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In the quantum anomalous Hall effect, chiral edge modes are expected to conduct spin polarized
current without dissipation and thus hold great promise for future electronics and spintronics with
low energy consumption. However, spin polarization of chiral edge modes has never been established
in experiments. In this work, we theoretically study spin polarization of chiral edge modes in the
quantum anomalous Hall effect, based on both the effective model and more realistic tight-binding
model constructed from the first principles calculations. We find that spin polarization can be
manipulated by tuning either a local gate voltage or the Fermi energy. We also propose to extract
spin information of chiral edge modes by contacting the quantum anomalous Hall insulator to a
ferromagnetic (FM) lead. The establishment of spin polarization of chiral edge modes, as well as
the manipulation and detection in a fully electrical manner, will pave the way to the applications
of the quantum anomalous Hall effect in spintronics.

PACS numbers: 73.20.-r, 72.25.-b, 85.75.-d

Introduction - For a two dimensional electron gas un-
der a strong magnetic field, Landau levels are formed
and drive the system into a state characterized by the
zero longitudinal resistance and the quantized Hall con-

ductance with an integer value of e2

h
. This phenomenon

is known as the quantum Hall (QH) effect, which was dis-
covered by Von. Klitzing in 1980 [1]. Recently, it was the-
oretically predicted [2–4] that this type of quantization in
the Hall conductance can also be realized in magnetic in-
sulating materials at a zero external magnetic field. This
phenomenon, dubbed as the “quantum anomalous Hall
(QAH) effect”, was soon observed experimentally in mag-
netically doped topological insulators (TIs), the Cr or V
doped (Bi,Sb)2Te3 films [5–9]. The physical origin of
the QAH effect is spin-orbit coupling and exchange cou-
pling between magnetic moments and electron spins in
magnetic materials, rather than magnetic fields and the
associated Landau levels [2]. The experimental observa-
tion of the exact quantization of Hall conductance and
neglegible longitudinal resistance confirm the dissipation-
less nature of transport for the QAH effect [8, 9] and the
mapping of global phase diagram establishes the topo-
logical equivalence between the QH effect and the QAH
effect [7, 10].

Similar to the case of the QH effect, dissipationless
currents in the QAH insulators are carried by one dimen-
sional (1D) chiral edge modes (CEMs), which propagate
along one direction at the edge of the system and are
robust against disorder scatterings. CEMs are believed
to hold great promise for the potential applications in
electronics and spintronics with low power consumption
[11]. For any spintronic application, it is required for
CEMs to carry spin polarization (SP). Naively, one may
expect that SP of CEMs should exist and follows bulk
magnetization, but this issue has seldom been studied
theoretically. In Ref. [12], SP of CEMs was studied in

the context of a two band model, which is more relevant
to cold atom systems. For condensed matter systems,
it is more complicated since spin and orbital are mixed
with each other due to spin-orbit coupling [13].
In this letter, we investigate SP of CEMs of the QAH

effect in magnetically doped (Bi,Sb)2Te3. Surprisingly,
we find that SP of CEMs though exists but does not fol-
low bulk magnetization, and sensitively depends on the
boundary conditions. In particular, we find that the di-
rection of SP of CEMs can be manipulated by a local
gate voltage, thus opening the possibility of controlling
SP of CEMs in a fully electrical manner. We provide a
simple physical picture of SP of CEMs based on the ef-
fective four-band model and further study its behavior in
the more realistic calculations based on the tight-binding
model constructed by the Wannier function method of
the first principles calculations [14, 15]. We propose the
spin valve effect [16] of CEMs in a standard experimental
setup of the Hall measurement with ferromagnetic (FM)
leads to extract spin information of CEMs.
Spin polarization of chiral edge modes - To study SP

of CEMs in a QAH insulator, we first consider an effec-
tive four band model for magnetically doped (Bi,Sb)2Te3
films [4]. The low energy physics of this system is domi-
nated by two surface states from top and bottom surfaces,
which hybridize with each other to open a gap due to the
finite size effect. Meanwhile, the exchange coupling of
electron spin arises from the doping of magnetic atoms.
Thus, the effective Hamiltonian Heff is given by

Heff = vτz ⊗ (kyσx − kxσy) +m(k)τx ⊗ σ0 +M · τ0 ⊗ ~σ

+V (x, y)τz ⊗ σ0 +A(k)τ0 ⊗ σ0

+h(k3+ + k3−)τ0 ⊗ σz , (1)

where σx,y,z and τx,y,z matrices are Pauli matrices of spin
and layer (top or bottom) degree of freedom, and σ0 =
τ0 = I2×2. m(k) = m0 +m2(k

2
x + k2y) gives hybridization
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between the top and bottom surface states. The M term
describes exchange coupling between electron spin and
magnetization of magnetic doping. We only consider the
out-of-plane magnetizationMz. A(k) = A0+A1(k

