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中文摘要

等待時間一直是服務品質的重要指標，例如減少在醫療保健，公共服務

和各種重點服務 (VIP)系統的等待時間。本論文考慮由兩個不同的服務站組

成的雙線服務系統，包含一個免費服務站，和一個付費服務站，每個服務

站都有隊列和服務提供者，據此建立數學等候模型。兩個服務站提供相同

的服務內容。假設其中付費服務站的隊列具有長度限制，該服務站為了減

少客戶等待時間維持服務質量而採取溢價服務。溢價服務意指系統通過收

取額外費用提供另一服務選擇的機制。

由於有一些客戶會根據自己的時間價值做出決策，我們在這種雙線服務

系統中研究隊列長度信息對顧客行為的影響，我們發現向客戶提供即時隊

列長度信息可以顯著地減少總等待成本。此外，從最小化所有客戶的總等

待成本和最大化付費服務提供者的利潤的角度，我們利用數學模型分析提

供即時隊列長度信息與否之影響。

在論文中，我們展示此模型能夠反映減輕客戶等待之負擔的信息效應，

同時也揭示價格策略和服務保障對雙線服務系統服務指標的影響。

關鍵詞：即時信息，雙線服務系統，類生死過程，矩陣幾何解法
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Abstract

Waiting time has been an unavoidable concern for service such as healthcare,

public provision and VIP systems of various services. We address this issue for

considering a two­tier service system which is composed of two different service

stations: a gratis station and a toll station. Each service station is set up by a queue

and a service provider. The service providers of service stations provide the same

service. In the thesis, we study a queueing model that one of the service stations

charges a premium in order to guarantee a maximum expected waiting time and the

queue of this service station has a length limit.

We study the effects of the queue length information on the performance of

such a two­tier service system with customers who make decisions based on their

own time value. We show that offering the real­time queue length information to

customers can effectively enhance the performances of both services in the system.

Furthermore, for both with and without real­time queue length information

scenarios, we analyze the problem from two perspectives. There are the perspectives

of minimizing the expected social waiting cost for customers and maximizing the

expected profit for the manager. We show that this model can obviously reflect the

information effects of alleviating the burden of waiting for customers, and it also

reveals the impact of service guarantee and price discrimination on the performance

of the two­tier service system.

Keywords: Real­time information, Two­tier service system, QBD process,

Matrix geometric method
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Chapter 1

Introduction

In this thesis, we consider a system with two service stations for customers to choose.

One station offers a gratis service and the other offers a toll service but with shorter waiting

time. Customers are heterogeneous in view of their individual time value. Customers select the

station based on either the expected waiting time or the real­time queue length information of

two stations. We develop two stochastic models for these two information scenarios, and give

an optimized price of the toll station for the perspective of the expected social waiting cost of

customers as well as the expected profit of the manager.

We study the effects of the queue length information on the performance of the two­tier

service system where customers make decisions based on their own time value. These results

not only benefit the practitioners to manage the actual service system that fits the model, but

also facilitate a computational model used by researchers with queueing theories to simplify the

analysis.

1.1 Research Background

A two­tier healthcare system usually consists of a public station and a private station.

The former is supplied by the government and the latter by private investors. This system

is used by many countries, for example, in Singapore, France and U.K. etc. In a two­tier

healthcare system, the price for providing the service in the public station often is set low by the

government. This is to provide services to everyone, but usually leads to long queues. Thus,

when customers with higher opportunity costs use the public service, he/she may has a high

1
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waiting cost. Johar and Savage [20] provide a comparison of waiting times between Australian

public and private hospitals and show that the patients in public hospitals typically wait longer

than in private hospitals. This is where private services can take place, although it charges an

additionally higher price. If the waiting cost saved, compared with public services exceed the

price, customers with higher waiting costs are suitable to use private services.

Waiting costs have been one of the important issues for services. This is reflected in the

design of two­tier healthcare in various countries [27]. No matter how rich the country is, each

health care system has limited resources. In another aspect, demand is increasing due to an aging

population and rising levels of medical services.

A healthcare service system should find a balance between the patient’s waiting cost and the

cost of service capacity. Besides direct expenditure and lost productivity, the patient’s waiting

cost also includes the cost of increased service demand due to service delays. For healthcare

services, customers or patients differ in terms of socioeconomic status, and even in terms of

their medical conditions. The former usually means the difference in the opportunity costs of

their waiting time, and the latter probably causes the patient to be in danger when the treatment

is delayed. It causes that some customers need shorter waiting time than the other because of

their ability or willingness to wait for the service. Given this situation, it is important to be able

to lower the patient’s waiting cost without increasing service capacity.

Service schemes generated by price discrimination is a common way to solve this problem.

This strategy effectively allocates resources between heterogeneous and selfish customers. For

increasing the efficiency of the healthcare service system, the strategy minimizing waiting costs

can be motivated by exploiting the heterogeneity of the customers or patients [12]. In this case,

distinguishing customers by price and leadtime can increase systemefficiency or profit [31].

Many of the literature in the past often assumes that customers are provided with long­term

statistical information rather than the real­time queue information. Of course, there are some

practical systems that support the assumption the customers make their decisions according

to the long­term statistics or unobservable queues in the two­tier system. For example, the

customer will decide to join a public or private health insurance plan based on long­term

statistical information. At another example, the customer decides to go to a restaurant based

on past experience, where experience represents a kind of long­term statistical information. It is

reasonable to assume that customers use long­term statistics such as expected waits and service

2
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time, rather than real­time queue length information. In addition, by decomposing the two­

tier system into two subsystems, the analysis of system performance can be simplified. This is

another important reason for making this assumption in previous research.

There are some realities where customers choose services based on the real­time queue

lengths of the two service providers. Real­time queue length information will make the arrival

process depending on the system state which complicates the analysis, and some analysis

methods are mathematically difficult to handle. Because it is not easy to compute the stationary

probability at the model with real­time information, we used the matrix geometric method to

analyze the system performance of customers with real­time queue information. The matrix

geometric method was developed around 1975 [3]. It is a method for the analysis of quasi­

birth–death processes (QBD, see Appendix A.1). Computationally, this type of problem can

be modeled as a QBD process that the levels are countably infinite. It can be solved by the

matrix geometric method, but the calculation of the matrices with large size makes the solution

complex. Most importantly, we consider the optimization of the perspectives of the society

and the manager. From a social perspective view, the government may want to differentiate

customers by price differences, so that customers with urgency or high time costs can get

services as soon as possible. Therefore, tolls are only a means of separating customers with the

objective of minimizing the expected social waiting cost of the customers. From the perspective

of the manager, the toll price is adopted for profit. Their objective is naturally to maximize the

profits. However, very high price may make customers reluctant to enter and lose more than the

manager’s gain. Therefore, managers need to strike a balance between the arrival rate and the

toll price.

1.2 Literature Review on Modeling

This paper is related to two streams of literature. First, it is related to the information effects

on performance of queueing systems. There are some literatures on the information effects on

performance of queueing systems.

Naor [28] study that strategic customers observe either real­time queue length information

or the long­term statistics to make the decision whether to join or balk on an M/M/1 queue.

He showed that the self­interest customer’s choice does not maximize social welfare, but the

3
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socially optimization can be attained by using a toll price. However, his study is based on first

come first served (FCFS) queueing rules and homogeneous delay costs. Hassin and Haviv [17]

summarize more research findings in this area. See [17] and literature therein.

Armony and Maglaras [2] [1] analyze a system that offers two modes of service, in which

there are real­time service and postponed services with a delayed guarantee. In Armony and

Maglaras [2], customer’s decisions are based on the real­time delay, or long­term statistics.

In Armony and Maglaras [1], each arriving customer is given an estimation of delay based

on the system occupancy. Comparing the results with the other systems, they show that more

information improves performance on several aspects.

Guo and Zipkin [16] study an M/M/1 service queueing system. Based on the three kind of

information: no information, partial information (the system occupancy), and full information

(the exact waiting time), and the expected waiting cost, they show that the customer decides

whether to join or reject with more accurate information can improve performance. However,

in other cases, the information may actually harm the service provider or customers. Guo and

Zhang [15] investigate two­tier service systems motivated by healthcare and border­crossing

systems where customers can choose to join a free system or a toll system. Both partial real­

time information and no real­time information cases are considered. They show that the system

performance is more robust by setting a relatively high than a relatively low price.

Chen et al. [5] conduct an empirical analysis on the two­tier system based on the real dataset

verified by a two­queue model. Hua et al. [18] assume that the customers make their decisions

according to long­term statistics and study the competition and coordination in a two­tier service

system where the free system strives for maximizing its expected total customer utility with

limited capacity, while the toll system is aimed at maximizing its profit. Qian et al. [32] analyze

subsidy schemes for reducing waiting times under the assumption that public healthcare service

has no user fee but an observable delay and private healthcare service has a fee but no delay.

Zhang and Luh [37] consider a two­tier service system including one free and one toll

stations. The free station provides free service and the toll station provides paid service but a

guaranteed maximum expected waiting time. The waiting cost rate of strategic heterogeneous

customers follows a uniform distribution. They investigate how the toll price and service

guarantee affect the performance of the two­tier service system and indicate the inconsistency

between the profit of the toll station. On this basis, we study more general distributions of

4
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the waiting cost rate of strategic heterogeneous customers in this thesis. In addition, we find

optimized prices for both the social and managerial perspectives.

The second stream of research is pricing and priority decisions in queueing systems. It

focuses on reducing delayed cost. To address the self­optimization behavior of customers,

Kleinrock [22] considers a problem that a relative position in queue is determined according

to the size of a customers’ bribe while weighing the delay cost and bribery under the general

queueing system.

