with q(·) the inverse Laplace transformation of W . The event times from the type-2
competing risk are assumed to be marginally independent. Let c the simulated value
of the censoring time. The gap times (T1, T2) for the first two events of a subject are
then generated by the following procedure.

Step 1: For j = 1, 2, a value u is generated from a uniform distribution in (0,1).When
u < F (1)

j (∞|w, z),� j = 1 andTj is generated from F (1)
j (t |w, z).Otherwise,

� j = 2 and Tj should be generated from the conditional distribution Pr(Tj ≤
t |Z = z,� j = 2), instead of CIF. Set Y j = ∑ j

l=1 Tl .
Step 2: If Y j ≤ c, set Ỹ j = Y j , T̃ j = Tj and �̃ j = � j . Otherwise, set M = j ,

ỸM = c, T̃M = c − YM−1, and �̃M = 0.

Under the scenario mentioned above and the CIF of the type-1 competing risk is
given by a multiplicative cumulative subdistribution hazard model for the first two
events, Table 1 shows the results for F (1)

j0 (t) = F (1)
j (t |Z = (1, 0, 0)′) = g(1)(β

(1)
j0 (t)),

and for each elements of β
(1)
j (t) at four given time points, j = 1, 2. To save space,

we only report results with a sample size of 200 and censoring rates (15, 30 %) in the
first two events; results for smaller sample size n = 100 and higher censoring rates
(20, 40%) in the first two events have similar performance patterns and are displayed in
the SupplementaryMaterial.We can see that in both of the two scenarios, the proposed
estimates are nearly unbiased, and the simulation standard deviations are close to the
means of the estimated standard errors. The resulting coverage probabilities achieve
the nominal level 0.95 well.

Similarly, the proportional subdistribution odds model is applied for g(1)(·) in (1).
We report in Table 2 the results and see the nice performances again for the proposed
estimates.
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5 Data Analysis

We apply the proposed analysis based on the cumulative incidence probability model
(1) to the shunt thrombosis data, which was collected by a large hospital in northern
Taiwan. The follow-up time is from November, 1997 to December, 2009, and 2886
dialysis patients with kidney diseases participated in this clinical study. As pointed out
in Introduction, two types of shunt thrombosis, designated as the “acute” and “non-
acute” thrombosis, may recur during the hemodialysis treatment. In the following
data analysis, we are interested in the “acute” type of thrombosis and its cumulative
incidence probabilities in the first two events are analyzed via model (1) with j = 1, 2.
Eight covariates besides the intercept are included in model (1) whose effects on the
j th gap time to the occurrence of acute shunt thrombosis are to be assessed; see Table
3 for definitions, counts and means (standard deviations) for these covariates across
the first five events stratified by types of thrombosis. For each individual, Y0 is set to
be the calendar time of enrollment as of November 1st, 1997, and C is set to be the
last date of 2009. After deleting records with missing information, the data set used
in our analysis consists of 2779 subjects.

We fit to the shunt thrombosis data the multiplicative cumulative subdistribution
hazard model, i.e., g(1)(x) = 1 − exp{− exp(x)} in model (1), for the incidence of
acute shunt thrombosis. The estimated coefficient functions for the first event are dis-
played in Fig. 2. We see that, after accounting for the point-wise confidence interval,
the coefficient function of the covariate “hypertension” is essentially positive over the
range of the duration time of the first event except at initial and later time. This result
suggests that dialysis patients with hypertension are associated with higher incidence
of acute shunt thrombosis relative to patients without hypertension. In addition, the
estimated regression coefficient function of the covariate “shunt type” is also signifi-
cantly above zero over the gap time to the first event except for an initial small time
interval. This coincides with the prior knowledge that acute shunt thrombosis is more
likely to arise from a shunt of the graft type than a shunt of the natural type. The other
covariates, however, do not show significant effects on the incidence of the acute shunt
thrombosis over the whole range of the gap time to the first event.

Similarly, Fig. 3 shows the estimated coefficient functions corresponding to the
second event. Among the covariates considered, the “shunt type” is the only covariate
to have statistically significant time-varying effects on the incidence of acute shunt
thrombosis over the whole range of the gap time to the second event except at the
initial time. Hypertension, although exhibits significant effects in the gap time to the
first event, no longer affects the incidence of acute thrombosis in the gap time to the
second event. In further analysis up to the fifth event (results not shown), we find that
the shunt type continues to be a significant covariate for acute thrombosis in the first
five events, while hypertension is a significant covariate for acute thrombosis only in
the first event and its effects on incidence of acute thrombosis diminish in the later
events.

We also fit to the data a proportional subdistribution odds model, i.e., g(1)(x) =
exp(x)/{1 + exp(x)} in model (1), for the incidence of acute shunt thrombosis in the
first j events ( j = 1, . . . , 5). The results are qualitatively equivalent to those from the
multiplicative cumulative subdistribution hazard model described above, and hence
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Fig. 2 The estimated regression coefficient functions (and point-wise 95 % confidence intervals) corre-
sponding to acute thrombosis under the multiplicative cumulative subdistribution hazard model at the first
event

are omitted here. Additionally, we perform the model assessment based on the inverse
probability weighting Brier score, which gives (22.78586, 17.33794) in the first two
events for the multiplicative cumulative subdistribution hazard model, respectively.
On the other hand, the proportional subdistribution odds model gives slightly large
scores (22.78716, 17.33848) in the first two events. So the multiplicative cumulative
subdistribution hazard model is a better model in the shunt thrombosis data according
to the Brier-based criterion.
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Fig. 3 The estimated regression coefficient functions (and point-wise 95 % confidence intervals) cor-
responding to acute thrombosis under the multiplicative cumulative subdistribution hazard model at the
second event

6 Discussion

In this paper we report an analysis of gap times between repeated occurrences of
shunt thrombosis in dialysis patients, where the shunt thrombosis is classified into two
types of main interest. Instead of treating the two-type shunt thrombosis as a bivariate
recurrent event, we view the “acute” and “non-acute” thrombosis that may occur on a
patient at a time point as two competing risk events. This option allows us to adapt the
tools for regression analysis of competing risks recently developed to study the effects
of certain covariates on the gap time between two shunt thrombosis occurrences. In
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particular, we focus on direct regression analysis of the subdistribution or cumulative
incidence probability function so that we are able to identify factors influencing the
occurrence of a specific type of shunt thrombosis, and to allow for the flexibility of
time-varying effects of the factors.

Our analysis of the shunt thrombosis data reveals that, dialysis patients with the
graft type of shunt tend to have faster occurrence of acute shunt thrombosis. The
subdistribution regression model renders it convenient to perform prediction of the
occurrence of acute shunt thrombosis. Hypertension also leads to increased incidence
probabilities of acute shunt thrombosis, but only for the initial thrombosis event and
not for subsequent recurrences of thrombosis.

The binomial regression model we employ to model the cumulative incidence of
recurrent events is semiparametric in that the functional form of the covariate effect is
left fully unspecified. The resulting semiparametric analysis is thus adaptive to rather
complicated data structures. Fitting such a model to the recurrent event data, we can
examine time-varying covariate effects on each of the recurrent events.

One limitation of the proposed method is that it cannot accommodate covariates
whose values vary over different events. The extension for such time-dependent covari-
ates seems non-trivial and deserves substantial further research.
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