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SUMMARY

In a family-based genetic study such as the Framingham Heart Study (FHS), longitudinal trait measure-
ments are recorded on subjects collected from families. Observations on subjects from the same family
are correlated due to shared genetic composition or environmental factors such as diet. The data have
a 3-level structure with measurements nested in subjects and subjects nested in families. We propose a
semiparametric variance components model to describe phenotype observed at a time point as the sum of
a nonparametric population mean function, a nonparametric random quantitative trait locus (QTL) effect,
a shared environmental effect, a residual random polygenic effect and measurement error. One feature of
the model is that we do not assume a parametric functional form of the age-dependent QTL effect, and
we use penalized spline-based method to fit the model. We obtain nonparametric estimation of the QTL
heritability defined as the ratio of the QTL variance to the total phenotypic variance. We use simulation
studies to investigate performance of the proposed methods and apply these methods to the FHS systolic
blood pressure data to estimate age-specific QTL effect at 62cM on chromosome 17.
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1. MOTIVATION

Multilevel or multivariate longitudinal data are commonly encountered in biological research. For
example, in a family-based genetic study such as the Framingham Heart Study (FHS, Dawber and others,
1951), longitudinal trait measurements are recorded on subjects collected from families. Observations
on subjects from the same family are correlated due to sharing genetic factors or environmental factors
such as diet. The data structure has 3 levels with measurements nested in subjects and subjects nested in
families. Some other examples of multivariate longitudinal data include clinical trials where multiple cor-
related variables such as messenger RNA expression levels and cluster of differentiation 4 (CD4) counts
on a subject are collected over time (Lederman and others, 1998) or multiple informant data where in-
formation measuring the same underlying trait are collected from different sources (e.g. parents, teachers,
and clinicians) over time (O’Brien and Fitzmaurice 2005). A common feature of these data is that there
is an additional level of correlation to be accounted for: In the genetic studies, subjects within a family
are correlated, and in multiple informant studies, different sources of information collected on the same
subject are correlated.
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For univariate longitudinal data with independent subjects, there is a large body of literature on
estimating population mean function or varying coefficients nonparametrically (see, e.g. Ruppert
and others, 2003; Wu and Zhang, 2006). Recently, there is some attention on semiparametric modeling
of multivariate longitudinal or functional data. Brumback and Rice (1998) used smoothing spline-based
methods to analyze nested samples of functional data. Guo (2002) proposed functional mixed-effects
model with functional random effects fitted by a Kalman filtering. Zhou and others (2008) modeled
paired functional data by principal components using a reduced rank model. Baladandayuthapani and
others (2008) and Staicu and others (2010) developed functional mixed-effects model-based Bayesian
approaches for correlated multilevel spatial data. Di and others (2009) developed functional multivariate
analysis of variance, which used a few functional principal components to reduce dimensionality. Aston
and others (2010) proposed functional principal components analysis for linguistic pitch data. Greven and
others (2010) proposed a computationally efficient functional principal components analysis applicable to
functional data observed at multiple time points. However, all these approaches are not applicable to fam-
ily studies where correlation of subjects in a family may depend on relationship between family members
and genotypes at genetic markers.

In a family-based genetic study where longitudinal phenotype measurements are collected on sub-
jects within families, usual genetic analyses proceed to analyze phenotype at each time point separately
(Atwood and others, 2002) or adjust away the time trend and perform genetic analysis on the residuals
(Levy and others, 2000). These approaches ignore potential gene–age interaction, which may contribute
to inconsistencies in replications of genetic findings and loss of power (Lasky-Su and others, 2008; Shi
and Rao, 2008).

One approach to analyze genetic linkage studies with longitudinal phenotypes is DeAndrade
and others (2002), which incorporated repeated measures into a variance components model but treated
age as nuisance parameters and accounted for the within-subject correlation across time points. However,
this approach does not allow for direct modeling of age-specific genetic effect. A few existing work that
do model time-specific genetic effect assumes a parametric function of the unknown effect over time
(e.g. Shi and Rao, 2008; Zhang and Zhong, 2006). In some situations, a suitable parametric function is
suggested by the biological underpinning of the development of a trait over time and offers meaningful
interpretation of the biological structure. However, in many other situations, there may not be sufficient
biological knowledge to warrant such a parametric form. Therefore, nonparametric methods on estimat-
ing quantitative trait locus (QTL) effect are useful. Approaches towards nonparametric modeling include
Yang and others (2003), which averaged observations in several predivided intervals and used a regres-
sion spline approach. It is known that regression spline-based methods may be sensitive to number and
location of knots. Zhao and Wu (2008) proposed a wavelet-based nonparametric approach to map QTL
through a mixture model in structured population, which may not be easy to extend to general pedigrees.

