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Abstract:
This paper adopts the Caputo fractional derivative to re-specify the hybrid Phillips curve as a dynamic process
of inflation with memory. The Caputo fractional derivative contains a non-integer differencing order, providing
the same insight for persistence as emphasized in the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) time series models. We utilize the hybrid Phillips curve with memory to forecast US inflation dur-
ing 1967–2014. The results indicate that our model performs well against a traditional hybrid Phillips curve,
an integrated moving average model and a naive random walk model in quasi-in-sample forecasts. In out-of-
sample forecasts based on Consumer Price Index (CPI) and Personal Consumption Expenditure (PCE) data,
we find that the forecasting performance of Phillips curve models depends on the sample period. Our model
with CPI data can outperform others in out-of-sample forecasts during and after the most recent financial crisis
(2006–2014).
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1 Introduction

Inflation forecasting is a widely explored issue in macroeconomics. Inflation forecasts are important for house-
holds to monitor the cost of living, for firms to determine production capacities and pricing strategies, and for
policymakers to stabilize prices and the economy. One of the popular inflation forecasting models is the Phillips
curve ( Atkeson and Ohanian 2001; Stock and Watson 2007; Brissimis and Magginas 2008; Stock and Watson
2008; Riggi and Venditti 2015; Chan, Koop, and Potter 2016). An advantage of adopting the Phillips curve is
that it embodies real activity measures, utilizing an economy’s information for forecasting. Yet, one problem
encountered when using the Phillips curve to forecast inflation is that inflation may not be a stationary process.
Empirical evidences present mixed results for inflation stationarity ( Culver and Papell 1997; Stock and Watson
2007; Arize and Malindretos 2012). There is no consensus whether inflation is an I(1) process, I(0) process, or
neither.

With the development of advanced time series econometrics, the statistical properties of inflation have been
reanalyzed. Besides being non-stationary, inflation may also have long memory. An autoregressive fraction-
ally integrated moving average (ARFIMA) model, introduced by Granger and Joyeux (1980), is one of the ap-
proaches employed to examine the long memory property of time series. They propose that a long memory
process is more consistent with the path of most macroeconomic data and provides better long-run forecasts.
The long-memory property has been found in the inflation data of the United States ( Baillie, Chung, and
Tieslau 1996; Bos, Franses, and Ooms 2002; Bos, Koopman, and Ooms 2014; Hassler and Meller 2014; Balcilar,
Gupta, and Jooste 2017) and other countries ( Hassler and Wolters 1995; Franses and Ooms 1997; Reisen, Cribari-
Neto, and Jensen 2003; Gadea and Mayoral 2006; Noriega, Capistran, and Ramos-Francia 2013; Belkhouja and
Mootamri 2016).

In the ARFIMA models, d denotes a non-integer differencing order. According to Robinson (2003), for a
series with a zero d, its impulse response to shocks diminishes exponentially and represents short memory.
For a series with a d between 0 and 0.5, its impulse response to shocks decays hyperbolically and represents
long memory. A series with a d between 0.5 and 1 ensures that its impulse response against transitory shocks
converges to zero slowly. A series with a d equal to 1 has a unit root. Its shocks have a permanent effect. A
fractionally integrated time series shows lower frequency and extends the impulse responses for longer lags.
With this interpretation, d is not just a difference order. It is a memory parameter that determines the degree
of persistence, that is, the medium-and long-term impact of shocks on the process.

Shiou-Yen Chu is the corresponding author.
©2017Walter de Gruyter GmbH, Berlin/Boston.
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The purpose of this paper is to incorporate the non-stationary and memory properties of inflation into a
hybrid Phillips curve to forecast inflation. A hybrid Phillips curve is expressed as a linear combination of lagged
one-period inflation, expected inflation, and the output gap. Unlike previous studies that estimate the value of
d to address the dynamic property of inflation rates, we adopt the Caputo (1967, 1969) fractional derivative
to re-specify the Phillips curve as a dynamic process with time-dependent inflation rates and output gaps.
The Caputo fractional derivative contains a non-integer order, providing the same insight for persistence as
emphasized in the ARFIMA time series models. It incorporates memory effects into linear differential equations
that can be solved using the Laplace transform. The Caputo fractional models have been frequently applied in
mathematics, biological sciences, physics, and other research ( Caputo 2001; 2003; Caputo and Cametti 2008;
2009; Constantinescu and Stoicescu 2011). In economics, Caputo extends his fractional calculus method to the
Fisher equation ( Caputo and Kolari 2001) and monetary policy effects ( Caputo and Di Giorgio 2006). The
former quantifies the persistence of stock prices against inflation shocks. The latter simulates the dynamics of
output in response to negative monetary shocks.

Hereafter, the term “hybrid Phillips curve with memory” refers to the Phillips curve derived from Caputo’s
fractional derivative, denoted as HPCF. In the HPCF, expected inflation is calculated using current and pre-
vious inflation rates and previous output gaps. Previous inflation rates are weighted in an increasing manner
with respect to time. We conduct HPCF forecasts of US inflation over 1967Q1–2014Q4 and then compare the
results with a naive random walk model, an integrated moving average model, and a traditional hybrid Phillips
curve model. We use two sets of inflation data, one constructed with seasonally adjusted CPI for all items and
one constructed with the implicit price deflator for personal consumption expenditures (PCE), and two sets of
potential output data, one constructed with the Hodrick–Prescott filter and one estimated by the Congressional
Budget Office (CBO). Inflation measured with PCE data has smaller means and standard deviations than those
with CPI data. CBO-estimated output gaps have larger means and standard deviations than Hodrick–Prescott
filtered ones.

Our results indicate that imbedding the memory property into a hybrid Phillips curve yields better accuracy
than a traditional hybrid Phillips curve, an integrated moving average (IMA) model and a naive random walk
model for quasi-in-sample forecasts. In out-of-sample forecasts, our model with CPI data can outperform others
during 2006Q1–2014Q4, a period in which all models generate higher root mean square errors than those in
other sample periods and output gap has the greatest mean and variability among all sample periods.

Our research makes two contributions. First, we address the inflation persistence phenomenon from a math-
ematical perspective. To the best of our knowledge, this is the first paper to introduce memory into the hybrid
Phillips curve via the Caputo fractional derivative. Our inflation forecasting methodology avoids the estima-
tion inaccuracy of the differencing parameter and an issue that multivariate time series may be integrated of
non-identical differencing orders. Second, our research adds insight to the existing debate regarding the superi-
ority of forecasting models. Neither a naive random walk nor a Phillips curve model provides overwhelmingly
accurate performances in forecasting inflation.

