Bl rcic~ F* 8
,};ﬁ_l ?lﬁ’/*\)

FREY A TRy k2
Survey on Deep Learning with
Imbalanced Data Sets

SENERREE S5 N S <
R R E
¢ E % 108 £ 8 ¢

DOI:10.6814/NCCU201901175

RP

AR FERRY P AR P L Ay B LA S e
%%iﬁﬂ—%l’iﬁ“${i4kﬂ€f”f °ﬁ?§%¢¢%wh§{
BAT RRACFE FEFPPRRAUE poe hlpiF o B R R |

BFEFLAANT LR RE > BHEPRJIESN R S TR gk
s A B AR ATE AN PR R v R0 B d LT ARG
AP R aniE@ivd > P ER K- frw

RS A A LAH > 3 R Ak SR A L AR
R b AZ EREEFA A D FRG AT R AL KA
Zﬁ;@ﬁ$§7ﬁ&%ﬁ’ﬁﬁiﬁ%ﬂﬁﬂﬁﬁ{ﬁi” T IFEAE
Ao RS RA LR L o ot de P AR T ER R R BB
T v BRI dhme HR R Y FSEA 2 R
(R > BEATEARF 2 AL e FF R ¥

@ﬁﬂﬁwﬂ»’Mﬁﬁﬁﬁﬂﬁﬂﬂlﬁ’;jﬁﬁg RFIPEFY L ch
BA S REARSALE T TRAGEL R K o B ALY
Ad RBRHLAZARAS A BEPRA S BT |

B (8 R BT A Aﬁ@ﬂﬁﬁjA’{ﬁwgﬁnmgﬁﬂoﬂwﬁ#
BrAFLAGERFRLIAALY - BB o ER AR B AN PG
WA FREE F T AT R BER LS > FA 8L L N TR

A |

=\
I

=~

|

s

¥

I

DOI:10.6814/NCCU201901175

Y ¥

oo AT RAE VAL Ty B R Rl x> s
FMNIST 2 &7 B % B+ Tl & > 7 T gnt &5 d 2500 % g+ &

AN

ALFERR - AL EGRY > o AL ERY 0 S A &
FAasspEsY CHEEF 01406 T AP EFA SRRk
PR P OECA] o R W RS G o A H FE A RAF S B FEE CNN B
Al kn|Erd @ 18 R PR T ATE 5 E BIFERS -

d WA R T R AEREAISARI FEZE - FI > A3 R
R RERE Y o AP AR 6 BT B e kAP] o S
P ATIE 4 SBc Focal loss e ~ A ff E A2 B A4F > @ b Ao HF X
AP SR E R R AR o L AR B Y G 2 E 7 g A g
4 3e? TR E o AP BB RAGESH I RS
T AT RIEERY

Mt FREY SR SRR TG E B A R RA

=

il

DOI:10.6814/NCCU201901175

Abstract

This paper is a survey on deep learning with imbalanced data sets and anomaly
detection. We create two imbalanced data sets from MNIST for multi-classification
task with minority classes 0,1, 4,6, 7 and binary classification task with minority
class 0. Our data sets are highly imbalanced with imbalanced rate p = 2500 and
we use convolutional neural network(CNN) for training. In anomaly detection, we
use the pretrained CNN handwriting classifier to decide the 18 cat and dog pictures
are handwriting pictures or not.

Due to the data set is imbalanced, the baseline model have poor performance
on minority classes. Hence, we use 6 and 7 different methods to adjust our
model. We find that the focal loss function and random over-sampling(ROS) have
best performance on multi-classification task and binary classification task on our
imbalanced data sets but the cost sensitive learning method is not suitable for our
imbalanced data sets. By confidence estimation, our classifier successfully judge
all the pictures of cat and dog are not handwriting picture.

Keywords: Deep Learning, CNN, Imbalanced Data Sets, Anomaly Detection,

Image classification

il

DOI:10.6814/NCCU201901175

Contents

R

AT £
Abstract
Contents

List of Tables
List of Figures

1 Introduction

2 Deep Learning

2.1 Neurons and Neural Networks
2.2 Activation Function oL
23 LossFunction

2.4 Gradient Descent Method

3 Convolutional Neural Network(CNN)

3.1 Convolutional Layer

3.2 MaxPoolingLayer

4 Abnormal Condition and Imbalanced Data Set

4.1 Abnormal Condition

4.2 Imbalanced DataSet

ii

iii

iv

vii

ix

DOI:10.6814/NCCU201901175

5 Anomaly Detection 17

8

5.1 Confidence Estimation 17
5.2 Gaussian Distribution Lo 18
5.3 Experiment for Confidence Estimation 20
Methods for Imbalanced Data Problem 23
6.1 Data-level Methods 23

6.1.1 Random-oversampling(ROS) 23

6.1.2 Synthetic minority over-sampling technique(SMOTE) 24

6.1.3 Random-undersampling(RUS) 25
6.2 Algorithm-level Methods 26

6.2.1 Mean falseerrorMFE) 26

6.2.2 Mean squared false errorMSFE) 27

623 Focalloss 28

6.2.4 Costsensitivelearning oo 0oL 30
Experiment for Multi-classification Task 32
7.1 BaselineModel 33
7.2 Random-Oversampling Model 35
7.3 Synthetic Minority Over-sampling Technique Model 36
7.4 Random-Undersampling Model 37
7.5 Mean False ErrorModel 0L 38
7.6 FocalLossModel 39
7.7 Cost Sensitive LearningModel 42
7.8 Result for Multi-classification Task 43
Experiment for Binary Classification Task 45
8.1 BaselineModel 45
8.2 Random-Oversampling Model 46
8.3 Synthetic Minority Over-sampling Technique Model 47
8.4 Random-undersampling(RUS) 48
8.5 Mean False ErrorModel, . 48
8.6 Mean Squared False ErrorModel 49

DOI:10.6814/NCCU201901175

87 Focal LossModel 50

8.8 Cost Sensitive LearningModel 52
8.9 Result for Binary Classification Task 53
9 Conclusion 55
9.1 Contribution 55
92 Future Work 55
Appendix A Python Code 56
A.l1 BaselineModel 56
A.2 Random-OversamplingModel 68
A.3 Synthetic Minority Over-sampling Technique Model 81
A.4 Random-Undersampling Model 100
A.5 Mean False Error Model L 113
A6 FocalLossModel 125
A.7 Cost Sensitive Learning Model 138
A.8 Mean Squared False ErrorModel 145
A.9 Anomaly Detection Model 154
Bibliography 164

DOI:10.6814/NCCU201901175

List of Tables

5.1 Confidence score of cat and dog pictures 21
5.2 Confidence scoreofinputs 21
6.1 Confusion matrix o . . o e e e 27
6.2 CostmatriX e e e e e 30
7.1 Averageaccuracy of M, 34
7.2 Average accuracy of Myand M,s oL 35
7.3 Average accuracy of My and My, 37
7.4 Average accuracy ofevery classin M, 38
7.5 Average accuracy of Mpand My,o 00000 39
7.6 Average accuracy of My withy =0, 40
7.7 Average accuracy of My withy =05 40
7.8 Average accuracy of My withy=1 40
7.9 Average accuracy of Myywithy =2 0. 40
7.10 Average accuracy of My withy =5 41
7.11 Average accuracy of My, with different parameters 41
7.12 Average accuracy of Myand M, 42
7.13 Average accuracy of minority class with different models 43
8.1 Averageaccuracy of Myo 46
8.2 Average accuracy of Mpgand Mooo 46
8.3 Average accuracy of My and My . . . o o o o o oo 47
8.4 Average accuracy of Mz and Myso o . o v o oo 48
8.5 Average accuracy of Mypand Myeo Lo 49

DOI:10.6814/NCCU201901175

8.6 Average accuracy of My and Myse oL oo 49

8.7 Average accuracy of Mo withy =0 L0000 50
8.8 Average accuracy of Myp withy =05 L L L. 51
8.9 Average accuracy of My withy =1 0 L. 51
8.10 Average accuracy of Mo withy =2 00000 51
8.11 Average accuracy of Mo withy =5o 0oL 51
8.12 Average accuracy of My, with different parameters 52
8.13 Average probability predicted from My, 53
8.14 Average accuracy of class 0 and 1 with differentmodels 54

DOI:10.6814/NCCU201901175

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7

3.1
3.2
33
34

5.1
5.2
53
5.4
5.5

6.1
6.2
6.3
6.4

7.1
7.2

Three steps of deep learning 4
The Structure of aNeuron 5
Fully Connected Feedforward Network 6
Rectified linear unit (ReLU) L. 7
Sigmoid function L e 8
Hyperbolic tangent (tanh), 8
Gradient Descent 10
Structure of CNN L L o 11
Convolutional operation 12
Operation of max pooling layer (a) 13
Operation of max pooling layer(b) 13
Normal condition for heath cell classifier 18
Anomaly condition for heath cell classifier. 18
Car engine scatter diagram 19
Defective detection L 20
Example of cat and dog pictures oL, 20
Random oversampling(ROS) 24
Algorithm of SMOTE 25
Random undersampling(RUS) 26
Focalloss e 29
Sample number of MNIST 32
Sample from MNIST 33

DOI:10.6814/NCCU201901175

7.3 Imbalanced MNIST 33

7.4 Structure of baseline CNNmodel 34
7.5 Confusionmatrix of My 35
7.6 Confusion matrix of Myand My, 36
7.7 Average accuracy of Myand M,o 36
7.8 Confusion matrix of My and Mg, 37
7.9 Confusionmatrix of M, 38
7.10 Confusion matrix of Myand My, oL 39
7.11 Average accuracy of My, with different parameters 41
7.12 Confusion matrix of Myand M, 42
7.13 Comparison of average accuracy of minority classes with different methods . . 44
8.1 Binary imbalanced MNIST, 45
8.2 Confusionmatrix of My 46
8.3 Confusion matrix of My and Myeo o o0 oo e 47
8.4 Confusion matrix of My and M0 . v o v o v o o oo 47
8.5 Confusion matrix of My and Mo 48
8.6 Confusionmatrix of Mg and Myeoo . oo oo 49
8.7 Confusion matrix of Mg and Myse oo 50
8.8 Average accuracy of My, with different parameters 52
8.9 Confusionmatrix of My, and Moo, oL 53
8.10 Comparison of average accuracy of class 0 and 1 with different methods 54

DOI:10.6814/NCCU201901175

Chapter 1

Introduction

Deep learning is kind of machine learning and its development is mature and completed
than before. [24] We can see that many fields are using deep learning to address their problem
such as translation, finance, network and image recognition. [1, 14, 15, 29] Take an example,
using deep learning to translate Chinese in English and input an car image then deep learning
model will give the output which is label of car image. This paper using deep learning to
recognize the handwriting number which is 0 to 9 but the data set is imbalanced and it will
cause the bad predict result of the model. In anomaly detection, we use deep learning to pretrain
a handwriting classifier and hope it can judge the input is handwriting picture or not.

Convolutional Neural Network(CNN) is one of structure of deep learning and it is good at
image recognition [20],video analysis [19] and natural language processing [8]. There are two
main layers in CNN which are convolutional layers and pooling layers, convolutional layers can
capture the features of pictures such as shape or line and these features will through the pooling
layer to reduce the dimension. Usually, they will flat the result as above and connect to the fully
connected layer to get the output which is the probability of the labels.

In real life, there are many different situations and some of them are bad or rare happened,
we may called it abnormal condition. For example, the machine malfunction [31], system failure
in IT services [39]. Abnormal condition as above does not happen often but when it happen it
may cost a lot of time and money to fix it. Usually, identify abnormal condition is a binary
classification problem in deep learning which we use to classify this condition is abnormal or
normal.

Imbalanced data set is a common situation in real life. For example, we want to predict

DOI:10.6814/NCCU201901175

someone will get the cancer in 3 months by their medical record. Usually, the number of health
people is much larger than cancer patient and we assume their ratio is 9 : 1. Hence, our model
just predict all people are health then the accuracy still get 90%. If we just use accuracy as
our criterion, the model seems like good enough but actually, it does not reach our goal to
predict someone will get the cancer or not in 3 months. This situation is common in our life
and we usually called the uncommon event or bad event as abnormal condition such as machine
malfunction [31] and system failure in IT services [39]. In this paper, we create two imbalanced
subset from MNIST which has 10 classes of handwriting number images from 0 to 9. In multi-
class task, 0, 1,4, 6,7 is our minority class and its imbalance ratio is p = 2500. On the other
hand, binary class task also has imbalance ratio p = 2500, and the minority class and majority
class is 0 and 1, respectively.

In anomaly detection, there are two type of training data, with labels and without labels.
If we already have a classifier to classify normal samples, then we want to let the classifier
judge the input is normal or anomaly. We can use confidence estimation to let classifier output
the confidence score and determine the input is anomaly or not. On the other hand, if we do
not have the labels of inputs, we may assume that the data obey the gaussian distribution and
believe that the outlier is the anomaly samples. We use confidence estimation on handwriting
CNN classifier and successfully judge the 18 cat and dog pictures are not handwriting pictures.

To address the imbalanced data problem, we sort out the 7 different methods which divided
into two categories, data-level methods and algorithm-level methods. In data-level methods we
will introduce ROS [12,30], SMOTE [5], RUS [10, 12,25] which used sampling to increase or
decrease the number of samples to balance the data set. Different from data-level methods, we
will introduce three loss function, MFE [36], MFSE [36] and focal loss [26], and cost sensitive
learning [11,13,16,22,27,40]. There methods adjust our output or loss function to let the model
be sensitive to minority class samples in algorithm-level methods. In this paper, we use these
methods to improve the performance of two baseline model on imbalanced MNIST. We will
compare the modified model with baseline model in different task and choose which one is

better solution to address the problem.

DOI:10.6814/NCCU201901175

Chapter 2

Deep Learning

Deep learning is just like a machine learning, it can let the computer learning by itself.
According to the training data, deep learning is a way to find the most suitable function about

input data. Let’s take some example to figure out how the function work.

f(“Image of tree”) = “Tree”
f(“3% % p*”?) = “T am handsome.”

f(“How are you ?”) = “I’m fine, thank you.”

When using deep learning in image recognition [14], we hope that computer can find a function
which can distinguish the images. If we send a tree image to the function as an input, then
computer can recognize it and give the label of image “tree’ as an output which shown as above.
In first function above, the input are images and the output is the label of these images. When
we use deep learning in translation [1], we expect that machine can translate the words into
the language which we want. As the second part of cases, ” #% {% g*”, the description that ” i
am handsome ” in Taiwan, is the input of the function. Then the function shows that ” I am
handsome.” as an output. In this example, the Taiwan characters are input, and the English
sentence translated from Taiwan characters are the output. As the deep learning is applied in
prediction about conversation [38], we hope that computer can tell us what the next step is. We
set the sentence ” How are you ? ” as an input. Then ” I’m fine, thank you.” is the output of the
function which is the answer we should respond. Therefore, in the function shown in third case
above, the input of the function is the current sentence and the responding sentence you should

reply is the output. After figuring out these three cases above, we understand deep learning

DOI:10.6814/NCCU201901175

much more than before and it is time to see how it works.

Actually, deep learning can be divided into three steps which are building the model,
selecting loss function and training the model as shown in figure 2.1. Building the model
means that construct a neural networks and set a function according to the structure. In this
step, we need to decide the structure of neural networks and design the program about that. To
determine which function is the best, we need to select a loss function to evaluate the goodness
of those functions. So we need to define what is the goodness of the function in last step. Hence,

according to the training data, computer can choose the best function by training the model.

-
-

Figure 2.1: Three steps of deep learning

Step 1 : Building the Model

Step 2 : Select Loss Function

Step 3 © Traming the Model

2.1 Neurons and Neural Networks

Because of artificial neural networks are inspired by biological neural networks, the
structure of artificial neural networks is similar to the real human brains. [17] Neurons are
connected with neural networks in human brains, so artificial neural networks in deep learning
also have neural networks around the neurons. In this section, we will show that the structure
of neurons and the operation between the neurons in neural networks.

As in figure 2.2, a basic neuron is consisted of input, output, weights, bias and activation
function. z1, x5, 3 in the left side of figure 2.2 are the input of neuron. In the right side, v, is
the output of neuron. Circle in figure 2.2 is a neuron and its symbol o is the activation function
of neuron which will introduce later. Between the input and neuron are weights, denoted as

wy, wsy, ws. Finally, the bottom of figure 2.2 is the bias of the neuron, b;.

DOI:10.6814/NCCU201901175

Xy V1

by

Figure 2.2: The Structure of a Neuron

Now, we introduce the operation of neurons. First, input value is multiplied by the
corresponding value of weights, respectively. Then add the product values and bias together.
Finally, let the value we get through the activation function, then we will get the output. Take a
simple instance, we set z1, Ty, T3, wy, W, ws, by as4, 2, (=3), (=1), 3, 2, 3, respectively
and activation function is ReLU which will introduce in detail later. According to the operation
we introduced, we have 4 x (—1)+2 x 3+ (—3) x 243 = —1. Since ReLU will send negative

value to 0, then the out put is

o4 x(-1)+2%x3+(=3)x2+3)=0(—1)=0.

In deep learning, weights and bias are called parameters. Parameters are adjustable, when
training the model by training data, computer will adjust the parameters automatically to fit
the training data.

After discussing the structure of a neuron and its operation, we will introduce the neural
network. There are a lot of neurons in neural network, and they can connect to other neuron

freely. The figure 2.3 shows that the typical model of neural network in deep learning.

DOI:10.6814/NCCU201901175

Figure 2.3: Fully Connected Feedforward Network

Fully connected feedforward network is the simplest and first model in deep learning as
shown in figure 2.3. [35] In figure 2.3, there are 3 layers, first and third layers contain 2 neurons,
second layer contains three neurons. The number of layers and neurons are arbitrary which is
decided by ourselves. The input layer and out layer are the the left and right layers in figure
2.3, respectively. Between input layer and output layer are hidden layers, the number of hidden
layers is 3 or more than 3 will be called in deep structure. The neurons in fully connected
feedforward network are connected to all neurons of adjacent layers which is showed in figure
2.3 and explained what is ” fully connected ”. But in this model, it does not have any circle or
loop. We will introduce other model which contains circle or loop later.

If we decide a structure of neuron networks, then this structure will define a set of functions.
Machine will find the most suitable parameters according to the training data, this procedure we
call it training and it is equivalent to choose a solution of set of functions. But there may be no
or bad solution of set of functions because the set of functions defined by the model of structure
is not suitable to the problem. For different problem, we have different model to fit it. It is

difficult to let machine decided its model by itself, so this task is still done by ourselves.

DOI:10.6814/NCCU201901175

2.2 Activation Function

The following activation functions we introduced are non-linear functions. Because
without activation functions the output of neurons in every layers are linear combination of the
input, so activation function give them non-linear relationship. Let’s see three most common

activation functions in detail.

1. Rectified linear unit (ReLU)
Equation:
x, if x>0
0, if <0
Range: [0, c0)

Graph:

10 1

100 -75 -50 -25 00 25 50 75 100

Figure 2.4: Rectified linear unit (ReLU)

2. Sigmoid function

Equation:

Range: (0,1)

Graph:

DOI:10.6814/NCCU201901175

10~

0.3

0.6

04 1

0.2 1

0.0

100 -75 -50 -25 00 25 50 75 100

Figure 2.5: Sigmoid function

3. Hyperbolic tangent (tanh)

Equation:

Range: (—1,1)

Graph:

100
075 4
050 4
(25 1
000 4
—0.25 1
—0.50 1

—0.75 1

=1.00 -

=100 75 50 -25 00 25 50 5 100

Figure 2.6: Hyperbolic tangent (tanh)

DOI:10.6814/NCCU201901175

2.3 Loss Function

After we decided the connection between the neurons, we need to adjust parameters i.e.
weights and bias. The set which contains this parameters are called ¢ and every ¢ defined a
function, the set collect all this function is denoted by { Fy}. We want to find the best function
of problem i.e. find the most suitable parameter, the optimal function is denoted by Fy-. Define
the loss function is the way to find the optimal function.

Loss function map from parameter space to real number. For example, the number of
training data is & namely, (x1,v1), (z2,¥2), ..., (Tn,yx) and € is the set of neural network
parameters i.e. 0 = {wy,wo,...,wy,,b1,bs,...,by} then the loss function is defined by L :
R™™ s R. We use loss function to evaluate the difference between the real value y and
predicted value Fy(z). Of course, we hope that the predicted value is close to the real value, so
we need to minimize the loss function.

Choose a correct loss function is an important thing, like classification problem, it usually
uses binary cross-entropy as its loss function. The following are the three basic and simple loss

functions.

1. Mean absolute error (MAE)

1 k
:EZkI/z F9$7,

2. Mean squared error (MSE)

wIH

k
ZHyz FG xz

3. Binary cross-entropy

[yi log(Fy(xi)) + (1 — yi) log(1 — Fy(x;))]

b,
—
>
N—

||
?r-lr—k
M»

DOI:10.6814/NCCU201901175

2.4 Gradient Descent Method

In deep learning, the optimization is different from other common case. Generally, when
optimizing, we know how data exactly looks like and what goal we want to reach. But in deep
learning, we do not know how new cases look like, so we optimize our training data and use
validation data to test its performance.