2
x+k

2
y)

is a higher order correction of the surface states and h is
defined as the strength of hexagon warping effect [17, 18].
The V term denotes the asymmetric potential between
the top and bottom layers which has spatial dependence
and can be induced by a global or local gate voltage.
The edge spectrum of our effective model, as well as the

corresponding SP, can be evaluated with the help of the
iterative Green’s function method [19, 20]. We consider
a semi-infinite system with the x direction still trans-
lationally invariant and one edge parallel to x direction
(x-edge). The following set of parameters, v = 1,Mz =
0.5,m0 = 0.1,m2 = 0.25, A0 = 0.15, A1 = 0.05, h = 0.1,
is chosen to keep the system in the QAH regime. The lo-
cal Green’s function G(kx, ω) on the x-edge can be eval-
uated iteratively. The total local density of states (DOS)
and the spin DOS along the ith direction (i = x, y, z) are
defined as ρ0 = − 1

π
Im[tr(G)] and ρσi

= − 1
π
Im[tr(Gσi)],

respectively. As shown in the Supplementary Materials
[13], the CEM can be easily identified from the peak of
local DOS ρ0 on the x-edge. The corresponding SP Si

along the ith direction (i = x, y, z) for the CEM is nor-
malized by the total DOS as Si = ρσi

/ρ0. In Fig. 1
(a) and (b), the SP of the CEMs is plotted for all three
spin components with different local gate voltages and
chemical potentials. Let us take the lattice constant to
be unity and label the lattice site with an integer index
n ≥ 1, with (n − 1) being the distance between the nth
lattice site and the boundary. Here the local gate voltage
V is added only on all n = 1 lattice sites, which leaves
the bulk states unchanged. We find that for a zero gate
voltage (V = 0), only the z component (Sz) SP of CEMs
is non-zero. If we apply a local gate voltage, SP becomes
non-zero for both the y and z direction, but still keeps
zero for the x direction. Therefore, SP of CEMs can exist
within the y-z plane and can be controlled by a local gate
voltage. It is also interesting to notice that the local gate
voltage mainly controls the amplitude of Sy, but barely
change that of Sz (see Fig. 1(b))[13]. The chemical po-
tential can also tune the magnitude of Sz (both Sy and
Sz) at a zero (finite) local gate voltage, as shown in Fig.
1 (a). Therefore, our effective model (Eq. 1) suggests
that SP of CEMs can be manipulated by either applying
a local gate voltage or tuning the chemical potential.

Next we provide an analytical solution of the eigen
wave function for the Hamiltonian (Eq. 1) with V =
A0 = A1 = h = 0 to understand the electrical tunability
of SP of CEMs. Assume m0,2 > 0, the system will enter
QAHE regime when |Mz| > m0. The zero mode of the
Hamiltonian Heff localizing on the edge can be solved
exactly [13] as

Ψ(y) = C(e−λ
−

+
y−e−λ

−

−

y)[|t〉⊗(| ↑y〉)+|b〉⊗(| ↓y〉)], (2)
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FIG. 1. Spin polarization Sx,y,z of chiral edge state in our
effective model is plotted at fixed local gate voltage (V = 0.1
eV) in (a), and at fixed Fermi energy (EF = 0.35 eV) in (b).

where C is a normalization factor and λ± = 1
2m2

(v ±
√

v2 + 4m2(m0 −Mz)). Here | ↑y (↓y)〉 denote spin up
(down) state along the y direction, and |t(b)〉 denotes the
contribution from the top (bottom) layer of thin films.
The wave function (2) of CEMs consists of two parts: one
part on the top surface with SP along the +y direction
and the other on the bottom surface with SP along the
−y direction. Thus, the SP is locked to the layer (top
or bottom) for the CEMs. A local gate voltage can push
the wave functions of CEMs into one layer, thus leading
to the change of SP.
The above analysis of SP of CEMs is based on the

effective four-band model (Eq. 1) and one may ask if
these results still hold for a realistic system, such as Cr
or V doped (Bi,Sb)2Te3. To answer this question, we
carry out explicit calculations for a magnetically doped
Sb2Te3 thin film system with the realistic tight-binding
model constructed from the maximal localized Wannier
function (MLWF) method [14, 15] based on the first prin-
ciples calculations, which has been successfully applied
to the quantitative study of the QAH effect in magneti-
cally doped (Bi,Sb)2Te3 [21, 22]. The exchange coupling
between electron spin and magnetization is included in
the tight-binding model in the mean field approximation
Hex = λSbσ