Mendelson and Whang [26] characterize user classes by its expected service time and

waiting cost rate and consider an M/M/1 queueing system with these classes. They raised a

priority pricing mechanism in which each user decides whether to enter the system with certain

priority level or not. These decisions make the objective function value of the entire system

maximized.

Edelson andHildebrand [10] studywhen customers have the homogeneous or heterogeneous

value for waiting time, expanding the number of servers and charging premium are methods

for segmenting the market to implicate the welfare. Schroeter [33] considers heterogeneous

customers with uniformly distributed unit­time waiting costs. Stidham [34] discusses more

comprehensively the price in priority queues with one or more classes of customers.

Nazerzadeh and Randhawa [29] show that for M/M/1 systems with heterogeneous waiting

costs of customers, it is asymptotically optimal to provide two service levels with appropriate

prices. Gavirneni and Kulkarni [12] study a pay­for­priority mechanism named concierge option

with heterogeneous waiting cost rates. They show that the concierge option is a valid method

to be beneficial to each customer, and these benefits are greater when the system utilization is

high and the variance of the customers’ waiting costs is large.

In particular, we have noticed the study of Wan and Wang [36]. They consider a setting

of two service providers, and the objective of minimizing the expected waiting cost per patent

and maximizing the social gain. The arrival rates of customers follows a general probability

distribution. Customers with the waiting cost rate choose a service provider according to

their own preferences. To compare with their study, we consider the more general probability

distribution of customers’ waiting cost rates and considers the impact of with and without real­

time information.
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1.3 The Objective of This Study

Our work involves three blocks. We built the model based on two­tier service system. In

this model, one of the service stations charge each customer a fee for the service. First, we

explore how the real­time queue length information affects the system performance. In fact,

there are some systems where customers make decisions based on long­term statistics when the

two­tier system has unobservable queues. It is reasonable to assume that customers use long­

term statistics rather than real­time queue length information. In addition, another important

reason for making this assumption in previous studies is that the analysis can be simplified by

decomposing the two­tier system into two subsystems. Because of the dependence of real­time

queue length information on the system state, the analysis will be complicated. Nevertheless,

there are circumstances for customers to make selections based on the real­time queue lengths

of the two service providers.

We show that the real­time queue information makes the queue length always shorter when

the two service rates are not different. We compare the impact on queue lengths with and without

real­time queue length information when the service rates, the toll price, and the buffer size

change, respectively.

Second, we consider the toll pricing from two different perspectives in the two­tier system.

From the perspective of the society, the toll price is just a transfer payment. Thus, to make the

expected social waiting cost for the customers minimized is its objective. By contrast, from the

perspective of the manager, the toll price is the source of income. Thus, the goal is to maximize

the manager’s profit. We show that real­time information can reduce the expected social waiting

cost and enhance the social welfare. Moreover, we indicate that the two­tier system with the

price discrimination strategy has a lower expected social waiting cost when the customer’s time

value is more diverse. Additionally, in the perspective of the manager, we show that the optimal

price chosen by the manager of the toll station is affected by the service rate of the gratis station,

and this decision will make the expected social waiting cost relatively high. Therefore, in this

case, the government’s control for the toll price is usually necessary.

Finally, by providing real­time information in a two tier service system, the expected social

waiting cost per customer is significantly reduced. This does not mean that the queue lengths

will always be shorter in real­time information scenarios. By adjusting the service rate ratios of

the two stations µ1/µ2, we find that when the gratis station has a higher service rate, the queue

6



DOI:10.6814/NCCU201901241

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

length of the gratis station in real­time information scenario is shorter than that in no real­time

information scenario. This is because customers will overestimate the service efficiency of the

gratis station without real­time information. When the toll station has a higher service rate, the

similar situation that customers overestimate the service efficiency of the toll station will also

occur. Therefore, we find an interval of service rate ratios where the queue lengths of the gratis

and toll station are improved. Furthermore, in this interval, we speculate that the expected social

waiting cost in the real­time information seems to be a convex upward function of µ1/µ2 where

there is a global minimum by given µ1/µ2. That is to say, when the government designs their

two­tier healthcare system, if µ1/µ2 is a decision variable, there is a best division so that the

expected social waiting cost is minimized.

The thesis is organized as follows. In Chapter 2, we formulate a basic model for a two­

tier service system with and without the real­time information. We develop a search algorithm

to compute the price under no real­time information scenario. Moreover, we formulate a

computational quasi­birth­death (QBD) process model under the real­time information scenario.

In Chapter 3, we analyze the optimization model that minimizes the expected social waiting cost

for customers or maximizes the profit for managers with or without real­time information. In

Chapter 4, we compare the performances of two perspective optimization in these two scenarios.

We discuss the management implications of the results. Finally, we conclude our study in

Chapter 5.

7
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Chapter 2

A Two­tier Service System

We consider a service system consisting of two service stations. Each service station is

composed of a queue and a service provider. These two service providers offer the same service,

but one of service providers charges their customers while the queue has a finite buffer. The

time value of customers is subject to a distribution. Due to his/her own time value, the customer

selects a service station to minimize his/her expected waiting cost. Our intention in this chapter

is to characterize the system behavior under the optimal choice of customers.

2.1 Definitions and Assumptions

We build a queueing model that is composed of a gratis service station and a toll service

station which is shown in Figure 2.1 for the two­tier service system. The service times for

Figure 2.1: A two­tier service system

8
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the gratis station and the toll station are independent and identically distributed following

exponential probability distributions with the service rates µ1 and µ2. In general, they may

represent the service capacity of the service providers. The gratis service station denoted by

station 1 offers free service with mean service time 1/µ1, and the toll service station with a finite

buffer denoted by station 2 offers the service with mean service time 1/µ2 and with presumably

shorter waiting time but for a toll fee of p.

For example, at a two­tier healthcare system, the toll station represents a private hospital

which usually emphasizes the service efficiency. In order to ensure a shorter service time for

the patient who pays, the waiting time of the toll service needs an upper bound that the patient

may bear. We assume that the queue of the toll station has a finite buffer of sizeK, and as long

as the buffer is full, the customer must join the queue of the gratis station. In addition, a finite

buffer is able to make the service efficient as it can avoid excessive waiting time that usually

leads to the high ”no­show” rate or low service efficiency [13] [19].

Customers arrive according to a Poisson process with rate Λ and should be served on first­

come­first­served (FCFS) basis. Customers may be considered differently in their time values.

Denote time value by a random variable Θ ≥ 0 in terms of the waiting cost per unit time for a

customer. F (θ) and f(θ) denote the cumulative distribution function and the probability density

function of θ, respectively. Let the function of expected value of f(θ) be G(x) =
∫ x

0
θf(θ)dθ

and ξ =
∫∞
0

θf(θ)dθ. The existence of ξ depends on the condition of f(θ). See Appendix A.7

for more details of selected probability distributions in this thesis.

Based on the difference of the expected waiting cost of two queues, each customer wisely

select a service station. Assume customers are split into two flows to enter the gratis or the

toll station with arrival rates λ1 or λ2, where λ1 + λ2 = Λ. Further assume that λ1 and λ2 are

functions of Θ. In view to whether the customer knows the queue lengths of the two stations

at their arrival instants, there are different scenarios about choosing the gratis station or the toll

station, which we discuss in the following sections.

2.2 A No Real­time Information Scenario

In this section, we consider the case where the customer does not know the actual queue

length of the two stations when they arrive. Customers will choose a station to enter based on

9
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the expected queue lengths of the gratis and toll stations. Intuitively, because of the positive toll

price, every customer would want to enter the gratis station at the beginning. But when more

and more customers join the gratis station, the waiting time of the gratis station will increase,

and the waiting time of the toll station is relatively short. This will force customers with high

time value to think to join the toll station for a shorter expected waiting time.

Given a distribution of the time value of customers, suppose there exists the balanced

waiting time cost rate θ satisfies the following equation:

θE[W1] = p+ θE[W2], (2.2.1)

whereW1 andW2 is the waiting time of the gratis and toll stations. In this equation, because of

the positive p, it implies the expected waiting time at the gratis station is no less than that at the

toll station, namely, E[W1] ≥ E[W2].

Base on their time value θ and the expected waiting time of both stations, each customer

will compare the cost when entering the gratis station θE[W1] and the cost of entering the toll

station p+ θE[W2], and choose the lower one to enter.

Ideally, customers with time value lower than θ consider the left hand side of the equation

and they will choose the gratis service station because of free of entrance fee. On the other

hand, those who bear high time value will choose the toll service station for the shorter expected

waiting time. Then, θ is the watershed between this two groups of customers, such that we may

compute the planned arrival rates by λ1(θ) = ΛF (θ) and λ2(θ) = Λ(1 − F (θ)). In fact, the

expected waiting times of the gratis and toll stations depend on the arrival rates which depends

on θ. Therefore the expected waiting time is affected by θ, namely denoted as E[W1(θ)] and

E[W2(θ)]. In this way, as long as p is given from the equation (2.2.1), it will find the watershed

θ. However, the calculation of E[W1] and E[W2] is quite complicated, we cannot directly solve

θ. Therefore, we need to develop an algorithm to compute θ.

Since we have assumed that when the buffer of the toll station is full, the customers are

forced to join the gratis station, it is necessary to distinguish the planned arrival rate and the

effective arrival rate in the system. As explained in the previous section, λ1 and λ2 represent the

planned arrival rates for the gratis and toll stations, the effective arrival rates for the gratis and

toll stations are λeff
1 (θ) = λ1(θ) + π•Kλ2(θ) and λeff

2 (θ) = (1− π•K)λ2(θ), respectively, where

π•K is the probability that there are exactlyK customers in the toll station.