The way we use to optimize training data is “gradient descent” which is usually
used in deep learning. Assume that the parameters of our neural networks are 6 =
{wy,wa, ..., wp, by, ba, ..., by }, we want to find the optimal solution #* such that minimizes the
loss function L(#). The following are the step of gradient descent method. First, we choose a
random value as an initial value for w; denoted as wgl). Second, compute its first derivation

% then update the parameter i.c.
wy

@ _ @ oL
w, =w, —n
1 1 awgl)

which 7 is learning rate and will introduce later. Continuing this way, until ;—jl is approach to
zero. As same as the other parameters, so the iteration is like the following form in figure 2.7

and we will do this iteration until all the parameter of norm is small enough.

[, (EF] 1 ()7
" vl g
w (D w® =
2 2 BWF)
(t-+1] ® dL
w, _ |Wn . O
1bl(t+1) bf) E‘?M{z
e | o | 4
: : _ab(f)_
seen | o] 0P

Figure 2.7: Gradient Descent

Learning rate is like a extent which represents a level we approach to minimum value in
every iteration and is set by ourselves. Usually, learning rate is small, because if learning rate is
large, then it may miss the minimum value or jump back and forth around the minimum value.
However, when learning rate is too small, the speed of training will too slow and cost too many

time. Therefore, setting learning rate is an important thing in deep learning.

10

DOI:10.6814/NCCU201901175

Chapter 3

Convolutional Neural Network(CNN)

Neural network (NN), Convolutional neural network (CNN) and Recurrent neural network
(RNN) are three based model in deep learning. [24] NN is the standard model of deep learning
and other models are modified edition according to it. CNN is named by its convolutional layer
and is good at image recognition and classification problems. On the other hand, since the output
of the previous layer is the input of the next layer, the whole model has recursiveness, so RNN
is good at processing time-related or sequential data.

The standard structure of CNN consisted of two main layers, convolutional layers and
pooling layers. The input image will be captured feature in convolutional layers and be reduced
the dimension in pooling layers. After that, the result will be flattened and through the fully
connected layers which use softmax as activation function to get the probability from of output.

Figure 3.1 shows the detail of structure of CNN and the following section we will introduce two

main layers in CNN.
~
: O
N
N
12 /3|a]s /(
6 (7|89 |10 / O
1112 13 14|15 —s — _,O
16 |17 |18 | 19 | 20 Convolution // Pooling Flattening
21 (22|23 |24 | 87 "\ /
N Pooling layers ()
Input image N~
Convolutional layers Output

Figure 3.1: Structure of CNN

11

DOI:10.6814/NCCU201901175

3.1 Convolutional Layer

Convolutional layer uses the filters to capture the features of input images such as the
shape or line of the pictures and one filter corresponds to one features. The following is the
convolutional operation which is notation is ® as shown in figure 3.2. It multiplies each elements
of filter and each elements of 3 x 3 matrix in the upper left of the input image. Then add them
together and we will get the element of feature map in the upper left. For example, we get 6 in

upper left of feature map by

I1x14+1x241x34+0x64+0x7+0x8=6

1/2(3|4]|5

6|7 (89|10 111 6 |9 |12
11 (12 (13 |14 | 15 ® 000 = |21|24]|27
16 | 17 |18 |19 | 20 00 0 36 | 39 | 42
21 |22 |23 | 24 | 87 Filter Feature map

Input image

Figure 3.2: Convolutional operation

After we get the output 6, the filter will move one grid of input image and do convolutional
operation again then we will get the output 9. Continuing this way, until all 3 X 3 matrix in the
input image convoluted by filter so that we can get the complete feature map shown in figure

3.2.

3.2 Max Pooling Layer

After we get the feature map from convolutonal layer in section 3.1, we use pooling layer
to let our feature more streamlined. There are three advantages of max pooling, reduce the
dimension of input image, image-denoising and translating few pixels in image will not change

the result.

12

DOI:10.6814/NCCU201901175

Figure 3.3 shows the operation of max pooling layers. Usually, we choose the pooling size
as 2 x 2 and select the maximum value in 2 X 2 matrix. Hence, we will get the upper left element
in pooled feature map 24. Next, move one grid of feature map and do the operation again until

we get the complete pooled feature map.

24

_—

Max pooling

Feature map Pooled feature map

Figure 3.3: Operation of max pooling layer (a)

Different from convolutional operation, the next matrix in feature map can not overlap the

previous matrix and it can out of bonds as shown in figure 3.4

6 | 9 |12
24 | 27

21 | 24 | 27 —
Tox pooling 39 | 42

36 | 39) 42

Feature fnap Pooled feature map

Figure 3.4: Operation of max pooling layer (b)

Finally, we will flatten the pooled feature map which obtain from max pooling layer and

send it to fully connected layers to get the output of whole model.

13

DOI:10.6814/NCCU201901175

Chapter 4

Abnormal Condition and Imbalanced

Data Set

In this paper, we want to use deep learning to recognize the handwriting number images.
But the data set is imbalanced so not all predictions are we interested, we care more about the
accuracy of minority class no matter in multi-class task or binary class task. Hence, this chapter
will introduce the abnormal condition and imbalanced data set and describe the problem they

caused in deep learning.

4.1 Abnormal Condition

In real life, we will encounter many situations, they may be good or bad or just nothing and
we usually call bad situation as abnormal condition. For example, the machine malfunction [31],
system failure in IT services [39], unexpected situation in radar data corresponding to six military
targets [9] and heart failure in electronic health records (EHRs) [6]. These abnormal condition
as above does not happen often but when it happened it may cost a lot of money and time to fix
and address it.

As above, we usually want to predict, detect and classify the abnormal condition.
Therefore, we use deep learning to help us to find the abnormal condition in condition domain
and we regarded it as an binary classification task. In this binary classification task, we call
normal condition as positive class and abnormal condition as negative class. Usually, this binary

classification task has data imbalanced problem and it will led the performance of the model

14

DOI:10.6814/NCCU201901175

terrible.
In order to judge the imbalanced level of dataset the following formula [2] represents the

imbalance ratio of dataset, that is, the ratio of maximum class size and minimum class size.

~ max;(|Cy)

P= """
min; (|C])

where C; is a set of samples in class . For example, if our dataset’s largest class has 48 samples
and smallest class has 16 samples, then the imbalance ratio p = 3. Note that the imbalanced
data set not just happen in binary classification task, it also happen in multi-classification task
and we will introduce it in next section.

In our work, we create an binary imbalanced data set from MNIST and it consisted two
classes, 0 and 1. The sample number of class 0 and 1 are 2 and 5000, respectively and it cause

the imbalanced ratio p = 2500.

4.2 Imbalanced Data Set

Usually, the abnormal condition can regard as a binary classification task which consisted
of one positive group and one negative group i.e. normal condition and abnormal condition.
But imbalanced data set not just happen in binary classification task, it will happen in multi-
classification task too. This section will discuss the imbalanced data in multi-classification task
and description the problem in this paper.

Imbalanced data arise in many different application which have rare frequency on positive
class such as computer security [7], disease diagnosis [32], image recognition [21]. In this paper,
we create an imbalanced multi-class data set from MNIST with minority classes 0, 1,4, 6, 7 and
imbalanced ratio p = 2500.

If we do not do something to adjust the model, it may get good accuracy but in fact this
model does not achieve the purpose we want at first. For example, we want to predict someone
will get the cancer in 3 months or not by their medical record. So our purpose is classify someone
is health or get the cancer. Usually, the number of health people is much larger than cancer
patient and we assume their ratio 1s 9 : 1. Hence, our model just predict all people are health
then the accuracy still get 90%. If we just use accuracy as our criterion, the model seems like

good enough but actually, it does not reach our goal to predict someone will get the cancer or

15

DOI:10.6814/NCCU201901175

not in 3 months and if someone has cancer and the model tell him that he is health, it may cause
irreparable consequences. To prevent this situation we will introduce 7 different methods to

address this problem in chapter 6.

16

DOI:10.6814/NCCU201901175

Chapter 5

Anomaly Detection

Anomaly detection is just like an abnormal condition, it can find the outliers, novelties,
noise, deviations and exceptions from the data set. Anomaly detection is applied on many fields
such as bank fraud [37], medical problems [33], structural defect [3] and errors in a text [28].

We can regard anomaly detection as a binary classification task, it will classify the samples
to normal and anomaly. Usually, we are interesting the anomaly condition but it often happened
rarely or even not happen in data set and cause highly imbalanced in data set. For example, if
we want to detect the existence of the cancer cell [23], the health cell is normal and the anomaly
condition is that detect to the cancer cell.

Although anomaly detection can be regard as binary classification, but there are some
different and difficult about anomaly detection. First, the distribution of anomaly sample is
unknown because the number of sort of anomaly condition is too much. For example, in cancer
detection, the cancer cell is anomaly. But if we feed a car or a tree to classifier, it will be regard
as anomaly condition too. Second, is hard to collect the anomaly data because most sample in
data set is normal. Hence, there are two training set, one is clean for all data , that is, all data is

normal, the other one contains some anomaly data.

5.1 Confidence Estimation

If we already have a classifier for health cell, we want to use it to do anomaly detection,
then beside the output label of health cell, the classifier must output a confidence score [4].

The confidence score is used to determine the sample is health cell or not. Let « be the input,

17

DOI:10.6814/NCCU201901175

function f is classifier and c is the confidence score. Given a threshold A we have

is normal, if ¢(x) > A
f(x)

is anomaly, if ¢(x) < A

For example, given A = (.5, in figure 5.1, the health cell classifier has highly confident for the

blood cell input image is blood cell and 0.98 > 0.5 so the input is normal.

4)

Health cell
calssifier

. J

Figure 5.1: Normal condition for heath cell classifier

— Red blood cell]0.98> Normal

— Epidermal cell 0.01

— Muscle cell 0.01

But as in figure 5.2, when using cancer cell image as input, we have low confidence and

0.34 < 0.5 so the input is anomaly.

4 R
Health cell

EE— . — Epidermal cell 0.33
calssifier

_ J

Figure 5.2: Anomaly condition for heath cell classifier

— Red blood cel 0.34)—>Anomaly

— Muscle cell 0.33

Hence, we can use the maximum of probability which classifier predicted to be the
confidence score and determine whether it is greater than A\ or not so that we can judge the

condition of input.

5.2 Gaussian Distribution

In this section, we will introduce the method that find the outlier when the training data
without the label. Since the training data without the label, it is hard to classify which sample is

anomaly. We believe that the anomaly condition is rare to happen, so we assume that the data

18

DOI:10.6814/NCCU201901175

set obey the gaussian distribution and believe that the anomaly sample is the outlier of gaussian
distribution [34].

For example, we want to know that the car engine form the production line is a defective
or not and we have some information which is the temperature and rotating speed of engine. We

use the information to draw a scatter diagram, each points & represent an engine as shown in

figure 5.3
F 9

~ P(x) small

| SO

AH] 9

<3

2 X

? [g

= a o P(x) large

E o @ _

i~ "] [] “
L -

= | o * e o °

v

Temperature

Figure 5.3: Car engine scatter diagram

In figure 5.3, we can find that the point in the middle has higher probability to happen

than the point at upper right corner. Hence, given a threshold ¢, we can define the normal and

anomaly condition as following:

@ is normal, if P(x) > ¢

x is anomaly, if P(x) < ¢

Furthermore, we assume that the data set obey the gaussian distribution and we can use it
to calculate the P(x) we want. We need to calculate the mean and covariance for each feature z;
which in our example are temperature and rotating speed. The formula for mean and covariance
is as following:

U; =

3=
=
e

<
I
—

(l’f - Ui)2

sqw
I
Sl

1

<
Il

, where m is the number of samples. After obtain the mean and covariance for each feature,

DOI:10.6814/NCCU201901175

given any new data x, we can use gaussian distribution to calculate its probability as following:

H (zi — ;))
TV 27Taz erp(= 207

Hence, given a threshold €, we can find the outlier in the data set which means P(x) < e.

Continue the previous example, we let the red line as a threshold € and then we get 4 anomaly

samples as shown in figure 5.4.

F 3
=
e ° o | Anomaly samples
&
>
g P(x) =c¢
-
S
8 ® ®

Temperature

Figure 5.4: Defective detection

5.3 Experiment for Confidence Estimation

In this section, we use a pretrained handwriting classifier to do the confidence estimation.
We want to judge that the input is handwriting or not. Hence, we collect 18 pictures of cat
and dog as input and hope classifier can predicted them are not handwriting with confidence

estimation. Figure 5.5 shows that the example of cat and dog pictures.

(a) Picture of cat (b) Picture of dog

Figure 5.5: Example of cat and dog pictures

20

DOI:10.6814/NCCU201901175

Our pretrained model use CNN and have vary high accuracy on training set and testing set
with 99.98% and 99.35%. After we put the pictures of cat and dog to the handwriting classifier
model, we get the confidence score of cat and dog pictures. We set A\ = 0.6 as threshold and

table 5.1 shows the confidence score of cat and dog pictures.

Confidence Score Confidence Score
Cat 1 0.2014 Dog 1 0.3286
Cat 2 0.1873 Dog 2 0.3873
Cat 3 0.1689 Dog 3 0.4854
Cat4 0.5715 Dog 4 0.2744
Cat5 0.5491 Dog 5 0.2345
Cat 6 0.4481 Dog 6 0.178
Cat7 0.3339 Dog 7 0.4345
Cat 8 0.3436 Dog 8 0.4574
Cat9 0.3723 Dog 9 0.3637

Table 5.1: Confidence score of cat and dog pictures

From table 5.1, we can see that all of confidence score of cat and dog pictures are not greater
than 0.6 so that all of cat and dog pictures are not handwriting picture by our classifier.

After our classifier successfully recognizing the cat and dog pictures are not handwriting
pictures, we want to know the classifier can recognize the handwriting pictures or not. Hence,
we use 0 — 9 handwriting number pictures but missing 5 and 6 as input to train our model
and get 99.3% and 80.96% accuracy on training set and testing set, respectively. Then we do
confidence estimation by using cat and dog pictures and 5 and 6 handwriting number pictures

as inputs. Table 5.2 shows the confidence score of inputs.

Confidence Score Confidence Score
Cat 1 0.4773 Dog 1 0.9333
Cat 2 0.4771 Dog 2 0.8598
Cat 3 0.3947 Dog 3 0.8056
Cat4 0.3414 Dog 4 0.9103
Cat5 0.4708 Dog 5 0.858
Cat 6 0.546 Dog 6 0.7704
Cat 7 0.7042 Dog 7 0.7726
Cat 8 0.7597 Dog 8 0.6686
Cat9 0.7722 Dog 9 0.5838
Class 5 0.9987 Class 6 0.9993

Table 5.2: Confidence score of inputs

We set A = 0.8 and find that our classifier can recognize class 5 and 6 as handwriting

21

DOI:10.6814/NCCU201901175

number pictures successfully and recognize most cat and dog pictures are not handwriting

number pictures.

22

DOI:10.6814/NCCU201901175

Chapter 6

Methods for Imbalanced Data Problem

In this chapter will introduce many different methods to address the problem of imbalanced
data. We are roughly divided into two methods, data-level methods and algorithm-level methods
[18] some of them are fit to the binary classification task and the others are suitable to the multi-

classification task.

6.1 Data-level Methods

In this section, we will adjust our number of sample from different classes until all classes
are balanced. We introduce 3 main methods to handle our original imbalanced data sets. These

3 methods can use on both binary classification task and multi-classification task.

6.1.1 Random-oversampling(ROS)

Random oversampling(ROS) is a popular solution of imbalanced data problem since it is
easy and have good performance. [12,30] ROS choose samples randomly from minority classes
and copy the samples until the sample number of minority classes is equal to the sample number
of majority class. For example, we have A, B, C three classes and the sample number of A, B, C'
are 10, 4, 5, respectively. As shown in figure 6.1, A is majority class and minority classes are B

and C'. After ROS, we can see that the sample number of B and C' are equal to A.

23

DOI:10.6814/NCCU201901175

6 6
5

I Random — Over'samﬁling

Figure 6.1: Random oversampling(ROS)

6.1.2 Synthetic minority over-sampling technique(SMOTE)

Although people usually use ROS as a solution of imbalanced data problem, but it may
cause overfitting since it has too many repeated samples in a new balanced data set. To avoid
this situation, Chawla, Nitesh V., et al. create a advanced method, Synthetic Minority Over-
sampling Technique(SMOTE) [5] which produce new minority samples. SMOTE not just copy
the sample of minority classes like ROS, it develop an algorithm to create a new sample of
minority classes to prevent overfitting. SMOTE choose a sample in minority class randomly,
find its k-nearest neighbors and create a new minority sample between them. The following is

the algorithm of SMOTE to create new minority samples.
1. Select a minority sample A randomly.
2. Find k-nearest neighbors.
3. Choose 1 sample from k-nearest neighbors randomly and call it B.

4. Create a new sample C' which C' = A\S 4 (1 —\) R, where) is a random number between

0 and 1.

The k-nearest neighbors which are top & nearest samples to A in all classes, but we usually
choose them in minority class. Actually, the new sample C' is on the line between A and B.
Continue this way, we can get a lot of artificial minority samples until the sample number of all

classes are equal. Figure 6.2 shows the algorithm detailed.

24

DOI:10.6814/NCCU201901175

x ®
,‘.‘xxog
xxxxx

(a) SMOTE:step 1 (b) SMOTE:step 2

x

x % .
»® o"‘ﬂx og R
x x * % x,l,x

(c) SMOTE:step 3 (d) SMOTE:step 4

Figure 6.2: Algorithm of SMOTE

SMOTE usually have good performance on classification of imbalanced data set, but since

several samples are synthetic, the interpretability of the model is greatly reduced.

6.1.3 Random-undersampling(RUS)

Undersampling is another common solution of imbalanced data [12], similar as oversampling,
italso let all classes have same sample number. Different from ROS, random undersampling(RUS)
remove the data in majority class until all classes have same sample number. Some article use
transfer learning with RUS to classify imbalanced data sets of plankton images [25] and some
research show that in some situations RUS have better performance than ROS [10]. But actually,
RUS usually performance much badly than ROS because it may deleted some important data in

majority class. Figure 6.3 shows the example that how random undersampling works.

25

DOI:10.6814/NCCU201901175

6 5 G

Under — Oversampling I I
2 2
: & B c i A B c

Figure 6.3: Random undersampling(RUS)

In data-level methods, we usually use ROS or SMOTE to eliminate class imbalance and
have good effect on small data sets. But if our data set is much bigger or have extreme class
imbalance i.e. p is large, performance of oversampling is not good any more because it will
produce too many repeated samples led to overfitting and increase the training time. On the
other hand, we believe that RUS can obtain better results on big imbalanced data set since it
can reduce the training time and the number of sample in minority class is enough for model

training.

6.2 Algorithm-level Methods

In this section, we will introduce 3 different loss function and cost sensitive learning. MFE
and focal loss are two loss function which can be used on both binary classification and multi-
classification. Due to the property of MFSE, this loss function only can be used on binary

classification task. At last, cost sensitive learning can be used on both two classification task.

6.2.1 Mean false error(MFE)

Since MFE is inspired by the concepts of false positive rate and false negative rate [36],
then we introduce confusion matrix with these two concepts first. Confusion matrix is a common
indicator to judge a model is good or not. As shown in table 6.1, the index of vertical axis is
actual condition, on other hand, the index of horizontal axis is predicted condition.

The meaning of true positive, false positive, false negative and true negative are correct
prediction of positive samples, incorrect prediction of negative samples, incorrect prediction of
positive samples and correct prediction of negative samples, respectively. Take an example,

we want to classify the pictures of dog and cat, pictures of dog are positive samples and

26

DOI:10.6814/NCCU201901175

Condition Positive | Condition Negative
Predicted Condition Positive True Positive False Positive
Predicted Condition Negative False Negative True Negative

Table 6.1: Confusion matrix

negative samples are cat pictures. If we predict dog pictures as dog and cat pictures as cat,
then these condition are called true positive and true negative, respectively. But if we have
wrong prediction like take dog pictures as cat and cat pictures as dog, then these condition are
called false negative and false positive which they are also called Type I error and Type II error.

The loss function MFE is focus on the false condition and is much more sensitive than
MSE. MFE is combined with two error, mean false positive error(FPE) and mean false negative

error(FNE), the following are formula of them,

N
1 2
FPE = N;Hyi — Fy(x;)||

P
1 2
FNE = §Z||yi — Fy(x;)||

=1

MFE =FPE+ FNE

where NV and P are the number of negative samples and positive samples, respectively.
In this paper, we apply MFE in multi-classification task so we modify the MFE loss function

as following
c C 1 Nc)
MFE =Y FcE=3 - llgi— Fola:)|
e=1 e=1""°i=1

, where N, is the number of samples in ¢ class and ¢ = 1,2, ..., C where C' is the number of

class.