Sb
z + λTeσ

Te
z . Here we consider only the con-

tribution from out-of-plane magnetization and σ
Sb(Te)
z is

the z directional spin operator for Sb (Te) atoms. In
our calculation, we consider a film with two quintuple
layers and choose the exchange coupling strength to be
λSb = 0.4 eV and λTe = 0.0 eV, which is strong enough
to drive the system into the QAH phase. The edge dis-
persion is also calculated with the iterative Green func-
tion method in a semi-infinite configuration along (100)
direction, as shown in Fig. 2 (a). For edge modes, we
find three left movers (the modes I, II and IV) and two
right movers (the modes III and V), suggesting that one
chiral edge mode (left mover) and the other two trivial
1D edge modes (or non-chiral edge modes) [21]. Since
the mode IV is directly connected to V, these two modes
must be trivial 1D edge modes and thus we focus on the
modes I, II and III below. The influence of the local gate
voltage (V = 0.1 eV) is shown in Fig. 2 (b), from which
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(a) (b)

(c) (d)

FIG. 2. Edge spectrum and edge state SP angle θ for mag-
netically doped Sb2Te3 QAH systems are plotted with: (1)
V = 0 eV in (a) and (c). (2) V = 0.1 eV in (b) and (d). In
(c) and (d), SP angle of edge mode I, II and III are plotted
in red, blue and green.

one can see that the number of left and right movers is
unchanged, but their energy dispersions are shifted.

After obtaining the edge state Green function, it is
straightforward to calculate the corresponding SP vector
S. First of all, Sx is vanishingly small compared to other
spin components. This confirms the results from the ef-
fective four band model. Thus, S only appears in the y-z
plane and can be characterized by its magnitude |S| and
a polarization angle θ relative to +z axis. For Sy, we no-
tice that it vanishes at V = 0 for the effective four band
model, while it is non-zero in the realistic tight-binding
model. This difference is because of the out-of-plane mir-
ror symmetry in our four band model, which is absent in
realistic crystals. Therefore, both Sy and Sz are non-
zero even at V = 0 in realistic tight-binding model. We
plot Fermi energy EF dependence of polarization angle
θ at the local gate V = 0 eV and V = 0.1 eV in Fig. 2
(c) and (d). The polarization angles θ for the modes I
(red lines) and III (green lines) behave similarly to each
other, while that of the mode II (blue lines) reveals a
completely different characteristics. This is a clear ev-
idence that the modes I and III are connected to each
other, forming a non-chiral edge mode, while the mode
II can be identified as the non-trivial CEM. In Fig. 2
(d), we notice an abrupt change of polarization angle θ
for the modes I and II when EF is between 0 meV and
20 meV. Compared with the energy dispersion in Fig. 2
(b), we find that this change results from the strong hy-
bridization effect between the modes I and II. Thus, the
CEM and non-chiral mode are not well defined in this
regime. In the other regime, we find a smooth change
of SPs with respect to local gate voltages and chemical

potentials.

Experimental detection of edge spin polarization - Our
theoretical calculations based on both the effective model
and realistic tight-binding model have clearly demon-
strate electrically tunable SP in magnetically doped
(Bi,Sb)2Te3. However, the experimental detection of SP
is not an easy task since the bulk is FM and it is un-
clear how to distinguish SP of CEMs from that of bulk
ferromagnetism by magnetization measurement. In con-
trast, when the Fermi energy is tuned into the bulk gap,
the transport signals are dominated by CEMs. Thus, it is
more promising to search for SP of CEMs from transport
measurements.

Our proposal is based on a four terminal device with
a FM probe as the fourth probe, as shown in Fig. 3 (a).
This experimental setup is similar to that in the study
of disordered leads in the QH system and here FM leads
play the role of disordered leads [23]. When SP of the
CEM is parallel to magnetization M of the FM lead, it
can flow into the lead, while when they are opposite, it
will be scattered. We apply a voltage drop between the
leads V1 and V3 (V1 = V and V3 = 0) and also introduce
a split gate, denoted as SG in the Fig.3 (a). Due to the
split gate, there are two types of currents flowing from
the lead V2 to V4: the current i1, which goes through V3,
and the current i2 flowing directly from V2 to V4. Based
on the Landauer-Büttiker formula [24, 25], the current
i1 to the lead V4 shares the same chemical potential as
V3 = 0, while the current i2 is determined by the chem-
ical potential in the lead V2 = V1 = V . Importantly,
we assume that chemical potentials of two currents i1
and i2 have not reached equilibrium when they enter the
FM lead. This is determined by the inelastic scatter-
ing length, which is estimated as several µm for the QH
case [26], and we expect a similar length scale in our
case. Thus, the corresponding SPs are also expected to
be different for these two currents. Since the scattering
rate into the FM lead V4 depends on the relative angle
between the SP of CEMs and M. We expect the trans-
missions of V2 → V4 and V3 → V4 also depend on M of
the FM lead. As a result, the chemical potential in V4
will vary when rotating M. This provides a detectable
signal, which is similar to the spin valve effect [16], in
transport measurements and can be directly related to
SP of CEMs. It should be emphasized that the split gate
SG plays an essential role here. Without the split gate,
all currents flowing into V4 come from V3, and thus the
corresponding chemical potential in V4 must be equal to
that of V3, independent of magnetization direction of the
FM lead.