Relevant studies in regard to using the Phillips curve for US inflation forecasting are summarized in Table
1. Atkeson and Ohanian (2001) compare non-accelerating inflation rate of unemployment1 (NAIRU) Phillips
curve-based inflation forecasts with a naive random walk forecast for the 1984–1999 time period. Their find-
ings suggest that none of the NAIRU models provide better predicting accuracy than a naive model. Fisher,
Liu, and Zhou (2002) show that Phillips curve models perform better than others for the two-year-ahead fore-
cast horizon. Bos, Franses, and Ooms (2002) include macroeconomic leading indicators, such as unemploy-
ment rate, short-term interest rate, and the spread between long term and short term interest rates, in a basic
ARFIMA model. They conclude that univariate models provide better forecast performance than others. Stock
and Watson (2008) conclude that with the inclusion of other activity variables, the Phillips curve provides good
but episodic forecasts for expected inflation. Dotsey, Fujita, and Stark (2015) conclude that the Phillips curve
model is generally inferior to other models in forecasting inflation. Chan, Koop, and Potter (2016) develop a
time-varying Phillips curve model with bounded trend for inflation and nonaccelerating rate of unemploy-
ment. Their results indicate that a bounded bivariate model provides better forecasts than a reduced vector
autoregressive model, a bivariate random walk model and others.

Table 1: A summary of related literature.

Related
literature

Forecasting method Sample period Measures of
inflation

Results
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Atkeson
and
Ohanian
(2001)

(1) Non-accelerating inflation rate
of unemployment (NAIRU) Phillips
curves:u�12

u�+12 − u�12
u� = α + β(L)xt +

γ(L)(πt − πt − 1) + εt + 12xt represents
unemployment rate or other
activity index (2) Naive forecast:
α = β(L) = γ(L) = 0

1984Q1–1999Q3 PCE and CPI The naive random walk model
outperforms NAIRU Phillips
curve models

Fisher,
Liu, and
Zhou
(2002)

(1) Atkeson and Ohanian’s naive
forecast model (12 months
ahead):u�12

u�+12 = u�12
u� + u�12

u�+12 (2)
Atkeson and Ohanian’s naive
forecast model (24 months
ahead):u�12

u�+24 = u�12
u� + u�12

u�+24 (3)
Generalized Phillips curve
models:u�12

u�+ℎ − u�12
u� = α + β(L)at +

γ(L)(πt − πt − 1) + εt + h, h = 12, 24 at
denotes the value of the Chicago
Fed National Activity Index
(CFNAI)

1977M1–2000M1 CPI, Core
CPI, and PCE

The naive forecast models
outperform other models for
1985–2000 Phillips curve
models perform better than
others when the forecast
horizon is 2 years

Bos,
Franses,
and Ooms
(2002)

(1 − L)dγ(L)(πt − Ω′tβ − u�′
u�−ℎ Φh) =

Θ(L)εtΩt contains the dummy
variables representing structural
shifts in the mean of inflation, h is
the forecast horizon and Φh
contains the macroeconomic
variables. γ(L) = 1 − φ1L − … − φpLp,
Θ(L) = 1 + θ1L + … + θqLq

1984M1–1999M12 Core CPI US postwar inflation has long
memory with an order of
d = 0.3. The univariate models
outperform other models in
2-year-ahead forecasting

Stock and
Watson
(2008)

(1) Stock and Watson (2007)
unobserved components stochastic
volatility (UC-SV) model:
πt = τ t + ηt, where ηt = ση,tξη,t, lnu�2

u�,u�
= lnu�2

u�,u�−1 + vη,t,τ t = τ t−1 + εt, where
εt = σε,tξε,t, lnu�2

u�,u� = lnu�2
u�,u�−1 +

vε,tLogarithms of the variances of ηt
and εt evolve as independent
random walks. (2) Atkeson and
Ohanian’s naive forecast model:
u�4

u�+4 = u�4
u� + u�4

u�+4 (3) Autoregressive
model: u�ℎ

u�+ℎ − u�u� = αh + γh (L) (πt−
πt−1) + u�ℎ

u�+ℎ(4) Gordon (1998)
Phillips curve forecast:πt+ 1 = α +
β(L)ut+ 1 + γG(L)πt + μ(L)zt + εt+ 1ut is
the unemployment rate. zt
represents supply shocks (5)
Mishkin (1990) multivariate
forecast: u�4

u�+4 − u�u� = α + βh(L)bt +
γh(L)(πt − πt− 1) + u�4

u�+4bt represents
the interest spread between 1-year
Treasury bonds and 90-day
Treasury bills

1960Q1–2007Q4 CPI,
Core-CPI,
PCE,
Core-PCE,
and GDP
deflator

The performance of Phillips
curve forecasts depends on the
sample period

3
Brought to you by | National ChengChi University

Authenticated
Download Date | 10/4/19 8:38 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Chu and Shane DE GRUYTER

Dotsey,
Fujita,
and Stark
(2015)

(1) Phillips curve:u�ℎ
u�+ℎ − u�u� = αh +

βh(L) û�u� + γh(L)(πt − πt−1) + u�ℎ
u�+ℎ,h =

2, 4, 6, 8.û�u� is defined as the
difference between the actual
unemployment rate and the
HP-filtered-trend unemployment
rate. (2) Naive
forecast:u�u�(u�ℎ

u�+ℎ − u�4
u�−1) = 0, u�ℎ

u� =
(400/h)[log(pt) − log(pt−h)], pt is the
price index for core personal
consumption expenditures (3) Stock
and Watson (2007) : First-order
integrated moving average
(IMA(1,1))
modelu�u� = u�u� + u�u�,u�u� = u�u�−1 + u�u�τ t
is a stochastic trade of inflation. ηt
and εt are serially uncorrelated
error terms

1969Q1–2014Q2;
1984Q1–2014Q2

PCE Phillips curve model is
generally inferior to the other
two models

Chan,
Koop, and
Potter
(2016)

(1) Phillips curve with bounded
trend:u�u� − u�u�

u� = u�u�
u� (u�u�−1 −

u�u�
u�−1)+u�u�(u�u� − u�u�

u� ) + u�u�
u� u�u� − u�u�

u� =
u�u�
1 (u�u�−1 − u�u�

u�−1)+u�u�
2 (u�u�−2 − u�u�

u�−2) +
u�u�

u� u�u�
u� ∼ u�(0, u�ℎu�), u�u�

u� ∼
u�(0, u�2

u�), ℎu� = ℎu�−1 + u�ℎ
u� ,u�ℎ

u� ∼
u�(0, u�2

ℎ)u�u�
u� and u�u�

u� are the trend
inflation and the nonaccelerating
inflation rate of unemployment,
respectively. (2) Vector
autoregressive model of order 2 (3)
Bivariate random walk model (4)
Univariate unobserved components
for inflation and an AR(2) for the
unemployment rate. (5) Stella and
Stock (2013) : Multivariate
unobserved components stochastic
volatility (UCSV) model

1975Q1–2013Q1 CPI The bounded bivariate model
forecasts better than other
models

πt is the rate of inflation. h denotes the number for the h-step ahead. L is the lag operator. γ(L) and β(L) represent the number of lagged
values in inflation and other variables. All the studies above conduct out-of-sample forecasts. CPI stands for consumer price index and
PCE stands for personal consumption expenditures.