6.2.2 Mean squared false error(MSFE)

Since we want to get the high classification accuracy on positive class, then the false
negative error must quite low [36]. Hence, Wang et al. design an improve loss function, mean
squared false error(MFSE) which is more sensitive than MFE on the error of positive class. In
MFE, we only ensure that the minimize the sum of FPE and FNE, but it is not enough to get the

high classification accuracy on positive class. Usually, FPE contribute more loss than FNE in

27

DOI:10.6814/NCCU201901175

MEFE since in imbalanced data set there are much more negative samples than positive samples.
Hence, MFE is not sensitive enough to the error of positive class. To solve this problem, MFSE

is presented and the following are the formula of MSFE.

MFSE = FPE?* + FNE?

1
= 5((FPE + FNE)*+ (FPE — FNE)?

As above, MFSE minimizes (FPE + FNE)? and (FPE — FNFE)? at the same time, then
the error of positive class and negative class will also minimize at the same time. As a result,
we can have the same effect as MFE and guarantee the positive class accuracy simultaneously.
However, the property that MFSE minimizes both (FPE + FNE)? and (FPE — FNE)? is

not exist in multi-classification task, so we only use MFSE on binary classification task.

6.2.3 Focal loss

Lin et al. propose a new loss function: focal loss which is modified from traditional cross-
entropy(CE) [26]. Focal loss can reduce the weight of samples which is easy to classify and
let the model focus on the samples which is hard to classify. Here, we will follow Lin et al.
to introduce loss function form CE to focal loss. In binary classification, the following is the

formula of binary cross-entropy.

L(9) = —

| =

k
> lyilog(Fy(w;)) + (1 — ;) log(1 = Fy(x;))]
i=1
For convenience, we let

k e
1 Fg(l‘i), 1fyi =1
L(0) = L(p;) = ~ Zlog(pi), where p; =
i=1 1 — Fy(xy), ify; =0
Then in order to control the weight of the positive and negative samples to the loss, we add a
new hyper parameter «;, where o; = a when y; = 1 and ; = 1 — a when y; = 0. Usually,
negative samples are much more than positive samples i.e. the number of 7 which y; is 1 is more

than the number of ¢ that y; is 0, then we will set o between 0.5 to 1 such that it can increase the

28

DOI:10.6814/NCCU201901175

weight of positive samples to loss. Hence, we have

k

1 Fy(x;), ify; =1

Lo, (pi) = T Z a; log(p;), where p; =

i=1 1 — Fy(zy), ify; =0

Although L, (p;) can control the weight of the positive and negative samples to the loss, it can
not control the weight of samples which are easy to classify and hard to classify, so Lin et al.

proposed the focal loss

b Fy(x;), ify; =1
Z 1 _pz log pz) where bi =

?rl»—ﬂ

We call as focusing parameter which v > 0 and (1 — p;)” is modulating factor. Clearly, we
can see that when a sample has wrong classification then p; is small and (1 — p;)” approaches to
1. For example, if y; = 0 and wrong classification happened, then p; must less than 0.5, so p;
is small and (1 — p;)" is close to 1. Therefore, the loss will not change intensely compared with
original binary cross-entropy. Furthermore, when p; approaches to 1, then modulating factor is
small so the loss it contributed is small too. Focal loss restrict the loss of samples which are
easy to classify, that is, it can raise the contribution of samples that are hard to classify. Figure
6.4 shows that the performance with different focusing parameter 7y and note that focal loss is

traditional cross-entropy when v = (.

I'.JH"\-

Figure 6.4: Focal loss

29

DOI:10.6814/NCCU201901175

Finally, Lin et al. find that if we combined L,,(p;) and F'L(p;), then it can adjust the
weight of positive and negative samples to loss and control the loss of samples which are easy

to classify. So we have,

k

1 Fy(z;), ify; =1
FLa,(pi) = % E a;(1 — p;)" log(p;), where p; =
i=1 1 — Fy(x;), ify; =0

In this paper, we use focal loss on multi-classification task and do not set o; as above. We
set « = (1, g, ...,a¢) where C' is the number of class so the focal loss function on multi-

classification task is as below.

MFLo(Fy(zi)) = Zz%yw — Fy(xic))" log(Fp(wic))

zlc—

6.2.4 Cost sensitive learning

In binary classification, we often treat the loss of classification errors as the same, but it is
wrong in real world. For example, we have a classifier to distinguish someone has a cancer or
not, positive sample means get a cancer and negative sample is not. If we predict someone does
not have cancer and he has cancer in real, then it may not be a big deal. But if someone has cancer
and the prediction is not, then he may die because our wrong classification. Hence, the cost of
misclassification may not be the same and it will change depends on different situations [11,13].

Cost sensitive learning give different cost to different misclassification as shown in table
6.2 which is cost matrix in binary classification [27]. In cost matrix, C'(c, j) means the cost of

misclassifying that misclassifis a sample of ¢ th class to j th, note that C(c, j) = 0 when ¢ = j.

Predicted Condition Negative | Predicted Condition Positive
Condition Negative C(0,0) C(0,1)
Condition Positive C(1,0) C(1,1)

Table 6.2: Cost matrix

There are many ways to apply cost sensitive learning to deep learning [13]. In this paper,
we will use threshold moving apply in testing stage after the classifier is already trained [11,22,
40]. In general, we will set a threshold ¢ for our classifier, if output is greater than ¢, then it is
considered positive sample, otherwise, negative sample, usually ¢ = 0.5. So threshold moving

adds the concept of cost of misclassification and moves the threshold ¢ to let the minority class

30

DOI:10.6814/NCCU201901175

can easy to classify. In the case of cancer patient, threshold moving moves the threshold toward
inexpensive misclassification i.e. someone does not have cancer and predict he has cancer, so
that the samples with high costs become hard to misclassify. Threshold moving will use original
data set to train and add concept of cost sensitive learning in testing stage.

The output of our neural network is Fy(z;.) foralle = 1,2,...,C, which is an
probability and C' is the number of classes, after threshold moving we will get a new output

Fj(x;.) forall c = 1,2, ...,C and it belongs to c* class by calculated

argmax Fy (x;)

c

Clearly, the sum of all possibility is equal to 1 and we have

C C
D Folwie) =) Fy(ric) =1
c=1 c=1

The concept of cost sensitive learning is added in threshold moving, so we consider the effect

of C(c, j) and get the new output by following equation

C

Fi(aie) = 8 Fa(a)Cle.).
j=1

where [is a parameter to let F}(x;) fit the probability equation Zle Fy(x;.) =1

Cost sensitive learning can also use on sampling [16], changing learning rate [22], modify
the output [13] and create a new loss function [13,27]. Through the ratio of different C'(c, j), we
can decide how many sample we need to duplicate or delete in new data set. Change learning
rate or modify the output will led neural network to notice the point of cost in training stage.
On the other hand, different from traditional loss function, we can minimize the total cost of
misclassification to train our neural network. There are still many spaces where can work hard,
we can combine cost sensitive learning with other methods to address imbalanced data and

compare the performance of each different model in future.

31

DOI:10.6814/NCCU201901175

Chapter 7

Experiment for Multi-classification Task

In this chapter, we will introduce the structure of our models. We design an imbalanced
data set from MNIST which have imbalance rate p = 2500 and use CNN for training. This
model M, is our baseline model which have bad performance because of imbalanced data and
we will use 7 different methods to create other 7 models to prove that our solution is work and
compare their performance.

MNIST is a data set which contains 10 classes about handwriting images from 0 to 9. There
are 60000 and 10000 images in training set and testing set, respectively. MNIST is a balance

model on both training set and testing set, and all classes have more than 5000 samples. Figure

1135
1089

7.1 shows that the samples number of each class on training set and testing set.
o974 m0

1200
8 8 s 23 mo w00 958
5000 o 892
5421
ml n ml
5000 3 800 2
A000 3 wn 3
500
na)
3000
u5 400 m5
2000 us -t
. 200
1000 7 -
& . ms
T 2 3 5 7 8 g W7 0 3 4 s 5 7 & 9

Classes Classes

1032 1010 082 1028

Mumber of sample

Mumber of samples

1 2
(a) Training set (b) Testing set

Figure 7.1: Sample number of MNIST

Each images have size 28 x 28 and its label represents its number as shown in figure 7.2.

32

DOI:10.6814/NCCU201901175

10 4

15 A

20 4

25 A

0 5 10 15

Figure 7.2: Sample from MNIST

7.1 Baseline Model

20

5

We create an imbalanced data set from MNIST by choose 5 minority class which is

0,1,4,6,7 randomly with imbalance rate p = 2500 in this section. Figure 7.3 shows that the

number of samples in imbalanced MNIST.

6000
5000

5000

3000

Mumber of samples
"
a3
]
A

Classes

Figure 7.3: Imbalanced MNIST

o

1000

(4=

After create an imbalanced data set, we use CNN to train our imbalanced data set and hope

to get bad performance so that we can use other method to adjust it. In this baseline model, we

have three convolutional layers and they all connect max pooling layers. After the input images

pass through layers as above, it will be flatten and through two dense layers, finally get the

output which represents the probability that the input belongs to each classes. We set the size of

33

DOI:10.6814/NCCU201901175

filters in all convolutional layers is 3 x 3, pooling size is 2 x 2, dropout rate is 0.2 and each layer
contains 32, 64, 128, 200, 10 neurons, respectively. We choose Relu as our activation function
in every convolutional layer and first dense layer, second dense layer we use softmax due to we

want to get the probability output, figure 7.4 shows the structure of CNN model clearly.

Convolutional layer Ao Pooline Tovan Convolutional layer
32 neurons, filter:3x 3 cize : ng 5 64 neurons, filter:3 % 3
Droupt: 0.2 : Droupt: 0.2

- r Convelutional layer -
Flatten Maxfljoolhng layer [¢—1128 neurons, filter: 3 X 3‘!"— Maxiljoolhng layer
size: 2 X 2 J size: 2 X 2
L Droupt:0.2

Dense layer Dense layer
> —[0,0,0,1,0,0,0,0,0,0]

200 neurons 10 neurons

Figure 7.4: Structure of baseline CNN model

We use stochastic gradient decent as our optimizer, set learning rate 7 = 0.05 and loss
function is mean square error(MSE). The number of input is 15016, batch size is 100 and trained
200 epochs. M, is training by training set which we created is imbalanced, but test with the
original testing set which is balanced. After 5 trainings, we find that M, have great performance
and get 99.04% average accuracy on training set, but we guess this is just an illusion because
the average accuracy on testing set is worse 1.e. 48.63%. Table 7.1 shows the performance of
M, which contains the average accuracy of training set, testing set, minority class, respectively
and in figure 7.5 we can find that at class 0, 1, 4, 6, 7 have bad performance in confusion matrix

due to the number of samples is small.

Training | Testing | 0 1 4 6 7
M, | 99.04% | 48.63% | 0% | 0% | 0% | 0% | 0%

Table 7.1: Average accuracy of M,

34

DOI:10.6814/NCCU201901175

o=

=]

F =9

1000

800

200

400

(=3

200

=}

0 2 4 B B

Figure 7.5: Confusion matrix of M,

To improve the M,, we will use 7 different methods to adjust the model and compare their

effect.

7.2 Random-Oversampling Model

In this section, we adjust our training data set and let it become a balanced data set. As we
introduce in section 6.1.1 we will choose samples randomly from minority classes and copy the
samples until the sample number of minority class is equal to the sample number of majority
class. After ROS, the dataset is balanced and we train it as the same structure of M, and call
this new model M,;. The model M, also have good performance on training set which get
99.76% average accuracy, and the performance on testing set is better than M,, that is, 79.44%
average accuracy, we surmise that the overfitting happened so that the accuracy is not good
enough. Table 7.2 shows that the comparison of average accuracy between M, and M,;, and

M, is better than baseline model M,,.

Training | Testing 0 1 4 6 7
My | 99.04% | 48.63% 0% 0% 0% 0% 0%
M,s | 99.76% | 79.44% | 74.11% | 89.56% | 37.47% | 56.8% | 40.44%

Table 7.2: Average accuracy of M, and M,

We discover that ROS adjust the accuracy on minority classes 0,1,4,6,7 in confusion

35

DOI:10.6814/NCCU201901175

matrix shown in figure 7.6.

1000 0 1000
BOO 2 BOO
600 a GO0
400 6 400
200 200
B
o o
o 2 4 B B o 2 4 B B
(a) Mb (b) Mos

Figure 7.6: Confusion matrix of M, and M,

7.3 Synthetic Minority Over-sampling Technique Model

Different from ROS, we will create an artificial minority samples to prevent overfitting.
We follow the algorithm on section 6.1.2 and produce many samples of minority so that the
dataset is balanced. We can see that the picture of new sample of class 1 produced by SMOTE

in figure 7.7, looks like two pictures of class 1 overlap.

0 5 10 15 20 25

Figure 7.7: Average accuracy of M, and M,
Similarly, we use the same structure as M, to train our model M, and get 99.73% average

accuracy on training set and testing set performs like ROS which have 77.54% average accuracy,

36

DOI:10.6814/NCCU201901175

and the comparison between M, and My, shown in table 7.3.

Training | Testing 0 1 4 6 7
M, | 99.04% | 48.63% 0% 0% 0% 0% 0%
Mgy, | 99.73% | 76.8% | 60.85% | 82.07% | 39.5% | 53.94% | 37.33%

Table 7.3: Average accuracy of M, and My,

Figure 7.8 shows the comparison of confusion matrix between our model My, and M, we

can find that it also improve the accuracy of minority class.

(=]

P

=

(=2

=]

(a) M,

1000
BOO
£00
400
200
1]

o 2 4 & B

(]

=4

[=a]

=]

Figure 7.8: Confusion matrix of M, and M,

.I|||"|iii|ii|||||!!|||||||\!!|||| i‘
o 2 4 & B

(b) My,

1000

800

E00

400

200

Although the performance of M, is better than M, but since it create fake samples and

some of them are not look like original number, the interpretability of the model is greatly

reduced and the performance is also not perfect.

7.4 Random-Undersampling Model

Section 7.1 — 7.3 is the method of oversampling, this section we will use undersampling to

try to address the bad performance of model which caused by imbalanced data set. As in section

6.1.3, we will delete the sample of majority class until the data set is balanced. Similarly, we

use same structure of CNN to train our model M, but since it is hard to converge, so we change

the training epochs as 500. M, get very low accuracy in many classes on testing set as shown

in table 7.4 and its confusion matrix also shows the bad predicted result in figure 7.9.

37

DOI:10.6814/NCCU201901175

0 1 2 3 4 5 6 7 8 9
M,s | 56.5% | 95.42% | 59.49% | 0% | 0% | 0% | 0% | 0% | 0% | 0%

Table 7.4: Average accuracy of every class in M,

1000

800

BO0

400

200
0 2 4 B i)

Figure 7.9: Confusion matrix of M,

]

=]

F 9

(=)

=}

L=

We believe that the bad performance of RUS due to the sample number of training set is
too small and our model can not capture the feature of picture. Hence, we consider RUS is not
a suitable method of our problem, we think it is suitable on a larger data set, which after RUS it
also have enough samples to train. But RUS is not all have disadvantages, it save our training

time and is quicker than M, for 180 times.

7.5 Mean False Error Model

Different from section 7.1 — 7.4 is data-level method, in this section we use new loss
function MFE as we introduced in section 6.2.1. MFE is more sensitive to the loss that
contributed by minority class. We use the same structure as M, to train our model M e and
it also has high average accuracy 99.92 on training set and the performance on testing is better
than M, too which get 75.55 average accuracy. The performance of comparison between M,
and our mean false error model M. shown in Table 7.5 and we can find it increases the accuracy

of minority in confusion matrix shown in figure 7.10.

38

DOI:10.6814/NCCU201901175

Training | Testing 0 1 4 6 7
My, | 99.04% | 48.63% | 0% 0% 0% 0% 0%
Mye | 99.92% | 75.55% | 58.3% | 81.13% | 36.47% | 44.58% | 38.59%

Table 7.5: Average accuracy of M, and M,

0 1000
2 800
a 600
400
i
200
i)
o
0 2 4 & 8

(a) M,

1000

800

G00

400

200

o 2 4 & B

(b) My,

Figure 7.10: Confusion matrix of M, and My,

7.6 Focal Loss Model

Same as section 7.5, we use new loss function, focal loss let the model be more sensitive to
minority class. Another advantage for focal loss is that it can reduce the contribution of sample
which is easy to classify as we mentioned in section 6.2.3. In this section we will try different
number of focusing parameter v and «v. Different from Lin et al. « in our model is not between
0and 1, we set & = (a,a,1,1,a,1,a,a,1,1) which we give weight a for minority class and 1
for majority class where a = 1,5, 10, 50, 100. On the other hand, we set v = 0,0.5, 1,2, 5. Note
that when @ = 1 and v = 0 the focal loss is categorical cross-entropy which we are familiar.

The following are the performance of My, with different parameters.

39

DOI:10.6814/NCCU201901175

Training

Testing

0

1

4

6

7

a =

99.99%

74.46%

55.13%

78.26%

37.04%

41.87%

36.12%

a =

99.99%

77.88%

65.04%

85.9%

44.84%

46.53%

39.49%

a =10

99.99%

78.29%

65.99%

87.8%

44.1%

44.25%

43.46%

a = 50

99.99%

79.31%

64.18%

86.42%

55%

47.53%

43.65%

a =100

99.97%

79.73%

68.13%

88.52%

48.18%

53.87%

42.27%

2. v=0.5:

Table 7.6: Average accuracy of My, withy =0

Training

Testing

0

1

4

6

7

a=1

99.98%

74.83%

54.68%

80.93%

38.42%

41.39%

36.04%

a =

99.98%

77.96%

63.19%

86.88%

41.99%

51.66%

39.21%

a=10

99.98%

77.64%

68.56%

88.22%

40.5%

45%

37.13%

a =50

99.99%

78.05%

60.58%

86.14%

50.26%

46.61%

41.12%

a =100

99.98%

77.84%

64.56%

88.04%

40.62%

49.99%

38.86%

Table 7.7: Average accuracy of My with v = 0.5

Training

Testing

0

1

4

6

7

a =

99.98%

74.07%

55.22%

81.06%

36.96%

35.8%

32.35%

a =

99.98%

75.91%

57.58%

85.33%

38.28%

41.89%

38.84%

a =10

99.97%

77.65%

63.48%

88.1%

38.97%

00.47%

38.34%

a = 50

99.98%

78.24%

61.4%

86.25%

01.29%

46.17%

40.77%

a =100

99.97%

77.23%

63.4%

84.89%

43.33%

47.92%

36.82%

4. v=2:

Table 7.8: Average accuracy of My with v = 1

Training

Testing

0

1

4

6

7

a =

99.95%

72.85%

55.77%

80.18%

36.22%

27.15%

32.05%

a =

99.97%

75.34%

09.41%

82.77%

38.04%

38.72%

37.48%

a=10

99.98%

74.65%

61.18%

83.16%

33.35%

32.54%

38.86%

a = 50

99.98%

76.38%

58.36%

84.18%

42.31%

42.41%

40.3%

a =100

99.96%

77.15%

63.89%

85.84%

43%

44.54%

38.4%

Table 7.9: Average accuracy of My, with v = 2

40

DOI:10.6814/NCCU201901175

gamma in model My, We find that when a = 100 and v = 0, the performance of model is

best.

Training | Testing 0 1 4 6 7
a= 99.83% | 69.21% | 41.07% | 75.34% | 24.8% | 25.36% | 28.73%
a= 99.85% | 71.61% | 48.46% | 78.69% | 28.99% | 27.59% | 35.15%
a=10 | 99.88% | 72.23% | 53.32% | 79.48% | 31.76% | 27.86% | 33.22%
a=>50 | 99.81% | 73.22% | 57.66% | 78.3% | 38.97% | 29.93% | 31.95%
a =100 | 99.83% | 72.58% | 49.62% | 85.31% | 34.84% | 31.54% | 28.43%

Table 7.11 shows that the average accuracy of testing set with different parameter a and

Furthermore, we find that almost every model has higher accuracy when a is bigger and y

Table 7.10: Average accuracy of My with y =5

a=1 a=5 | a=10 | a=>50 | a =100

vy=0 |74.46% | 77.88% | 78.29% | 79.31% | 79.73%

v =0.5]74.83% | 77.96% | 77.64% | 78.05% | 77.84%

vy=1 |74.07% | 75.91% | 77.65% | 78.24% | 77.23%

v=2 | 72.85% | 75.34% | 74.65% | 76.38% | 77.15%

vy=>5 169.21% | 71.68% | 72.23% | 73.22% | 72.58%
Table 7.11: Average accuracy of My, with different parameters

is smaller. We can see detailed in figure 7.11.