10
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The toll station clearly is an M/M/1/K queue, since its arrival rate for the non­full buffer

states is λ2 subject to the Poisson arrival process and 0 as the buffer is full. As a result of λeff
1

superimposing the overflow from the toll station and the Poisson arrival process with rate λ1,

the aggregate arrival process for the gratis station can be modeled as an M/M/1 queuing system.

We can easily obtain the stability condition for the two­tier service system under no real­

time queue length information.

Proposition 2.2.1. With no real­time queue length information, the two­tier service system

reaches the steady state if µ1 > λeff
1 = λ1 + π•Kλ2.

Even though the stability condition is easy to understand, we are still unable to estimate

customer’s behavior in terms of θ from λ1 and λ2, satisfying Proposition (2.2.1).

For the toll station with a given θ, then there are λ2 = Λ(1 − F (θ)) and ρ2 = λ2/µ2, we

have the expected waiting time and the stationary probability [14]

E[W2] =


1
λeff
2

{
1

1−ρ2
− 1+KρK+1

2

1−ρK+1
2

}
if ρ2 ̸= 1,

K
2

if ρ2 = 1,

(2.2.2)

π•m =


(1−ρ2)ρm2
1−ρK+1

2

if ρ2 ̸= 1,

1
K+1

if ρ2 = 1,

m = 0, 1, ..., K. (2.2.3)

Since the number of customers arriving is subject to the Poisson distribution, λ1 and λ2 are

still parameters of the Poisson distribution. Furthermore, π•Kλ2 and (1−π•K)λ2 are parameters

of the Poisson distribution, which means λeff
1 is also a parameter of the Poisson distributions.

Then the queuing system of the gratis station can be regarded as the M/M/1 queuing system with

an arrival rate of λeff
1 . So we can get the expected waiting time and the stationary probability for

the gratis station as follows:

E[W1] =
1

µ1 − λeff
1

(2.2.4)

πn• = (1− ρ1)ρ
i
1, n = 0, 1, ... (2.2.5)

where ρ1 = λeff
1 /µ1.

Proposition 2.2.2. For a stable two­tier service system without real­time queue length

11



DOI:10.6814/NCCU201901241

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

information, and a fixed p there exists a unique θ satisfying the equation (2.2.1).

Proof. For the balanced waiting time cost rate θ satisfies (2.2.1) which can be re­written as

θ =
p

E[W1(θ)]− E[W2(θ)]
. (2.2.6)

For any θ and a distribution of θ, F (θ), satisfying (2.2.6), we have λ1 = ΛF (θ) and λ2 =

Λ(1 − F (θ)). Thus as θ increases, λ1 increases and λ2 decreases. For the toll station with a

given λ2, we have the stationary probability when the queue length of the toll station is K by

(2.2.3). Thus, we get

λeff
2 = (1− π•K)λ2 =


(1− (1−ρ2)ρK2

1−ρK+1
2

)λ2 if ρ2 ̸= 1,

(1− 1
K+1

)λ2 if ρ2 = 1.

(2.2.7)

It is easy to see that λeff
2 increases with λ2 for the case of ρ2 = 1. Then, we consider the

case of ρ ̸= 1. Define g(x) =
∑K

i=1 x
−(i+1)µi

2, we rewrite (2.2.7) as

λeff
2 (λ2) = (1− (1− ρ2)ρ

K
2

1− ρK+1
2

)λ2 =
λ2g(λ2)

g(λ2) + λ−1
2

for ρ2 ̸= 1

Given δ ∈ R+, consider the ratio of λeff
2 between λ2 and λ2 + δ,

ratio λeff
2 (λ2, λ2 + δ) =

λeff
2 (λ2)

λeff
2 (λ2 + δ)

=
λ2g(λ2)

g(λ2) + λ−1
2

(
(λ2 + δ)g(λ2 + δ)

g(λ2 + δ) + (λ2 + δ)−1
)−1

=
g(λ2)(λ2g(λ2 + δ) + λ2(λ2 + δ)−1)

g(λ2)(λ2g(λ2 + δ) + 1) + δg(λ2 + δ)(g(λ2) + λ−1
2 )

(2.2.8)

We know that the function value of (2.2.8) is less than 1, since λ2(λ2 + δ)−1 < 1 and δg(λ2 +

δ)(g(λ2) + λ−1
2 ) > 0. It implies λeff

2 is increasing with λ2 when ρ2 ̸= 1. Furthermore, λeff
2 is

decreasing with θ. On the other hand, because of λeff
2 +λeff

1 = Λ, we know λeff
1 increases with θ.

It is intuitive to see that E[W1(θ)] increases with λeff
1 and E[W2(θ)] increases with

λeff
2 . Therefore, E[W1(θ)] − E[W2(θ)] is positive and increasing with θ since p in (2.2.1)

is positive such that E[W1(θ)] > E[W2(θ)]. Then, when the left hand side of (2.2.6) θ

increases, p/ (E[W1(θ)] − E[W2(θ)]), the right hand side of (2.2.6) decreases. Note that

12



DOI:10.6814/NCCU201901241

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

p/ (E[W1(θ)] − E[W2(θ)]) is positive and as θ increases, whether the denominator tends to

infinity or not, causing it to converge to a finite number.

This implies that there exists a unique solution to (2.2.6) which in turn determines the arrival

rates of λ1 = ΛF (θ) and λ2 = Λ(1− F (θ)).

Although we have an explicit expression for E[W1] and E[W2], they are quite complex.

This makes it difficult to obtain the balanced waiting time cost rate directly by equations. Define

Eq(θ) := p/([E[W1(θ)]−E[W2(θ)]])− θ, we compute the balanced performance measures by

the following search algorithm.

13
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A Search Algorithm of Computing θ:

• Step 1: Initialization ­ Given positive ϵ, δ and let n = 0. Select an initial θ0 =

F−1(µ1/Λ)+F−1(1−µ2/Λ)
2

.

• Step 2: Compute λ1 = ΛF (θ0), λ2 = Λ(1 − F (θ0)), E[W1(θ0)] and E[W2(θ0)] from

(2.2.4) and (2.2.2).

• Step 3: Let θn+1 = θn − δϵEq(θn)
Eq(θn+ϵ)−Eq(θn)

.

• Step 4: Compute λ1 = ΛF (θn+1), λ2 = Λ(1−F (θn+1)), E[W1(θn+1)] and E[W2(θn+1)]

from (2.2.4) and (2.2.2).

• Step 5: Check the condition E[W1(θn+1)] > E[W2(θn+1)] (*). If it is false, then keep

reducing δ and compute (*) until it is satisfied.

• Step 6: If |Eq(θn+1)| > ϵ, replace θn by θn+1 for n← n+1, and go to Step 3. Otherwise,

go to step 7.

• Step 7: Check the stability condition λ1 + λ2π•K < µ1. If it is false, then this system is

not stable. Otherwise, the algorithm will reach the balanced waiting time cost rate θ.

In fact, this is an algorithm based on Newton’s method (see Appendix A.3). The choice

of θ0 in accordance with E[W1] > E[W2] is crucial. Because even if we are sure that Eq(θ)

has a unique solution and it is strictly decreasing in the area of E[W1] ≥ E[W2], the Eq(θ) is

singular at E[W1] = E[W2]. In this case, we need to check E[W1] > E[W2] before the arrival

rates are computed. We calculate the θ0 as an initial solution by composing a half of F−1(µ1/Λ)

and a half of F−1(1 − µ2/Λ) which are gained from µ1 = Λ(F (θ0) and µ2 = Λ(1 − F (θ0)),

respectively. This is because if choosing µ1 = λ1 and µ2 = λ2, it will critically make the gratis

and toll stations unstable. Once θ is calculated, the price can be determined by (2.2.6), say p.

On the other hand, the stability condition for the gratis station, λ1 + λ2π•K < µ1, avoids

large θ leading to a oversized arrival rate of the gratis station. Moreover, it actually provides a

right boundary of θ. However, no matter how large θ is, Eq(θ) is always strictly decremented

whenE[W1] > E[W2], the stability condition does not hinder convergence from the proceeding

of the algorithm. Despite this, it is still necessary to note that the final θ must match the stability

condition.

14
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After we obtain the balanced θ, we can calculate the stationary probability and the average

waiting time of both stations. We give the detailed expressions of the distribution function of

the waiting time (see Appendix A.4). Finally, we get the distribution of the waiting time of the

gratis and toll stations, respectively.

P (W1 > t) = e(λ
eff
1 −µ1)t

P (W2 > t) =
K∑

m=0

π•mTm(µ2t)e
−µ2t

(2.2.9)

where Ti(x) =
∑i

j=0 x
j/j!.

Although we know the expected waiting time, we may actually wait longer than expected.

According to (2.2.9), we can answer some of these questions regarding risk if p is given. We

will give a pricing strategy at next chapter, and using (2.2.9) as a constraint such that the risk is

tolerable.

2.3 A Real­Time Information Scenario

Under the same assumptions of the previous section, except every customer will be

informed the queue length information for both queues when he/ she arrives, we consider

real­time information scenarios in this section. Unlike the previous section, customers make

decisions based on information without relying on long­term statistics. In this section, similar

to (2.2.1), there is an immediate judgement at the arrival instant t, the arrival customer will

compare the price p with his/her acceptable price p in the following equation.

p = θ
L1(t)

µ1

− θ
L2(t)

µ2

, (2.3.1)

where L1(t) and L2(t) are the queue lengths of the gratis and toll stations, respectively.

Naturally, we have L1(t) ∈ N and L2(t) ∈ {0, 1, 2, · · · , K}.

Based on their time value θ and the queue lengths of both stations,L1 andL2, each customer

will compare the cost of entering the gratis station θL1(t)
µ1

and the cost of entering the toll station

p+ θL2(t)
µ2

, and choose the line with a lower value to enter.