To formulate this idea, we assume that only p (p <
1) fraction of the net edge current i0 can flow from V2
to V3 due to the split gate, as shown in Fig. 2 (a), so
i1 = pi0, i2 = (1 − p)i0. We further assume the q′ (q)
fraction of the current i1 (i2) has spin polarizing along
M. Since SP of CEMs depends on chemical potential, it
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(a)

(b)

FIG. 3. Our proposed four terminal transport setup is shown
in (a) with lines showing current flows. In (b), we show the
spin valve effect at the FM lead V4: Only current with spin
parallel to M can flow into V4, while those with spin anti-
parallel to M will be reflected. θ dependence of transmission
qis at EF = 33 meV are plotted in (c). Based on this, we plot
the evolution of transverse resistance R24 with θ in (d).

is reasonable to assume q 6= q′. Therefore, the currents
from V2 (V3) to V4 are q

′i1 and qi2, respectively, as shown
in Fig. 3 (a). The Hall conductance G24 can be derived
based on Landauer-Büttiker formula [13] as

G24 =
I1

V2 − V4
= G0

(1 − p)q + pq′

q′
(3)

with the conductance quantaG0 = e2

h
. From Eq. (3), one

can see that when there is no split gate (p = 1), G24 =

G0 = e2

h
, which recovers the quantized Hall conductance

and is independent of its spin information. When a split
gate is introduced, 0 < p < 1 and q 6= q′, and G24 will
deviate from the quantized value and we discuss how to
extract the information of SP of CEMs from the Hall
resistance measurement in the Supplementary Materials
[13].
For the realistic systems of magnetically doped

(Bi,Sb)2Te3, we have shown additional non-chiral modes
coexisting with CEMs. Thus, it is natural to ask how
these non-chiral modes influence the above transport
measurement. We consider one pair of non-chiral edge
mode (mode I and III in Fig. 2 (a)) and one CEM (mode
II) and further assume no inter-channel scattering be-
tween different modes for simplicity. We take the modes
I and II flowing clockwise (as shown in Fig. 3 (a)), and
the mode III flowing counter-clockwise (flipping the di-
rections of currents in Fig. 3 (a)). q1,2,3 (q

′
1,2,3) is defined

as the transmission into FM probe of edge current i2 (i1)
for the modes I,II and III, with Q = q1 + q2, Q

′ = q′1 + q′2
and p̄ = 1−p. The explicit expression of transverse resis-
tance is shown in the Supplementary Materials [13]. In
the limit where the split gate vanishes (p = 1 − p̄ = 1),

the transverse conductance G24 becomes

G24 =
e2

h

7(Q′ + q3)− 3q3Q
′

2Q′ − q3
(4)

which deviates from the quantized value. Thus, in con-
trast to the single CME case, Hall resistance will depend
on the magnetization direction of FM leads even without
any split gate for the case with both CME and non-chiral
modes.
To apply Eq. (4) to magnetically doped Sb2Te3 films,

we need to extract the coefficients qis from our realistic
tight-binding model. As discussed above, qis are deter-
mined by the projection of SP of CEMs into the magneti-
zation direction M of FM leads. Since SP of CEMs only
exists in the y-z plane, we only concern the projection of
SP into the y-z plane. Let’s assume M has an angle θ
relative to +z direction in the y-z plane, as shown in Fig.
3 (b). The corresponding projection operator for CEMs
is defined as:

P ↑↑
θ = | ↑θ〉〈↑θ |, with | ↑θ〉 = e−iσx

θ

2 | ↑z〉 (5)

Consequently, the angle dependent transmission qi(θ) for
the ith edge mode is given by

qi(θ) =
〈ψi|P ↑↑

θ |ψi〉
〈ψi|P ↑↑

θ |ψi〉+ 〈ψi|P ↓↓
θ |ψi〉

(6)

where |ψi〉 is the wave function for the mode i. With
Eq. 4 and Eq. 6, we can calculate the transmissions
qi(θ)s for the modes I, II and III as a function of θ and
Fermi energy for the local gate voltage V = 0.1eV for
our realistic tight-binding model [13]. For the chemical
potential EF = 33 meV, θ dependence of transmission
qis and the Hall resistance R24, are shown in Fig. 3 (c)
and (d), respectively. R24 shows a strong dependence
on θ, thus revealing the spin valve effect for CEMs [16].
This provides a very clear and experimentally feasible
evidence to detect spin signal in a QAH insulator.
Discussions - In summary, we have shown that SP of