00

sl md]
[T O T P I T

]

[=}]

——]-'=,_,

Ln

y=0.5

10

y=1

50

y=2

100

¥=5

Figure 7.11: Average accuracy of M, with different parameters

41

DOI:10.6814/NCCU201901175

7.7 Cost Sensitive Learning Model

In this section, we add the concept of cost sensitive learning in threshold moving as we
mentioned in section 6.2.4. According to the confusion matrix of baseline model in figure 7.5,
we can find that where the misclassification happened. For example, the sample of class 0
almost classified to class 2,4 and 8. Hence, we can increase the cost of misclassification that 0
misclassified to 2, 4 and 8 to arise the probability that classified to 0. But after experiment, we
find that is hard to create a cost matrix to let the model be sensitive to all minority class. Because
if we increase the predicted probability of some minority class, it will effect the probability of
other minority class even cause worse situation. Therefore, after try and error many times, we
just set C'(1,2) = 1000, C'(1,8) = 2000, C(i,j) = 1 wheni # j and C'(,j) = O when i = j as
we mentioned in section 6.2.4.

Asin table 7.12, we can see that the cost sensitive learning model M, improve the accuracy

of class 1 but the accuracy of other minority class still get 0%.

0 1 4 6 7
M, | 0% 0% 0% | 0% | 0%
M. | 0% | 89.94% | 0% | 0% | 0%

Table 7.12: Average accuracy of M, and M.

1000 1000
800 800
£00 600
400 400
200 200
0 0

o 2 4 & B o 2 4 & B

(a) M, (b) M.

(=]
(=]

=] L %]
=] = [N

=]
=]

Figure 7.12: Confusion matrix of M, and M,

Figure 7.12 shows the comparison of confusion matrix between M, and M, that M,

improves the performance of prediction on class 1. We believe that cost sensitive learning model

42

DOI:10.6814/NCCU201901175

can improve the performance of prediction well in binary classification task.

7.8 Result for Multi-classification Task

In multi-classification task, we use 6 methods to adjust our model, some of them have
a good effect and the other may not suit for our data set. Table 7.13 shows that the average

accuracy of different methods on minority class 0,1, 4,6, 7.

Class 0 | Class1 | Class4 | Class6 | Class 7
M, 0% 0% 0% 0% 0%
My | T4.11% | 89.56% | 37.47% | 56.8% | 40.44%
M,,, | 60.85% | 82.07% | 39.5% | 53.94% | 37.33%
M,s | 56.5% | 95.42% 0% 0% 0%
My | 58.3% | 81.13% | 36.47% | 44.58% | 38.59%
My | 68.13% | 88.52% | 48.18% | 53.87% | 42.27%
M. 0% 89.94% 0% 0% 0%

Table 7.13: Average accuracy of minority class with different models

According to table 7.13, we can find that M, M,,,, My. and M, have great performance,
they increase the average accuracy of minority classes successfully. M, have bad performance
may due to it delete to many important samples on majority class. Because of multi-classification
task, if we change the cost on M, it will cause a lot of effect on other class, so cost sensitive
learning is difficult to achieve on our task.

Focal loss is a suitable loss function for imbalanced data set, we believe that M. have the
best performance on our imbalanced data set, we can see the comparison of average accuracy in

figure 7.13 in detail.

43

DOI:10.6814/NCCU201901175

100
90
80
70 ‘\
60
50
40
30
20
10

0 1 4 & 7

g V105 MSM g WIS g W2 g W] M

Figure 7.13: Comparison of average accuracy of minority classes with different methods

44

DOI:10.6814/NCCU201901175

Chapter 8

Experiment for Binary Classification Task

As in chapter 7, we have the same structure CNN model but only have two outputs 0 and
1. In this chapter, we also have baseline model M, and we will adjust it by 7 different methods.
We believe that some methods performs bad in multi-classification task will performs well in

binary classification.

8.1 Baseline Model

We create a binary imbalanced data set form MNIST by choose class 0 as minority class
and class 1 as majority class with imbalance rate p = 2500, we can see the sample number of
different class in figure 8.1.

6000

5000
5000

Mumber of samples
L
[=
[=
[=

Classes

Figure 8.1: Binary imbalanced MNIST

We use same structure as section 7.1 and My, has great performance on training set with

45

DOI:10.6814/NCCU201901175

99.96% average accuracy but only has 53.66% on testing set. Table 8.1 shows the performance

of M, with average accuracy of training set,testing set, class 0 and class 1, respectively.

0 1
0% | 100%

Training
99.96%

Testing
53.66%

Mo

Table 8.1: Average accuracy of M,

We can find that the samples of class 0 are all predicted to class 1 in confusion matrix in

figure 8.2. Hence, we need to adjust our model, let it be more sensitive to minority class.

~0.50
-0.25 1000
0.00
800
0.25
050 R0
0.75 00
100
200
1325 4
150 : . : 0
~05 0.0 05 10 15

Figure 8.2: Confusion matrix of M

8.2 Random-Oversampling Model

In this section, we use ROS as we mentioned in section 6.1.1 to copy the sample in class 0
until the data set is balanced. M,s get good performance on training set and testing set which
have 100% and 98.25% average accuracy, respectively. Table 8.2 and figure 8.3 shows the
comparison of M, and M, on average accuracy and confusion matrix. As result, ROS improve

the average accuracy of minority class 0 and get the great result.

Training | Testing 0 1
My | 99.96% | 53.66% 0% 100%
Moso | 100% | 98.25% | 96.22% | 100%

Table 8.2: Average accuracy of M, and M,

46

DOI:10.6814/NCCU201901175

—0.50

-025

0.00

0.25

0.50

075

100

125

150

-0.5

(a) M,

1000
800
600
400
200
T T T 1]
0.0 05 10 15

—0.50

—0.25

0.00

0.25

0.50

075

100

125

150

-0.5 0.0 05 10 15

(b) M082

Figure 8.3: Confusion matrix of My, and M,

8.3 Synthetic Minority Over-sampling Technique Model

Same as ROS, SMOTE will balance the data set but it does not just copy the sample, it

create an artificial sample to prevent overfitting as we mentioned in section 6.1.2. The model

Mo also get high average accuracy 100% and 98.01% on training set and testing set. The

comparison of average accuracy between My, and M,,,, shows on table 8.3 and we can see that

it improve the accuracy of class 0 in confusion matrix shows on figure 8.4.

Training | Testing 0 1
My | 99.96% | 53.66% 0% 100%
Mo | 100% | 98.01% | 95.71% | 100%

Table 8.3: Average accuracy of M, and M,,,o

-0.50

-0.25

0.00

025

050

0.75

100

135

150 7

-0.5

(@) My

00 05 10 15

—-0.50
1000 -0.25
200 0,00
025
050
075
100
125

0 150
-0.5 0.0 05 10

(b) Msm2

Figure 8.4: Confusion matrix of My, and My,,-

47

15

DOI:10.6814/NCCU201901175

8.4 Random-undersampling(RUS)

Different from section 8.2 — 8.3 which use oversampling to let the model balanced, we

use undersampling in this section. As we mentioned in section 6.1.3, we delete the sample in

majority until the data set is balanced. Unlike in multi-classification task, the model M, which

use RUS has great performance on binary classification task. Table 8.4 and figure 8.5 show that

the effect of M, .o which is better than M.

Training | Testing 0 1
My | 99.96% | 53.66% 0% 100%
Myso | 100% | 96.69% | 99.59% | 94.18%

Table 8.4: Average accuracy of M, and M4

-0.50

-0.25

0.00

0.25

050

~0.50
1000 -025

. 0.00
800

. D25

. B0 0.50

075 . 075

100 100
200

125 135

150 ' . . | D 150

0.0 05 10 15

-05

(a) M,

0.5 0.0

05

(b) MusZ

Figure 8.5: Confusion matrix of My, and M,

8.5 Mean False Error Model

In this section, we will use new loss function to let the model be more sensitive to minority

class 0. As in section 6.2.1, mean false error calculate the loss of every class and increase

the contribution of minority class loss to let the model M., improve the average accuracy of

minority class. In order to let the model converge, we adjust our epochs to 1000. We find that

M .o have great performance on training set and testing set with 100% and 81.34%, respectively.

But actually, it just get 59.75% average accuracy on minority class 0. The comparison of

performance between My, and M., shown on table 8.5 and figure 8.6.

48

DOI:10.6814/NCCU201901175

Training | Testing 0 1
My | 99.96% | 53.66% 0% 100%
Myeo | 100% | 81.34% | 59.75% | 100%

Table 8.5: Average accuracy of My and M .o

—0.50

-025

0.00

0.25

0.50

0.75

100

125

150

-0.5

(@) Mo

Figure 8.6: Confusion matrix of My, and Mo

1000
800
600
400
200
T T T 1 0
0.0 05 10 15

—0.50

—0.25

0.00

0.25

0.50

075

100

125

150

-0.5 0.0

8.6 Mean Squared False Error Model

05

(b) Mfe2

10 15

Mean squared false error is improved version of MFE, but it only can be used on binary

classification task. M. can be more sensitive to minority class and improve the accuracy of

minority class at the same time as we mentioned in section 6.2.2. In order to let the model

converge, we adjust the learning rate = 0.001 and training 40 epochs. The comparison of

performance between My, and My, is shown on the table 8.6 and figure 8.7. We can see that

M. increase the average accuracy of class 0.

Training | Testing 0 1
My | 99.96% | 53.66% 0% 100%
Mpse | 99.98% | 93.29% | 85.52% | 100%

Table 8.6: Average accuracy of My, and M.

49

DOI:10.6814/NCCU201901175

—0.50

-025

0.00

0.25

0.50

-0.5

(@) My

075

100

125

150 T T T 1
0.0 05 10 15

1000 -0.25

800

600

—0.50

0.00

0.25

0.50

075

100

125

150
-0.5

0.0

05

(b) Mfse

Figure 8.7: Confusion matrix of My, and My,

8.7 Focal Loss Model

10

1000

800

600

15

In this section, we apply a new loss function focal loss on binary classification task. As

in section 6.2.3, focal loss can reduce the contribution of sample which is easy to classify and

let the model to be more sensitive to minority class. We also set a = 1, 5,10, 50,100 and

v =0,0.5,1,2,5 as section 7.6. Note that when @ = 1 and v = 0 is categorical cross-entropy

which is common loss function for classification task. Table 8.7 shows that the performance of

the model M, with average accuracy of testing set about different a and . The following are

the performance of My, with different parameters.

I. v=0:
Training | Testing 0 1
a=1 100% | 93.69% | 86.38% | 100%
a=>5 100% | 95.85% | 91.05% | 100%
a=10 100% | 95.13% | 89.5% | 100%
a = 50 100% | 96.95% | 93.42% | 100%
a=100 | 100% | 96.81% | 93.13% | 100%

Table 8.7: Average accuracy of Mg, with vy =0

50

DOI:10.6814/NCCU201901175

2. v=0.5:

3.y=1:
4, v=2
5. v=05:

Training | Testing 0 1
a=1 100% | 92.71% | 84.28% | 100%
a=> 100% | 94.42% | 87.97% | 100%
a =10 100% | 94.95% | 89.12% | 100%
a =50 100% | 96.72% | 92.93% | 100%
a =100 | 100% | 96.38% | 92.2% | 100%

Table 8.8: Average accuracy of My, with vy = 0.5

Training | Testing 0 1
a=1 100% | 91.93% | 82.38% | 100%
a=>5 100% | 94.8% | 88.79% | 100%
a =10 100% | 95.22% | 89.68% | 100%
a = 50 100% | 96.64% | 92.75% | 100%
a=100 | 100% | 96.61% | 92.69% | 100%

Table 8.9: Average accuracy of My, with y = 1

Training | Testing 0 1
a=1 100% | 90.44% | 79.38% | 100%
a=>5 100% | 94.06% | 87.2% | 100%
a=10 100% | 95.49% | 90.28% | 100%
a =50 100% 96.8% | 93.09% | 100%
a =100 | 100% 96.6% | 92.67% | 100%

Table 8.10: Average accuracy of My, with v = 2

Training | Testing 0 1
a=1 100% | 70.07% | 35.42% | 100%
a=> 100% 89.8% | 77.99% | 100%
a =10 100% | 92.61% | 84.07% | 100%
a = 50 100% | 95.63% | 90.59% | 100%
a =100 | 100% | 96.72% | 93.93% | 100%

Table 8.11: Average accuracy of My, withy = 5

51

DOI:10.6814/NCCU201901175

We find that when @ = 50 and 7 = 0, the average accuracy of testing set is highest in table 8.12.

a=1 a=5 | a=10 | a=50 | a =100

vy=0 1|93.69% | 95.85% | 95.13% | 96.95% | 96.81%

v=0.5]92.71% | 94.42% | 94.95% | 96.72% | 96.38%
vy=1 |91.83% | 94.8% | 95.55% | 96.64% | 96.61%

vy=2 1{90.44% | 94.06% | 95.49% | 96.8% | 96.6%

vy=5 | 70.07% | 89.8% | 92.61% | 95.63% | 96.72%

Table 8.12: Average accuracy of My, with different parameters

Figure 8.8 shows that when a is bigger the average accuracy of testing is higher and the

effect of the number of 7y is not obvious except when v = 5 and a = 1 the accuracy is very low.

1=}
L

10 50 100

Figure 8.8: Average accuracy of My, with different parameters

8.8 Cost Sensitive Learning Model

As in section 7.7, we add the concept of cost sensitive learning in threshold moving.
According to the confusion matrix of M,, we can find that all sample of class 0 is predicted
to class 1. Hence, we increase the cost of misclassification that misclassifies 0 to 1. We set
C(0,1) = 100, C(i,j) = 1 when i # j and C(i,7) = 0 when ¢ = j. But after threshold
moving, many sample of class 1 are predicted to class 0 and our purpose which let the model

M 5 to predict the sample of class 0 correctly is not effect as shown in figure 8.9.

52

DOI:10.6814/NCCU201901175

-0.50

-0.25

0.00

025

050

0.00
BoQ
1 025
600 050
075 400 075
100 100
200
135 125
150 T T T | 0 150
0o 05 10 15

—0.50

-0.5

() Mpy

-0.5

(b) Meo

Figure 8.9: Confusion matrix of My, and M,

0.0 05 10 15

We try and error many times but still can not address this problem. Therefore, we calculate

the average probability which M, predicted and shown in table 8.13.

Sample of class 0

Sample of class 1

Predicted to class 0

0.51%

1.2%

Predicted to class 1

99.48%

98.79%

Table 8.13: Average probability predicted from M,

According to table 8.13, we can find that the sample of class 0 has higher probability to

predict to class 1 than sample of class 1. So if we increase the probability of sample predicted

to class 0, the sample from class 1 will much easier to predict to class 0. The model M, is fail

in our data set, but we believe it will work on other problem.

8.9 Result for Binary Classification Task

In binary classification task, we use 7 different methods to adjust our baseline model M.

Some methods which have bad performance in multi-classification task are good in binary

classification task. Table 8.14 shows that the average accuracy of different methods.

We can find that all methods have positive effect on our imbalanced data set except M.

Since the probability of sample of class 0 that be predicted to class 1 by baseline model M is

higher than the probability of sample of class 1 which is predicted to class 1, then if we increase

the cost of misclassification that misclassify class O to class 1, then there are much more sample

of class 1 will be predicted to class 0. Hence, our purpose that increase the accuracy of class 0

53

DOI:10.6814/NCCU201901175

Class 0 | Class 1
My, 0% 100%

M, | 96.22% | 100%
Mo | 95.71% | 100%

M, | 99.59% | 94.18%
Myea | 59.75% | 100%
Myse | 85.52% | 100%
My | 93.46% | 100%

Mo | 8.16% | 47.31%

Table 8.14: Average accuracy of class 0 and 1 with different models

can not be achieve. We believe that the cost sensitive learning is suitable for the model that can

distinguish the difference of sample slightly.

According to table 8.14, we find that the data-level method is more suitable than algorithm-

level method in binary classification of our imbalanced data set. In data-level method, the best

model is M,¢ and we can see the comparison of different model shown in figure 8.10 in detail.

e

(=] La = un [= I B - - [¥=]
ownown nownown nownown (53]

[

g ['] 52 MSM2 g W USD e [E2 g {52

[aey

W12 g 12

Figure 8.10: Comparison of average accuracy of class 0 and 1 with different methods

54

DOI:10.6814/NCCU201901175

Chapter 9

Conclusion

9.1 Contribution

In this paper, we have two main contribution. First, we review many different methods
for imbalanced data problem and anomaly detection some of them are expended from binary
classification to multi-classification. Second, we do the experiment on imbalanced MNIST with
multi-classification task and binary classification.

We find that the new loss function, focal loss has best performance on multi-classification

task. On the other hand, the best methods for binary classification task is ROS.

9.2 Future Work

We believe that the sample of MNIST is too easy to classifier so the overfitting is not happen
and most method works effectively on our imbalanced MNIST. Try to use these methods on other
much more complicated data set which has more classes and higher imbalanced rate may have
different result.

Imbalanced data set not just happen in image classification but also happen on time-based

data set. Test the performance of different methods on RNN models may have different effect.

55

DOI:10.6814/NCCU201901175

Appendix A

Python Code

In this section, we add the python code for our model in multi-classification task and binary
classification task, some of code of binary classification task are similar to multi-classification

task so we just put the multi-classification version.

A.1 Baseline Model

coding: utf-8

4 2

In[1]:

get ipython () .run line magic(’env’, ’"KERAS BACKEND=tensorflow’)
get ipython() .run line magic('matplotlib’, ’inline’)

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

import random

(x_train, y train), (x test, y test) = mnist.load data()

from keras.utils import np utils

56

DOI:10.6814/NCCU201901175

from
from
from
from

from

keras.models import Sequential

keras.layers import Dense, Activation, Flatten
keras.layers import Conv2D, MaxPooling2D
keras.optimizers import SGD

keras.layers import Dropout

Fo# A 3 TEEE e agT

In[2]:

B R B A AT

x0 =
x1l =
X2 =
x3 =
x4 =
x5 =
X6 =
X7 =
x8 =

x9 =

y0 =
yl =
y2 =
y3 =
y4 =
yS =
y6 =
yl =

y8 =

57

DOI:10.6814/NCCU201901175

for i

if

if

if

if

if

if

if

if

if

if

in range (60000) :

y train[i] == O0:
x0.append(x_train[i])
y0.append(y train[i])
y train[i] == 1:
xl.append(x_ train[i])
yl.append(y train[i])
y train[i] ==
x2.append(x_train[i])
y2.append(y train[i])
y train[i] ==
x3.append(x_train[i])
y3.append(y train([i])
y train[i] == 4:

x4 .append(x_train[i])
y4.append(y train([i])
y train[i] == 5:
x5.append(x_train[i])
y5.append(y train[i])
y train[i] == 6:
x6.append(x train[i])
y6.append(y train[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y train[i])
y train[i] == 8:
x8.append(x_train[i])
y8.append(y train[i])
y train[i] == 9:
x9.append(x _train[i])

y9.append(y train[i])

58

DOI:10.6814/NCCU201901175

In[3]:

1x

ly

1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

ly.

b YIRE A AT E R

=[]

=[]

append (len (x0))
append (len(x1))
append (len (x2))
append (len (x3))
append (len (x4))
append (len(xb5))
append (len (x6))
append (len (x7))
append (len (x8))
append (len (x9))
append (len (y0))
append (len (yl))
append (len(y2))
append (len(y3))
append (len (y4))
append (len(y5))
append (len(y6))
append (len (y7))
append (len(y8))

append (len(y9))

In[4]:

59

DOI:10.6814/NCCU201901175

1x #60000

In[5]:

BoRE LR K
plt.bar (range (10), 1x)

Inf6]:

“F¥¥index

np.random.seed (10)

ri0 = np.random.choice (range(5923),2, replace = False)
ril = np.random.choice (range(6742),5, replace = False)
ri2 = np.random.choice (range (5958),5000, replace = False)
ri3 = np.random.choice(range (6131),3000, replace = False)
ri4 = np.random.choice (range (5842),4, replace = False)
ri5 = np.random.choice (range (5421),4000, replace = False)
ri6 = np.random.choice(range (5918),2, replace = False)
ri7 = np.random.choice (range (6265),3, replace = False)
ri8 = np.random.choice (range (5851),2000, replace = False)
ri9 = np.random.choice(range(5949),1000, replace = False)
In[7]:

2 AT T fricdy
rx0 = []
[]

rxl

60

DOI:10.6814/NCCU201901175

rx2 = []

rx3 = []
rx4 = []
rx5 = []
rx6 = []
rx7 = []
rx8 = []
rx9 = []
for i in ri0:

rx0.append (x0[1i])
for i in ril:
rxl.append(x1[i])
for i in riZ2:
rx2.append(x2[i])
for i in ri3:
rx3.append (x3[1])
for i in riéd:
rx4.append (x4 [1i])
for i in rib5:
rx5.append (x5[1i])
for i in ri6:
rx6.append (x6[1])
for i in ri7:
rx7.append (x7[1])
for i in ri8:
rx8.append (x8[i])
for i in ri9:

rx9.append (x9[1])

rx =
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000]
y6[:2] + y7[:3] + y8[:2000] + y9[:1000]
61