This is a reasonable assumption. If an arrival customer whose acceptable price p is higher

than p, then he/she will possibly choose to enter the toll system. Otherwise, he/she will choose
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to enter the gratis system. It is worth noting that when an arrival customer whose time value

leads two values in (2.3.1) indifferent, we assume that he/she will enter the gratis station. When

the system reaches stability, we have limt→∞P (L1(t) = n, L2(t) = m) = πnm. We consider a

QBD processX(t)with system states in a countable setX . Let the system states inX be written

as (n,m), where in the state description the first entry n = 0, 1, · · · indicates the queue length

of the gratis station and the second entry m = 0, 1, 2, · · · , K indicates the queue length of the

toll station. We rewrite (2.3.1) as

θ(n,m) = p/(n/µ1 −m/µ2) (2.3.2)

at state (n,m) withm < K. Then, we have

λ1(n,m) = ΛF (
p

n/µ1 −m/µ2

)

λ2(n,m) = Λ(1− F (
p

n/µ1 −m/µ2

)).
(2.3.3)

If the queue of the gratis station is too long, this will result in that customers are not willing

to join. In other words, as the queue length n increases and the queue lengthm is less thanK, λ1

becomes smaller and smaller. Given that ϵ is a small positive value, there exists a queue length

n0 of the gratis station such that λ1 < ϵ at n > n0 and m < K. By (2.3.3), we estimate the

lowest n0 as

n0 = ⌈
pµ1

F−1(ϵ/Λ)
+K

µ1

µ2

⌉.

Therefore, we assume that when the queue length of the gratis station is greater than n0 and

the queue length of the toll station is less thanK, all customers will preferentially enter the toll

station if the price is paid. In addition, there is an advantage of using n0 as a threshold point to

speedup the computation of the stationary probability when its convergence is slow. Thus, the

arrival rate of this system can be completely written
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λ1(n,m) =



Λ if n ≤ m(µ1/µ2) orm = K,

ΛF ( p
n/µ1−m/µ2

) ifm(µ1/µ2) < n < n0 andm < K,

0 if n = n0 andm < K.

λ2(n,m) = Λ− λ1(θ).

In this system, we consider an advantage of the toll station in which there is a guaranteed

expected waiting time. The following argument can be clearly understood. First, when the

queue length of the gratis station is short or the toll station is full, costumers must choose a

gratis station. Second, when the queue length of the gratis station is slightly longer and the toll

station is not full, costumers will make choices based on their own time value. Finally, when

the queue length of the gratis station is too long and the toll station is still not full, costumers

paying p only selects the toll station, as mentioned above. As in the previous section, we can

describe the steady state conditions as follows.

Proposition 2.3.1. With real­time queue length information, the two­tier service system reaches

the steady state if

µ1 >

(
1− Λ

µ2

)(
Λ
µ2

)K
1−

(
Λ
µ2

)K+1
Λ. (2.3.4)

Proof. (see Appendix A.5)

Consider the stability condition of the gratis station, when the queue length of the gratis

station becomes very long, if all customers try to enter the toll station, then the gratis station

must be able to accommodate the spilled customers to under the complete service assumption.

In this case, the arrival rate of the toll station λ2 get close to Λ, and the probability that the toll

station is full is obtained by (2.2.3).

LetQ denote the infinitesimal generator matrix. The processX(t) is referred to as a QBD

process if the transitions allowed are unchanging or increasing or decreasing only one person in
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the queue. Here, we form the infinitesimal generator matrixQ as

Q =



B00 C00

A00 B C

A B C

. . . . . . . . .


. (2.3.5)

B00 =



B0 C0

A B1 C1

. . . . . . ...

A Bn0−1


n0(K+1)×n0(K+1)

,

C00 =


...

C0


n0(K+1)×(K+1)

,A00 =

[
· · · A

]
(K+1)×n0(K+1)

.

The matrix Bn n = 0, 1, · · · , n0 − 1 and B indicate that the system state with the queue

length of the gratis station unchange. The matricesCn n = 0, 1, · · · , n0− 1 andC indicate the

case of decreasing one person in queue length of the gratis station, andA indicate increasing.

The matrices A, B, C and all elements of A00, B00 and C00 are (K + 1) × (K + 1)

matrices, and details are explained as follows.
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B0 =



−Λ λ2(n, 0)

µ2 −(Λ + µ2) λ2(n, 1)

. . . . . . . . .

µ2 −(Λ + µ2) λ2(n,K − 1)

µ2 −(Λ + µ2)


,

C0 =



λ1(0, 0)

λ1(0, 1)

. . .

λ1(0, K − 1)

Λ


.
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For n = 1, · · · , n0 − 1,

Bn =



−(µ1 + Λ) λ2(n, 0)

µ2 −(Λ + µ2 + µ1) λ2(n, 1)

. . . . . . . . .

µ2 −(Λ + µ2 + µ1) λ2(n,K − 1)

µ2 −(Λ + µ2 + µ1)


,

Cn =



λ1(n, 0)

λ1(n, 1)

. . .

λ1(n,K − 1)

Λ


.
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For n ≥ n0,

A = µ1I =


µ1

. . .

µ1


,

B =



−(µ1 + Λ) Λ

µ2 −(Λ + µ2 + µ1) Λ

. . . . . . . . .

µ2 −(Λ + µ2 + µ1)


,

C =


. . .

Λ

.

 .

The elements of the matrices A, Bn, B, Cn and C on the main diagonal, n =

0, 1, · · · , n0− 1, indicate the rate of unchanging the queue length at the toll station. In addition,

the elements on the first diagonal below and above the main diagonal indicate the rate of

increasing and decreasing one person in the queue at the toll station, respectively.

For the convenience of calculation, we define the stationary probability vector as

π0 = [π0(0),π0(1), ...,π0(n0)],

= [π00, π01, ..., π0K , π11, ..., π1K , ..., πn0K ],

πk = [π(n0+k)0, π(n0+k)1, ..., π(n0+k)K ],

where k = 0, 1, · · · . The size of these vectors correspond exactly to the matrix (2.3.5). By the

matrix geometric method, solutions are given by

πk+1 = πkR, k ≥ 2, (2.3.6)

where R is the rate matrix. Note that the matrix C has a value only at the end of the diagonal,
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which causes the rate matrixR to be a special form. Let

P =


0 · · · µ1

. . . ...

µ1


.

More precisely, the rate matrixR can be replaced by an eigenvalue σ of a matrixK [24], where

K = −[B + P ]A−1 (2.3.7)

and 0 < σ < 1.

The probability vectors π0, π1, π2 and π3 can be obtained by solving following equation.[
π0 π1 π2 π3

]
Q′ =

[
1, 0, · · · , 0

]
1×(n0K+3(K+1)+1)

, (2.3.8)

where

Q′ =



ê B00 C00 0 0

ê A00 B C 0

ê 0 A B diag(σ)

(1− σ)−1ê 0 0 A diag(−1)


,

where diag(x) is a diagonal matrix with nonzero are x and ê is a column vector which all

elements are 1. In order to solve the stationary probability, Q′ can ignore a column within it

which is linear dependence, and rewrite the equation (2.3.8).

For given p > 0, the queue length of the gratis and toll stations are denoted by L1 and L2,
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respectively. The expected queue lengths of the gratis and toll stations are given by

E[L1] =

[
n0−1∑
n=0

nπ0(n) + n0π1 + (n0(1− σ) + 1)(1− σ)−2π2

]
ê,

E[L2] =

[
n0−1∑
n=0

π0(n) + π1 + π2(1− σ)−1

]
L, where L = [ 0, 1, 2, · · · , K ]T .

(2.3.9)

In the real­time case, since the arrival rate is state­dependent, the average effective arrival

rate is difficult to calculate. This makes it strait to use the Little’s law to calculate the average

waiting time. However, with stationary probability, we can still get the distribution of each

waiting time.

P (W1 > t) =

n0−1∑
n=0

π0(n)Tn(µ1t)e
−µ1tê+

2∑
n=1

πnTn0−1+n(µ1t)e
−µ1tê

+ π2

(
Tn0+1(µ1t)σ(1− σ)−1 +Rn0+1(µ1tσ)σ

−(n0+1)(1− σ)−1
)
e−µ1tê

P (W2 > t) =

[
n0−1∑
n=0

π0(n) + π1 + π2(1− σ)−1

][
T0(µ2t) T1(µ2t) · · · TK(µ2t)

]T
e−µ2t

(2.3.10)

where Ti(x) =
∑i

j=0 x
j/j!, Ri(x) = ex −

∑i
j=0 x

j/j!.

Then, we use this to calculate the expected waiting time. So far, we have used the

matrix geometric method to calculate the stationary probabilities for real time and non­real time

separately, which well describes the system probabilistic behavior at steady state. In the next

chapter, we will consider optimizing the profitability of the toll station and the expected waiting

cost of the society as whole.
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Chapter 3

An Optimization Model

Wediscuss two optimization problems in this chapter, considering two different perspectives

with respect to no real­time and real­time information scenarios. First, if the toll station is

a government agency or social welfare such as at the emergency room or on the highway,

the purpose is to enable passengers with urgent or high waiting cost to be quickly serviced,

thereby reducing the expected social waiting cost. To minimize the expected social waiting cost

for customers is the objective of the perspective of the society. If the toll station is a private

company, to maximize his gain naturally is the objective of the perspective of the manager.

3.1 The Perspective of the Society

From the perspective of the society, the extra pay as part of the service fee provides a

faster service for the customer. This type of payment is a price discrimination strategy that

distinguishes customers with urgency or high time costs and it expects to minimize the total

waiting cost.