In this work, we propose semiparametric variance components models for multilevel or multivariate
longitudinal data. The proposed methods are suitable but not limited to longitudinal genetic linkage stud-
ies. In a linkage study, the QTL heritability is defined as the ratio of the genetic variance attributable
to a QTL to the total phenotypic variance. To obtain nonparametric estimation of age-specific heritabil-
ity, we treat the subject-specific processes as random nonparametric curves and estimate their covariance
function nonparametrically. We use a kronecker product to specify the covariance function of a QTL ef-
fect to reflect genetic information between subjects in a family, while leaving the time component free
of parametric assumptions. When there is no age-varying effect, the model reduces to a regular variance
components model proposed for linkage data (Amos, 1994). We consider the population baseline function
as an unspecified nonparametric function and use penalized splines (P-splines, O’Sullivan, 1986; Eilers
and Marx, 1996) to estimate the nonparametric components of the model. Finally, we conduct simulation
studies to investigate properties of the proposed methods and apply them to analyze the FHS longitudinal
systolic blood pressure (SBP) data.
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2. METHODS

2.1 Traditional variance components model for univariate QTL data

Genetic linkage analyses examine whether sharing more genetic material Identical by descent (IBD) at
a locus leads to more similar phenotype values between 2 related individuals to infer whether the locus
is near a gene affecting the phenotype. A traditional variance components model for a quantitative trait
measured on subject j in family i is (Amos, 1994)

yi j = μ + ηi j + δi j + εi j , i = 1, . . . , n, j = 1, . . . , ni , (2.1)

where μ is the population mean of the trait, ηi j is the major gene QTL effect, δi j is the additive polygenic
effect, and εi j is the normal residual random measurement error with mean 0 and variance σ 2

ε . Information
on the random QTL effect is modeled through the covariance between 2 related subjects in a pedigree. To
be specific,

Cov(ηi j , ηi j ′) = π i
j j ′σ

2
η , for j, j ′ = 1, . . . , ni , and Cov(ηi j , ηi ′ j ′) = 0, for i �= i ′,

where π i
j j ′ denotes the proportion of alleles shared IBD between subjects j and j ′ in family i at a marker

locus. The IBD-sharing matrix �i = {(π i
j j ′), j, j ′ = 1, . . . , ni } is computed based on marker genotypes

and the recombination fraction between the marker and the putative QTL without using the phenotype
data (Amos, 1994). In subsequent analyses, this matrix �i is regarded as can be estimated externally from
marker genotypes before fitting a variance components model. The unknown variance of the QTL effect
to be estimated from model (2.1) is σ 2

η .
The random residual polygenic effect δi j reflects residual genetic effect from other unlinked loci aside

from the QTL. It is also characterized by its covariance between 2 subjects in a family, which is related
to their relationship. To be specific, the covariance matrix of δi = (δi1, . . . , δini )

T is specified through
(Khoury and others, 1993)

Cov(δi j , δi j ′) = 2K i
j j ′σ

2
δ , for j, j ′ = 1, . . . , ni , and Cov(δi j , δi ′ j ′) = 0, for i �= i ′, (2.2)

where K i
j j ′ is the known kinship coefficient between 2 relatives in a family. The kinship coefficient is

defined as the probability of randomly drawing an allele from subject j , that is, IBD to an allele at
the same locus randomly drawn from subject j ′ (Khoury and others, 1993). For example, the kinship
coefficient is 1/4 for a full sibling pair and 1/8 for a half sibling pair. These coefficients are known given
the relationship between relatives in a family. The unknown polygenic variance to be estimated is σ 2

δ .
Since siblings have higher kinship coefficient than half siblings or cousins, covariance specification (2.2)
suggests that the shared polygenic variance between a sibling pair is higher than that of a half sibling or
cousin pair.

Parameters in model (2.1) are easily estimated through maximum likelihood. The QTL heritability is
defined as the ratio of QTL variance to the total variance, that is, h2

η = σ 2
η /(σ 2

η + σ 2
δ + σ 2

ε ). Similarly, the

residual polygenic heritability is defined as h2
δ = σ 2

δ /(σ 2
η + σ 2

δ + σ 2
ε ).