+ y4[:4]

rx0 + rxl + rx2 + rx3 + rx4 + rx5 4+ rx6 + rx7 + rx8 + rx9

+ y5[:4000] +

DOI:10.6814/NCCU201901175

In[8]:

T HEEEOR L AT A

lxr = [2, 5, 5000, 3000, 4, 4000, 2, 3, 2000, 10001 #15015

In[9]:

2 THEE R R SRR N ek 1E B

plt.bar (range (10),1lxr)

In[10]:

¥l index
np.random.seed (10)

rxi = np.random.choice (range (15016), 15016, replace = False)

In[l1l]:

EERE €
x trainib = []
y _trainib = []
for j in rxi:
X _trainib.append((rx[j]/255)) #normalization
y trainib.append(np utils.to categorical(ry[j],10))

x _train ib = np.array(x trainib) .reshape(15016,28,28,1)

62

DOI:10.6814/NCCU201901175

y train ib = np.array(y trainib)

#o# A S RRER YR

In[l2]:

model = Sequential ()

model.add(Conv2D (32, (3, 3), padding = ’'same’, input shape = (28,
28, 1))) #32W *] 2 3x3mfilters) ket % gira“o-%st— 3= IR N pE; 500

model.add (Activation (' relu’))

model

.add (Dropout (0.2))

#F 3 20%doutput# foverfitting

model

.add (MaxPooling2D (pool size = (2,2)))

$2x2% ¢ Eh A i

model.add (Conv2D (64, (3, 3), padding = ’"same’))
model.add (Activation ("relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’"same’))
model .add (Activation (' relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Flatten())
model .add (Dense (200))
model.add (Activation (' relu’))
model .add (Dense (10))

101 %%
model.add (Activation (' softmax’))
model.compile (loss = “mean squared error”, optimizer

0.05), metrics = [”"accuracy”])

63

peEit g

#output

= SGD(1lr =

DOI:10.6814/NCCU201901175

In[13]:

model.summary ()

In[14]:

model.fit(x train ib, y train ib, batch size

RIS %

In[15]:

#OHRIE B A

xx0
xx1
XX2
xx3
xx4
xx5
XX6
xx7
xx8

xx9

yyO0
vyl

64

epochs = 200)

DOI:10.6814/NCCU201901175

yy2
yy3
yy4
YyS
yyo6
yy'7
yy8
yy9

for 1

if

if

if

if

if

if

if

if

in range (10000) :

y test[i] ==
xx0.append(x test[i])
yy0.append(y test[i])
y _test[i] == 1:
xx1.append(x test[i])
yyl.append(y test[i])
y test[i] ==
xx2.append(x test[i])
yy2.append(y test[i])
y test[i] ==
xx3.append(x test[i])
yy3.append(y testf[i])
y test[i] == 4:
xx4.append(x _test[i])
yy4.append(y test[i])
y test[i] == 5:
xx5.append (x test[i])
yy5.append(y test[i])
y test[i] ==
xx6.append(x test[i])
yyb6.append(y test[i])
y test[i] == 7:

xx7.append (x test[i])

65

DOI:10.6814/NCCU201901175

i

i

1xx
1xx.
1xx.
1xx
1xx
1xx.
1xx.
1xx
1xx
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

yy7.append(y test[i])
f y test[i] == 8:
xx8.append(x test[i])
yy8.append(y test[i])
f y testl[i] == 9:
xx9.append(x _test[i])

yy9.append(y test[i])

—
[—

.append (len (xx0))
.append(len (xx1))

append (len (xx2))

append (len (xx3))

.append(len (xx4))

.append(len (xx5))

append (len (xx6))

append (len (xx7))

.append (len (xx8))

.append (len (xx9))

append (len (yy0))
append (len (yy1l))
append (len (yy2))
append (len (yy3))
append (len(yy4))
append (len (yy5))
append (len (yy6))

append (len (yy7))

66

DOI:10.6814/NCCU201901175

lyy.append (len(yy8))

lyy.append (len(yy9))

In[l7]:

1xx

In[18]:

plt.bar (range(10), 1xx)

In[19]:

ORI ETR

X testl

(x test/255) .reshape (10000, 28, 28, 1)

y testl = np utils.to categorical(y test, 10)

score = model.evaluate(x testl, y testl)

print (" loss:’, score[0])

print (" Accuracy:’, scorell])

In[20]:

model json = model.to json()

open ('MNIST baseline.json’,

"w') .write (model json)

67

DOI:10.6814/NCCU201901175

model.save weights ('MNIST baseline wights.h5’)

A2

Random-Oversampling Model

coding: utf-8

#o#

In[1]:

get ipython().run line magic(’env’,

get ipython().run line magic('matplotlib’,

import numpy as np

import matplotlib.pyplot as plt

from

keras.datasets import mnist

import random

"inline’)

"KERAS BACKEND=tensorflow’)

(x_train, y train), (x _test, y test) = mnist.load data()

from
from
from
from
from

from

keras.utils import np utils

keras.models import Sequential

keras.layers import Dense, Activation, Flatten
keras.layers import Conv2D, MaxPooling2D
keras.optimizers import SGD

keras.layers import Dropout

Fod 4 3 TEEE e agT

In[2]:

68

DOI:10.6814/NCCU201901175

§ RIS

%0
x1
X2
%3
x4
x5
%6
x7
%8
%9

yO0
yl
y2
y3
y4
y5
y6
y7
v8
v9

for i

if

if

if

in range (60000) :
y train[i] == O0:
x0.append(x_train[i])
y0.append(y train[i])
y train[i] == 1:
xl.append(x_train[i])
yl.append(y train[i])
y train[i] == 2:
x2.append(x_train[i])

y2.append(y train[i])

69

DOI:10.6814/NCCU201901175

if

if

if

if

if

if

if

y train[i] == 3:
x3.append(x_train[i])
y3.append(y train[i])
y train[i] == 4:

x4 .append(x_train[i])
y4.append(y train[i])
y train[i] ==
x5.append(x_train[i])
y5.append(y train[i])
y train[i] == 6:
x6.append(x_train([i])
y6.append(y train[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y train([i])
y train[i] == 8:
x8.append(x_train[i])
y8.append(y train([i])
y train[i] == 9:
x9.append(x_train[i])

y9.append(y train[il)

In[3]:

B oVRE A AT hE B

1x

ly

1x.
1x.
1x.

1x.

[]
[]

append (len (x0))

append (len(x1l))

append (len (x2))

append (len (x3))

70

DOI:10.6814/NCCU201901175

1x.
1x.
1x.
1x.
1x.
1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

append (len (x4))
append (len (x5))
append (len (x6))
append (len (x7))
append (len (x8))
append (len (x9))
append (len(y0))
append (len(yl))
append (len(y2))
append (len(y3))
append (len (y4))
append (len(y5))
append (len(y6))
append (len(y7))
append (len(y8))

append (len(y9))

In[4]:

1x

#60000

In[5]:

LA SR S)

plt.bar (range (10)

In[6]:

, 1x)

71

DOI:10.6814/NCCU201901175

“fH¥index

np.random.seed (10)

ri0 = np.random.choice (range(5923),2, replace =
ril = np.random.choice(range(6742),5, replace =
ri2 = np.random.choice(range (5958),5000, replace
ri3 = np.random.choice (range(6131),3000, replace
ri4 = np.random.choice (range(5842),4, replace =
ri5 = np.random.choice (range (5421),4000, replace
ri6 = np.random.choice (range(5918),2, replace =
ri7 = np.random.choice (range (6265),3, replace =
ri8 = np.random.choice(range (5851),2000, replace
ri9 = np.random.choice (range(5949),1000, replace
In[7]:

2 g Ty
rx0 = []

rxl = []

rx2 = []

rx3 = []

rx4 = []

rx5 = []

rx6 = []

rx7 = []

rx8 = []

rx9 = []

for i in riO0:

rx0.append (x0[1i])

for i in ril:

rxl.append(x1[i])

72

False)

False)

False)

False)

False)

False)

False)

False)

False)

False)

DOI:10.6814/NCCU201901175

for i in ri2:
rx2.append (x2[1i])
for i in ri3:
rx3.append (x3[1i])
for i in ri4:
rx4.append (x4[1i])
for i in rib:
rx5.append (x5[i])
for i in ri6:
rx6.append (x6[i])
for i in ri7:
rx7.append (x7[1])
for i in ri8:
rx8.append (x8[i])
for i in ri9:

rx9.append (x9[1])

rx = rx0 + rxl + rx2 + rx3 + rx4 + rx5 + rxo + rx7 + rx8 + rx9
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000] + y4[:4] + y5[:4000] +
y6[:2] + y7[:3] + y8[:2000] + y9[:1000]

In[8]:

RS SRR S
lxr = [2, 5, 5000, 3000, 4, 4000, 2, 3, 2000, 1000] #15015

In[9]:

G S SR S Sy)

73

DOI:10.6814/NCCU201901175

plt.bar (range(10),1lxr)

ROS

In[21]:

4 AW index

np.random.seed (10)

010 = np.random.choice (range(2),
0il = np.random.choice (range(5),
013 = np.random.choice (range (3000),
0i4 = np.random.choice (range (4),
0i5 = np.random.choice (range (4000),
0i6 = np.random.choice (range(2),
0i7 = np.random.choice (range(3),
0i8 = np.random.choice (range (2000),
019 = np.random.choice (range (1000),
In[25]:

ox0 = []

oxl = []

ox2 = rx2

ox3 = []

ox4d = []

ox5 = []

ox6 = []

ox7 = []

ox8 = []

True)

True)

True)

True)

DOI:10.6814/NCCU201901175

ox9 = T[]

for i in o0i0:
0ox0.append (rx0[i])
for i in oil:
ox1l.append (rx1[il])
for i in o0i3:
ox3.append (rx3[i])
for i in oi4:
ox4.append (rx4[i])
for i in o0ib:
ox5.append (rx5[i])
for i in o0i6:
0x6.append (rx6[i])
for i in oi7:
ox7.append (rx7[i])
for i in o0i8:
ox8.append (rx8[il)
for 1 in 01i9:

0x9.append (rx9[i])

ox = ox0 + ox1l + ox2 + ox3 + ox4 + ox5 + ox6 + ox7 + ox8 + ox9
oy = y0[:5000] + y1[:5000] + y2[:5000] + y3[:5000] + y4[:5000] +
y5[:5000] + y6[:5000] + y7[:5000] + y8[:5000] + y9[:5000]

In[]:

IR index
np.random.seed (10)

oxi = np.random.choice (range (50000), 50000, replace = False)

75

DOI:10.6814/NCCU201901175

InJ

R

]:

B =7

x trainos = []

y _trainos = []

for j

in oxi:

X _trainos.append((ox[]j]/255)) #normalization

y trainos.

append (np_utils.to categorical(oy[j],10))

X _train os = np.array(x trainos) .reshape(50000,28,28,1)

y _train os

np.array(y trainos)

o4 A SRR IR

In[]:

model = Sequential ()

model.add (Conv2D (32, (3, 3), padding = ’same’, input shape = (28,
28, 1))) #32B~ | 23x3efilters I k% gfrd”O%*'aV— AR N X505

model.add (Activation (' relu’))

model.add (Dropout (0.2))

#F A 20%choutput# f.overfitting

model

.add (MaxPooling2D (pool size = (2,2)))

$2x2% ¥ Bk B

model

model.
model.
model.
model.

model.

.add (Conv2D (64, (3, 3), padding = ’'same’))
add (Activation (' relu’))

add (Dropout (0.2))

add (MaxPooling2D (pool size = (2,2)))

add (Conv2D (128, (3, 3), padding = ’'same’))

add (Activation ('’ relu’))

76

DOI:10.6814/NCCU201901175

model.
model.
model.
model.

model.

model

10

model.add (Activation (/' softmax’))

add (Dropout (0.2))

add (Flatten())

add (Dense (200))

add (Activation (' relu’))
.add (Dense (10))

BE%x

add (MaxPooling2D (pool size =

(2,2)))

model.compile (loss = ”“mean squared error”,

0.05), metrics = ["accuracy”])

In[

model

In|

model.fit (x train os, y train os, batch size

1:

.summary ()

1:

4 RFES %

In|

#R-R

xx0 =

xx1 =

1:

EL L

[]
(]

77

optimizer

peEit g

#output

= SGD(1lr =

epochs = 200)

DOI:10.6814/NCCU201901175

XX2
xx3
xx4
xx5
XX6
xx7
xx8

xx9

yy0
yyl
yy2
yy3
yy4
Yyd
yy6
vy’
yy8
yy9

for

if

if

if

if

in range (10000) :

y test[i] == 0:
xx0.append (x_test[i])
yy0.append(y test[i])
y test[i] ==
xx1l.append (x_test[i])
yyl.append(y test[i])
y test[i] == 2:
xx2.append (x_test[i])
yy2.append(y test[i])
y test[i] == 3:
xx3.append (x_test[i])

yy3.append(y test[i])

78

DOI:10.6814/NCCU201901175

if

if

if

if

if

if

In|

y test[i] == 4:
xx4.append(x _test[i])
yy4.append(y test[i])
y test[i] ==
xx5.append (x_ test[i])
yy5.append(y test[i])
y test[i] ==
xx6.append (x test[i])
yyb6.append(y test[i])
y test[i] == 7:
xx7.append (x test[i])
yy7.append(y test[i])
y test[i] == 8:
xx8.append (x_test[i])
yy8.append (y test[i])
y test[i] ==
xx9.append(x_test[i])

yy9.append(y test[i])

]:

#ORERE AN AE B

1xx =

lyy =

[]
(]

1xx.append (len (xx0))

1xx.append (len (xx1))

1xx.append (len (xx2))

1xx.append(len (xx3))

1xx.append(len (xx4))

1xx.append (len (xx5))

1xx.append(len (xx6))

79

DOI:10.6814/NCCU201901175

1xx.

1xx

1xx.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

append (len (xx7))

.append (len (xx8))

append (len (xx9))
append (len (yy0))
append (len (yy1l))
append (len (yy2))
append (len(yy3))
append (len(yy4))
append (len (yy5))
append (len (yy6))
append (len (yy7))
append (len (yy8))

append (len (yy9))

In[1:

1xx

In[1:

plt.bar (range (10), 1xx)

In[1:

§ PR R

x _testl = (x_test/255).reshape(lOOOO, 28, 28, 1)

y testl

np utils.to categorical (y test,

80

10)

DOI:10.6814/NCCU201901175

score = model.evaluate (x testl, y testl)
print (" loss:’, score[0])

print (" Accuracy:’, scorell])

In[1:

model json = model.to json()
open ('MNIST ROS.json’, 'w’).write(model json)

model.save weights (’MNIST ROS wights.h5")

A.3 Synthetic Minority Over-sampling Technique Model

coding: utf-8

22

In[1l]:

get ipython() .run line magic(’env’, ’'KERAS BACKEND=tensorflow’)
get ipython () .run line magic('matplotlib’, ’inline’)

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

import random

(x_train, y train), (x_test, y test) = mnist.load data()

from keras.utils import np utils

from keras.models import Sequential

81

DOI:10.6814/NCCU201901175

from
from
from

from

keras.layers import Dense,

Activation,

Flatten

keras.layers import Conv2D, MaxPooling2D

keras.optimizers import SGD

keras.layers import Dropout

#o# A R TEEF e agT

In[2]:

OB 2N

x0 =
xl =
X2 =
X3 =
x4 =
x5 =
X6 =
X7 =
%8 =

X9 =

y0 =
yl =
y2 =
y3 =
vd =
yS =
yo =
y7l =
y8 =
y9 =

82

DOI:10.6814/NCCU201901175

for i

if

if

if

if

if

if

if

if

if

if

in range (60000) :

y train[i] == O0:
x0.append(x_train[i])
y0.append(y train[i])
y train[i] == 1:
xl.append(x_train[i])
yl.append(y train[i])
y train[i] == 2:
x2.append(x_train[i])
y2.append(y train[i])
y train[i] ==
x3.append(x train[i])
y3.append(y train[i])
y train[i] == 4:

x4 .append(x train[i])
v4.append(y train[i])
y train[i] == 5:
x5.append(x train([i])
y5.append(y _train[i])
y train[i] ==
x6.append(x_trainfi])
y6.append(y trainf[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y train[i])
y trainl[i] ==
x8.append(x_train[i])
y8.append(y train[i])
y train[i] == 9:
x9.append(x_train[i])

y9.append(y train[i])

&3

DOI:10.6814/NCCU201901175

In[3]:

BOUURE AT DE B

1x

ly

1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

ly.

=[]

=[]

append (len (x0))
append (len(x1))
append (len (x2))
append (len (x3))
append (len (x4))
append (len (x5))
append (len(x6))
append (len(x7))
append (len (x8))
append (len (x9))
append (len(y0))
append (len (yl))
append (len (y2))
append (len(y3))
append (len(y4))
append (len (y5))
append (len(y6))
append (len(y7))
append (len(y8))

append (len(y9))

Inf4]:

1x

#60000

DOI:10.6814/NCCU201901175

In[5]:

¥ URE LR R ER
plt.bar (range(10), 1x)

In[6]:

"F¥index

np.random.seed (10)

ri0 = np.random.choice (range (5923),2, replace = False)
ril = np.random.choice(range(6742),5, replace = False)
ri2 = np.random.choice (range (5958),5000, replace = False)
ri3 = np.random.choice(range (6131),3000, replace = False)
ri4 = np.random.choice (range (5842),4, replace = False)
ri5 = np.random.choice (range (5421),4000, replace = False)
ri6 = np.random.choice (range (5918),2, replace = False)
ri7 = np.random.choice(range (6265),3, replace = False)
ri8 = np.random.choice (range(5851),2000, replace = False)
ri9 = np.random.choice (range(5949),1000, replace = False)
In[7]:

#4 NNE7 T fgricdy
rx0 = []

—
[—

rxl

rx2

—
[—

85

DOI:10.6814/NCCU201901175

rx3 = []

rx4 = []
rx5 = []
rx6 = []
rx7 = []
rx8 = []
rx9 = []
for 1 in riO0:

rx0.append (x0[1])
for i in ril:
rxl.append(x1[i])
for i in riZ2:
rx2.append (x2[i])
for i in ri3:
rx3.append (x3[1])
for i in ri4:
rx4.append (x4[i])
for i in rib:
rx5.append (x5[i])
for i in ri6:
rx6.append (x6[1i])
for i in ri7:
rx7.append (x7[1])
for i in ri8:
rx8.append (x8[1])
for i in ri9:

rx9.append (x9[i])

rx =
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000]
y6[:2] + y7[:3] + y8[:2000] + y9[:1000]
86

+ y4[:4]

rx0 + rxl + rx2 + rx3 + rx4 + rx5 + rx6 + rx7 + rx8 + rx9

+ y5[:4000] +

DOI:10.6814/NCCU201901175

In[8]:

ANES SRR S
lxr = [2/ 5/ SOOO/ 3000/ 4’ 4000’ 2’ 3, 2000, 1000] #15015

In[9]:

B AT EEF AL L AT A R T)

plt.bar (range (10), 1xr)

SMOTE

$ EE B iR AT H B e AR B R A R
rx0d = [[] for i1 in range(2)]
for 1 in range (2):
for j in range(2):
rx0d[i] .append (np.linalg.norm(rx0[i] - rx0[3]))
rxld = [[] for i1 in range(5)]
for i in range(5):
for 3 in range (5):
rx1d[i] .append (np.linalg.norm(rx1[i] - rx1[3j]))
rx3d = [[] for i in range(3000)]
for i in range (3000):
for j in range (3000) :
rx3d[i] .append(np.linalg.norm(rx3[i] - rx3[j]))

rx4d = [[] for i in range(4)]

87

DOI:10.6814/NCCU201901175

for i in range (4) :

for j in range (4):

rx4d[i] .append (np.linalg.norm(rx4[1i]

rx5d = [[] for i in range (4000)]
for 1 in range (4000) :

for j in range (4000) :

rx5d[i] .append(np.linalg.norm(rx5[1i]

rx6d = [[] for i in range(2)]
for 1 in range (2):

for j in range(2):

rx6d[i] .append(np.linalg.norm(rx6[i]

rx7d = [[] for i1 in range(3)]
for i in range(3):

for j in range(3):

rx7d[i] .append (np.linalg.norm(rx7[i]

rx8d = [[] for i in range (2000)]
for i in range (2000) :

for j in range (2000):

rx8d[i] .append(np.linalg.norm(rx8[i]

rx9d = [[] for i in range(1000)]
for 1 in range (1000):

for j in range (1000) :

rx9d[i] .append(np.linalg.norm(rx9[i]

In[11]:

HREEE R

rx0ds = []

for i in rx0d:
rx0ds.append (sorted(i))

rxlds = []

88

rx4(j]))

rx5[031))

rx6[(31))

rx7[(31]))

rx8[3]1))

rx9(31))