CEMs can be generated, manipulated and detected in a
QAH insulator in a fully electric manner. This paves the
way of potential applications for the QAH effect in spin-
tronics. Disorder is inevitable in realistic samples and
we show the stability of SP of CEMs against disorder in
the Supplementary Materials [13]. Although we focus on
the magnetically doped (Bi,Sb)2Te3 films here, the elec-
tric controllability of SP of CEMs is a general property
of a QAH insulator. The bulk topology (non-zero Chern
number) only guarantees the existence of CEMs, but the
detailed form of wave functions of CEMs depends on lo-
cal electric environment, and thus can be controlled by
a local gate voltage. We expect a similar effect also oc-
curs in other QAH insulators, such as Mn doped HgTe
quantum wells [3] and InAs/GaSb quantum wells [27],
where the local gate voltage can induce a local Rashba
spin-orbit coupling and tilt SP of CEMs.
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Supplementary Materials for “Edge spin polarization in Quantum Anomalous Hall
Insulators”

Analytical solution of edge wave function in effective model

To solve for the zero mode wave function of the effective model, we can first apply a unitary transformation U ,

U =
1√
2









1 0 1 0
0 1 0 −1
0 1 0 1
1 0 −1 0









,

leading to

H ′ = UHeffU
† =









mk +Mz ivk− M− 0
−ivk+ −mk −Mz 0 M+

M+ 0 mk −Mz −ivk+
0 M− ivk− −mk +Mz









We set M+ = M− = 0 and H becomes block diagonal. We take m(k) = m0 + m2k
2 and assume m0,2 > 0, and

band inversion happens when |Mz| > m0. We would like to emphasize that the two-band model taken in Ref.
[12] is just one block of the above four-band Hamiltonian (7). Nevertheless, the bases for the Hamiltonian (7) are
(|+, ↑〉, |−, ↓〉, |+, ↓〉, |−, ↑〉), where ”+/−” denotes bonding/anti-bonding state between top and bottom surface states.
The corresponding spin operators are given by

sx =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, sy =









0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0









, sz =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









Thus, we find that the spin operators in the four band model are different from those used in the two-band model in
Ref. [12], which are more relevant to the cold atom system.
Now we consider the case with Mz > 0, in which the lower block of H ′ is in the QAH phase while the upper block

is in the trivial phase. For the lower block, we have

Hlower =

(

mk −Mz −ivk+
ivk− −mk +Mz

)

= (mk −Mz)σz + v(kyσx + kxσy).

We choose the following set of parameters which satisfies the above band inversion condition: v = 1,Mz = 0.5,m0 =
0.1,m2 = 0.25.
The wave-function of zero energy mode of the chiral edge mode can be solved for the lower block Hamiltonian. Let

us assume the edge is along the y direction, so we consider kx = 0 first, and check the eigen equation for zero mode

[(m0 −m2∂
2
y −Mz)σz − ivxσx∂y]ψ(y) = 0 (7)

Multiply both sides by σx,

[(m0 −m2∂
2
y −Mz)σy + vx∂y]ψ(y) = 0 (8)

Consider the ansatz ψ(y) = Ce−λyξs, where σyξs = sξs, s = ±1, we have

λs± =
1

2m2
(−sv ±

√

v2 + 4m2(m0 −Mz)) (9)

Thus the wave function should be the following linear combination:

Ψ(y) =
∑

s

(cs+e
−λs

+y + cs−e
−λs

−

y)ξs (10)
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(c)(b)(a)

FIG. 4. In (a), we plot θ dependence of transmission q at various chemical potential for the chiral edge state in the effective
model. In (b), we fix the chemical potential and plot the θ dependence of q. Transverse resistance R24 at different split gate
transmission p is plotted in (c).

with

λs+ + λs−= − sv

m2

λs+λ
s
− = −m0 −Mz

m2
(11)

Assuming the material (vacuum) region is at x > 0 (x < 0), then we require that wave function vanishes at both
x = +∞ and x = 0. This requires cs+ = −cs−, λs± > 0 and s to be negative. So the wave function is given by

Ψ(y) = c(e−λ
−

+
y − e−λ

−

−

y)ξ− (12)

Notice that the spinor part ξ− is defined in the hybridized bases (|+ ↓〉, |− ↑〉). Then ξ− can be written as

ξ− ∼ i|+ ↓〉+ |− ↑〉 = i(|t ↓〉+ |b ↓〉) + (|t ↑〉 − |b ↑〉)
= |t〉 ⊗ (i| ↓〉+ | ↑〉)− |b〉 ⊗ (−i| ↓〉+ | ↑〉)
= i|t〉 ⊗ (| ↑y〉) + i|b〉 ⊗ (| ↓y〉) (13)