The traditional variance components model neither allows for age-dependent QTL effect nor accom-
modates longitudinal phenotypes. Several 2-step approaches have been proposed (Strauch and others,
2003) for longitudinal genetic linkage studies. In the first step, repeated measurements on the same sub-
ject are aggregated into several summary statistics such as subjects-specific intercepts and subject-specific
slopes. In the second step, these summary statistics are used as outcomes in a conventional variance
components model such as (2.1) to estimate genetic parameters including the QTL heritability. Such
2-step methods are less efficient than a joint estimation of longitudinal trend parameters and genetic
parameters simultaneously in a single model. In addition, it is not always clear which summary statistic
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should be used, and these methods are subject to multiple comparisons when testing for QTL effect
because one needs to test QTL effect on all summary statistics such as the intercept and the slope.

2.2 A flexible semiparametric variance components model for longitudinal QTL data

We now describe a semiparametric variance components model that can accommodate age-dependent
QTL effect and repeated phenotype measurements. We start by introducing necessary notations to accom-
modate longitudinal phenotype. Let i index families, let j index subjects within a family, and let k index
observations within a subject. Let ni denote number of subjects in family i , let si j denote total number
of measurements on the subject j in family i , and let Ni = ∑

j si j denote number of observations from
all subjects in family i . A semiparametric variance components model for longitudinal phenotype in a
genetic study can be expressed as

yi jk = μ(ti jk) + xT
i jkβ + wT

i jkαi + ηi j (ti jk) + uT
i jkδi j + εi jk, (2.3)

where μ(ti jk) is a population baseline function, xi jk is a vector of fixed effects for subject (i, j) such as
gender and body mass index, αi ∼ N (0, Dα) is a vector of random family-specific shared environmental
effects such as diet (or common environmental effects, Khoury and others, 1993), wi jk is a time-dependent
design vector for αi to accommodate potential age-varying common environmental effects, ηi j (ti jk) is a
random time-varying major QTL effect, δi j is a random residual polygenic effect, ui jk is a time-dependent
design vector for δi j to accommodate potential age-varying polygenic effect, and εi jk ∼ N (0, σ 2

ε ) is a
residual measurement error. We assume αi , δi j , ηi j (ti jk), and εi jk are independent.

The model (2.3) has 4 major components: a nonparametric baseline function μ(t), parametric fixed
effects β, parametric random effects αi and δi j , and nonparametric random effects ηi j (t). Since our main
interest lies in the QTL effect, to protect against model misspecification, it is modeled without imposing
parametric assumptions on its functional form. For parsimony, the shared familial effect and residual
polygenic effect are modeled parametrically through a low-dimensional design vector. For example, for
a linear shared environmental effect, the design vector wi jk = (1, ti jk)

T and its time-dependent variance

is σ 2
α (ti jk) = wT

i jk Dαwi jk = d11
α + 2d12

α ti jk + d22
α t2

i jk , where dlm
α is the (l, m)th component of Dα .

Similarly, for a linear residual polygenic effect, the design vector ui jk = (1, ti jk)
T and its variance is

σ 2
δ (ti jk) = uT

i jk Dδui jk = d11
δ + 2d12

δ ti jk + d22
δ t2

i jk .
Using penalized splines, we model the QTL effect ηi j (t) nonparametrically. Express ηi j (t) in terms

of linear combinations of a spline basis with random coefficients as

ηi j (t) = 
T (t)ηi j ,

where 
(t) is a q-dimensional vector of basis functions such as truncated polynomials and ηi j is the cor-
responding vector of random subject-specific coefficients. Extending the traditional variance components
models for linkage studies (Amos, 1994) and random regression model for animal genetic studies (Meyer,
1998), the covariance matrix for ηi j is specified as

Cov(η
(l)
i j , η

(l ′)
i j ′ ) = π i

j j ′ω
2
ll ′ , for j, j ′ = 1, . . . , ni , l, l ′ = 1, . . . , q,

and Cov(η
(l)
i j , η

(l ′)
i ′ j ′) = 0, for i �= i ′, (2.4)

where η
(l)
i j is the lth component of the vector ηi j and π i

j j ′ is the ( j, j ′)th element in the IBD-sharing matrix

�i introduced in Section 2.1. The matrix � = {(ω2
ll ′), l, l ′ = 1, . . . , q} is the unknown covariance matrix

of the QTL effect to be estimated from model (2.3).
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The specification (2.4) implies that

i ≡ Cov(ηi , η
T
i ) = �i ⊗ �, (2.5)

where ηi = (ηT
i1, . . . , η

T
ini

)T . Therefore, one essentially models the covariance function of the QTL
effect over time as a kronecker product of 2 sources: the subject-level source and the time-level source.
The subject-level source is predicted by the IBD-sharing status at a marker locus based on the observed
marker genotypes, that is, �i , while the time-level source involves the random basis coefficients and the
unstructured QTL covariance matrix �. The QTL covariance between 2 subjects in a family is propor-
tional to their IBD-sharing status. Such specification allows incorporation of genetic information as well
as minimal assumptions on the functional form of the QTL variance as a function of time.