DOI:10.6814/NCCU201901175

for i in rxld:

rxlds.append (sorted(i))

rx3ds = []

for i in rx3d:

rx3ds.append (sorted(i))

rxd4ds = []

for i in rx4d:

rx4ds.append (sorted(i))

rx5ds = []

for i in rx5d:

rx5ds.append (sorted (i))

rxods = []

for i in rxod:

rx6ds.append (sorted(i))

rx7ds = []

for i in rx7d:

rx7ds.append (sorted(i))

rx8ds = []

for i in rx8d:

rx8ds.append (sorted (i))

rx9ds = []

for i in rx9d:

rx9ds.append (sorted(i))

In[12]:

rx7ds[0]

In[13]:

89

DOI:10.6814/NCCU201901175

index of SMOTE

np.random.seed (10)

rx0i = np.random.choice (range(2), 4998, replace = True)
rx1li = np.random.choice (range(5), 4995, replace = True)
rx3i = np.random.choice (range (3000), replace = True)
rx4i = np.random.choice (range(4), 4996, replace = True)
rx51i = np.random.choice (range (4000), replace = True)
rx6i = np.random.choice (range(2), 4998, replace = True)
rx7i = np.random.choice (range(3), 4997, replace = True)
rx8i = np.random.choice (range (2000), replace = True)
rx9i = np.random.choice (range (1000), replace = True)
rx0dsi = np.random.choice (range(1,2), replace = True)
rxldsi = np.random.choice (range(1,4), replace = True)
rx3dsi = np.random.choice (range(1,4), replace = True)
rx4dsi = np.random.choice (range(1,4), replace = True)
rx5dsi = np.random.choice (range(1,4), replace = True)
rx6dsi = np.random.choice (range(1,2), replace = True)
rx7dsi = np.random.choice (range(1,3), replace = True)
rx8dsi = np.random.choice (range(l,4), replace = True)
rx9dsi = np.random.choice (range(1,4), replace = True)
In[14]:
45 IR
rx0dR = []
for i in range(4998):

for 3 in range (2):

if ((rx0ds[rx0i[i]][rx0dsi[i]])==(np.linalg.norm(rx0[rx0i[i]]

- rx0[3]1))):

90

DOI:10.6814/NCCU201901175

rx0dR.append (7j)
rxldR = T[]
for 1 in range (4995):
for j in range(5):
if ((rxlds[rx1if[i]][rxldsif[i]])==(np.linalg.norm(rx1[rx1i[i]]
- rx1[3]1))):
rx1dR.append(7j)
rx3dR = []
for 1 in range (2000) :
for j in range(3000):
if ((rx3ds[rx3i[i]][rx3dsi[i]])==(np.linalg.norm(rx3[rx3i[i]]
- rx3[3]1))):
rx3dR.append (Jj)
rx4dR = T[]
for 1 in range (4996) :
for j in range (4):
if ((rx4ds[rx4i[i]] [rx4dsi[i]])==(np.linalg.norm(rx4 [rx4i[i]]
- rx4[3]))):
rx4dR.append (7)
rx5dR = []
for 1 in range (1000):
for j in range (4000) :
if ((rx5ds[rx5i[i]][rx5dsi[i]])==(np.linalg.norm(rx5[rx5i[i]]
- rx5[31))):
rx5dR.append (J)
rx6dR = []
for 1 in range (4998):
for 3 in range (2):
if ((rxe6ds[rx6i[i]][rx6dsi[i]])==(np.linalg.norm(rx6[rx6i[i]]
- rx6([j]))):
rx6dR.append (7J)
rx7dR = []

for 1 in range(4997):

91

DOI:10.6814/NCCU201901175

for j in range(3):
if ((rx7ds[rx7i[i]][rx7dsi[i]])==(np.linalg.norm(rx7[rx7i[i]]
- rx7[31))):
rx7dR.append (7j)
rx8dR = []
for 1 in range (3000) :
for j in range (2000) :
if ((rx8ds[rx8i[i]][rx8dsi[i]])==(np.linalg.norm(rx8[rx8i[i]]
- rx8[3]1))):
rx8dR.append (7j)
rx9dR = []
for 1 in range (4000) :
for j in range(1000) :
if ((rx9ds[rx9i[i]][rx9dsi[i]])==(np.linalg.norm(rx9[rx9i[i]]
- rx9[31))):

rx9dR.append (7j)

In[15]:

WER’
np.random.seed (10)
rx0R = []
for 1 in range (4998):
10 = np.random.random()
rx0OR.append (10*rx0[rx0i[1i]]+(1-10) *rx0[rx0dR[1]])
rx1lR = []
for i in range (4995):
11 = np.random.random()
rxlR.append (11*rx1 [rx1i[i]]+(1-11)*rx1[rx1dR[i]])
rx3R = []

for 1 in range (2000) :

92

DOI:10.6814/NCCU201901175

13 = np.random.random()

rx3R.append (13*rx3[rx3i[1i]]+(1-13) *rx3[rx3dR[1]])
rx4R = []
for i in range (4996):

14 = np.random.random/ ()

rx4R.append (14*rx4 [rx4i[i]]+(1-14) *rx4[rx4dR[1i]])
rx5R = []
for 1 in range(1000) :

15 = np.random.random/()

rx5R.append (15*rx5[rx5i [1]]+(1-15) *rx5[rx5dR[1]])
rx6R = []
for 1 in range (4998):

16 = np.random.random ()

rx6R.append (16*rx6[rx6i[1i]]+(1-16) *rx6[rx6dR[1i]])
rx7R = []
for 1 in range (4997):

17 = np.random.random ()

rx7R.append (17*rx7 [rx71[1]]+(1-17) *rx7[rx7dR[1i]])
rx8R = []
for i in range (3000) :

18 = np.random.random ()

rx8R.append (18*rx8[rx8i[i]]+(1-18) *rx8[rx8dR[i]])
rx9R = []
for 1 in range (4000) :

19 = np.random.random ()

rx9R.append (19*rx9[rx91[1]]+(1-19) *rx9[rx9dR[1i]])

In[31]:

plt.imshow (rx1R[1], cmap = ’'Greys r’)

93

DOI:10.6814/NCCU201901175

In[l17]:

SMOTE (s cidicdy &

sx = rx0 + rxOR + rxl + rx1lR + rx2 + rx3 + rx3R + rx4 + rx4R + rx5 +
rx5R + rx6 + rx6R + rx7 + rx7R + rx8 + rx8R + rx9 + rx9R

sy = y0[:5000] + y1[:5000] + y2[:5000] + y3[:5000] + y4[:5000] +
y5[:5000] + y6[:5000] + y7[:5000] + y8[:5000] + y9[:5000]

In[18]:

IR index
np.random.seed (10)

sxi = np.random.choice (range (50000), 50000 , replace = False)

In[19]:

#2 = Bulcdy

x _trainsm = []

[]

y_trainsm
for j in sxi:
x_trainsm.append((sx[j]/255)) #normalization

y trainsm.append(np utils.to categorical(syl[]j],10))

X _train sm np.array(x_trainsm) .reshape (50000,28,28,1)

y train sm np.array(y trainsm)

bod o TR R

94

DOI:10.6814/NCCU201901175

In[20]:

model = Sequential ()
model.add (Conv2D (32, (3, 3), padding = 'same’, input shape = (28,
28, 1))) #32W +] 2 3x3efilters») ket 4 gr}fo%qw— - AU N pE ;500

model.add (Activation (' relu’))
model.add (Dropout (0.2))
#ZF 1 20%choutput# f.overfitting
model.add (MaxPooling2D (pool size = (2,2)))
#2x2% 7 Fh g
model.add (Conv2D (64, (3, 3), padding = ’'same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’"same’))
model.add (Activation ("relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Flatten ()) #aprl e T
model .add (Dense (200))
model.add (Activation (' relu’))
model.add (Dense (10)) #output
101 5%

model.add (Activation (' softmax’))

model.compile (loss = "mean squared error”, optimizer = SGD(lr =
0.05), metrics = ["accuracy”])
In[21]:
95

DOI:10.6814/NCCU201901175

model.summary ()

In[22]:

model.fit (x train sm,

RIS %

In[23]:

MR A A

xx0
xx1
XX2
xx3
xx4
xx5
XX 6
xx7
xx8

xxX9

yy0
yyl
yy?2
yy3
yy4
YYS

y _train sm, batch size

96

epochs = 200)

DOI:10.6814/NCCU201901175

yyo6 =
yy7l =

yy8 =

for i

if

if

if

if

if

if

if

if

if

in range (10000) :

y test[i] ==
xx0.append (x test[i])
yy0.append(y test[i])
y test[i] == 1:
xx1l.append(x test[i])
yyl.append(y test[i])
y test[i] == 2:
xx2.append(x_test[i])
yy2.append(y test[i])
y test[i] ==
xx3.append(x_test[i])
yy3.append(y test[i])
y test[i] == 4:
xx4.append (x test[i])
yy4.append(y test[i])
y test[i] == 5:
xx5.append (x_test[i])
yy5.append(y test[i])
y test[i] ==
xx6.append (x_test[i])
yy6.append(y test[i])
y test[i] == 7:
xx7.append (x_test[i])
yy7.append(y test[i])
y test[i] == 8:
xx8.append (x_test[i])

yy8.append(y test[i])

97

DOI:10.6814/NCCU201901175

if y test[i] == 9:
xx9.append(x test[i])

yy9.append(y test[i])

In[24]:

B
1xx

lyy

1xx.
1xx.

1xx.

1xx

1xx

1xx.
1xx.

1xx.

1xx

1xx.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

EEN
=[]

=[]

append (len (xx0))
append (len (xx1))
append (len (xx2))
.append (len (xx3))
.append(len (xx4))
append (len (xx5))
append (len (xx6))
append (len (xx7))
.append (len (xx8))
append (len (xx9))
append (len (yy0))
append (len(yyl))
append (len (yy2))
append (len (yy3))
append (len (yy4))
append (len (yy5))
append (len (yy6))
append (len (yy7))
append (len(yy8))

append (len (yy9))

98

DOI:10.6814/NCCU201901175

In[25]:

1xx

In[26]:

plt.bar (range(10),1xx)

In[27]:

ORI T R R
X testl = (x_test/255) .reshape (10000, 28, 28, 1)

y testl = np utils.to categorical(y test, 10)

score = model.evaluate(x testl, y testl)
print (" loss:’, score[0])

print (" Accuracy:’, score[l])

In[28]:

model json = model.to json()
open ("MNIST SMOTE.json’, ’'w’).write(model json)

model.save weights (’MNIST SMOTE wights.h5”)

99

DOI:10.6814/NCCU201901175

Ad4

Random-Undersampling Model

coding: utf-8

4 2

In[1]:

import numpy as np

import matplotlib.pyplot as plt

from

keras.datasets import mnist

import random

(x_train, y train), (x_test, y test) = mnist.load data()

from
from
from
from
from

from

keras.utils import np utils

keras.models import Sequential

keras.layers import Dense, Activation, Flatten
keras.layers import Conv2D, MaxPooling2D
keras.optimizers import SGD

keras.layers import Dropout

#4237 TET R RIL

In[2]:

OB g

x0 =
x1l =

X2 =

X3

100

DOI:10.6814/NCCU201901175

x4
x5
X6
x7
%8
x9

vl
y2
y3
v4
y5
y6
y7
y8

for i

if

if

if

if

if

in range (60000) :

y train[i] == O0:
x0.append(x_train[i])
y0.append(y trainfi])
y train[i] == 1:
x1l.append(x_train[i])
yl.append(y train[i])
y train[i] == 2:
x2.append(x_train[i])
y2.append(y train[i])
y train[i] ==
x3.append(x_train[i])
y3.append(y train[i])
y train[i] == 4:

x4 .append(x_train[i])

101

DOI:10.6814/NCCU201901175

if

if

if

if

if

v4.append(y trainf[i])
y _train[i] ==
x5.append(x_train[i])
y5.append(y train[i])
y _trainl[i] ==
x6.append(x_train[i])
y6.append(y trainf[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y trainf[i])
y train[i] == 8:
x8.append(x_train[i])
y8.append(y train[i])
y_train[i] == 9:
x9.append(x trainf[i])

y9.append(y train[i])

In[3]:

$ IR R A AT hE R

1x

ly

1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.

1x.

[]
[]

append (len (x0))

append (len(x1l))

append (len (x2))

append (len (x3))

append (len(x4))

append (len (x5))

append (len (x6))

append (len (x7))

append (len (x8))

102

DOI:10.6814/NCCU201901175

1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

I

1x

I

append (len (x9))
append (len (y0))
append (len(yl))
append (len (y2))
append (len(y3))
append (len(y4))
append (len(y5))
append (len(y6))
append (len(y7))
append (len(y8))
append (len(y9))

nl4]:

#60000

n[(5]:

#oRE E AR &]

plt.bar (range (10)

I

nl[o6]:

“f¥¥index

np.
ri0

ril

random.seed (10)

= np.random.choice (range (5923), 2,

,1x)

np.random.choice (range (6742),5,

103

replace

replace

False)

False)

DOI:10.6814/NCCU201901175

ri2 = np.random.choice (range (5958),5000, replace = False)

ri3 = np.random.choice(range(6131),3000, replace = False)
ri4 = np.random.choice(range (5842),4, replace = False)
ri5 = np.random.choice (range (5421),4000, replace = False)
ri6 = np.random.choice(range (5918),2, replace = False)
ri7 = np.random.choice (range (6265),3, replace = False)
ri8 = np.random.choice (range(5851),2000, replace = False)
ri9 = np.random.choice (range(5949),1000, replace = False)
In[7]:

2 AT T Ry

rx0 = []

rxl = []

rx2 = []

rx3 = []

rxd = []

rx5 = []

rx6 = []

rx7 = []

rx8 = []

rx9 = []

for i in ri0:
rx0.append (x0[i])

for i in ril:
rxl.append (x1[i])

for i in riZ2:
rx2.append (x2[1i])

for i in ri3:
rx3.append (x3[i])

for 1 in ri4:

104

DOI:10.6814/NCCU201901175

rx4.append (x4 [i])
for i in rib:

rx5.append (x5[1])
for i in ri6:

rx6.append (x6[1i])
for i in ri7:

rx7.append (x7[1i])
for i in ri8:

rx8.append (x8[1])
for i in ri9:

rx9.append (x9[i])

rx = rx0 + rxl + rx2 + rx3 + rx4 + rx5 + rx6 + rx7 + rx8 + rx9
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000] + y4[:4] + y5[:4000] +
yo6[:2] + y7[:3] + y8[:2000] + y9[:1000]

In[8]:

T EEEOR L AR AN

lxr = [2, 5, 5000, 3000, 4, 4000, 2, 3, 2000, 1000] #15015

In[9]:

2 THEEOR R AR AR 1R R

plt.bar (range(10),1lxr)

RUS

105

DOI:10.6814/NCCU201901175

In[10]:

S8 P4iE index (2)

np.random.seed (10)

ui0 = np.random.choice(range(2),2, replace = False)
uil = np.random.choice (range(5),2, replace = False)
ui2 = np.random.choice (range (5000),2, replace = False)
ui3 = np.random.choice (range (3000),2, replace = False)
ui4 = np.random.choice (range(4),2, replace = False)
uib = np.random.choice (range (4000),2, replace = False)
ui6 = np.random.choice(range(2),2, replace = False)
ui7 = np.random.choice (range(3),2, replace = False)
ui8 = np.random.choice (range (2000),2, replace = False)
ui9 = np.random.choice (range (1000),2, replace = False)
In[l1l]:

2 FRUSHIR

ux0 = []

uxl = []

ux?2 = []

ux3 = []

ux4d = []

uxb = []

uxo = []

ux7 = []

ux8 = []

ux9 = []

for i in uiO:

ux0.append (rx0[i])

106

DOI:10.6814/NCCU201901175

for i in uil:
uxl.append(rx1([i])
for i in uiZ2:
ux2.append (rx2[i])
for i in ui3:
ux3.append (rx3[i])
for i in uid:
ux4.append (rx4[i])
for i in uib:
ux5.append (rx5[i])
for i in uié6:
ux6.append (rx6[i])
for i in ui7:
ux7.append (rx7[i])
for i in ui8:
ux8.append (rx8[1i])
for i in ui9:

ux9.append (rx9[i])

ux0 + uxl + ux2 + ux3 + ux4 + uxb5 + ux6 + ux?7 + ux8 + ux9

ux
uy = y0[:2] + y1[:2] + y2[:2] + y3[:2] + y4[:2] + y5[:2] + y6[:2] +
y7[:2] + y8[:2] + y9[:2]

In[1l2]:

PPy index
np.random.seed (10)

uxi = np.random.choice (range (20), 20, replace = False)

In[l13]:

107

DOI:10.6814/NCCU201901175

b s

X _trainus

[]
y _trainus = []
for j in uxi:
x_trainus.append((ux[j]/255)) #normalization
y trainus.append(np utils.to categorical(ryl[j],10))
x _train us = np.array(x trainus) .reshape(20,28,28,1)

y train us = np.array(y trainus)

In[14]

model = Sequential ()

model.add (Conv2D (32, (3, 3), padding = ’"same’, input shape = (28,
28, 1))) #32W® ~] 2 3x3efilters I kend % gfra”oi%‘eh— R N pE ;500

model.add (Activation (' relu’))
model.add (Dropout (0.2))
#ZF 3 20%choutput# foverfitting
model.add (MaxPooling2D (pool size = (2,2)))
#2x2% ¢ Fh L i
model.add (Conv2D (64, (3, 3), padding = ’'same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’"same’))
model .add (Activation(’ relu’))
model.add (Dropout (0.2))

model.add (MaxPooling2D (pool size = (2,2)))

108

DOI:10.6814/NCCU201901175

model.add (Flatten()) #AEL e T

model.add (Dense (200))

model.add (Activation ('’ relu’))

model.add (Dense (10)) foutput
101 5% *

model.add (Activation ('’ softmax’))

model.compile (loss = "mean squared error”, optimizer = SGD(lr =
0.05), metrics = ["accuracy”])
In[15]:

model.summary ()

In[l6]:

model.fit (x train us, y train us, batch size = 100, epochs = 500)

RIS %

In[17]:

#ORPIERE AR

xx0 = []

xx1

—
[E I —

XX2

xx3

—
[—

109

DOI:10.6814/NCCU201901175

xx4
xx5
XX6
xx7
xx8

xXx9

yy0
yyl
yy2
yy3
yy4
YyS
Yy
yy'7
yy8
yy9

for i

if

if

if

if

if

in range (10000) :

y test[i] ==

xx0.append(x test[i])

yyO.append(y testf[i])

y test[i] ==

xx1.append(x test[i])

yyl.append(y test[i])

y test[i] ==

xx2.append (x test[i])

yy2.append(y test[i])

y test[i] ==

xx3.append (x test[i])

yy3.append(y test[i])

y test[i] ==

xx4.append (x test[i])

0:

1:

2:

4.

110

DOI:10.6814/NCCU201901175

if

if

if

if

if

yy4.append(y test[i])
y test[i] == 5:
xx5.append(x _test[i])
yy5.append(y test[i])
y test[i] == 6:
xx6.append(x _test[i])
yy6.append(y test[i])
y test[i] ==
xx7.append(x_test[i])
yy7.append(y test[i])
y test[i] ==
xx8.append(x test[i])
yy8.append(y test[i])
y test[i] ==
xx9.append(x test[i])

yy9.append(y test[i])

In[18]:

ORREEA N DER

1xx

lyy

1xx.
1xx.

1xx.

1xx

1xx

1xx.
1xx.

1xx.

1xx

(]
(]

append (len (xx0))
append (len (xx1))

append (len (xx2))

.append (len (xx3))

.append(len (xx4))

append (len (xx5))
append (len (xx6))

append (len (xx7))

.append (len (xx8))

111

DOI:10.6814/NCCU201901175

1xx.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

append (len (xx9))
append (len (yy0))
append (len (yyl))
append (len (yy2))
append (len (yy3))
append (len (yy4))
append (len (yy5))
append (len(yy6))
append (len (yy7))
append (len (yy8))
append (len(yy9))

In[19]:

1xx

In[20]:

plt.bar (range(10),1xx)

In[21]:

ORI HETR

X testl

y testl = np utils.to categorical(y test,

SCcore

model.evaluate (x _testl, y testl)

(x test/255) .reshape (10000, 28, 28,

10)

1)

DOI:10.6814/NCCU201901175

print (" loss:’, scorel0])

print (' Accuracy:’, score[l])

In[22]:

model json = model.to json()
open ("MNIST RUS.json’, ’"w’).write(model json)

model.save weights (’MNIST RUS wights.h5’)

A.5 Mean False Error Model

coding: utf-8

4 2

Infl]:

get ipython () .run line magic(’env’, ’'KERAS BACKEND=tensorflow’)
get ipython () .run line magic('matplotlib’, "inline’)

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

import random

(x_train, y train), (x test, y test) = mnist.load data()

from keras.utils import np utils

from keras.models import Sequential

from keras.layers import Dense, Activation, Flatten

from keras.layers import Conv2D, MaxPooling2D

113

DOI:10.6814/NCCU201901175

from keras.optimizers import SGD
from keras.layers import Dropout
from keras import backend as K
import tensorflow as tf

#2273 TETHR

In[2]:

#OBDRE SN

%0
x1
X2
%3
x4
x5
X6
x7
%8
x9

y0
vl
y2
y3
v4
y5
y6
y7
y8
v9

114

DOI:10.6814/NCCU201901175

for i

if

if

if

if

if

if

if

if

if

if

in range (60000) :

y train[i] == O0:
x0.append(x_train[i])
y0.append(y train[i])
y train[i] == 1:
xl.append(x_train[i])
yl.append(y train[i])
y train[i] == 2:
x2.append(x_train[i])
y2.append(y train[i])
y train[i] ==
x3.append(x train[i])
y3.append(y train[i])
y train[i] == 4:

x4 .append(x train[i])
v4.append(y train[i])
y train[i] == 5:
x5.append(x train([i])
y5.append(y _train[i])
y train[i] ==
x6.append(x_trainfi])
y6.append(y trainf[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y train[i])
y trainl[i] ==
x8.append(x_train[i])
y8.append(y train[i])
y train[i] == 9:
x9.append(x_train[i])

y9.append(y train[i])

115

DOI:10.6814/NCCU201901175

In[3]:

BOUURE AT DE B

1x

ly

1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

ly.