3.1.1 The Perspective of The Society inNoReal­time Information Scenario

For no real­time information scenario, each customer will compare the cost when entering

the gratis station θE[W1] and the cost of entering the toll station p + θE[W2], and choose the

lower one to enter. Therefore, customers will be divided into two groups based on the balanced

waiting time cost rate satisfies (2.2.1). The customers with the greater time value will choose the

toll station and generate the expected waiting cost θE[W2] and the customers with the lower time
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value will choose the gratis system and generate the expected waiting cost θE[W1]. Consider

the expected value function of the distribution function of customers’ time value G(x), we get

the expected social waiting cost for each customer in the system, expressed as S1(θ), where

S1(θ) = E[W1]G(θ) + E[W2](ξ −G(θ)). (3.1.1)

To simplify the analysis, we use θ instead of p as the control variable. As shown below,

there is a unique correspondence between θ and p, they can be interchanged as control variables

for each other, denoted by θ(p) or p(θ).

Proposition 3.1.1. For no real­time information scenario, in the steady state, there is a unique

correspondence between θ and p > 0.

Proof. For the balanced waiting time cost rate θ satisfies (2.2.1) which can be re­written as

p = θ(E[W1(θ)]− E[W2(θ)]). (3.1.2)

According to the second last paragraph of proof of Proposition 2.2.2, we knew that E[W1(θ)]−

E[W2(θ)] is positive and increasing with θ. Therefore, when θ increases, E[W1(θ)]−E[W2(θ)]

cannot be reduced, then p must be strictly increasing.

It shows that price p is a strictly increasing function of θ, and so do its inverse function.

That is, θ is also a strictly increasing function of price p.

This means that as price p increase, more customers will be assigned to the gratis station.

Inversely, in order to make customers to join the toll station, the price p must be decreased.

Mentioned in the the previous chapter, the condition E[W1(θ)] > E[W2(θ)] and condition

µ1 ≥ λeff
1 provide a left and right boundary of θ, respectively. The θ must be in this interval. In

steady state, we show that S1(θ) has a global minimum in this interval.

Proposition 3.1.2. In the steady state, S1(θ) is a convex function of θ when ξ exists. And the

feasible region of θ is what satisfies E[W1(θ)] > E[W2(θ)] and µ1 ≥ λeff
1 .

Proof. (see Appendix A.6)

It implies that there exists a unique watershed θ that minimizes the expected social waiting

cost for the customers. If ξ does not exist, then
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S1(θ) ≥ min(E[W1], E[W2])G(θ) +min(E[W1], E[W2])(ξ −G(θ))

= min(E[W1], E[W2])ξ

=∞.

Therefore the existence of ξ is necessary. And µ1 ≥ λeff
1 is the stability condition. In addition,

although the queue of the toll station has a finite buffer for a service quality guarantee, as

the perspective of the society, we do not want the queue of the gratis station to be too long.

Therefore, for given an irritating waiting time t and the acceptable risk c based on t, as a

constraint, we consider

P (W1(θ) > t) < c.

This means that the probability of the gratis station waiting for more than t does not exceed c. In

other words, although customers entering the gratis station may wait longer than expected, but

it is guaranteed that this will not happen often. Besides, it can be calculated by (2.2.9). We may

choose t = E[W1] and c = 0.5, so that the probability of waiting time of customers more than

the expected waiting time do not exceed a half. Based on the above discussion, the optimization

problem we considered can be written as given c > 0

min
p

Z = S1(θ(p))

subject to µ1 ≥ λeff
1 ,

E[W1] > E[W2],

P (W1 > t) < c,

and p > 0.

(3.1.3)

For this optimization problem at the perspective of the society in no real­time information

scenario, we want to minimize the expected social waiting cost of the customer. The first

constraint is the stability condition. The second constraint is caused by (2.2.1) and the positive

price p. Therefore, the solution of this optimization problemmust comply withE[W1] > E[W2].

Finally, the third constraint is just discussed above and the toll price is positive.

We compute this optimal balanced θ by ”fmincon” of Matlab code (see Appendix B.3.1). It

uses the interior­point approach to constrained minimization to solve a sequence of approximate

minimization problems.
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Finally, we get the optimal price p∗ for the perspective of the society in no real­time

information scenario by computing p∗ = θ(E[W1(θ)]− E[W2(θ)]) from (2.2.1).

3.1.2 The Perspective of the Society in Real­time Information Scenario

For a real­time information scenario, the customer will be provided the queue length

information for both queues when he/she arrives. There are different watershed θ depending

on the system states (n,m), so we need to calculate them individually according to different

system states, and consider the fallowing function of the expected social waiting cost

S2(p) =
∞∑
n=0

K∑
m=0

πnm

(
n

µ1

G(θ) +
m

µ2

(ξ −G(θ))

)
(3.1.4)

where θ(n,m) = p/(n/µ1 −m/µ2) at state (n,m).

Proposition 3.1.3. In steady state, S2(p) are finite when given p > 0 and ξ exists.

Proof. We have

S2(p) =
∞∑
n=0

K∑
m=0

πnm

(
n/µ1G(θ) +m/µ2(ξ −G(θ)

)
≤

∞∑
n=0

K∑
m=0

(πnm
n

µ1

ξ) +
∞∑
n=0

K∑
m=0

(πnm
m

µ2

ξ)

=
ξ

µ1

∞∑
n=0

(πn•n) +
ξ

µ2

K∑
m=0

(π•mm)

=
ξ

µ1

E[L1] +
ξ

µ2

E[L2]

<∞.

The second and third sign comes from the ξ ≥ G(θ) and the positive of all components.

Finally, E[L1] and E[L2] must be finite in the steady state. Therefore, S2(p) are finite.

This shows the existence of S2(p), but it is not enough. According to the choice of F (θ),

it affects πnm such that the critical point of the first­order differential function value of S2(p) is

not unique. Therefore, we can only retreat to explain that the global minimum of S2(p) takes

place at finite p > 0.
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When p approaches infinity, it will result in customers becoming more and more reluctant

to pay for join the toll station, which makes the whole system regarded as an M/M/1 queueing

system. In this case, the expected social waiting cost of the customer is
∑∞

n=0(1 − ρ)ρn n
µ1
ξ,

where ρ = λeff
1 /µ1. On the other hand, when p = 0, customers can freely choose to join the

gratis or toll station according to the lengths of the queues and do not have to pay any fee, which

makes both stations fully utilized. That is to say, compared with an M/M/1 queueing system,

the service rate is greater and the length of queue is divided into two, but the arrival rate is

unchanged. In this case, the expected social waiting cost of customers must be smaller than

that in M/M/1 queueing system which is the case of p approaching infinity. According to the

continuity of S2(p), its minimum value must takes place at the finite p.

The optimization problem we considered can be written as given c > 0

min
p

Z = S2(p)

subject to P (W1 > t) < c,

and p > 0.

(3.1.5)

For this optimization problem at the perspective of the society in a real­time information

scenario, we want to minimize the expected social waiting cost of customers S2(p). We need

to check the stability condition in advance. From (2.3.4), we find that the stability condition is

actually irrelevant to p. Similarly, we don’t have to check E[W1(θ)] > E[W2(θ)] because the

decision variable is already the positive price p. Finally, the third constraint is some as previous

section.

Asmentioned above, depending onF (θ), the local minimummay exist more than once. We

can’t use Newton’s method, which usually doesn’t converge to the global minimum if there is

more than one local minimum. Therefore, we useMatlab code (see Appendix B.4.1) to calculate

the global minimum value of this optimization problem, which is based on the global search

algorithm proposed by Ugray et al [35]. The problem we consider is a public healthcare system

with a parallel private department, for example, a public hospital and a private hospital. The

scale of such a problem, the number of customers in queue is only a few dozen implying n0 <

200 in average. This processor in Matlab is enough to solve.
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3.2 The Perspective of the Manager

From the perspective of managers, it must provide better service to compete with other

lower toll stations. If themanager increase the toll, it will reduce the arrival rate. On the contrary,

if the manager want to increase the arrival rate, he/she must lower the toll. The manager must

get a balance between price and the arrival rate to get the maximum the expected profit.

In this section, the assumption of Λ < µ1 is necessary. If the gratis station can not serve all

the customers and reach a stable state, then there are some customers will be forced to choose

to join the toll station. Therefore the toll station will be able to keep raising the price in order to

alleviate the wait in the toll queue.

3.2.1 The Perspective of the Manager in No Real­time Information

Scenario

For no real­time information scenario, each customer will compare the cost when entering

the gratis station θE[W1] and the cost of entering the toll station p + θE[W2], and choose the

lower one to enter. Therefore, customers will be divided into two groups based on the balanced

waiting time cost rate satisfies (2.2.1). The customer with the greater time value will choose the

toll station and the customer with the lower time value will choose the gratis system. For the

perspective of the manager, we only focus on the arrival rate of the toll station and our price p.

We get the expected revenue per unit time of the toll system, expressed as O1(θ), where

O1(θ) = λeff
2 (θ)p(θ) (3.2.1)

By Proposition 3.1.1, we use θ instead of p as the control variable.

Proposition 3.2.1. For no real­time information scenario, in the steady state, O1(θ) is finite for

a given finite θ. In addition, if (1− F (θ))θ converges when θ →∞, so does O1(θ).

Proof. We have
O1(θ) = λeff

2 p

= (1− π•K)(1− F (θ))θ(E[W1]− E[W2]).

In the steady state, both E[W1] and E[W2] are finite, such that E[W1] − E[W2] is finite. For

(3.2.1), we see that λeff
2 and p = θ(E[W1(θ)]− E[W2(θ)]) are finite at a finite θ.
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In addition, when θ →∞, (1−π•K) is bounded by 1, if (1−F (θ))θ is convergent to zero,

so is O1(θ). On the other hand, when θ →∞, λ2 approaches to zero, so do π•K and E[W2]. If

(1− F (θ))θ is divergent, O1(θ) is divergent.