Note that by (2.5), we have Cov(ηi j (t), ηi j ′(t)) = π i
j j ′
(t)T �
(t), which implies that at the same

time point, the covariance of the QTL effect between subjects sharing more allele IBD at the locus is
higher than the covariance between subjects sharing less allele IBD. In addition, if the covariance func-
tion does not change with time, that is, 
(t) = 1 and � = ω2, which is a scalar value, then (2.3) reduces
to the traditional variance components model (2.1) with a few more fixed and random effects. Using kro-
necker product to specify covariance matrix over time is also proposed for spatial–temporal data (Dutilleul
and Pinel-Alloul, 1996) and multiple informant data (O’Brien and Fitzmaurice, 2005). It is well known
that accurate modeling of covariance process improves estimation efficiency of the population baseline
function. We will also show this effect through simulation studies in Section 3.

The age-dependent random residual polygenic effect δi j is modeled parametrically through a
time-dependent design vector ui jk . Similar to the time-invariant case, the covariance of δi j is specified
as

Cov(δi j , δi j ′) = 2K i
j j ′ Dδ, for j, j ′ = 1, . . . , ni , and Cov(δ

(l)
i j , δ

(l ′)
i ′ j ′) = 0, for i �= i ′,

where K i
j j ′ is again the known kinship coefficient between 2 relatives in a family introduced in

Section 2.1. The unknown polygenic covariance to be estimated is Dδ .
Using a linear combination of spline basis with fixed coefficients, we express the population mean

function as μ(t) = 
T (t)μ. To facilitate further computation, we write (2.3) in a matrix form as

Yi = Xiβ + Biμ + Wiαi + Uiδi + Ziηi + εi ,

αi ∼ N (0, Dα), δi ∼ N (0, 2Ki ⊗ Dδ), ηi ∼ N (0,�i ⊗ �), εi ∼ N (0, Vi ), (2.6)

where Yi = (Yi jk)
T
j=1,...,ni ,k=1,...,si j

is a vector of phenotype measurements for all subjects in the family

i at all occasions, Xi is a design matrix for fixed effects, Bi = (
(ti jk))
T
j=1,...,ni ,k=1,...,si j

is a matrix
of basis functions of the population baseline, Ui and Wi are stacked matrices of ui jk and wi jk , Zi =
diag{ζ(ti1), . . . , ζ(tini )}, where ζ(ti j ) = (
(ti j1), . . . ,
(ti jsi j ))

T , is a Ni × ni k block diagonal matrix
of basis functions for the QTL effect, Ki = (K i

j j ′) j, j ′=1,...,ni is the matrix of kinship coefficients for all

subjects in family i , and Vi = σ 2
ε INi . Since the covariance matrix for the QTL effect � is unstructured, the

number of parameters involved can be large. For example, with a q-dimensional basis, there are q(q+1)/2
distinct parameters involved in �.

From model (2.3), the age-specific QTL variance is

σ 2
η (t) = 
T (t)�
(t),

and the age-specific QTL heritability is

h2
η(t) = σ 2

η (t)

σ 2
T (t)

= 
T (t)�
(t)

σ 2
T (t)

, (2.7)
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where the total phenotypic variance is σ 2
T (t) = σ 2

α (t)+σ 2
δ (t)+σ 2

η (t)+σ 2
ε . To see flexibility in estimating

QTL variance offered by an unstructured covariance matrix �, consider an example using a linear trun-
cated polynomial basis with knots τk , that is, 
(t) = (1, t, (t − τ1)+, . . . , (t − τK )+)T . If � is restricted
as a diagonal matrix, that is, � = diag(ω2

0, . . . , ω
2
K+1), then

σ 2
η (t) = ω2

0 + ω2
1t2 + ω2

2(t − τ1)
2+ + . . . + ω2

K+1(t − τK )2+.

Therefore, the QTL variance is restricted to be nondecreasing, which may not be desirable. Nonetheless,
if � is completely unrestricted without a roughness penalty, the fitted subject-specific curves and QTL
variance may be highly nonsmooth.