One general conclusion, which can be drawn from existing studies, is that the forecasting performance of
Phillips curve models depends on the sample period. Fisher, Liu, and Zhou (2002) argue that an environment
with low inflation volatility and a stable monetary policy regime favors the naive random walk forecasts. In our
sample, the period of 1996Q1–2005Q4 has the lowest inflation volatility. The root mean square errors2 (RMSEs)
generated by all models during this period are relatively low compared to those in other forecast periods. As
Fisher, Liu, and Zhou (2002) indicate, we do find that a naive random walk model outperforms Phillips curve
models during this period. Stock and Watson (2008) propose that when the unemployment gap is larger than 1.5
in absolute value, the forecast accuracy of the Phillips curve will improve under the unobserved components
stochastic volatility (UC-SV) model. Our HPCF model uses output gap instead of unemployment gap as a
measure of economic activity. The output gap has the greatest mean in absolute value and standard deviation
during 2006Q1–2014Q4. Our results show that when inflation is measured with CPI data, the HPCF models can
outperform other models in out-of-sample forecasts during and after the great recession. In line with previous
research ( Atkeson and Ohanian 2001; Stock and Watson 2007), a naive random walk model tends to perform
well in an environment with smaller inflation, particularly during the Great Moderation (1984–2014).

The remainder of the paper is organized as follows. Section 2 introduces the evolvement and application of
the Phillips curve. Section 3 presents a hybrid Phillips curve with memory. Section 4 describes the methodology
and simulation results. Section 5 concludes.

2 The Phillips curve: evolvement and application

The traditional Phillips curve can be expressed as
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𝜋u� = 𝜆𝑥u�, (1)

where πt is the inflation rate at time t. λ describes the relationship between the inflation rate and the output gap
and is expected to be a positive number. xt is the output gap, defined as the deviation of actual output from
potential output. In the formation of (1), the output gap is a substitute for the deviation of the unemployment
rate from its natural rate. When the economy is booming, greater aggregate demand drives up the price level
and creates more job opportunities. Low unemployment is associated with positive output gaps. On the other
hand, slack demand depresses the price level and leads to high unemployment and negative output gaps.
This simple equation presents a dilemma for policymakers when attempting to achieve low inflation and low
unemployment.

After taking expected inflation into account, an expectations-augmented Phillips curve is written as3

𝜋u� = 𝜆𝑥u� + 𝛽𝐸u�𝜋u�+1. (2)

Here β is the discount factor and Etπt+1 is the expected inflation rate at t + 1 given the information at time t.
Equation (2) implies that inflation follows a forward-looking process. As we solve equation (2) forward, inflation
becomes a function of the present discounted value of a sequence of current and future output gaps.4

In the 1990s, the new Keynesian framework considered the assumptions of monopolistic competition and
nominal rigidities to modify the Phillips curve as a new Keynesian Phillips curve.

𝜋u� =
(1 − 𝜛)(1 − 𝛽𝜛)

𝜛
𝑚𝑐u� + 𝛽𝐸u�𝜋u�+1, (3)

𝑚𝑐u� = 𝑘𝑥u�, (4)

where mct is the real marginal cost proportional to the output gap. With Calvo (1983) staggered price setting,
which assumes that for each period a fraction 1 − ϖ of all firms can adjust their prices flexibly, ϖ becomes a
measure of the degree of nominal rigidity. The format of the new Keynesian Phillips curve is similar to the
old one when λ = k(1 − ϖ)(1 − βϖ)/ϖ. Nevertheless, in the new Keynesian Phillips curve, real marginal cost
becomes the driving source of the inflation process. To reconcile the empirical relationship between inflation
and output gap,5 a hybrid Phillips curve appears:

𝜋u� = 𝜙𝜋u�−1 + (1 − 𝜙)𝐸u�𝜋u�+1 + 𝛿𝑥u�, (5)

with 0 < ϕ < 1. Current inflation is a linear combination of previous inflation, expected inflation, and the output
gap. Equation (5) also indicates that a temporary shock to output gaps not only affects the inflation for one
period but over the duration of the shock.

Besides being used to forecast inflation, the Phillips curve also provides two other applications. First, it
can be used to measure the inflation persistence and its correlation with excess demand. The coefficients of
expected inflation, lagged inflation and output gap are estimated to examine their relative importance on the
determination of current inflation ( Fuhrer and Moore 1995; Gali and Gertler 1999; Rudda and Whelan 2005).
Second, with inflation on the vertical axis and output gap on the horizontal axis, the slope of a Phillips curve
evaluates the size of real effects of nominal shocks ( Hutchison and Walsh 1998; Daniels and VanHoose 2006).

3 A hybrid Phillips curve with memory

This section consists of two parts. First, we briefly lay out an ARFIMA framework and summarize its appli-
cations to inflation persistence and inflation forecasting. Second, we introduce the hybrid Phillips curve with
memory constructed via Caputo’s fractional derivative.

When applying a multivariate ARFIMA model to forecast inflation, Bos, Franses, and Ooms (2002) first esti-
mate the differencing order of all the variables and implement recursive out-of-sample forecasts. It is noted that
inflation rates along with all other macroeconomic variables are assumed to have the same differencing order
in their application. Our methodology begins by explicitly specifying a hybrid Phillips curve that emphasizes
the memory property of inflation, and then predictions are generated. We draw the insight from an ARFIMA
model in terms of a fractional differencing order and allow the differencing order to vary between 0.01 and
0.99. This avoids the issues that the differencing parameter may not be precisely estimated and multivariate
time series may be integrated of non-identical differencing orders.
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3.1 ARFIMA model

Suppose yt is a series such that after being differenced d times, the resulting series is white noise with finite
variance. Then the series yt is said to be integrated of order d. When d is between 0 and 1, yt is an ARFIMA (p,
d, q) series expressed as

(1 − 𝐿)u�𝛾(𝐿)𝑦u� = Θ(𝐿)𝜀u�, (6)

where γ(L) = 1 − φ1L − … − φpLp andΘ(L) = 1 + θ1L + … + θqLq are the autoregressive and moving average poly-
nomials, respectively. εt is the error term and is assumed to be independent and identically distributed with a
zero mean and a variance of 𝜎2

t .
There is extensive research discussing inflation persistence in the fractionally integrated models. Hassler

and Wolters (1995) test on monthly data of the United States, the United Kingdom, Germany, France and Italy
and find that the inflation rates in these countries exhibit various degrees of dependence. Gadea and Mayoral
(2006) argue that compared to autoregressive integrated moving average (ARIMA) models, ARFIMA is a par-
simonious and flexible method to estimate the persistence property of inflation and conclude that the values
of d for OECD countries are between 0.6 and 0.8.

Bos, Franses, and Ooms (2002) include macroeconomic leading indicators, such as unemployment rate,
short-term interest rate, and the spread between long term and short term interest rates, in a basic ARFIMA
model. Their modified model is defined as

(1 − 𝐿)u�𝛾(𝐿)(𝜋u� − Ω′
u�𝛽 − 𝑣′

u�−ℎΦℎ) = Θ(𝐿)𝜀u�, (7)

where πt is a vector of monthly inflation rates,Ωt contains the dummy variables representing structural shifts in
the mean of inflation, h is the forecast horizon and Φh contains the macroeconomic variables. Their estimation
results show that d is about 0.25 and is significantly different from 0 and 0.5. For the period 1960–1999, US
inflation was a long memory process. The inclusion of real activity variables somewhat improves the forecasting
accuracy for short-run horizons. However, the univariate models substantially outperform other models for
two-year-ahead forecasting.