That implies that the maximum of O1(θ) exists in a finite interval of θ. If there is an F (θ)

such that (1−F (θ))θ approaches infinity as θ approaches infinity, which implies a situation that

some people are extremely rich, then O1(θ) diverges. Although the gratis station is sufficient

to meet the demand, it is foreseeable that the toll station can continue to raise the toll price to

please those rich. In this case, a strategy for the manager will be considering p =∞. However,

it is obviously not in line with social interests as well as in a healthcare system. The intervention

of government might be necessary.

In addition, although there are already guarantees for the expected waiting time, manager

may hope to provide better service to customers. Therefore, for given an irritating waiting time

t and the acceptable risk c based on t as a constraint, we consider

P (W2(θ) > t) < c.

This means that the probability of the toll station waiting time more than t does not exceed c.

If let t = E[W2], more than (1− c) percentages of the customers who enter the toll station will

not wait longer than the expected waiting time. Besides, it can be calculated by (2.2.9).

The optimization problem we considered can be written as given c > 0

max
p

Z = O1(θ(p))

subject to E[W1] > E[W2],

P (W2 > t) < c,

and p > 0.

(3.2.2)

For this optimization problem at the perspective of the manager in no real­time information

scenario, we want to maximize the expected revenue per unit time of the toll system. Under the

premise of Λ < µ1, we don’t need to check the stability condition because the system is always

stable. The first constraint is caused by (2.2.1) and the positive price p. Therefore, the solution

of this optimization problem must comply with E[W1] > E[W2]. Finally, the toll price p is
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positive.

As mentioned above, depending on F (θ), a local maximum may exist. Therefore, we also

useMatlab code (seeAppendix B.3.1) to calculate the globalminimumvalue of this optimization

problem by the global search algorithm.

3.2.2 The Perspective of the Manager in Real­time Information Scenario

For a real­time information scenario, the customer will be provided the queue length

information for both queues when he/she arrives. There are different watershed θ of θ depending

on the system states (n,m). We need to calculate them individually according to different system

states, and have the expected revenue

O2(p) =
∞∑
n=0

K∑
m=0

πnmλ
eff
2 (n,m)p. (3.2.3)

Proposition 3.2.2. In the steady state, for given p > 0, O2(p) is finite.

Proof. Since λeff
2 (n,m) is bounded by Λ and πnm can be treated as weights, we have

O2(p) =
∞∑
n=0

K∑
m=0

πnm

(
λeff
2 (n,m)p

)
≤

∞∑
n=0

K∑
m=0

πnmΛp

= Λp

This shows the existence of O2(p), but it is not enough. According to the choice of F (θ),

it affects πnm such that the critical point of the first­order differential function value of O2(p) is

not unique. In particular, when F (θ) converges to 1 very slowly, that is, in a situation in which

some people are extremely rich, a strategy of the toll station might keep raising the toll price

to please those rich. However, when p approaches infinity, n0 approaches to∞, and it causes

the difficult of analysis. Therefore, we can only find the global maximum ofO2(p) taking place

at finite p > 0, and the optimal solution is considered to be divergent when it reaches a large

number of p.
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The optimization problem we considered can be written as

max
p

Z = O2(p)

subject to P (W2 > t) < c,

and p > 0.

(3.2.4)

For this optimization problem at the perspective of the manager in a real­time information

scenario, we want to maximize the expected revenue per unit time of the toll system O2(p).

We need to check the stability condition in advance. From (2.3.4), we find that the stability

condition is actually irrelevant to p. Similarly, we don’t have to check E[W1(θ)] > E[W2(θ)]

because the decision variable is already the positive price p.

As mentioned above, depending on F (θ), a local maximum may exist. Therefore, we

also use Matlab code (see Appendix B.4.1) to calculate the global maximum value of this

optimization problem.
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Chapter 4

Numerical Examples and Discussion

Given the solutions earlier, we can calculate and describe the performance of this two­tier

service system well. In this section, we will compare the performance of the two information

scenarios. In fact, the gratis station usually represents government­funded services, and the toll

station represents privately­provided services for profit. Therefore, the toll price and the buffer

size of the toll station are more likely to be important decision variables in the two­tier service

system.

4.1 Parameters

We use the following parameters for the numerical studies. We standardized the

customer arrival rate Λ to be 1. And the service rates of the stations are (µ1, µ2) =

(7/6, 3/6), (5/6, 5/6), (3/6, 7/6). Note that we set the values of µ1 and µ2 to study the effects

of symmetry between the two stations. Additionally, we consider three different distributions

for the customers’ waiting cost rate θ. There are uniform distributions in the interval [0, 20],

exponential distributions with mean 10, and Pareto distributions with k  =  10/9 and xm  = 1.

The summary of selected probability distributions are given in Appendix A.7. For comparison

purposes, we set the expected values for all three distributions to be 10. The variances of the

three distributions are 33.33, 100 and∞, respectively.
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4.2 Real­time and No Real­time Information Scenario

We find that the trend of the expected queue length are similar under the two information

scenarios, i.e., real­time information and no real­time information, denoted by info. and no info..

Figure 4.1, Figure 4.2 and Figure 4.3 show how the expected queue length varies with the buffer

size of the two­tier service system in different distribution of time value random variableΘ. As

shown in Figure 4.1, Figure 4.2 and Figure 4.3, for a given price, as the buffer size increases,

the toll station gradually has enough queue length to serve customers, which results in that the

expected queue length of the gratis and toll stations become stable.

To compare the expected queue length under the different distributions of time value

random variables at the same service rate, we try more than 100 numerical experiments.

No matter what service rates in real­time or no real­time information scenario, the expected

queue length of the gratis stations in the cases of Θ ∼ U(0, 20) are shorter than the case of

Θ ∼ Pa(1, 10/9) and Θ ∼ Exp(1/10). The expected queue length of Θ ∼ Pa(1, 10/9) are

the longest among all cases of these distributions. On the other hand, the expected queue length

of the toll stations in the cases of Θ ∼ U(0, 20) becomes the longest and that in the cases of

Θ ∼ Pa(1, 10/9) becomes the shortest among all experimental tests.

(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.1: A two­tier service system with p = 10, Θ ∼ U(0, 20)
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(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.2: A two­tier service system with p = 10, Θ ∼ Exp(1/10)

(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.3: A two­tier service system with p = 10, Θ ∼ Pa(1, 10/9)

Figure 4.4, Figure 4.5 and Figure 4.6 show the changes between the expected queue length

and the toll price for the two­tier service system in different distributions of time value random

variables. These results are consistent with the results presented by Chen et al. [5]. As shown

in Figure 4.4, Figure 4.5 and Figure 4.6, for a given buffer size, when the toll price increases,

customers become unwilling to pay and gradually turn to the gratis station. In this case, it

causes the expected queue length difference between the gratis and toll station becomes more

significant.

To compare the expected queue length under the different distributions of time value

random variables at the same service rate, in the cases ofΘ ∼ U [0, 20], we find the change of the

expected queue length for the gratis station is relatively flat, and the cases of Θ ∼ Pr(1, 10/9)

are most severe. This is because p is proportional to θ, and the cumulative distribution function

of Θ ∼ U(0, 20) is linear of θ. But there is a drastic change in the cumulative distribution

function of Θ ∼ Pa(1, 10/9).
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(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.4: A two­tier service system withK = 10, Θ ∼ U(0, 20)

(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.5: A two­tier service system withK = 10, Θ ∼ Exp(1/10)

(a) µ1 = 3/6, µ2 = 7/6 (b) µ1 = 5/6, µ2 = 5/6 (c) µ1 = 7/6, µ2 = 3/6

Figure 4.6: A two­tier service system withK = 10, Θ ∼ Pa(1, 10/9)

In short, in the same distribution of customers’ time value of the case of (µ1, µ2) =

(7/6, 3/6), the system is always stable, and the queue length changes rather smoothly.

Conversely, in the case of (µ1, µ2) = (3/6, 7/6), the queue length changes relatively large.

In addition, although the distributions are different, there still are some similar places in the

case of the same service rate. In the case of (µ1, µ2) = (5/6, 5/6), no matter how buffer

size and toll price change, the expected queue length of the gratis and toll stations in real­

time information scenario are always shorter than that in no real­time information scenario.
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In the case of (µ1, µ2) = (3/6, 7/6), the expected queue length of the toll station in real­

time information scenario are usually shorter than that in no real­time information scenario,

but the expected queue length of the gratis stations in real­time information scenario are usually

longer than that in no real­time information scenario. In the case of (µ1, µ2) = (7/6, 3/6), the

expected queue length of the gratis station in real­time information scenarios are shorter than in

no real­time information scenario, but the expected queue length of the toll station in real­time

information scenario are usually longer than that in no real­time information scenarios.

This situation arises from the asymmetry of µ1 and µ2. When µ1 is similar to µ2, the

real­time information makes the customer to choose the service station wisely, which reduces

their waiting cost effectively. When µ1 and µ2 are not symmetrical, one of the stations

is easily crowded. If there is no real­time information, the customers will overestimate or

underestimate the respective waiting costs. In the no real­time information scenario, taking

(µ1, µ2) = (3/6, 7/6) as an example, insufficient service rates of the gratis station often result

in congestion.