2.3 Penalized spline estimation

Penalized spline-based methods express an arbitrary function as a linear combination of high-dimensional
basis functions and penalize some measure of roughness of the fitted curves to provide smooth estimation.
To be specific, given the variance components, we estimate the population baseline function by minimiz-
ing the penalized weighted least squares,∑

i

[
(Yi − X̃i μ̃)T Ṽ −1

i (Yi − X̃i μ̃) + log|Ṽi |
]

+ λ1μ̃
T �1μ̃,

where X̃i = (Xi , Bi ), μ̃ = (βT , μT )T , Ṽi = Wi DαW T
i + 2Ui Ki ⊗ DδU T

i + Zii Z T
i + Vi , to obtain

̂̃μ =
∑

i

(X̃ T
i Ṽ −1

i X̃i + λ1�1)
−1 X̃ T

i Ṽ −1
i Yi .

Here, λ1 is a smoothing parameter and �1 is a penalty matrix depending on the chosen basis for the mean
function. The smoothing parameter controls the amount of smoothing, where a large value encourages
fitting a polynomial curve and a small value encourages interpolation therefore a wiggly curve. For the
pth-order truncated polynomial basis with (p +1)th-order penalty, the penalty matrix is a diagonal matrix
with the first p + 1 diagonal elements zero and the remaining diagonal elements one. For B-spline basis
with dth-order penalty, the penalty matrix is a dth-order difference matrix as defined in Eilers and Marx
(1996).

To estimate the variance components parameters, we use the Expectation Maximization algorithm.
Regard random effects αi , δi , and ηi as missing data and consider the following penalized joint likelihood
(see, e.g. Wu and Zhang, 2006):∑

i

[
eT

i V −1
i ei + δT

i (2Ki ⊗ Dδ)
−1δi + ηT

i −1
i ηi + log|Ki ⊗ Dδ| + log|Vi | + log|i |

]

+λ2

∑
i

ηT
i �2ηi , (2.8)

where ei = (Yi − Xiβ − Biμ− Wiαi −Uiδi − Ziηi ), λ2 is a smoothing parameter for the subject-specific
QTL curves, and �2 is a penalty matrix related to the chosen basis. The smoothing parameter here controls
smoothness of the fitted subject-specific QTL curves and the covariance function. It is motivated by the
assumption that the random major gene QTL effects are realizations of a Gaussian process with a smooth
covariance function. Here, with a pth-order truncated polynomial basis and K knots, the penalty matrix
of the subject-specific curves is �2 = diag(1ni ) ⊗ diag(0p+1, 1K ).
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We describe details of the EM algorithm and selection of smoothing parameters in the Supplementary
Appendix available at Biostatistics online. After convergence, the fitted age-specific QTL variance is

σ̂ 2
η (t) = 
T (t)�̂
(t),

and the age-specific QTL heritability is

ĥ2
η(t) = σ̂ 2

η (t)

σ̂ 2
T (t)

= 
T (t)�̂
(t)

σ̂ 2
T (t)

, (2.9)

where the total phenotypic variance is σ̂ 2
T (t) = σ̂ 2

α (t) + σ̂ 2
δ (t) + σ̂ 2

η (t) + σ̂ 2
ε .

3. SIMULATIONS

In this section, we present simulation studies to evaluate performance of the proposed methods. The family
structure, sample size, and observed assessment schedules were taken as the same as observed in the FHS
data and are described in the next section. We simulated trait data from model (2.3), where we used the
estimated population mean function from the FHS (see Figure 1) as μ(t). We used the observed genotypes
at the marker GATA25A04 on chromosome 17 to simulate the QTL effect. Specifically, ηi j was simulated
from a multivariate normal distribution with covariance

Cov(ηi jk, ηi j ′k′) = π i
j j ′ν(ti jk)ν(ti j ′k′),

where ν(t) = b1

√
exp[a2

1(t − a2)2] and π i
j j ′ is the proportion of alleles shared IBD between subjects

j and j ′ in family i computed from the observed genotypes at the marker GATA25A04 (chromosome
17) from the FHS subjects. We first examined 3 scenarios of the time-varying QTL effect with a1 =
(−0.08, −0.03, −0.02)T , a2 = (45, 45, 45)T , and b1 = (4, 1.5, 0.67)T , and the maximum QTL heritabil-
ity over time was 0.94, 0.64, and 0.31 in these examples. In the next 3 examples, we simulated a polygenic
effect with standard deviation (SD) 1.5. The parameters for ν(t) were a1 = (−0.08, −0.03, −0.02)T ,
a2 = (45, 45, 45)T , and b1 = (5, 2.2, 1)T . The maximum heritability over time was 0.88, 0.59, and 0.23,
respectively. We depict the true age-varying heritability for each of these examples in a Supplementary
Figure available at Biostatistics online. The residual variance was one in all examples.