3.2 Our model

We use the Caputo fractional derivative to build a hybrid Phillips curve with memory. Caputo (1967, 1969)
defines a fractional operator which provides initial and boundary conditions to address the memory property
of a time-dependent variable. Its initial condition has a derivative of integer order whose physical interpretation
can be properly addressed. Due to its tractability, the Caputo fractional derivative has been widely applied in
a variety of fields. The Caputo fractional derivative of fractional order u is defined as

𝜕u�𝑓 (𝑡)
𝜕𝑡u� = 1

Γ(1 − 𝑢) ∫
u�

0
( 1

(𝑡 − 𝜏)u�
𝑑𝑓 (𝜏)

𝑑𝜏
) 𝑑𝜏, (8)

where u is subject to the limits 0 < u < 1. Γ is the gamma function. The weight of the first order derivative (u�u� (u�)
u�u� )

in the time interval [0, t] increases as τ approaches t. The memory effect occurs since the dynamics of f (t) involve
its past values. We express equation (5) in Caputo’s memory function form as

𝑑
𝑑𝑡

𝐸u�𝜋u�+1 = 𝑎𝜋u� + 𝑏𝐷(u�)𝜋u� − 𝛿𝑥u�,

𝑤ℎ𝑒𝑟𝑒 𝐷(u�)𝑓 (𝑡) =
𝜕u�𝑓 (𝑡)

𝜕𝑡u� .
(9)

Here u is the order of the fractional derivative, subject to 0 < u < 1. Equation (9) depicts the expected inflation
dynamics. People formulate their expected change in inflation based on current inflation, the current output
gap and previous inflation. Different from a traditional hybrid Phillips curve, the value of expected inflation
contains a weighted average of previous inflation rates. The weights decrease as the lag number extends. We aim
to forecast the level of inflation instead of the change of inflation. Consequently, by using Laplace transforms,
the expected inflation is obtained in the following proposition.
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Proposition 3.1A solution to

𝑑
𝑑𝑡

𝐸u�𝜋u�+1 = 𝑎𝜋u� + 𝑏𝐷(u�)𝜋u� − 𝛿𝑥u�,

𝑓 𝑜𝑟 0 < 𝑢 < 1 𝑖𝑠

𝐸u�𝜋u�+1 = 𝐸0𝜋1 + 𝑎 ∫
u�

0
𝜋(𝜏)𝑑𝜏 + 𝑏

Γ(1 − 𝑢) ∫
u�

0
(𝑡 − 𝜏)−u�𝜋(𝜏)𝑑𝜏 −

𝑏𝜋0𝑡1−u�

Γ(2 − 𝑢)
− 𝛿 ∫

u�

0
𝑥(𝜏)𝑑𝜏.

(10)

Proof. See the Appendix for the complete derivation.

4 Methodology and simulation results

In this section, we apply the hybrid Phillips curve derived from Caputo’s fractional derivative (HPCF) to forecast
US inflation. Assuming that inflation and output gap are constant in the interval (k − 1, k] for all positive integers
k, equation (10) with n lags can be written as equation (11).

𝐸u�𝜋u�+1 = 𝜋u�−(u�−1) + 𝑎 ∑u�
u�=u�−(u�−1)

𝜋u�

+ 𝑏
Γ(2 − 𝑢)

∑u�
u�=u�−(u�−1)

((𝑡 − 𝑘 + 1)1−u� − (𝑡 − 𝑘)1−u�)𝜋u�

−
𝑏𝜋u�−(u�−1)𝑛1−u�

Γ(2 − 𝑢)
− 𝛿 ∑u�

u�=u�−(u�−1)
𝑥u�, for 0 < 𝑢 < 1.

(11)

Equation (11) expresses the expected inflation for period t + 1 as a linear equation involving the inflation rate
during period t − (n − 1), a sum of inflation rates between periods t − (n − 1) and t with constant weights, a
weighted sum of inflation rates between periods t − (n − 1) and t with increasing weights, a deduction factor
in relation to the inflation rate during period t − (n − 1), and a sum of output gaps between periods t − (n − 1)
and t with constant weights.

In our application of the HPCF, we only use one-quarter forecast horizons since longer horizons require
predictions of the output gap. Our data set consists of US CPI for all items, implicit price deflator for PCE,
and GDP values from 1957Q1 to 2014Q4. The seasonally-adjusted values of CPI, PCE, and GDP are obtained
from the Federal Reserve Economic Data (FRED) database, which is maintained by the Federal Reserve Bank
of St. Louis. A year-over-year quarterly inflation rate πk is calculated using the average of three year-over-year
monthly CPI changes corresponding to the quarter. Two measures of output gap xk, the deviation of GDP from
its Hodrick-Prescott-filtered trend as well as the output gap estimated by the Congressional Budget Office,
are used in the simulation. The CBO estimates potential output based on determinants of labor supply and
labor productivity. It is constantly updated and provides an economic rationale instead of filtering values by
statistical techniques.

Our implementation of the HPCF model involves updating the parameters a, b, δ, u every quarter. Two other
parameters that need to be chosen, either a priori or by data analysis, are the number of lags (n) and the number
of equations (m) used in ordinary least squares estimation of a, b, and δ. One necessary condition of the general
implementation is that n + m cannot exceed the number of data set quarters preceding the beginning quarter of
the forecast period. For example, if 1976Q1 is the beginning of the forecast period, n + m must be no more than
76.6 The general implementation of the HPCF proceeds as follows.

First, a forecast period is chosen along with a fixed number of lags n and the number of equations m used
in regressions. Second, for each quarter t in the forecast period, we calculate Et−1πt in the following manner:

a. A system of m equations similar to equation (11) is set up as

𝜋u�−u� = 𝜋u�−(u�+u�) + 𝑎 ∑u�−(u�+1)
u�=u�−(u�+u�)

𝜋u�

+ 𝑏
Γ(2 − 𝑢)

∑u�−(u�+1)
u�=u�−(u�+u�)

((𝑡 − 𝑘 + 1)1−u� − (𝑡 − 𝑘)1−u�)𝜋u�

−
𝑏𝜋u�−(u�+u�)𝑛1−u�

Γ(2 − 𝑢)
− 𝛿 ∑u�−(u�+1)

u�=u�−(u�+u�)
𝑥u�, 𝑗 = 1, … , 𝑚.

b. For each u from 0.01 to 0.99 in one one-hundredth increments, the method of least squares is performed on
the above m equations to estimate a, b, and δ.
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c. Of the ninety-nine quadruples of the form (a, b, δ, u) obtained in part b), let ( ̂𝑎, ̂𝑏, ̂𝛿, ̂𝑢) denote the one that
yields the least root mean square error with regard to fitting the inflation values πt−1, πt−2, …, πt−m.

d. An ex-post forecast of Et−1πt is performed.