=[]

=[]

append (len (x0))
append (len(x1))
append (len (x2))
append (len (x3))
append (len (x4))
append (len (x5))
append (len(x6))
append (len(x7))
append (len (x8))
append (len (x9))
append (len(y0))
append (len (yl))
append (len (y2))
append (len(y3))
append (len(y4))
append (len (y5))
append (len(y6))
append (len(y7))
append (len(y8))

append (len(y9))

Inf4]:

1x

#60000

DOI:10.6814/NCCU201901175

In[5]:

¥ URE LR R ER
plt.bar (range(10), 1x)

In[6]:

"F¥index

np.random.seed (10)

ri0 = np.random.choice (range (5923),2, replace = False)
ril = np.random.choice(range(6742),5, replace = False)
ri2 = np.random.choice (range (5958),5000, replace = False)
ri3 = np.random.choice(range (6131),3000, replace = False)
ri4 = np.random.choice (range (5842),4, replace = False)
ri5 = np.random.choice (range (5421),4000, replace = False)
ri6 = np.random.choice (range (5918),2, replace = False)
ri7 = np.random.choice(range (6265),3, replace = False)
ri8 = np.random.choice (range(5851),2000, replace = False)
ri9 = np.random.choice (range(5949),1000, replace = False)
In[7]:

#4 NNE7 T fgricdy
rx0 = []

—
[—

rxl

rx2

—
[—

117

DOI:10.6814/NCCU201901175

rx3 = []

rx4 = []
rx5 = []
rx6 = []
rx7 = []
rx8 = []
rx9 = []
for 1 in riO0:

rx0.append (x0[1])
for i in ril:
rxl.append(x1[i])
for i in riZ2:
rx2.append (x2[i])
for i in ri3:
rx3.append (x3[1])
for i in ri4:
rx4.append (x4[i])
for i in rib:
rx5.append (x5[i])
for i in ri6:
rx6.append (x6[1i])
for i in ri7:
rx7.append (x7[1])
for i in ri8:
rx8.append (x8[1])
for i in ri9:

rx9.append (x9[1i])

rx =
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000]
y6[:2] + y7[:3] + y8[:2000] + y9[:1000]
118

+ y4[:4]

rx0 + rxl + rx2 + rx3 + rx4 + rx5 + rx6 + rx7 + rx8 + rx9

+ y5[:4000] +

DOI:10.6814/NCCU201901175

In[8]:

ANES SRR S
lxr = [2, 5, 5000, 3000, 4, 4000, 2, 3, 2000, 1000] #15015

In[9]:

bR TR A R A BCE R

plt.bar (range (10), 1xr)

In[10]:

IR index
np.random.seed (10)

rxi = np.random.choice (range (15016),15016, replace = False)

In[l11]:

AR &

x trainib = []

y trainib = []
for j in rxi:
x _trainib.append((rx[j]/255)) #normalization
y trainib.append(np utils.to categorical(ry[j],10))

X _train ib = np.array(x trainib) .reshape(15016,28,28,1)

y train ib np.array(y trainib)

119

DOI:10.6814/NCCU201901175

MFE

In[l7]:

def mfe(y true, y pred):

y_true0
y truel
y true?
y true3
y trueid
y_trueb
y trueé6
y true7’
y_trues8
y_ trued

return

y truef:,0:1]
y truel:,1:2]
y truel:,
y truel:,
y truel:,4:5]
y _truel[:,5:6]
y truel:,6:7]
y truefl:,7:8]
y_truel[:,8:9]

y truef:,9:10]

(y true0 * K.mean (K.square(y true - y pred))/2+y truel *

K.mean (K.square (y_true - y pred)) /5

+y true2 * K.mean(K.square(y true - y pred))/5000+y true3d *

K.mean (K.square(y true - y pred))/3000

+y_true4 * K.mean (K.square(y true - y pred))/4+y trueb *

K.mean (K.square (y true - y pred)) /4000

+y true6 * K.mean (K.square(y true - y pred))/2 + y true7 *

K.mean (K.square (y _true - y pred))/3

+y true8 * K.mean (K.square(y true - y pred))/2000+y trued *

K.mean (K.square(y true - y pred))/1000)*15016

#oF A SRR ERR

In[21]:

120

DOI:10.6814/NCCU201901175

model = Sequential ()

model.add(Conv2D (32, (3, 3), padding = ’'same’, input shape = (28,
28, 1))) #32W®*] A 3x3mfilters) kit % gﬁo%&— AR ok ;530

model.add (Activation (/' relu’))
model.add (Dropout (0.2))
#F 3 20%output#® dooverfitting
model .add (MaxPooling2D (pool size = (2,2)))
#2x2% ¥ FE K ehiE
model.add (Conv2D (64, (3, 3), padding = ’same’))
model.add (Activation ('’ relu’))
model.add (Dropout (0.2))
model .add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’'same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model .add (MaxPooling2D (pool size = (2,2)))
model .add (Flatten ()) #apri e T
model .add (Dense (200))
model.add (Activation (' relu’))
model.add (Dense (10)) #output
101F %%

model.add (Activation ("softmax’))

model.compile(loss = mfe, optimizer = SGD(lr = 0.05), metrics =

["accuracy”])

In[22]:

model.summary ()

121

DOI:10.6814/NCCU201901175

In[1:

model.fit (x train ib, y train ib, batch size = 100, epochs = 200)

RIS E

In[1:

#ORPIR AR

xx0 = []
xxl = []
xx2 = []
xx3 = []
xx4 = []
xx5 = []
xx6 = []
xx7 = []
xx8 = []
xx9 = []
yy0 = []
yyl = T[]
yy2 = []
yy3 = []
yy4 = []
yys = []
yye = []
yy7 =[]

122

DOI:10.6814/NCCU201901175

yy8 =

yy9 =

for 1

if

if

if

if

if

if

if

if

if

if

in range (10000) :

y test[i] == 0:
xx0.append(x _test[i])
yy0.append(y test[i])
y test[i] == 1:
xx1l.append(x test[i])
yyl.append(y test[i])
y test[i] ==
xx2.append(x test[i])
yy2.append(y test[i])
y test[i] ==
xx3.append(x test[i])
yy3.append(y test[i])
y test[i] ==
xx4.append(x _test[i])
yy4.append(y test[i])
y test[i] ==
xx5.append(x test[i])
yy5.append(y testf[i])
y test[i] == 6:
xx6.append(x test[i])
yy6.append(y test[i])
y test[i] == 7:
xx7.append (x test[i])
yy7.append(y test[i])
y test[i] ==
xx8.append (x test[i])
yy8.append(y test[i])
y test[i] == 9:

xx9.append (x test[i])

123

DOI:10.6814/NCCU201901175

yy9.append(y test[i])

In[1:

R

1xx

lyy

1xx.

1xx

1xx.
1xx.

1xx.

1xx

1xx

1xx.
1xx.
1xx.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

BRI PE R

=[]
= []
append (len (xx0))

.append(len (xx1))

append (len (xx2))
append (len (xx3))
append (len (xx4))

.append(len (xx5))

.append(len (xx6))

append (len (xx7))
append (len (xx8))
append (len (xx9))
append (len (yy0))
append (len(yyl))
append (len (yy2))
append (len(yy3))
append (len (yy4))
append (len (yy5))
append (len(yy6))
append (len (yy7))
append (len (yy8))

append (len(yy9))

In[1:

124

DOI:10.6814/NCCU201901175

1xx

In[]:

plt.bar (range (10), 1xx)

In[1:

#ORRRT HEE R
X _testl = (x _test/255) .reshape (10000, 28, 28, 1)

y testl np utils.to categorical (y test, 10)
score = model.evaluate(x testl, y testl)
print (" loss:’, score[0])

print (" Accuracy:’, score[l])

In[1:

model json = model.to json()
open ('MNIST MFE.json’, ’"w’).write(model json)

model.save weights ("MNIST MFE wights.h5")

A.6 Focal Loss Model

125

DOI:10.6814/NCCU201901175

coding:

o4

e

In[l]:

utf-8

get ipython().run line magic(’env’, ’'KERAS BACKEND=tensorflow’)

get ipython () .run line magic('matplotlib’, ’inline’)

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

import random

(x_train,

from
from
from
from
from
from

from

keras
keras

keras

keras.
keras.

keras.

keras

y train), (x _test, y test) = mnist.load data()
.utils import np utils

.models import Sequential

.layers import Dense, Activation, Flatten
layers import Conv2D, MaxPooling2D
optimizers import SGD

layers import Dropout

import backend as K

import tensorflow as tf

o4 423 Tl age

In[2]:

Lk § P

x0 =
x1l =

X2

126

DOI:10.6814/NCCU201901175

x3
x4
x5
X6
x7
x8
x9

y0
yl
y2
y3
y4
y5
y6
y7

v9

for 1

if

if

if

if

if

in range (60000) :

y train[i] == 0:
x0.append (x_trainfi])
y0.append(y train[i])
y train[i] == 1:
x1l.append(x_train[i])
yl.append(y train[i])
y _trainl[i] ==
x2.append(x_train[i])
y2.append(y _trainf[i])
y train[i] == 3:
x3.append(x_train[i])
y3.append(y trainf[i])

y trainl[i] == 4:

127

DOI:10.6814/NCCU201901175

if

if

if

if

if

x4 .append(x_train[i])
y4.append(y train[i])
y train[i] ==
x5.append(x_train[i])
y5.append(y train[i])
y train[i] == 6:
x6.append(x_train[i])
y6.append(y train[i])
y train[i] == 7:
x7.append(x_train[i])
y7.append(y train(i])
y train[i] ==
x8.append(x train([i])
y8.append(y train[i])
y train[i] == 9:
x9.append(x train[i])

y9.append(y train[i])

In[3]:

PRE L DR R
1x = []

ly = 1]

1lx.append(len (x0))
1x.append(len(x1))
1x.append(len (x2))
1lx.append(len (x3))
lx.append(len (x4))
1x.append(len (x5))
1lx.append(len (x6))
lx.append(len (x7))

128

DOI:10.6814/NCCU201901175

1x.
1x.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.
ly.

I

1x

I

R L e KRR

append (len (x8))
append (len (x9))
append (len(y0))
append (len(yl))
append (len(y2))
append (len(y3))
append (len (y4))
append (len(y5))
append (len(y6))
append (len(y7))
append (len(y8))

append (len(y9))

ni4dj:

#60000

n[(5]:

plt.bar (range(10),

I

nli6]:

"W index

np.

ri0

random.seed (10)

= np.random.choice (range (5923), 2,

DOI:10.6814/NCCU201901175

ril = np.random.choice (range(6742),5, replace = False)

ri2 = np.random.choice(range (5958),5000, replace = False)
ri3 = np.random.choice(range(6131),3000, replace = False)
ri4 = np.random.choice (range (5842),4, replace = False)
ri5 = np.random.choice(range (5421),4000, replace = False)
ri6 = np.random.choice(range (5918),2, replace = False)
ri7 = np.random.choice (range (6265),3, replace = False)
ri8 = np.random.choice (range (5851),2000, replace = False)
ri9 = np.random.choice(range(5949),1000, replace = False)
In[7]:

2 SN Ty

rx0 = []

rxl = []

rx2 = []

rx3 = []

rx4 = []

rx5 = []

rx6 = []

rx7 = []

rx8 = []

rx9 = []

for i in riO:
rx0.append (x0[1i])

for i in ril:
rxl.append(x1[i])

for i in riZ2:
rx2.append (x2[1i])

for i in ri3:

rx3.append (x3[i])

130

DOI:10.6814/NCCU201901175

for i in ri4:
rx4.append (x4 [i])
for i in rib:
rx5.append (x5[1i])
for i in ri6:
rx6.append (x6[1i])
for i in ri7:
rx7.append (x7[1])
for i in ri8:
rx8.append (x8[1i])
for i in ri9:

rx9.append (x9[1])

rx = rx0 + rxl + rx2 + rx3 + rx4 + rx5 + rx6 + rx7 + rx8 + rx9
ry = y0[:2] + y1[:5] + y2[:5000] + y3[:3000] + y4[:4] + y5[:4000] +
y6[:2] + y7[:3] + y8[:2000] + y9[:1000]

In[8]:

O3 THETR L AR A

lxr = [2, 5, 5000, 3000, 4, 4000, 2, 3, 2000, 1000] #15015

In[9]:

bO7T AL AT A R O

plt.bar (range (10), 1xr)

In[10]:

131

DOI:10.6814/NCCU201901175

¥ Pl index
np.random.seed (10)

rxi = np.random.choice(range (15016), 15016, replace = False)

In[l1l]:

RT3

x _trainib

[]
y trainib = []
for j in rxi:
x_trainib.append((rx[j]/255)) #normalization
y trainib.append(np utils.to categorical (ry[j],10))
X _train ib = np.array(x trainib) .reshape(15016,28,28,1)

y train ib = np.array(y trainib)

Focal loss

In[l13]:

def focalloss(y true, y pred):

g=2.0

a = tf.constant ([[5],[5], (1), (1], ([5],[1],[5],(5],([1],[1]1], dtype
= tf.float32)

y pred = tf.clip by value(y pred, l.e-7, 1. - 1l.e-7)

ce = tf.multiply(y true, -tf.log(y pred))

132

DOI:10.6814/NCCU201901175

m = tf.pow(tf.subtract(l., y pred), g)
f = tf.matmul (tf.multiply(m, ce), a)
loss = tf.reduce mean (f)

return loss

#oF A RERERSYR

In[l6]:

model = Sequential ()

model.add (Conv2D (32, (3, 3), padding = 'same’, input shape = (28,
28, 1))) #32M ~] 53x3hfilters» kDB %k €4 0% * - th + /] haEL

model.add (Activation (’relu’))
model.add (Dropout (0.2))
#F 3 20%choutput# f.overfitting
model.add (MaxPooling2D (pool size = (2,2)))
#2x2%F ¢ E S B
model.add (Conv2D (64, (3, 3), padding = ’'same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model .add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’"same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model .add (Flatten())
model .add (Dense (200))
model.add (Activation (' relu’))

model.add (Dense (10))

133

papi g

#output

DOI:10.6814/NCCU201901175

1013 &%

model.add (Activation (/' softmax’))

model.compile(loss = focalloss, optimizer = SGD(lr = 0.05), metrics

= ["accuracy”])

In[l7]:

model.summary ()

In[18]:

model.fit (x train ib, y train ib, batch size = 100, epochs = 200)

#o# RIFEASE

In[1:

#ORRIGE R AR

xx0 = []
xx1 = []
xx2 = []
xx3 = []
xx4 = []
xx5 = []
xx6 = []
xx7T = []

134

DOI:10.6814/NCCU201901175

XX8

xx9

yy0
yyl
yy2
yy3
yy4
Yyd
yyo6
vy’
yy8
yy9

for i

if

if

if

if

if

if

in range (10000) :

y testl[i] ==
xx0.append(x_test[i])
yy0.append(y test[i])
y test[i] == 1:
xx1l.append (x test[i])
yyl.append(y test[i])
y test[i] == 2:
xx2.append (x_test[i])
yy2.append(y test[i])
y test[i] ==
xx3.append (x_test[i])
yy3.append(y test[i])
y test[i] == 4:
xx4.append (x_test[i])
yy4.append(y test[i])
y test[i] == 5:
xx5.append (x_test[i])

yy5.append(y test[i])

135

DOI:10.6814/NCCU201901175

if y test[i] == 6:
xx6.append(x test[i])

yy6.append(y test[i])

if y test[i] ==

xx7.append (x test[i])

yy7.append(y test[i])

if y test[i] ==

xx8.append (x test[i])

yy8.append(y test[i])
if y test[i] == 9:

xx9.append (x test[i])

yy9.append(y test[i])

In[1:

§ORIEE AL R

1xx

lyy

1xx.
1xx.

1xx.

1xx

1xx.
1xx.

1xx.

1xx

1xx

1xx.
lyy.
lyy.
lyy.

=[]

=[]

append (len (xx0))
append (len (xx1))
append (len (xx2))
.append (len (xx3))
append (len (xx4))
append (len (xx5))
append (len (xx6))
.append(len (xx7))
.append (len (xx8))
append (len (xx9))
append (len (yy0))
append (len (yyl))
append (len(yy2))

136

DOI:10.6814/NCCU201901175

lyy.
lyy.
lyy.
lyy.
lyy.
lyy.
lyy.

append (len(yy3))
append (len (yy4))
append (len (yy5))
append (len (yy6))
append (len (yy7))
append (len (yy8))

append (len (yy9))

In[1:

1xx

In[1:

plt.bar (range (10),1xx)

In[1:

bR R

x _testl = (x_test/255).reshape(lOOOO, 28, 28, 1)

y testl = np utils.to categorical(y test,

score = model.evaluate (x_ testl,
print (' loss:’,

print (' Accuracy:’,

score[0])

score[1l])

y_ testl)

137

DOI:10.6814/NCCU201901175

In[1:

model json = model.to json()
open ("MNIST focalloss25.json’, 'w').write(model json)

model.save weights ("MNIST focalloss25 wights.h5”)

A.7 Cost Sensitive Learning Model

coding: utf-8

In[1]:

get ipython () .run line magic (‘matplotlib’, ’inline’)

import numpy as np

import matplotlib.pyplot as plt

get ipython().run line magic(’env’, ’"KERAS BACKEND=tensorflow’)

In[2]:

from keras.models import model from json

from keras.optimizers import SGD

In[3]:

model = model from json(open ('MNIST baseline.json’).read())

138

DOI:10.6814/NCCU201901175

model.load weights (’MNIST baseline wights.h5’)

In[4]:

model.compile (loss = “mean squared error”, optimizer = SGD(lr =
0.05), metrics = ["accuracy”])

In[5]:

from keras.datasets import mnist

from keras.utils import np utils

(x_train, y train), (x test, y test) = mnist.load data()
In[6]:
X _testl = (x_test/255).reshape (10000, 28, 28, 1)

y true = y test

y _pred = model.predict classes(x testl)

In[7]:

from sklearn.metrics import confusion matrix

In[8]:

139

DOI:10.6814/NCCU201901175

C=confusion matrix(y pred, y true)

In[9]:

plt.imshow (C)

plt.colorbar ()

In[10]:

In[11]:

TP = []
for i in range (10):
tp = 0
for j in range (10) :
if i ==
tp = tp + C[i][]]

TP.append (tp)

In[1l2]:

140

DOI:10.6814/NCCU201901175

N = [980, 1135, 1032, 1010, 982, 892,
TPR = []
for 1 in range (10):

TPR.append (TP[1]/N[1]1*100)

TPR

In[13]:
N = []
tn =0

for i in range (10):
tn = tn + TP[1i]
for 1 in range (10) :

TN.append (tn-TP[1i])

In[14]:

FP = [0 for i in range(10)]
for i in range (10):
for j in range (10) :
FP[i] = FP[1] + C[1][3]]

for i in range (10):

FP[i] = FP[1i] - TP[1i]
In[1l5]:
FN = [0 for i in range(10)]

141

958,

1028,

974,

10091

DOI:10.6814/NCCU201901175

for i in range (10):
for j in range(10):
FN[i] = FN[i] + C[J][i]

for i in range (10):

FN[i] = FN[1] - TP[i]
In[lo]:
Sensitivity = [0 for i in range(10)]

Specificity [0 for i in range(10)]
for i in range (10):

Sensitivity[i] = TP[i]/(TP[1]+EN[i])

TN[1i]/(FP[i]+TN[1])

Specificity[i]

In[l17]:

Specificity bar = [1 for i in range(10)]
for 1 in range (10):

Specificity bar[i] = Specificity bar[i] - Specificity[i]

In[18]:

a = np.mean (Sensitivity)
b = np.mean (Specificity bar)
In[19]:

142

DOI:10.6814/NCCU201901175

plt.plot(Specificity bar, Sensitivity, 'o’)
plt.plot ([0,1],[0,1])

plt.plot(b,a, '0o’)