To examine performance of the estimated mean function and the QTL variance function in each ex-
ample, we computed the average mean squared error (AMSE) of the estimated functions across the 200
simulations of the mean squared error defined as MSE( f ) = 1∑

i j si j

∑
i jk[ f̂ (ti jk) − f (ti jk)]2. Table 1

summarizes the AMSEs of the population baseline function and the QTL variance function. We can see
that while the AMSE for the mean function was small for all examples, it increased when the true QTL
variance increases due to larger total variance of the outcomes. We examined the pointwise coverage prob-
ability of the confidence interval (CI) of μ̂(t) at age 45 and found that the empirical coverage adheres to
the nominal level (Table 1). The AMSEs of the QTL variance also increased when the true QTL variance
is larger due to greater variability in the outcome. We compared the efficiency of estimating population
mean function using the proposed covariance structure with using a working independent covariance.
From Table 1, we see that the efficiency improvement in AMSE(μ̂(t)) ranges from 10% to 59% in the
6 examples.

Next, we present a sensitivity analysis to examine effect of violating normality assumption of the
residuals. We generated εi jk in (2.6) from a t distribution with degrees of freedom 20 and other simulation
parameters were the same as in scenario 3. The results show that the AMSE of the mean and QTL variance
function increased slightly with a misspecified residual distribution. The AMSE of the mean function
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Table 1. Properties of the estimated functions

Max Max AMSE AMSE Eff AMSE 50%
Ex. σ 2

η (t)† h2
η(t)‡ μ̂(t) μ̂ind (t)§ improv¶ σ̂ 2

η (t) coverage‖ σ̂ 2

1 16.00 0.94 0.021 0.051 59% 0.935 0.47 0.954
2 2.25 0.64 0.014 0.017 19% 0.036 0.46 0.929
3 0.45 0.31 0.008 0.009 10% 0.020 0.48 0.930
4 25.00 0.88 0.057 0.017 47% 2.548 0.45 0.989
5 2.84 0.59 0.037 0.055 32% 0.411 0.42 0.948
6 1.00 0.23 0.024 0.034 29% 0.304 0.51 0.930

†Maximum QTL variance over the range of t , that is, maxt σ 2
η (t).

‡Maximum QTL heritability over the range of t , that is, maxt h2
η(t).

§μ̂(t) estimated by assuming a working independent covariance matrix.
¶Efficiency improvement measured by [AMSE{μ̂ind (t)}-AMSE{μ̂(t)}]/AMSE{μ̂ind (t)}.
‖Coverage probability of 50% CI of μ̂(t) at age 45.

increased from 0.009 in example 3 to 0.011 and the AMSE of the QTL variance function increased from
0.020 to 0.029. When we generated the random residuals from a t distribution with 4 degrees of freedom,
the AMSE of the mean function increased to 0.017 and the AMSE of the QTL variance function increased
to 0.09, indicating some efficiency loss when the error distribution has a heavy tail.

4. ANALYSIS OF THE FHS DATA

We applied proposed methods to analyze the FHS SBP data. The FHS (Dawber and others, 1951) is an
ongoing prospective study of risk factors for cardiovascular disease (CVD), which started in 1948. In the
FHS, healthy subjects were recruited and followed over a long period of time. The objective of the FHS
is to identify common risk factors or characteristics that contribute to CVD in a large population-based
sample. High blood pressure is considered as a major risk factor for stroke and heart disease, and it affects
about one-third of the US adult population. SBP is a complex trait that may have complicated etiology.
Previous literature suggests a substantial genetic contribution to SBP (Levy and others, 2000).

In the late 1990s, genome-wide linkage studies were conducted in the FHS family samples.
Levy and others (2000) identified a locus on chromosome 17 (GATA25A04, 62cM) with a high logarithm
(base 10) of odds score. Here, we fit the model (2.3) to the longitudinal SBP data and estimate the age-
specific QTL effect at this locus. We computed the IBD-sharing matrix �i using SOLAR
(Almasy and Blangero, 1998) and the kinship coefficient matrix using R package “Kinship” (Atkinson
and Therneau, 2009).