From Figure 4.7 and Figure 4.8, we make more comparison of these queue lengths between

with and without information. In Figure 4.7 and Figure 4.8, “blue x” in the left block stands for

the area of “E[L1] info.>E[L1] no info. but E[L2] info.<E[L2] no info.”, “red x” in the right

block stands for the area of “E[L1] info.<E[L1] no info. but E[L2] info.> E[L2] no info.”, and

“black o” in the middle block stands for the area of “both E[L1] info. and E[L2] info. are less

than or equal to E[L1] no info. and E[L2] no info.”, respectively.

(a) Θ ∼ U(0, 20) (b) Θ ∼ Exp(1/10) (c) Θ ∼ Pa(1, 10/9)

Figure 4.7: A comparison of E[L1] and E[L2] withK between with and without information.
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(a) Θ ∼ U(0, 20) (b) Θ ∼ Exp(1/10) (c) Θ ∼ Pa(1, 10/9)

Figure 4.8: A comparison of E[L1] and E[L2] with p between with and without information.

We find that when the ratio of µ1 and µ2 is small, providing real­time information will

make the queue of the gratis station longer and the queue of the toll system shorter. When

µ1/µ2 increase, E[L1] info. will gradually be exceeded by E[L1] no info. and E[L2] info. will

gradually exceed E[L2] no info.. We observe the changes in these intervals from the figures.

It is worth noting that the middle block, which is the part of black o, indicates that the queue

length of the gratis or toll station are shorter in the scenario of real­time information.

In addition, regardless of the circumstances, the expected social waiting cost of real­time

information scenario is lower than the expected social waiting cost of no real­time information

scenario, S1(
p

E[W1]−E[W2]
). Therefore, when a government is designing their two­tier healthcare

system, it can make that the service rate of the gratis station and the toll station be similar, so

that the queue lengths of both stations are significantly shorter.

4.3 The Perspective of the Society and the Manager

According to previous discussion, S1(θ) in (3.1.1), S2(p) in (3.1.4), O1(θ) in (3.2.1) and

O2(p) in (3.2.3) are continuous functions, respectively. By choosing proper t and c, the optimal

problems given in (3.1.3), (3.1.5), (3.2.2) and (3.2.4) contain nonempty feasible and compact

sets.

Table 4.1 reports the optimal solution that minimize the expected social waiting cost.

We compute the optimal balanced waiting time cost rate θ and toll price p∗ in each case.

Subsequently, given θ and p∗, the other measures are computed.

We observe that regardless of distributions of customers’ time value, E[L1] and E[L2]

are always incremented and decremented with the increment of µ1/µ2, respectively. This is

reasonable, because when the (µ1, µ2) changes, the customers will naturally choose the station
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with a high service rate to reduce their waiting cost. Similarly, in no real­time information

scenario, p∗ is incremented when µ1/µ2 is raised. Because the price must be raised to prevent

too many customers from entering the toll station with the decreasing service rates.

In addition, we find that with or without real­time information, the expected social waiting

cost in uniform distribution is always the highest, while that in the pareto distribution is the

lowest. This is because when the customers is more diversified (the variance in the distribution

of the waiting cost of the customers becomes larger), the two­tier system based on the price

discrimination strategy can more effectively segment the customers.

An interesting finding is that the expected social waiting cost in the real­time information

scenario is lowest at (µ1, µ2) = (5/6, 5/6) in the cases of Θ ∼ U(0, 20) and Θ ∼ Exp(1/10),

and is decremented in the cases ofΘ ∼ Pa(1, 10/9). It is reasonable to suspect that the expected

social waiting cost in the real­time information seems to be a convex upward function of µ1/µ2

where there is a global minimum for µ1/µ2. That is to say, when the government designs their

two­tier healthcare system, if µ1/µ2 is a decision variable, there is a best division so that the

expected social waiting cost is minimized.

The Table 4.2 reports the optimal solution that maximize the expected profit of themanager.

We compute the optimal balanced waiting time cost rate θ and the toll price p∗ in each case.

Subsequently, given θ and p∗, the other measures are computed.

In the perspective of the manager, if there is not µ1 > λeff
1 , this result in the optimal strategy

for the toll station is to set a extreme expensive toll price and service barely a small part of

customers. In this situation, the expected waiting time of the gratis station will be infinitely

long without the toll station. Nevertheless, no matter how much the toll price is, there will

always be a portion of customers who want to join the toll station. As such, to maximize the

profits, the toll station will charge a very high toll price. This observation has an important

signification the price regulations for the private operators is necessary for a public healthcare

system.

In the case of (µ1, µ2) = (7/6, 3/6)where the service rate of the gratis station is adequate to

satisfy the demand, there is anmaximized profit in each case except the case ofΘ ∼ Pa(1, 10/9)

in real­time information scenario. The situations in Pareto distribution models where many

customers have very high waiting cost in the real­time information scenario, customers will

strategically choose the station to entry. This makes it necessary to impose more stringent
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Table 4.1: Optimal solutions minimizing of the expected social waiting cost with Λ = 1, K =
10, c = 0.5.

Distribution (µ1, µ2) info. θ p∗
S1(θ), N

S2(p
∗), Y

P (Wi > E[Wi])

i = 1, 2
(E[L1], E[L2])

Uniform (3/6, 7/6) N 5.8514 16.0646 23.5454 (0.3679, 0.3753) (1.4325, 1.4954)

Y 3.3253 8.6617 (0.4023, 0.3735) (1.1375, 1.0969)

Uniform (5/6, 5/6) N 10.8973 9.3363 28.7006 (0.3679, 0.3710) (1.8937, 1.1892)

Y 3.3810 8.6522 (0.3960, 0.3779) (1.2862, 0.7981)

Uniform (7/6, 3/6) N 16.6663 0.0000 29.9984 (0.3679, 0.3679) (2.4998, 0.5000)

Y 11.4286 10.2117 (0.3877, 0.3805) (1.5389, 0.5112)

Exponential (3/6, 7/6) N 3.9225 14.6571 22.2193 (0.3679, 0.3730) (1.8681, 1.3484)

Y 2.9864 8.5750 (0.4042, 0.3724) (1.2509, 1.0696)

Exponential (5/6, 5/6) N 8.5792 12.5235 27.3897 (0.3679, 0.3696) (2.2409, 1.0295)

Y 3.7770 8.5602 (0.3981, 0.3764) (1.3896, 0.7713)

Exponential (7/6, 3/6) N 17.9164 0.0000 29.9984 (0.3679, 0.3679) (2.4998, 0.5000)

Y 11.9368 9.8131 (0.3893, 0.3782) (1.6358, 0.4798)

Pareto (3/6, 7/6) N 1.4983 8.1001 21.0884 (0.3679, 0.3711) (2.6392, 1.1927)

Y 2.0000 8.3410 (0.4048, 0.3721) (1.1807, 1.0361)

Pareto (5/6, 5/6) N 2.5691 8.6623 24.0461 (0.3679, 0.3682) (3.5338, 0.7251)

Y 4.4563 8.2757 (0.4122, 0.3700) (1.9269, 0.6419)

Pareto (7/6, 3/6) N 8.8727 13.2233 27.5071 (0.3679, 0.3679) (3.5734, 0.2149)

Y 15.6230 7.3948 (0.3968, 0.3681) (2.5787, 0.2370)
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Table 4.2: Optimal solutions maximizing of the expected profit of the manager withΛ = 1, K =
10, c = 0.5.

Distribution

(µ1, µ2)
info. θ p∗

O1(θ), N

O2(p
∗), Y

S1(θ), N

S2(p
∗), Y

P (Wi > E[Wi])

i = 1, 2
(E[L1], E[L2])

Uniform N 18.5319 33.7518 2.4775 39.0785 (0.3679, 0.3679) (3.8597, 0.1721)

(7/6, 3/6) Y 60.6231 4.4189 17.9729 (0.3819, 0.3865) (2.7681, 0.1813)

Exponential N 28.5951 63.0855 3.6149 39.7715 (0.3679, 0.3679) (4.2092, 0.1294)

(7/6, 3/6) Y 108.1559 5.3497 20.6034 (0.3845, 0.3836) (3.3851, 0.1196)

Pareto N 63.1105 228.4382 2.2838 33.7667 (0.3679, 0.3679) (5.6039, 0.0204)

(7/6, 3/6) Y 1.5e+23 1.1e+20 32.0976 (0.3735, 0.3673) (5.8406, 0.0037)

conditions so that the toll station cannot lift the price indefinitely. Furthermore, the social

waiting cost in Table 4.2 are much higher than those in Table 4.1. This is especially true in

the case of real­time information. This observation shows that although the gratis station has

sufficient capacity to service all customers, price regulation may still be required.

We observe that P (W1 > E[W1]) without real­time information is always the same in

Table 4.1 and Table 4.2. This is because the gratis station without real­time information is an

M/M/1 waiting system. When we let t = E[W1], it makes P (W1 > E[W1]) constant and equal

to e−1.

In short, real­time information scenarios always perform better no matter what the

circumstances. This observation is not surprising. When customers use the real­time

information to decide the queue to enter, it is more accurate than the long­term statistical results.

Consider the ratio of the expected social waiting costs of scenarios with real time information

and no real time information 1−S2(p
∗)/S1(θ) in Table 4.1. By providing real­time information

in a two tier service system, we can reduce the expected social waiting cost per customer bymore

than 60%. This is a strong support to provide real­time information to public health systems with

parallel private sectors that can improve the social welfare.
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Chapter 5

Conclusion

The study recognizes the impact of information on a two­tier service system and considers

toll prices for heterogeneous strategic customers to reduce the expected social waiting costs

or increase the expected profit of the manager. There is no charge for the gratis station. The

toll station charges the price p but guarantees a faster service, where there is a limit on the

number of customers in the toll system. Since the buffer of the toll system is limited, we

assume that the overflowing customer will be transferred to the gratis station. Customers are

heterogeneous in terms of their time value. We take the example of uniform distributions,

exponential distributions and Pareto distributions to demonstrate the price effect by our analytic

approach.