We emphasize again that the above solution does not correspond to a net spin polarization along the y direction, as
discussed in Ref. [12], due to the different bases. The wave function of CEMs consists of two parts: one part on the
top surface with SP along the +y direction and the other on the bottom surface with SP along the −y direction.
These two contributions exactly cancel each other, leading to zero net SP of CEMs. From the symmetry perspective,
we notice that there is an emergent mirror symmetry between the top and bottom surfaces, which requires Sy = 0.
Therefore, applying a local gate voltage breaks this mirror symmetry and yields an imbalance of SP between the top
and bottom surfaces, giving rise to a finite Sy. The absence of Sz is completely accidental, as a result of setting
A0,1 = h = 0. Numerically, when assigning non-zero values to A0,1 and h, non-zero Sz appears, as shown in Fig. [1]
in the main text. Therefore, Sz is insensitive to this mirror symmetry breaking, just as we have numerically verified.
To conclude, applying a local gate voltage changes both magnitude and direction of CEM SP.

TRANSVERSE CONDUCTANCE FROM LANDAUER-BüTTIKER FORMULA

In this section, we will derive analytical expressions of transverse conductance based on Landauer-Büttiker formula
[24, 25]. We will first discuss the situation with one single chiral edge mode, and then generalize the expression to a
case where a chiral edge mode and one pair of non-chiral edge mode coexist.
Following the setup configuration in Fig. [3] (a) in the main text, the conductance matrix G for a single chiral edge

state (flowing clockwise) is given by

G = G0 ×









0 (1− p)(1 − q) p(1− q′) (1 − p)q + pq′

1 0 0 0
0 p 0 0
0 (1− p)q pq′ 0








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where the bases for matrix G is (V1, V2, V3, V4). Here p is the split gate transmission, while q′ and q are transmissions
into FM probe V4 of currents from V2 and V3. Here a matrix element Gij describes the conductance contribution
from probe Vj to probe Vi. Then, current voltage relations are









I1
I2
I3
I4









= G0 ×









1 −(1− p)(1− q) −p(1− q′) −(1− p)q − pq′

−1 1 0 0
0 −p p 0
0 −(1− p)q −pq′ (1− p)q + pq′

















V1
V2
V3
V4









Here Ii (i ∈ 1, 2, 3, 4) denotes the current that flows into the ith probe. Notice that I2 = I4 = V3 = 0 and I1 = −I3,
giving rise to

V1 = V2

(1 − p)qV2 = [(1− p)q + pq′]V4

I1 = G0pV1 (14)

The transverse conductance Gchiral
24 is given by

Gchiral
24 =

I1
V2 − V4

= G0
(1− p)q + pq′

q′
(15)

Numerically, we plot the θ dependence of transverse resistance R24 in Fig. 4 (c). Here, we take current i1 (from
V3) at EF = 0.1 eV and i2 (from V2) at EF = 0.4 eV. Transmission of i1 and i2 into V4 is calculated in Fig. 4 (a),
which will be discussed in details in a later section. In the Fig. 4 (b), we extract the transimission information for
EF = 0.1eV (blue line) and EF = 0.4eV (red line) from Fig. 4 (a), which provides us with the q and q′ at different θ.
Transmission into the split gate p is chosen at various values. As long as the split gate structure exists (p 6= 0), there
will be an obvious θ dependence of Hall resistance R24, as shown in Fig. 4 (c). But when the split gate structure is
absent, transverse resistance will be quantized despite the value of θ.
For the magnetically doped Sb2Te3 QAH system, we consider two clock-wise modes (mode I and III) and one

counter-clockwise mode (mode II). Let us define q1,2,3 (q′1,2,3) to be the transmission into FM probe of edge current
i2 (i1) for the modes I,II and III, with Q = q1 + q2, Q

′ = q′1 + q′2 and p̄ = 1− p. So the conductance matrix for mode
I and mode II can simply take the form of Eq 14, while conductance matrix for mode III is as follows:

GI = G0 ×









0 (1− p)(1 − q1) p(1− q′1) (1 − p)q1 + pq′1
1 0 0 0
0 p 0 0
0 (1− p)q1 pq′1 0









GII = G1(q1 ⇔ q2, q
′
1 ⇔ q′2)

GIII = G0 ×









0 1 0 0
(1− p)(1− q3) 0 p (1− p)q3
p(1− q3) 0 0 pq3

q3 0 0 0









The net conductance matrix is simply an addition of all three conductance matrix Gnet = GI + GII + GIII . After
some calculations, we arrive at the following Hall conductance

Gnon-chiral
24 =

e2

h

(7 + 2p̄)[Q′ + p̄(Q−Q′)] + q3[7 + 2p̄− 3Q′ + p̄(2p̄+ 1)(Q′ −Q)]

(2 + p̄)Q′ − q3(1 + p̄Q′)
(16)

In the limit where the split gate vanishes (p = 1− p̄ = 1), the transverse conductance Gnon-chiral
24 becomes

Gnon-chiral
24 =

e2

h

7(Q′ + q3)− 3q3Q
′

2Q′ − q3
(17)

ELECTRON CURRENT TRANSMISSION AT THE FERROMAGNETIC PROBE

In the previous discussion, we have shown that transverse conductanceG24 has a strong dependence on transmissions
at the FM probe V4. In the main text, we have defined the transmission qi based on a projection operator approach.
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FIG. 5. Chemical potential and θ dependence of transmissions of mode I, II and III are plotted in (a), (b) and (c). Here we
have applied a local gate V = 0.1 eV throughout the calculations. In (d), we compare the transmission of all three modes at a
fixed Fermi energy EF = 33 meV.