𝐸u�−1𝜋u� = 𝜋u�−u� + ̂𝑎
u�−1

∑
u�=u�−u�

𝜋u�

+
̂𝑏

Γ(2 − ̂𝑢)

u�−1

∑
u�=u�−u�

((𝑡 − 𝑘)1−û� − (𝑡 − 1 − 𝑘)1−û�)𝜋u�

+
̂𝑏𝜋u�−u�𝑛1−û�

Γ(2 − ̂𝑢)
− ̂𝛿 ∑(u�−1)

u�=u�−u�
𝑥u�.

We apply the HPCF to quasi-in-sample and out-of-sample forecasts. Quasi-in-sample forecasting invokes the
general implementation over many combinations of m and n for the forecast period, and chooses the series of
predictions which has the least RMSE. We consider values of n between7 1 and 12 and all possible corresponding
values of m. Since the calculations of RMSE involve the forecast period’s actual inflation values, we define such
a forecast as quasi-in-sample in terms of m and n.

Out-of-sample forecasting splits the data set into an in-sample period (estimation period) and an out-of-
sample period (evaluation period). The estimation period conveys information used to fit the model while the
evaluation period is used to compare the forecast accuracy. In our implementation, an out-of-sample HPCF
forecast calculates the predicted inflation values for the evaluation period, using values of m and n determined
from a quasi-in-sample forecast of an estimation period prior to the evaluation period.

We compare our results with the forecasts from three models: a traditional hybrid Phillips curve (HPC),
defined as equation (5), an integrated moving average (IMA(1,1)) model from Stock and Watson (2007) ,8 and a
naive random walk model. In the estimation of the HPC, n always equals 2, and ϕ takes the place of u in part b).
A quasi-in-sample HPC forecast with a fixed n is implemented over all possible values of m. A naive random
walk model simply assumes that for any period t, Etπt+1 = πt. It can be viewed as an ARIMA(0,1,0) model and
is usually considered as a benchmark for inflation prediction ( Atkeson and Ohanian 2001; Chan, Koop, and
Potter 2016; Dotsey, Fujita, and Stark 2015; Elliot and Timmermann 2008; Fisher, Liu, and Zhou 2002; Stella and
Stock 2013).

Table 2 and Table 3 present the results with CPI data, and Table 4 and Table 5 present the results with PCE
data. The numbers in bold signify a lower RMSE than the naive random walk model, the IMA(1,1) model and
the corresponding traditional Phillips curve model for the same forecast period. The tables indicate that PCE
data produces inflation rates that generally have lower means and standard deviations than inflation rates de-
rived from CPI data. The HP-filtered output gap data generally have lower means and standard deviations
than CBO-estimated data. Quasi-in-sample forecasts are conducted over six forecasts periods: 1967Q1–2014Q4,
1967Q1–1975Q4, 1976Q1–1985Q4, 1986Q1–1995Q4, 1996Q1–2005Q4 and 2006Q1–2014Q4. Compared to the
alternative models, the quasi-in-sample Phillips curve forecasts, particularly HPCFs, are more accurate in
each forecast period. Out-of-sample forecasts are conducted over four forecast periods: 1976Q1–1985Q4,
1986Q1–1995Q4, 1996Q1–2005Q4 and 2006Q1–2014Q4. Our results indicate that the HPCF model with CPI
data and HP-filtered output gaps outperforms others in 2006Q1–2014Q4 out-of-sample forecasts. A naive ran-
dom walk model with PCE data forecasts better than others in 2006Q1–2014Q4 out-of-sample forecasts. During
2006Q1–2014Q4, output gaps have the greatest mean and standard deviation among all sample periods. The
RMSEs of all models for 2006Q1–2014Q4 are also greater than those in other sample periods. The IMA(1,1)
model is mildly superior to Phillips curve models based on CPI and PCE data for 1976Q1–1985Q4. The naive
random walk model outperforms Phillips curve models based on CPI and PCE data for 1996Q1–2005Q4.

Table 2: Forecasting results (CPI & HP-filtered output gap).

Forecast period Actual inflation Output gap
(HP-filtered)

Naive
model

Rolling
win-
dow

IMA(1,1)
model

Quasi
in-sample
forecasts

Out-of-sample forecasts

Mean Stan-
dard

devia-
tion

Mean Stan-
dard

devia-
tion

HPCF HPC HPCF HPC HPCFMHPCM
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Root mean square errors (RMSEs)

Whole sample
period
1967Q1–2014Q4

4.26 2.88 −0.67 128.99 0.768 0.725 0.743
(37,2)

0.740
(38,2)

– – – –

Sub-sample
period (1)
1967Q1–1975Q4

5.80 2.71 −0.14 14.47 0.755 0.601 0.557
(34,2)

0.500
(14,2)

– – – –

Sub-sample
period (2)
1976Q1–1985Q4

7.22 3.40 2.78 50.31 0.888 0.710 0.777
(27,8)

0.813
(73,2)

0.859
(34,2)

0.895
(14,2)

0.809 0.805

Sub-sample
period (3)
1986Q1–1995Q4

3.55 1.16 −4.22 52.20 0.566 0.584 0.548
(43,2)

0.564
(25,2)

0.750
(27,8)

0.587
(73,2)

0.588 0.577

Sub-sample
period (4)
1996Q1–2005Q4

2.51 0.73 −28.96 128.20 0.445 0.472 0.439
(91,6)

0.445
(84,2)

0.477
(43,2)

0.493
(25,2)

0.481 0.48

Sub-sample
period (5)
2006Q1–2014Q4

2.17 1.42 30.35 253.95 1.062 1.120 1.030
(100,5)

1.059
(112,2)

1.053
(91,6)

1.105
(84,2)

1.121 1.093

A-O (2001); Bos,
Franses, and
Ooms (2002)
1984Q1–1999Q4

3.28 1.15 3.18 49.97 0.507 0.504 0.495
(43,2)

0.507
(38,2)

0.543
(64,4)

0.521
(60,2)

0.538 0.515

Fisher, Liu, and
Zhou (2002)
1977Q1–2000Q4

4.76 3.10 7.66 61.37 0.680 0.607 0.644
(68,4)

0.658
(78,2)

0.686
(34,2)

0.668
(24,2)

0.651 0.650

Stock and
Watson (2008)
1976Q1–2007Q4

4.34 2.85 10.82 117.67 0.671 0.614 0.642
(69,4)

0.651
(69,2)

0.683
(34,2)

0.711
(14,2)

0.655 0.653

Dotsey, Fujita,
and Stark (2015)
1979Q1–2014Q4

3.68 2.80 0.39 148.65 0.781 0.771 0.758
(71,5)

0.779
(71,2)

0.789
(46,2)

0.795
(43,2)

0.776 0.781

Dotsey, Fujita,
and Stark (2015)
1984Q1–2014Q4

2.84 1.26 1.00 158.46 0.717 0.747 0.721
(105,2)

0.729
(100,2)

0.774
(64,4)

0.750
(60,2)

0.769 0.742

Chan, Koop, and
Potter (2016)
1976Q1–2012Q4

4.04 2.83 −3.03 144.92 0.787 0.766 0.767
(71,5)

0.781
(71,2)

0.807
(34,2)

0.866
(14,2)

0.777 0.781

The numbers in bold signify a lower RMSE than the naive random walk model, the IMA model and the corresponding hybrid Phillips
curve model for the same forecast period. The ordered pairs represent (m, n), where m is the number of equations per OLS calculation
and n is the number of lags. HPCF represents a hybrid Phillips curve with memory. HPC represents a traditional hybrid Phillips curve.
HPCFM represents a hybrid Phillips curve with memory including maximum m. HPCM represents a traditional hybrid Phillips curve
including maximum m. An output gap is defined as the deviation of GDP from its Hodrick-Prescott-filtered trend. The forecast periods in
Stock and Watson (2008), in Dotsey, Fujita, and Stark (2015) and in Chan, Koop, and Potter (2016) are revised to 1976Q1–2007Q4,
1979Q1–2014Q4 and 1976Q1–2012Q4, respectively. A-O (2001) stands for Atkeson and Ohanian (2001) .