We analyzed observations between age 30 and 60. There were 318 subjects from 105 families with
1559 observations. On average, there were 3.0 subjects in each family and 4.9 measurements on each
subject. The size of families ranges from 2 to 9. The age of the participants at the first visit ranges from 30
to 51 and the mean age for all subjects at all visits was 45.85 years. The mean observed SBP was 121.31
mm Hg. We show a scatter plot of SBP versus age for 100 randomly selected subjects in the left panel of
Figure 1.

Before fitting a semiparametric variance components model, we conducted several exploratory anal-
yses. First, we estimated the ratio of genetic variance to the total variance (heritability) by a polynomial
model in 3 types of relatives: (1) first-degree relatives with kinship coefficients 1/4 such as a parent–
offspring pair or a full sibling pair; (2) second-degree relatives with kinship coefficient 1/8 such as half
sibling pairs or aunt/uncle–niece/newphew pairs; and (3) other more distant relatives with kinship
coefficient 1/16 such as first cousins. As expected, from the upper left panel in Figure 2, we see that
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Fig. 1. Scatterplot of the SBP versus age for 100 randomly selected subjects in the FHS (left panel) and estimated
age-specific baseline SBP in the FHS (right panel).

the heritability in the first-degree relatives is highest followed by second-degree relatives and other rela-
tives. The average estimated heritability over time is 0.31, 0.27, and 0.07 in first-degree, second-degree,
and other relatives, respectively. Second, we compute a Pearson correlation of SBP between relative pairs
in the 3 groups of relatives. Figure 2 displays the scatter plot of age-adjusted SBP between relative pairs
in each group. The correlation was 0.19, 0.11, and 0.02 in first-degree, second-degree, and other relatives,
respectively. The correlation of adjusted SBP between second-degree relative pairs is about a half of that
in the first-degree pairs. From these exploratory analyses, we observe larger heritability and correlation in
closely related relatives comparing to more distant relatives, which is consistent with the model (2.6).

To fit a semiparametric variance components model, we used cubic truncated polynomial basis with
10 knots for both μ(t) and ηi (t). We present the population baseline function of SBP in the right panel
of Figure 1. The mean SBP increased from 123.10 mm Hg at age 30 to 133.25 mm Hg at age 60. We
assumed a linear shared environmental effect and polygenic effect. The SD of the residual measurement
error was estimated to be 8.76. We present the age-specific QTL variance at marker GATA25A04, and
its CI computed by bootstrap in the upper left panel of Figure 3. The QTL variance ranges from 41.1 to
259.8. It increases slowly from age 30 to 50 and after 50, the rate of increase picks up. We computed the
age-specific QTL heritability by (2.9) and present the estimates in the upper right panel of Figure 3. The
heritability was 0.13 (95% CI: 0.08–0.18) at age 30 and increased to 0.34 (95% CI: 0.24–0.44) at age
60. The difference of heritability at age 60 and 30 was 0.21 with a 95% CI of (0.12–0.31), suggesting a
significant increase from age 30 to 60. The long-term overall heritability of SBP was estimated to be 0.57
(95% CI: 0.53–0.61) in Levy and others (2000). There is no attempt to estimate age-specific heritability
at the marker GATA25A04 in the literature. Here, the average QTL heritability over time at this marker
was estimated to be 0.22 (95% CI: 0.18–0.27), which suggests potential genetic contribution to SBP at
other unlinked loci in addition to GATA25A04 since this marker does not fully explain the variance of the
genetic component.

We provide 2 views of the 3D surface plot of the correlation function of the QTL effect in 2 lower
panels in Figure 3. We also show a 2D graph of the correlation versus time lag at different ages in the sup-
plementary material available at Biostatistics online. The autocorrelation decreases when the lag between
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Fig. 2. Estimated ratio of genetic variance to total variance (heritability) in 3 groups of relatives (upper left) and
scatterplots of relative pairs in 3 groups of relatives (upper right, lower left, and lower right).

2 time points increases. It is seen from the 2D plot that depending on the starting age, the autocorre-
lation function decreases at different rate. Therefore, the QTL process does not have a simple structure
such as First order autoregressive model. This analysis illustrates the advantage of allowing a flexible
nonstructured covariance matrix � in (2.5).