Since the edge state Green function can be calculated with the help of iterative Green function method, we can easily
rewrite the transmission expression in terms of the edge state Green function Gi(ω) for edge mode i (i=I,II,III)

qi(θ) =
Im[tr(Gi(ω)e

i θ
2
σx)]

Im[tr(Gi(ω)ei
θ

2
σx)] + Im[tr(Gi(ω)ei

θ+π

2
σx)]

(18)

Based on Eq. 18, in Fig. 4 (a), we calculate the chemical potential and θ dependence of transmission for the chiral
edge state in the effective QAH model. Here we apply a local gate voltage V = 0.3 eV. The blue line (EF = 0.1
eV) and red line (EF = 0.3 eV) denote two different chemical potentials due to the split gate effect. The two Fermi
energies are the EF s we choose to calculate transverse resistance in Fig 4 (c). We further plot the transmissions q(EF )
at these two fixed Fermi energies in Fig. 4 (a).
For the magnetically doped Sb2Te3 QAH system, non-chiral edge modes show up and we consider the co-existence

of a pair of non-chiral edge modes (mode I and mode III) and a chiral mode (mode II). Following a similar approach,
we make use of the edge state Green function and plot chemical potential and θ dependence of transmissions qis for all
three modes in Fig.5 (a) to (c). Here the white dashed line shows the fixed chemical potential EF = 33 meV, which
we picked to calculate R24 in the main text. In Fig.5 (d), we compare the transmission of all three modes at the fixed
Fermi energy EF = 33 meV. We notice that transmission of mode II peaks at around θ = 100 degree while that of
mode I and III peaks at around θ = 200 degree. This means that transmission peaks happen at the polarization angle
of these edge modes. The above results are consistent with the fact that FM probe is transparent to the electrons
with spin parallel to the magnetization of the FM probe.

MAGNITUDE OF EDGE SPIN POLARIZATION FOR MAGNETICALLY DOPED SB2TE3 QAH

SYSTEMS

We have found that for magnetically doped Sb2Te3 QAH systems, spin polarization S is a two dimensional vector
living in y-z plane, due to the absence of its x component. Therefore, S can be written in terms of polar coordinates
S = (|S| cos θ, |S| sin θ). In the main text, we have plotted the polarization angle θ of mode I, II and III. It is shown
that mode I (left mover) and mode III (right mover) share a very similar θ characteristics, and we claim that these
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FIG. 6. Amplitude |S| of spin polarization for magnetically doped Sb2Te3 QAH systems with V = 0 eV and V = 0.1 eV are
shown in (a) and (b). |S| of edge mode I, II and III are plotted in red, blue and green.

(a) (b)

FIG. 7. In (a), the density of states of the nth lattice sites ρn is plotted in units of ρ1, for n = 1, 2, 3, 4, 5. It is easy to see that
the decay length is simply one lattice constant. In (b), we compare the spin angle θ of the n = 1 lattice sites (red line) and
that of the entire contribution of n = 1, 2, 3, 4, 5 lattice sites (blue line).

two modes should be connected to each other and become trivialized. To make our results complete, here we show
that magnitude plot of spin polarization in Fig. 6. Following the same color convention, |S| of edge mode I, II and
III are plotted in red, blue and green. In fact, the value of |S| can be closely related to the calculation details. For
example, when locating the CEMs in the iterative Green function (DOS) calculation, a small error in locating the
peak position of DOS may lead to a different |S| value of the corresponding CEM. Compared to |S|, polarization
angle θ is barely affected by such calculation error. Therefore, we would like to point out that polarization angle θ is
more essential in our discussion here.