Table 3: Forecasting results (CPI & CBO estimated output gap).

Forecast period Actual inflation Output gap
(HP-filtered)

Naive
model

Rolling
win-
dow

IMA(1,1)
model

Quasi
in-sample
forecasts

Out-of-sample forecasts

Mean Stan-
dard

devia-
tion

Mean Stan-
dard

devia-
tion

HPCF HPC HPCF HPC HPCFMHPCM

Root mean square errors (RMSEs)
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Whole sample
period
1967Q1–2014Q4

4.26 2.88 −129.13 214.22 0.768 0.725 0.739
(37,2)

0.732
(38,2)

– – – –

Sub-sample
period (1)
1967Q1–1975Q4

5.80 2.71 −0.75 36.20 0.755 0.601 0.450
(16,1)

0.466
(14,2)

– – – –

Sub-sample
period (2)
1976Q1–1985Q4

7.22 3.40 −70.27 84.34 0.888 0.710 0.788
(70,2)

0.771
(70,2)

0.899
(16,1)

0.897
(14,2)

0.798 0.762

Sub-sample
period (3)
1986Q1–1995Q4

3.55 1.16 −103.52 72.85 0.566 0.584 0.550
(43,2)

0.548
(42,2)

0.569
(70,2)

0.570
(70,2)

0.565 0.565

Sub-sample
period (4)
1996Q1–2005Q4

2.51 0.73 −66.14 146.03 0.445 0.472 0.439
(84,5)

0.439
(76,2)

0.455
(43,2)

0.451
(42,2)

0.470 0.468

Sub-sample
period (5)
2006Q1–2014Q4

2.17 1.42 −421.38 312.20 1.062 1.120 1.043
(105,5)

1.070
(109,2)

1.065
(84,5)

1.116
(76,2)

1.144 1.099

A-O (2001); Bos,
Franses, and
Ooms (2002)
1984Q1–1999Q4

3.28 1.15 −67.06 86.14 0.507 0.504 0.509
(43,2)

0.502
(42,2)

0.561
(25,1)

0.518
(27,2)

0.536 0.511

Fisher, Liu, and
Zhou (2002)
1977Q1–2000Q4

4.76 3.10 −61.73 96.71 0.680 0.607 0.638
(68,2)

0.630
(68,2)

0.749
(16,1)

0.703
(14,2)

0.645 0.622

Stock and
Watson (2008)
1976Q1–2007Q4

4.34 2.85 −72.81 107.06 0.671 0.614 0.636
(68,2)

0.627
(68,2)

0.733
(16,1)

0.700
(14,2)

0.642 0.629

Dotsey, Fujita,
and Stark (2015)
1979Q1–2014Q4

3.68 2.80 −170.68 232.17 0.781 0.771 0.765
(71,2)

0.769
(71,2)

0.926
(16,1)

0.955
(11,2)

0.790 0.767

Dotsey, Fujita,
and Stark (2015)
1984Q1–2014Q4

2.84 1.26 −181.15 245.46 0.717 0.747 0.723
(105,2)

0.728
(106,2)

0.785
(25,1)

0.805
(27,2)

0.764 0.740

Chan, Koop, and
Potter (2016)
1976Q1–2012Q4

4.04 2.83 −142.61 220.95 0.787 0.766 0.766
(71,2)

0.768
(71,2)

0.926
(16,1)

0.926
(14,2)

0.790 0.766

The numbers in bold signify a lower RMSE than the naive random walk model, the IMA model and the corresponding hybrid Phillips
curve model for the same forecast period. The ordered pairs represent (m, n), where m is the number of equations per OLS calculation
and n is the number of lags. HPCF represents a hybrid Phillips curve with memory. HPC represents a traditional hybrid Phillips curve.
HPCFM represents a hybrid Phillips curve with memory including maximum m. HPCM represents a traditional hybrid Phillips curve
including maximum m. An output gap is defined as the deviation of GDP from its Hodrick-Prescott-filtered trend. The forecast periods in
Stock and Watson (2008), in Dotsey, Fujita, and Stark (2015) and in Chan, Koop, and Potter (2016) are revised to 1976Q1–2007Q4,
1979Q1–2014Q4 and 1976Q1–2012Q4, respectively. A-O (2001) stands for Atkeson and Ohanian (2001) .

Table 4: Forecasting results (PCE & HP-filtered output gap).

Forecast period Actual inflation Output gap
(HP-filtered)

Naive
model

Rolling
win-
dow

IMA(1,1)
model

Quasi In-
sample

forecasts

Out-of-sample forecasts

Mean Stan-
dard

devia-
tion

Mean Stan-
dard

devia-
tion

HPCF HPC HPCF HPC HPCFMHPCM

Root mean square errors (RMSEs)

Whole sample
period
1967Q1–2014Q4

3.72 2.49 −0.67 128.99 0.568 0.530 0.524
(37,2)

0.523
(38,2)

– – – –
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Sub-sample
period (1)
1967Q1–1975Q4

5.26 2.52 −0.14 14.47 0.723 0.584 0.564
(11,1)

0.538
(23,2)

– – – –

Sub-sample
period (2)
1976Q1–1985Q4

6.46 2.36 2.78 50.31 0.539 0.484 0.433
(60,2)

0.440
(60,2)

0.775
(11,1)

0.484
(23,2)

0.630 0.461

Sub-sample
period (3)
1986Q1–1995Q4

3.04 0.95 −4.22 52.20 0.429 0.416 0.413
(90,9)

0.420
(31,2)

0.442
(60,2)

0.448
(60,2)

0.440 0.442

Sub-sample
period (4)
1996Q1–2005Q4

1.91 0.66 −28.96 128.20 0.329 0.335 0.310
(83,3)

0.317
(84,2)

0.357
(90,9)

0.358
(31,2)

0.345 0.341

Sub-sample
period (5)
2006Q1–2014Q4

1.89 1.05 30.35 253.95 0.743 0.762 0.705
(114,2)

0.719
(114,2)

0.755
(83,3)

0.751
(84,2)

0.775 0.746

A-O (2001); Bos,
Franses, and
Ooms (2002)
1984Q1–1999Q4

2.74 1.09 3.18 49.97 0.371 0.365 0.363
(43,1)

0.374
(31,2)

0.379
(48,2)

0.389
(55,2)

0.382 0.383

Fisher, Liu, and
Zhou (2002)
1977Q1–2000Q4

4.09 2.58 7.66 61.37 0.450 0.426 0.409
(43,2)