In[20]:

In[21]:

Cost sensitive learning

In[22]:

y _prob = model.predict proba(x testl)

In[149]:

cm = np.array(f(f(0,1,1,1,1,1,1,1,1,11, [(1,0,1000,1,1,1,0,0,2000,117,
(1,1,0,1,1,1,1,1,1,13, I11%,1,1,0,1,1,1,1,1,11,

(1,1,1,9,1,1,1,1,11, I[%1,1,1,1,1,0,1,1,1,17,

143

DOI:10.6814/NCCU201901175

(t1,1,1,1,1,90,%,1,1, I[(1,1,1,1,1,1,1,0,1,11,

(1,1,1,1,1,1,1,¢0,11, I(1,1,1,1,1,1,1,1,1,0],1])

In[150]:

y prob new = [[] for i1 in range(10000)]
for i in range (10000) :
for j in range(10) :

y _prob newl[i].append(np.sum(y prob[i][j]*cm[j]))

In[151]:

y _prob softmax = [[] for i in range(10000)]
for i in range (10000) :

y_prob_softmax[i].append(y_prob_new[i]/np.sum(y_prob_new[i]))

In[152]:

y_pred new = []
for i in y prob softmax:

y _pred new.append(np.argmax(i))

In[153]:

C new = confusion matrix(y pred new, y true)

144

DOI:10.6814/NCCU201901175

plt.imshow (C_new)

plt.colorbar ()

In[154]:

C new

In[155]:

TP new = []
for 1 in range (10) :
tp = 0
for j in range(10):
if i ==
tp = tp + C new[i] [J]

TP new.append (tp)

In[156]:

TPR new = []
for i in range (10):
TPR new.append (TP new[1]/N[1i]*100)

TPR new

A.8 Mean Squared False Error Model

145

DOI:10.6814/NCCU201901175

coding:

22

In[14]:

utf-8

get ipython().run line magic(’env’, ’"KERAS BACKEND=tensorflow’)

get ipython().run line magic('matplotlib’, ’inline’)

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

import random

(x_train,

from
from
from
from
from
from

from

keras.

keras

keras.
keras.
keras.

keras.

keras

y train), (x test, y test) = mnist.load data/()
utils import np utils

.models import Sequential

layers import Dense, Activation, Flatten
layers import Conv2D, MaxPooling2D
optimizers import SGD

layers import Dropout

import backend as K

import tensorflow as tf

o4 AR TETF e agT

In[15]:
B3R
x0 = []

x1 = []

AF

146

DOI:10.6814/NCCU201901175

yO = []

yl

Il
—_
—

for i in range (60000) :

if y train[i] == O:
x0.append(x_train[i])
y0.append(y train[i])

if y train[i] == 1:
xl.append(x train[i])

yl.append(y train(i])

In[l6]:

ORI R B
1x = []
ly = []
1x.append (len (x0))

1x.append(len (x1))

In[l17]:

1x #12665

In[18]:

o L & R

147

DOI:10.6814/NCCU201901175

plt.bar (range(2),1x)

In[19]:

"F¥index

np.random.seed (10)

ri0 = np.random.choice(range (5923),2, replace = False)
ril = np.random.choice (range(6742),5000, replace = False)
In[20]:

L Rl s S

rx0 = []

rxl = []

for i in riO:
rx0.append (x0[1i])

for i in ril:
rxl.append (x1[i])

rx = rx0 + rxl

ry = y0[:2] + y1[:5000]

In[21]:

2

\
TR
e
i

-

BOAOTEF R R AT A MK

lxr = [2, 5000] #5004

148

DOI:10.6814/NCCU201901175

In[22]:

§OBE T L R K

plt.bar (range (2), 1xr)

In[23]:

" dcdp index

np.random.seed (10)

rxi = np.random.choice (range (5002), 5002, replace = False)

In[24]:

oA Ul
X _trainib = []
y _trainib = []
for j in rxi:
x_trainib.append((rx[j]/255)) #normalization

y trainib.append(np utils.to categorical(ryl[jl,2))

x train ib np.array (x trainib) .reshape (5002,28,28,1)

y train ib = np.array(y trainib)

MFSE

In[103]:

149

DOI:10.6814/NCCU201901175

def mfse(y true, y pred):

y true0 =y true[:,0:1]
y truel = vy truel[:,1:2]
return (y true0 * (K.square(K.mean (K.square(y true - y_pred))/2))

+ y truel * (K.square(K.mean (K.square(y true -

y pred))/5000)))*5002

Fo# oA SRS R

In[l2]:

model = Sequential ()

model.add(Conv2D (32, (3, 3), padding = ’'same’, input shape = (28,
28, 1))) #32W -+] A3x3efilters » I kenE % géfo%ﬁ—fi%d‘ﬁﬂ%“}t

model.add (Activation (' relu’))
model.add (Dropout (0.2))
#F # 20%houtput#® dooverfitting
model.add (MaxPooling2D (pool size = (2,2)))
#2x2% ¢ FEE K hiE
model.add (Conv2D (64, (3, 3), padding = ’'same’))
model.add (Activation (/' relu’))
model.add (Dropout (0.2))
model.add (MaxPooling2D (pool size = (2,2)))
model.add (Conv2D (128, (3, 3), padding = ’'same’))
model.add (Activation (' relu’))
model.add (Dropout (0.2))
model .add (MaxPooling2D (pool size = (2,2)))
model.add (Flatten ())

model.add (Dense (200))

150

T

DOI:10.6814/NCCU201901175

model.add (Activation (' relu’))
model.add (Dense (2)) #output
10 &%

model.add (Activation (/' softmax’))

model.compile(loss = mfse, optimizer = SGD(lr = 0.001), metrics =

["accuracy”])

In[13]:

model.summary ()

In[14]:

model.fit (x train ib, y train ib, batch size = 100, epochs = 40)

RIFE~ %

In[l15]:

OR-RE B AR

xx0 = []
[]

xx1

yy0 = []

yyl = T[]

151

DOI:10.6814/NCCU201901175

for i in range (10000):
if y test[i] == 0:
xx0.append(x _test[i])
yy0.append(y test[i])
if y test[i] == 1:
xx1l.append(x test[i])

yyl.append(y test[i])

rxx = xx0 + xx1

ryy = yy0 + yyl

In[1l6]:

“E¥¥index for testing set
np.random.seed (10)

rxxi = np.random.choice (range (2115), 2115, replace = False)

In[l17]:

RRRELAFR LR
1xx = []

lyy = T[]
1xx.append (len (xx0))

1xx.append (len (xx1))

In[18]:

152

DOI:10.6814/NCCU201901175

Ixx #2115

In[19]:

plt.bar (range(2),1xx)

In[21]:

LA
X _testib = []

y testib = []

for j in rxxi:
X _testib.append((rxx[j]/255)) #normalization

y testib.append(np utils.to categorical(ryyl[jl,2))

x test ib = np.array(x testib) .reshape (2115,28,28,1)
y test ib = np.array(y testib)
In[22]:

#oORIET A
score = model.evaluate(x test ib, y test ib)
print (" loss:’, score[0])

print (' Accuracy:’, scorelll])

In[23]:

153

DOI:10.6814/NCCU201901175

model json = model.to json()
open ("MNIST MFSEZ.json’, ’'w’).write (model json)

model.save weights ('MNIST MFSEZ2 wights.h5”)

A.9 Anomaly Detection Model

coding: utf-8

In[1]:

get ipython().run line magic(’'matplotlib’, ’inline’)
get ipython() .run line magic(’env’, ’'KERAS BACKEND=tensorflow’)
import numpy as np

import matplotlib.pyplot as plt

In[2]:

from keras.models import model from json

from keras.optimizers import SGD

In[3]:

model = model from json (open (’+ B F¥#CNN model cnn.json’) .read())

model.load weights (’ &+ B 7##CNN model weights cnn.h5’)

154

DOI:10.6814/NCCU201901175

Inf4]:

model.compile (loss = "categorical crossentropy”, optimizer = SGD(lr

= 0.05), metrics = ["accuracy”])

In[5]:

from keras.datasets import mnist
from keras.utils import np utils

(x_train, y train), (x_test, y test) = mnist.load data()

In[6]:

X testl = x test.reshape (10000, 28, 28, 1)

y true y test

y _pred = model.predict classes(x_testl)

In[7]:

from sklearn.metrics import confusion matrix

In[8]:

155

DOI:10.6814/NCCU201901175

C=confusion matrix(y pred, y true)

In[9]:

plt.imshow (C)

In[10]:

In[11]:

for i in range (10):
tp = 0
for 3 in range (10) :
if i ==
tp = tp + C[i]1[3]

TP.append (tp)

In[1l2]:

TP

156

DOI:10.6814/NCCU201901175

In[l13]:

N = [980, 1135, 1032, 1010, 982, 892,
TPR = []
for i in range (10):

TPR.append (TP[i]/N[1]1*100)

TPR

In[14]:
N = []
tn =0

for 1 in range (10):
tn = tn + TP[1i]
for i in range(10):

TN.append (tn-TP[1i])

In[15]:

FP = [0 for i in range(10)]
for i in range (10):
for 3 in range (10) :
FP[i] = FP[1] + C[1][3]]
for i in range (10):

FP[i] = FP[i] - TP[i]

In[l6]:

157

958,

1028,

974,

10091

DOI:10.6814/NCCU201901175

FN = [0 for i in range(10)]
for i in range (10):
for j in range (10) :
FN[i] = FN[i] + C[J]1I[1]

for i in range (10):

FN[i] = FN[1] - TP[i]
In[l7]:
Sensitivity = [0 for i1 in range (10)]

Specificity = [0 for i in range(10)]

for 1 in range (10):

Sensitivity[i] = TP[i]/(TP[1]+FN[i])
Specificity([i] = TN[i]/(FP[1]+TN[i])
In[18]:
Specificity bar = [1 for i in range(10)]

for 1 in range (10):

Specificity bar[i] = Specificity bar[i] - Specificity[i]
In[19]:
a = np.mean (Sensitivity)

o
Il

np.mean (Specificity bar)

158

DOI:10.6814/NCCU201901175

In[20]:

plt.plot(Specificity bar, Sensitivity, 'o’)
plt.plot ([0,1],[0,1])

plt.plot(b,a, "o’)

Cat

In[21]:

from PIL import Image

import os

In[22]:

os.getcwd ()

In[23]:

cimg = np.array(Image.open(’C:\\Users\\Eric\\#éSﬂ%&%%f?‘\\th.jpg’))
plt.figure (" T)

plt.imshow (cimg)

159

DOI:10.6814/NCCU201901175

In[24]:

cimgl =

np.array(Image.open(’C:\\Users\\Eric\\#.@ﬂ%ﬁ£§%3\\T‘ﬁl.jpg’))

plt.figure(”fﬁﬁl’)

plt.imshow (cimgl)

In[25]:

cimg2 =

np.array (Image.open (' C:\\Users\\Eric\\# S5 ¥ \\T §2.3pg’))

plt.figure(”f§¥2’)

plt.imshow (cimg2)

In[26]:

Cimg = []
Cimg.append (cimg)
Cimg.append (cimgl)

Cimg.append (cimg?2)

In[27]:

from skimage import transform

160

DOI:10.6814/NCCU201901175

In[28]:

Cat = []
for i in range (3):
for 3 in range (3):
cat = transform.resize(Cimg[i][:,:,]], (28,28))

Cat.append(cat)

In[29]:

plt.imshow (Cat[2])

In[30]:

Cat = np.array(Cat) .reshape(9,28,28,1)

In[31]:

Cat prob = model.predict proba(Cat)

In[32]:

for i in Cat prob:

print (np.max(i))

161

DOI:10.6814/NCCU201901175

Dog

In[33]:

dimg = np.array(Image.open (’C:\\Users\\Eric\\# ST ¥ \\T {£3.jpg"))
plt.figure(’“ff?:’)

plt.imshow (dimg)

In[34]:

dimgl =
np.array (Image.open (’/C:\\Users\\Eric\\# §# 5§ ¥ \\™ $4.jpg’))
plt.figure (' T §447)

plt.imshow (dimgl)

In[35]:

dimg2 =
np.array (Image.open (' C:\\Users\\Eric\\# SEE g3 \\T $‘5 .ipg’))
plt.figure ('™ 1\35’)

plt.imshow (dimg2)

In[36]:

162

DOI:10.6814/NCCU201901175

Dimg = []
Dimg.append (dimg)
Dimg.append (dimgl)

Dimg.append (dimg2)

In[37]:

Dog = []
for 1 in range(3):
for 3 in range (3):
dog = transform.resize (Dimg[i]l[:,:,73]1,(28,28))

Dog.append (dog)

In[38]:

Dog = np.array (Dog) .reshape(9,28,28,1)

In[39]:

Dog prob = model.predict proba (Dog)

In[40]:

for i in Dog prob:

print (np.max(i))

163

DOI:10.6814/NCCU201901175

Bibliography

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks, 106:249-259,

2018.

[3] MHB Carvalho, ML Brizot, LM Lopes, CH Chiba, S Miyadahira, and M Zugaib. Detection
of fetal structural abnormalities at the 11-14 week ultrasound scan. Prenatal Diagnosis:
Published in Affiliation With the International Society for Prenatal Diagnosis, 22(1):1-4,
2002.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15, 2009.

[5] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,

16:321-357, 2002.

[6] Edward Choi, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Using recurrent neural
network models for early detection of heart failure onset. Journal of the American Medical

Informatics Association, 24(2):361-370, 2016.

[7] David A Cieslak, Nitesh V Chawla, and Aaron Striegel. Combating imbalance in network
intrusion datasets. In GrC, pages 732—737, 2006.

[8] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international

conference on Machine learning, pages 160—-167. ACM, 2008.

164

DOI:10.6814/NCCU201901175

[9] MJ Desforges, PJ Jacob, and JE Cooper. Applications of probability density estimation
to the detection of abnormal conditions in engineering. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(8):687—
703, 1998.

[10] Chris Drummond, Robert C Holte, et al. C4. 5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets

11, volume 11, pages 1-8. Citeseer, 2003.

[11] Charles Elkan. The foundations of cost-sensitive learning. In International joint conference
on artificial intelligence, volume 17, pages 973—-978. Lawrence Erlbaum Associates Ltd,

2001.

[12] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing.
Learning from class-imbalanced data: Review of methods and applications. Expert

Systems with Applications, 73:220-239, 2017.

[13] Haibo He and Edwardo A Garcia. Learning from imbalanced data. /[EEE Transactions on

Knowledge & Data Engineering, (9):1263—1284, 2008.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770-778, 2016.

[15] JB Heaton, Nicholas G Polson, and Jan Hendrik Witte. Deep learning in finance. arXiv
preprint arXiv:1602.06561, 2016.

[16] David Hsu, Gildardo Sanchez-Ante, and Zheng Sun. Hybrid prm sampling with a cost-
sensitive adaptive strategy. In Proceedings of the 2005 IEEE international conference on

robotics and automation, pages 3874-3880. IEEE, 2005.

[17] Anil K Jain, Jianchang Mao, and KM Mohiuddin. Artificial neural networks: A tutorial.
Computer, (3):31-44, 1996.

[18] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class
imbalance. Journal of Big Data, 6(1):27, 2019.

165

DOI:10.6814/NCCU201901175

[19] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages

1725-1732, 2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,

pages 1097-1105, 2012.

[21] Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection of
oil spills in satellite radar images. Machine learning, 30(2-3):195-215, 1998.

[22] Matjaz Kukar, Igor Kononenko, et al. Cost-sensitive learning with neural networks. In

ECAI pages 445-449, 1998.

[23] Yoji Kukita, Junji Uchida, Shigeyuki Oba, Kazumi Nishino, Toru Kumagai, Kazuya
Taniguchi, Takako Okuyama, Fumio Imamura, and Kikuya Kato. Quantitative
identification of mutant alleles derived from lung cancer in plasma cell-free dna via

anomaly detection using deep sequencing data. PloS one, 8(11):e81468, 2013.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

[25] Hansang Lee, Minseok Park, and Junmo Kim. Plankton classification on imbalanced large
scale database via convolutional neural networks with transfer learning. In 2016 IEEE

international conference on image processing (ICIP), pages 3713-3717. IEEE, 2016.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer

vision, pages 2980-2988, 2017.

[27] CX Ling and VS Sheng. Cost-sensitive learning and the class imbalance problem. 2011.
Encyclopedia of Machine Learning: Springer, 24.

[28] Amogh Mahapatra, Nisheeth Srivastava, and Jaideep Srivastava. Contextual anomaly

detection in text data. Algorithms, 5(4):469—489, 2012.

166

DOI:10.6814/NCCU201901175

[29] Bomin Mao, Zubair Md Fadlullah, Fengxiao Tang, Nei Kato, Osamu Akashi, Takeru Inoue,
and Kimihiro Mizutani. Routing or computing? the paradigm shift towards intelligent
computer network packet transmission based on deep learning. [EEE Transactions on

Computers, 66(11):1946—-1960, 2017.

[30] David Masko and Paulina Hensman. The impact of imbalanced training data for

convolutional neural networks, 2015.

[31] P Rahmawati and Prawito Prajitno. Online vibration monitoring of a water pump machine
to detect its malfunction components based on artificial neural network. In Journal of

Physics: Conference Series, volume 1011, page 012045. IOP Publishing, 2018.

[32] R Bharat Rao, Sriram Krishnan, and Radu Stefan Niculescu. Data mining for improved

cardiac care. ACM SIGKDD Explorations Newsletter, 8(1):3—10, 2006.

[33] Richard G Stafford, Jacob Beutel, et al. Application of neural networks as an aid in medical

diagnosis and general anomaly detection, July 19 1994. US Patent 5,331,550.

[34] David W1 Stein, Scott G Beaven, Lawrence E Hoff, Edwin M Winter, Alan P Schaum, and
Alan D Stocker. Anomaly detection from hyperspectral imagery. /EEFE signal processing
magazine, 19(1):58-69, 2002.

[35] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer feed-
forward neural networks. Chemometrics and intelligent laboratory systems, 39(1):43-62,

1997.

[36] Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J Kennedy.
Training deep neural networks on imbalanced data sets. In 2016 international joint

conference on neural networks (IJCNN), pages 4368-4374. IEEE, 2016.

[37] Wei Wei, Jinjiu Li, Longbing Cao, Yuming Ou, and Jiahang Chen. Effective detection of
sophisticated online banking fraud on extremely imbalanced data. World Wide Web, 16(4):
449-475,2013.

[38] Rui Yan, Yiping Song, and Hua Wu. Learning to respond with deep neural networks

for retrieval-based human-computer conversation system. In Proceedings of the 39th

167

DOI:10.6814/NCCU201901175

International ACM SIGIR conference on Research and Development in Information

Retrieval, pages 55-64. ACM, 2016.

[39] Ke Zhang, Jianwu Xu, Martin Rengiang Min, Guofei Jiang, Konstantinos Pelechrinis, and
Hui Zhang. Automated it system failure prediction: A deep learning approach. In 2016
IEEE International Conference on Big Data (Big Data), pages 1291-1300. IEEE, 2016.

[40] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with methods
addressing the class imbalance problem. [EEE Transactions on Knowledge & Data

Engineering, (1):63-77, 2006.

168

DOI:10.6814/NCCU201901175

	致謝
	中文摘要
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Deep Learning
	Neurons and Neural Networks
	Activation Function
	Loss Function
	Gradient Descent Method

	Convolutional Neural Network(CNN)
	Convolutional Layer
	Max Pooling Layer

	Abnormal Condition and Imbalanced Data Set
	Abnormal Condition
	Imbalanced Data Set

	Anomaly Detection
	Confidence Estimation
	Gaussian Distribution
	Experiment for Confidence Estimation

	Methods for Imbalanced Data Problem
	Data‑level Methods
	Random-oversampling(ROS)
	Synthetic minority over-sampling technique(SMOTE)
	Random-undersampling(RUS)

	Algorithm‑level Methods
	Mean false error(MFE)
	Mean squared false error(MSFE)
	Focal loss
	Cost sensitive learning

	Experiment for Multi-classification Task
	Baseline Model
	Random-Oversampling Model
	Synthetic Minority Over-sampling Technique Model
	Random-Undersampling Model
	Mean False Error Model
	Focal Loss Model
	Cost Sensitive Learning Model
	Result for Multi-classification Task

	Experiment for Binary Classification Task
	Baseline Model
	Random-Oversampling Model
	Synthetic Minority Over-sampling Technique Model
	Random-undersampling(RUS)
	Mean False Error Model
	Mean Squared False Error Model
	Focal Loss Model
	Cost Sensitive Learning Model
	Result for Binary Classification Task

	Conclusion
	Contribution
	Future Work

	Appendix Python Code
	Baseline Model
	Random-Oversampling Model
	Synthetic Minority Over-sampling Technique Model
	Random-Undersampling Model
	Mean False Error Model
	Focal Loss Model
	Cost Sensitive Learning Model
	Mean Squared False Error Model
	Anomaly Detection Model

	Bibliography