DECAY LENGTH OF CHIRAL EDGE STATES

Let us denote the density of state calculated from the nth lattice sites as ρn, with n = 1, 2, 3, .... In Fig.7 (a), we
have plotted the value of ρn in units of ρ1 of mode II in the Sb2Te3 based QAHE system. It clearly shows that the
edge state is highly localized on the edge, and exponentially decays into the bulk. By doing an exponential fit, we find
that the decay length is 1.03 times lattice constant. In our calculation for SP, we have included the total contribution
from all n = 1, 2, 3, 4, 5 lattice sites, which we identify as the major contribution. In general one can integrate over the
entire semi-infinite space, which is rather costly in calculation, while giving only a small modification to our present
results. Actually, we can even show the SP angle θ is dominated by the contribution from the n = 1 lattice sites. As
shown in Fig. 7 (b), we calculated the SP angle θ of CEM (mode II) with Vgate = 0.1 eV for only n = 1, and plot θ
evolving with Fermi energy (red line). In comparison, we also plot the SP angle calculated for all n = 1, 2, 3, 4, 5 lattice
sites with blue line. It is clear that the n = 1 lattice sites give the major contributions to θ, while n = 2, 3, 4, 5 lattice
sites together only give a rather small correction to θ. We also would like to emphasize that we are not interested the
exact value of CEM SP, which depends on the details of samples in experiments. The essential physics here is that
the CEM SP can be manipulated electrically, despite its exact value.
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FIG. 8. We plotted possible reconstruction of chiral edge states under the influence of FM probe. The yellow lines are the
chiral edge states. When FM probe destroy the QAHE locally, a new boundary emerges and edge states appear on this new
boundary.

INFLUENCE OF FM PROBE ON THE QAHE

It is possible that attaching a FM gate to a QAH sample may change the QAH sample locally. For example, the
value of CEM spin polarization may be affected in this regime. However, what is physically interesting is the tunability
of spin polarization as a result of electrical approaches (chemical potential and local gate tuning). The exact value of
CEM spin polarization is not that interesting to us. Therefore, we expect the angle-dependent transverse resistance
should still be observed in this case.
In an extreme situation, QAH state is destroyed locally in the vicinity of FM probe, as shown in Fig. 8. In this case,

one can simply treat this local part of QAH sample as an extension of the FM gate. Then a new boundary between
FM probe (including its extension) and the QAH sample emerges and edge states still exist on this new boundary, as
long as the rest of sample remains in the QAH phase. As a result, our physical picture of this transport experiment
still holds.

STABILITY OF EDGE SPIN POLARIZATION UNDER DISORDER

In this section, we show that the above spin polarization of QAH edge states in the simple effective model (Eq.
[1] in the main text) is robust under disorder effect. We start from a finite size real space Green function with a
Nx × Ny lattice configuration with Nx = 50 and Ny = 2. To discuss its chiral edge states, we perform iteration
of Green function along the y direction, so that system is finite along the x direction while semi-infinite along y
direction. In this case, SDOS (spin polarization) of edge states on the y-edge will be obtained. Disorder potentials
are white-noise-like on-site potentials, and are included locally on the edge for simplicity. The magnitude of disorder
potential is between −W and W , where W is the disorder strength. We also perform the configuration averaging, the
number of which is defined as Nave, for disorders.
In Fig. 9 (a), we first calculate edge spin polarization without any disorder (W = 0). A finite local gate voltage

(Vgate = 0.1 eV) and a finite Fermi energy (EF = 0.1 eV) are considered to guarantee non-zero spin polarization. The
x-axis represents lattice sites of the one-dimensional lattice chain on the y-edge and y-axis is for spin polarization.
We can clearly see strong finite size effect on the 1D edge chain: At both ends of this 1D chain, there are abrupt
changes of spin polarization in all three components. Such a finite size effect can be removed by imposing periodic
boundary condition along x direction, and resulting spin polarization is exactly shown in Fig. [1] (a) and (b) (in the
main text). This means that for a finite size QAH sample, spin polarization of an electron on the y-edge is along +y
direction. As shown in Fig. 10, while approaching the sample corner between y-edge and x-edge, its spin polarization
(green arrows) gradually becomes along −z direction. Finally, when this electron enters x-edge, its spin polarization
becomes along −x direction.
When disorder is introduced, we can see that the fluctuation of spin polarization increases as the disorder strengthW

increases, as shown in Fig. 9 (b)-(e). But this disorder induced fluctuation decreases as we increases the configuration
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(a) (b) (c)

(d)

FIG. 9. Spin polarization of effective QAH model with various disorder strengths W and Nave = 100 are plotted: (a) W = 0
eV, (b) W = 0.1 eV, (c) W = 0.2 eV, (d) W = 0.3 eV, (e) W = 0.4 eV. In (f), we increases Nave to 1000 with disorder strength
W = 0.4 eV.

FIG. 10. In this figure, we give a systematic plot of the edge spin polarization of a finite size QAH sample based on Fig. 9 (a).
Red arrow represents edge currents that flow around the QAH sample, while green arrows represent the corresponding spin
polarization vectors of the edge current. On the right hand side of the QAH sample, we show in details how the SP of a chiral
edge current on the y edge evolves due to the finite size effect.

averaging number Nave (Fig. 9 (f)). This concludes that spin polarization of chiral edge state in QAHE is robust
against disorder effects.