0.416
(43,2)

0.421
(35,2)

0.418
(30,2)

0.417 0.423

Stock and
Watson (2008)
1976Q1–2007Q4

3.73 2.40 10.82 117.67 0.452 0.432 0.424
(69,2)

0.426
(69,2)

0.593
(11,1)

0.443
(23,2)

0.495 0.439

Dotsey, Fujita,
and Stark (2015)
1979Q1–2014Q4

3.11 2.27 0.39 148.65 0.529 0.530 0.500
(71,2)

0.508
(71,2)

0.513
(43,2)

0.520
(43,2)

0.511 0.518

Dotsey, Fujita,
and Stark (2015)
1984Q1–2014Q4

2.38 1.07 1.00 158.46 0.508 0.516 0.505
(91,6)

0.511
(99,2)

0.518
(48,2)

0.523
(55,2)

0.516 0.519

Chan, Koop, and
Potter (2016)
1976Q1–2012Q4

3.47 2.37 −3.03 144.92 0.537 0.528 0.505
(71,2)

0.513
(71,2)

0.688
(11,1)

0.553
(23,2)

0.575 0.522

The numbers in bold signify a lower RMSE than the naive random walk model, the IMA model and the corresponding hybrid Phillips
curve model for the same forecast period. The ordered pairs represent (m, n), where m is the number of equations per OLS calculation
and n is the number of lags. HPCF represents a hybrid Phillips curve with memory. HPC represents a traditional hybrid Phillips curve.
HPCFM represents a hybrid Phillips curve with memory including maximum m. HPCM represents a traditional hybrid Phillips curve
including maximum m. An output gap is defined as the deviation of GDP from its Hodrick-Prescott-filtered trend. The forecast periods in
Stock and Watson (2008), in Dotsey, Fujita, and Stark (2015) and in Chan, Koop, and Potter (2016) are revised to 1976Q1–2007Q4,
1979Q1–2014Q4 and 1976Q1–2012Q4, respectively. A-O (2001) stands for Atkeson and Ohanian (2001) .

Table 5: Forecasting results (PCE & CBO estimated output gap).

Forecast period Actual inflation Output gap
(HP-filtered)

Naive
model

Rolling
win-
dow

IMA(1,1)
model

Quasi
in-sample
forecasts

Out-of-sample forecasts

Mean Stan-
dard

devia-
tion

Mean Stan-
dard

devia-
tion

HPCF HPC HPCF HPC HPCFMHPCM

Root mean square errors (RMSEs)

Whole sample
period
1967Q1–2014Q4

3.72 2.49 −129.13 214.22 0.568 0.530 0.528
(38,2)

0.524
(30,2)

– – – –

Sub-sample
period (1)
1967Q1–1975Q4

5.26 2.52 −0.75 36.20 0.723 0.584 0.473
(15,1)

0.503
(21,2)

– – – –
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Sub-sample
period (2)
1976Q1–1985Q4

6.46 2.36 −70.27 84.34 0.539 0.484 0.439
(71,2)

0.439
(68,2)

0.596
(15,1)

0.473
(21,2)

0.520 0.443

Sub-sample
period (3)
1986Q1–1995Q4

3.04 0.95 −103.52 72.85 0.429 0.416 0.414
(43,9)

0.418
(32,2)

0.437
(71,2)

0.438
(68,2)

0.431 0.430

Sub-sample
period (4)
1996Q1–2005Q4

1.91 0.66 −66.14 146.03 0.329 0.335 0.314
(83,3)

0.319
(84,2)

0.413
(43,9)

0.357
(32,2)

0.359 0.338

Sub-sample
period (5)
2006Q1–2014Q4

1.89 1.05 −421.38 312.20 0.743 0.762 0.713
(114,2)

0.740
(135,2)

0.769
(83,3)

0.766
(84,2)

0.788 0.755

A-O (2001); Bos,
Franses, and
Ooms (2002)
1984Q1–1999Q4

2.74 1.09 −67.06 86.14 0.371 0.365 0.375
(45,1)

0.373
(32,2)

0.385
(66,2)

0.381
(65,2)

0.378 0.376

Fisher, Liu, and
Zhou (2002)
1977Q1–2000Q4

4.09 2.58 −61.73 96.71 0.450 0.426 0.412
(65,2)

0.410
(65,2)

0.533
(15,1)

0.418
(30,2)

0.451 0.410

Stock and
Watson (2008)
1976Q1–2007Q4

3.73 2.40 −72.81 107.06 0.452 0.432 0.421
(69,2)

0.419
(67,2)

0.528
(15,1)

0.442
(21,2)

0.453 0.426

Dotsey, Fujita,
and Stark (2015)
1979Q1–2014Q4

3.11 2.27 −170.68 232.17 0.529 0.530 0.502
(71,2)

0.509
(71,2)

0.643
(15,1)

0.529
(43,2)

0.550 0.514

Dotsey, Fujita,
and Stark (2015)
1984Q1–2014Q4

2.38 1.07 −181.15 245.46 0.508 0.516 0.508
(71,2)

0.515
(71,2)

0.519
(66,2)

0.525
(65,2)

0.520 0.520

Chan, Koop, and
Potter (2016)
1976Q1–2012Q4

3.47 2.37 −142.61 220.95 0.537 0.528 0.507
(71,2)

0.512
(71,2)

0.655
(15,1)

0.578
(21,2)

0.557 0.518

The numbers in bold signify a lower RMSE than the naive random walk model, the IMA model and the corresponding hybrid Phillips
curve model for the same forecast period. The ordered pairs represent (m, n), where m is the number of equations per OLS calculation
and n is the number of lags. HPCF represents a hybrid Phillips curve with memory. HPC represents a traditional hybrid Phillips curve.
HPCFM represents a hybrid Phillips curve with memory including maximum m. HPCM represents a traditional hybrid Phillips curve
including maximum m. An output gap is defined as the deviation of GDP from its Hodrick-Prescott-filtered trend. The forecast periods in
Stock and Watson (2008), in Dotsey, Fujita, and Stark (2015) and in Chan, Koop, and Potter (2016) are revised to 1976Q1–2007Q4,
1979Q1–2014Q4 and 1976Q1–2012Q4, respectively. A-O (2001) stands for Atkeson and Ohanian (2001) .

To compare hybrid Phillips curve models with previous literature, we also conduct out-of-sample
forecasts over various sample periods: 1984Q1–1999Q4, 1977Q1–2000Q4, 1976Q1–2007Q4, 1979Q1–2014Q4,
1984Q1–2014Q4 and 1976Q1–2012Q4. Since our methodology is different from previous research, here we
focus on the discussion of relative performance between Phillips curve models and their competing mod-
els. Our results are consistent with Atkeson and Ohanian (2001) and Bos, Franses, and Ooms (2002) that the
1984Q1–1999Q4 period is in favor of the naive random walk model and the IMA(1,1) model for out-of-sample
forecasts. In line with Dotsey, Fujita, and Stark (2015), the naive random walk model outperforms other models
during 1984Q1–2014Q4. Fisher, Liu, and Zhou (2002) conclude that Phillips curve models perform better than
others for the two-year-ahead forecast horizon during 1977Q1–2000Q4. Within the same period, we find that
the traditional Phillips curve model with PCE data generates lower RMSEs than other competing models. The
IMA(1,1) model with CPI or PCE data has better performance than others in the periods of 1976Q1–2007Q4
and 1979Q1–2014Q4.