Next, we demonstrate the benefit of using a mixed-effects model to predict individual phenotype
trajectories from different sources of information. We first used the data from all siblings to fit the model
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Fig. 3. Estimated age-specific QTL variance (upper left), age-specific heritability (upper right) at 62cM on chromo-
some 17 (marker GATA25A04) in the FHS, and 2 views of the 3D surface plot of the autocorrelation function of the
QTL effect at this marker (lower left and lower right).

and predict individual trajectories. We computed a root mean prediction error as
√∑

i jk(yi jk − ŷi jk)2/N ,

where ŷ j ik is the predicted phenotype for a subject and compared it with the root mean prediction er-
ror obtained using data on all cousins. The root mean prediction error was 7.69 using sibling data and
increased to 8.40 when using cousins, which indicated a slight gain in prediction accuracy using more
closely related relatives. We present an individual’s predicted trajectory obtained from different sources
of data in Figure 4: the trajectory predicted from siblings and cousins as well as the population mean
curve. It can be seen that the trajectory predicted from the siblings is closer to the observed values than
the one predicted from the cousins.

Although here we focused on estimating age-specific QTL effect at a locus, we also performed a
likelihood ratio test of the QTL effect, that is, H0 : � = 0 versus Ha : � > 0. The test statistic is
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Fig. 4. Predicted SBP from siblings and cousins.

T = 2 sup L Ha − 2 sup L H0 , where L H0 and L Ha are the log likelihood under the null and the alternative
hypothesis, respectively. Crainiceanu and Ruppert (2004) and Crainiceanu and others (2005) showed that
the distribution of the likelihood ratio statistic for penalized spline regression is nonstandard due to a
lack of independence under the null and suggested a simulation-based approach for a linear mixed-effects
model with one variance component. Here, we used a parametric bootstrap procedure to compute the
pvalue. We simulated the data under the null distribution by assuming � = 0 in model (2.3). To be
specific, we simulated the bth copy of the bootstrap sample under the null as

Y (b)
i jk = μ̂(ti jk) + wT

i jkα
(b)
i + uT

i jkδ
(b)
i j + ε

(b)
i jk,

where α
(b)
i ∼ N (0, D̂α), δ

(b)
i ∼ N (0, 2Ki ⊗ D̂δ), and ε

(b)
i jk ∼ N (0, σ̂ 2

ε ). The mean function and the

variance components such as D̂α and D̂δ were estimated from the more general model (2.3) allowing for a
QTL effect. We then computed the likelihood ratio statistic using the bootstrap samples and computed the
p value as the sample proportion of the bootstrap test statistics greater than the observed test statistic. We
simulated 200 bootstrap samples and the p value was less than 0.05, suggesting a significant QTL effect.

5. DISCUSSION

In this work, we propose flexible variance components models for genetic studies with longitudinal pheno-
types. The population mean function and QTL heritability are estimated nonparametrically. We incorpo-
rate genetic information by using IBD-sharing matrix at genetic markers and kinship coefficient matrix,
and we leave the age component of the QTL effect as an unrestricted function. The proposed methods
contribute to more flexible modeling of age-specific genetic effect using variance components models.
Although we present methods for longitudinal phenotypes, it is straightforward to apply these methods to
cross-sectional phenotypes.
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The computational speed of the proposed methods mainly depends on the size of families, number
of knots, and the convergence rate of the EM algorithm. The dimension of the family-specific covari-
ance matrix increases with the family size; therefore, the algorithm may be slow for large pedigrees. For
the FHS data analyzed here (family size ranges from 2 to 9 and a total sample size of 1559), the EM
algorithm usually converges in about 30 iterations. For large pedigrees, the sparse representation of a kin-
ship coefficient matrix in the “Kinship” package (Atkinson and Therneau, 2009) can be used to improve
computational efficiency. In addition, singular value decomposition may be used to compute inverse of
a large matrix and a combination of EM algorithm and Newton–Raphson iteration may further improve
computational efficiency.

Here, we treated the residual polygenic effect as a linear function of age, which implies that the resid-
ual genetic effect from other unlinked loci is linear. One can fit a nonparametric time-varying polygenic
effect by handling it similarly as the QTL effect. That is, to express the polygenic effect as a linear combi-
nation of basis functions with random coefficients (Wang, 2011). The covariance matrix of the coefficients
will be constructed by the kronecker product of a kinship coefficient matrix and an unknown polygenic
covariance. An adapted EM algorithm can be used for the estimation. However, a disadvantage of such an
approach is the increase in computational burden.

The proposed methods are illustrated using genetic linkage data. These approaches can also be applied
to estimate covariance function for other multilevel longitudinal or functional data such as spatial data and
multiple informant data where the covariance function is specified as a kronecker product of 2 sources.
It is also easy to extend model (2.3) to account for fixed effects with varying coefficients by penalized
splines (see e.g. Chen and Wang, 2011).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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