We also present results of augmented-HPCF and augmented-HPC out-of-sample forecasts, denoted as
HPCFM and HPCM, respectively. They are estimated with the same n chosen from an estimation period and
with m set to the largest possible value as of the beginning of the forecasted quarter’s year, e.g. 1976Q1–1976Q4
all use the same value of m. As shown in Table 2 through Table 5, HPCFMs with CPI and PCE data usually yield
lower RMSEs than the corresponding HPCFs in out-of-sample forecasts. Increasing the value of m generally im-
proves the forecast performance of Phillips curve models. However, in most periods the augmented-Phillips
curve models are outperformed by the naive random walk model and/or the IMA(1,1) model.

12
Brought to you by | National ChengChi University

Authenticated
Download Date | 10/4/19 8:38 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Chu and Shane

5 Conclusions

Predicting inflation with the Phillips curve has received long-lasting attention and mixed results in macroe-
conomics. Modifications of the Phillips curve, such as using various econometric techniques, different sample
periods and different regressors, are made to improve its forecast accuracy. This paper embodies the memory
property of inflation in a Phillips curve by using the Caputo fractional derivative to forecast inflation. This
specification reconciles the empirical evidence that inflation has memory, the so called inflation persistence.
After implementing our methodology, our results show that the hybrid Phillips curve with memory’s quasi-in-
sample forecasts generally provide better accuracy than the competing models. Similar with other studies, the
performance of Phillips curve models for out-of-sample forecasts varies with the sample periods. None of these
models provide overwhelmingly accurate performances in forecasting inflation. Our model with CPI data can
outperform others in out-of-sample forecasts during and after the most recent financial crisis (2006–2014).

This paper provides an alternate method of formulating expected inflation. Our modified Phillips curve
constructs time-dependent inflation rates via Caputo’s fractional derivative and output gaps. A limitation im-
posed on our estimation is that inflation is predicted on a quarterly basis since only quarterly data are available
for GDP. Another limitation is that our forecast horizon is one quarter since we do not predict output gap. Be-
sides forecasting inflation, a hybrid Phillips curve with memory can serve as an inflation adjustment equation
in the analysis of optimizing monetary policy. Future research can be extended to include a hybrid Phillips
curve with memory in the conduct of monetary policy.
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Appendix

We want to solve the differential equation

𝑑
𝑑𝑡

𝐸u�𝜋u�+1 = 𝑎𝜋u� + 𝑏𝐷(u�)𝜋u� − 𝛿𝑥u� (12)

Here the fractional derivative of order u, 0 < u < 1, is defined by

𝐷(u�)𝑓 (𝑡) = 1
Γ(1 − 𝑢) ∫

u�

0

𝑑𝑓 (𝜏)
𝑑𝜏

𝑑𝜏
(𝑡 − 𝜏)u�

The Laplace transform of the function f is defined by 𝐿{𝑓 (𝑡)} = ∫∞
0 e−st𝑓 (𝑡)𝑑𝑡. Another notation is F(s) = ℒ{f (t)}.

Some basic Laplace transforms we will use are as follows:

𝐿(1) = 1
𝑠
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𝐿(𝑡u�) =
Γ(𝑝 + 1)

𝑠u�+1 where 𝑝 > −1, 𝑠 > 0 (13)

𝐿 {∫
u�

0
𝑓 (𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏} = 𝐹(𝑠)𝐺(𝑠) (14)

𝐿{𝑓 ′(𝑡)} = 𝑠𝐹(𝑠) − 𝑓 (0)

The Laplace transform of D(u)πt is calculated using (13) and (14).

𝐿{𝐷(u�)𝜋u�} = 𝐿 { 1
Γ(1 − 𝑢) ∫

u�

0

𝑑𝜋(𝜏)
𝑑𝜏

𝑑𝜏
(𝑡 − 𝜏)u� }

= 1
Γ(1 − 𝑢)

(𝑠𝐿{𝜋u�} − 𝜋(0))Γ(1 − 𝑢)
𝑠1−u�

= 𝑠u�𝐿{𝜋u�} − 𝑠u�−1𝜋(0).

Evaluating the Laplace transform of (12), we get

𝑠𝐿{𝐸u�𝜋u�+1} − 𝐸0𝜋1 = 𝑎𝐿{𝜋u�} + 𝑏𝑠u�𝐿{𝜋u�} − 𝑏𝑠u�−1𝜋(0) − 𝛿𝐿{𝑥u�}.

So

𝐿{𝐸u�𝜋u�+1} =
𝐸0𝜋1

𝑠
+

𝑎𝐿{𝜋u�}
𝑠

+
𝑏𝐿{𝜋t}
𝑠1−u� − 𝑏𝜋(0)

𝑠2−u� −
𝛿𝐿{𝜋u�}

𝑠
.

Taking inverse Laplace transforms, we obtain

𝐸u�𝜋u�+1 = 𝐸0𝜋1 + 𝑎 ∫
u�

0
𝜋(𝜏)𝑑𝜏 + 𝑏

Γ(1 − 𝑢) ∫
u�

0
(𝑡 − 𝜏)−u�𝜋(𝜏)𝑑𝜏 −

𝑏𝜋0𝑡1−u�

Γ(2 − 𝑢)
− 𝛿 ∫

u�

0
𝑥(𝜏)𝑑𝜏.

Notes
1The non-accelerating inflation rate of unemployment (NAIRU) refers to the level of unemployment that does not generate more infla-

tion.
2The RMSE is defined as the square root of the average of squared differences between predicted values and actual values.
3Friedman (1968) proposes to include an expectation effect into the Phillips curve and uses previous inflation as a proxy for expected

inflation. An expectations-augmented Phillips curve also empirically documented the inflation dynamics of the 1970s.
4

u�u� = u� ∑∞
u�=0

u�u�u�u�{u�u�+u�}.

5As indicated in Gali and Gertler (1999), the New Keynesian Phillips curve implies that the current inflation rate should be negatively
related to the lagged output gap. However, empirical evidences usually present a positive relationship between these two variables. Also,
it predicts that the central bank can achieve disinflation at no substantial cost as long as the path of future output gaps is set to zero.

6n + m ≤ (1976–1957)*4 = 76.
7Fisher, Liu, and Zhou (2002) allow lags to vary between 0 and 11 months by using the Bayes Information Criterion (BIC). Stock and

Watson (2008) use BIC and Akaike information criterion (AIC) to determine the lag length over the range of 1 to 6 quarters. We estimate
the model with a lag length between 1 and 12 quarters. The resulting lags fall between 1 and 9 across models.

8Stock and Watson’s rolling window IMA model does not require estimating a time-varying unobserved components model. However,
it has poorer performance relative to time-varying parameter models during periods of high volatility. We thank the reviewer for this
constructive comment.
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