The customers select the service based on the their time value. There are two kinds of

information scenarios to consider in the modeling, i.e., the real­time information and no real­

time information. For the real­time information, customers knows the real­time queue length

for each line. We model this scenario as a QBD process and calculate the stationary probability

of the system under stable conditions.

For no real­time information, the customer makes a decision based on long­term statistics

for both lines. Customers can be groups by the choice of their selection between the gratis line

and the toll line. Therefore, we divide the system into two subsystems for analysis, an M/M/1

queueing system for the gratis station and an M/M/1/K queueing system for the toll station,

then we calculate the stationary probability of those subsystems under stability conditions,

respectively.

We developed a search algorithm based on the Newton’s method to calculate the balanced
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performance measures. We find that the real­time queue length information help people to make

the queue length always shorter when the two line service rates are no different. Moreover,

we discover the dynamic behavior on queue length changes that are similar between the two

information scenarios when the system parameter changes accordingly, such as the service rates,

the toll price, and the buffer size.

We consider the toll price from the perspectives of the society and the manager. From

the perspective of the society, the objective is to make the expected social waiting cost for the

customers minimized. On another aspect, from the perspective of the manager, since the toll

price is the source of income, the objective is to maximize the profit.

We established the optimization models with the two information scenarios for managerial

perspectives. It also discusses the risk that the customer waits longer than the expected waiting

time in the case of an optimal strategy. We show that real­time information can reduce the

expected social waiting cost and enhance the social welfare. Moreover, we indicate that two­

tier systems present a lower social waiting cost when customers have significant differences in

the waiting time costs.

On the other hand, we show that the optimal decision of the toll station in the perspective of

the manager is not only affected by the service rate of the gratis station, but also the difference of

the waiting time costs of customers. When the gap between customers’ time values is too large,

the optimal decisions of the manager often leads a very high price, serving only those small

groups of customers with high time values. It causes the expected social waiting cost relatively

high. Therefore, in this case, the government’s control for the toll price is usually necessary.

Finally, by providing real­time information in a two tier service system, the expected social

waiting cost per customer is reduced by more than 60%. The improvement for providing real­

time information is amazing, but this does not mean that the queue lengths will always be

shorter in real­time information scenario. By adjusting the ratio of µ1 and µ2, we find that

when the gratis station has a higher service rate, the queue length of the gratis station in real­

time information scenario is shorter than that in no real­time information scenario. This is

because customers will overestimate the service efficiency of the gratis station without real­time

information. When the toll station has a higher service rate, the similar situation that customers

overestimate the service efficiency of the toll station will also occur. Therefore, we find an

interval where the queue lengths of the gratis and toll station are improved. Furthermore, in this
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interval, we suspect that the expected social waiting cost in the real­time information seems to be

a convex upward function of µ1/µ2 where there is a global minimum for µ1/µ2. That is to say,

when the government designs their two­tier healthcare system, if µ1/µ2 is a decision variable,

there is a best division so that the expected social waiting cost is minimized.

There are somemeaningful extensions to present research. First, we suppose that customers

always choose the queue wisely based on the information, but this ignores the risk attitude. In

our case, customers are assumed risk­neutral. It would be interesting to discuss how different

levels of risk appetite and risk averse customers can invest in a pay station to save time. Second,

we consider only one service with a fixed price. If there are limited resources, when we explore

more services such as service quality, price and different service providers, this would be an

interesting competition issue of between the gratis and toll stations. Third, we only made two

perspectives of optimization. Whether there is a trade­off between different objectives will also

be an important issue. This affects how the government should balance social costs and private

profits when intervening in private profits. Furthermore, the government should adopt which

strategies such as subsidies or restrictions to ensure that this balance will be most effective.
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Appendix A

The Proofs and Background Informations

In this appendix, we cite some of the proofs mentioned in this article and some background

information. In addition, the definition of the symbol is the same as the previous content.

A.1 Matrix Geometric Method

This is extracted from [21]. Consider a QBDwith finite phases and a infinitesimal generator

Q =



B0 C

A B C

A B C

. . . . . . . . .


, (A.1.1)

where the square matrices A and C are non­negative, and the square matrices B0 = B − A

and B have strictly negative diagonals and non­negative other elements. C, B, A are the

transition rate matrices turn the states to a higher level, within the same level and to a lower

level, respectively. The row sums ofQ are equal to zero.

The stability condition of such a QBD can be obtained by the drift condition, Theorem

1.7.1 in [30],

xCê < xAê

where x is a row vector that is the unique solution to x(C + B + A) = 0 and ê is a column
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vector of ones.

To compute the stationary distribution π writing πQ = 0, the equations are considered for

sub­vectors πi.
π0B0 + π1A = 0

π0C + π1B + π2A = 0

π1C + π2B + π3A = 0

...

πi−1C + πiB + πi+1A = 0

...

Observe the relationship

πi+1 = πiR⇒ πi = π1R
i−1

whereR is the rate matrix and it can be computed using cyclic reduction [4] or (appendix A.2).

Then, we write [
π0 π1

]B0 C

A B +RA

 =

[
0 0

]
.

We can solve these equations to find π0 and π1. Therefore, we iteratively find all the πi, i ∈ N.

A.2 Algorithm for Computing the Rate Matrix

With the Q matrices defined in (A.1.1), we need to solve the following quadratic matrix

equation for the rate matrix of the QBD process for the queue:

C +RB +R2A = 0,

where C,B,A are same with Appendix A.1. Note that the stationary probability vector for

the modulating Markov process is the stationary distribution of the queue length (including the

customer in service). We can use either the simple functional iteration to computeR as follows

Rn+1 = −(C +R2
nA)B−1,
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starting with R0 = 0 or other iteration algorithms reported in Latouche and Ramaswami [23]

such as quadratically convergent algorithms.

A.3 Newton’s Method

These descriptions are excerpted fromwikipedia [7]. Newton’s method starts with an initial

guess which is close to the root of the function. Then, the derivative of the function is calculated

at the initial guess by using calculus, which forms a tangent through the point of the initial guess.

The x­intercept of the tangent is calculated by elementary algebra. This x­intercept generally

better approximates the root of the function, and the method can be iterated.

Suppose Eq : (a, b) → R is a differentiable function defined on the interval (a, b) where

a, b ∈ R, and we have a current approximation xn. Then, the equation of the tangent line to the

curve y = Eq (x) at x = xn is

y = Eq′(xn)(x− xn) + Eq(xn),

whereEq′ denotes the derivative function ofEq. The x­intercept of this line is taken as the

next approximation, xn+1. That is, xn+1 satisfy 0 = Eq′(xn)(xn+1 − xn) + Eq(xn). Solving

for xn+1, there is

xn+1 = xn −
Eq(xn)

Eq′(xn)
.

We start this process with an arbitrary initial value x0. If the initial guess is close enough

to the root of the function and its derivative is nonzero, the method will usually converge to the

point where the function value is zero.

A.4 The Distribution Function of the Waiting Time

This is extracted from chapter 17 of Fredrick and Gerald [11]).

Assuming that the queueing system described as in Appendix A.1 reaches the stability

condition, we now can derive the probability distribution of the waiting time in the system (so

including service time) for a random arrival when the queue discipline is first­come­first­served.

Same as the previous content, let the system states be written as (n,m), where in the state
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description the first entry n = 0, 1, · · · and the second entry m = 0, 1, 2, · · · , K. If the arrival

finds k customers already in the subsystem (the state (k, •)), then the arrival will have to wait

through k + 1 exponential service times, including his/her own. Therefore, let T1, T2, · · · be

independent service time random variables having an exponential distribution with parameter µ

and let

Sk+1 = T1 + T2 + · · ·+ Tk+1 for k ∈ N,

so that Sk+1 represents the conditional waiting time given k customers already in the subsystem.

The Sk+1 is known to have an Erlang distribution. The probability that the random arrival will

find k customers in the subsystem is πk, and given n is the first positive number i satisfied

πi+1 = πiR, it follows that

P (W > t) =
∞∑
n=0

πnP (Sn+1 > t)ê

=
n∑

n=0

πnP (Sn+1 > t)ê+
∞∑

n=n+1

πnR
n−nP (Sn+1 > t)ê

=
n∑

n=0

πnTn(µt)e
−µtê+ πn0

(
Tn(µt)R(I −R)−1 +Rn(µtR)R−n(I −R)−1

)
e−µtê,

where R is the rate matrix, Ti(x) =
∑i

j=0 x
j/j!, Ri(x) = ex −

∑i
j=0 x

j/j!, P (Si+1 > t) =∑i
j=0(µt)

je−µt/j! and i ∈ N.

A.5 The Stability Condition for Real­time information

It is proved by Proposition 1 of Zhang and Luh [37].We use a case of K = 3 to prove this

proposition. LettingA = A+B +C, we have

A =



−Λ Λ

µ2 −(Λ + µ2) Λ

µ2 −(Λ + µ2) Λ

µ2 −µ2


.
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Denote the stationary vector for A by α = (α0, α1, α2, α3). Solving αA = 0, we obtain

α0 = 1/
∑3

i=0(Λ/µ2)
i, α1 = (Λ/µ2)/

∑3
i=0(Λ/µ2)

i, α2 = (Λ/µ2)
2/
∑3

i=0(Λ/µ2)
i, and α3 =

(Λ/µ2)
3/
∑3

i=0(Λ/µ2)
i. Based on the drift stability condition of αCê < αAê, we have

µ1 > α3Λ =
(Λ/µ2)

3Λ∑3
i=0(Λ/µ2)i

=

(
1− Λ

µ2

)(
Λ
µ2

)3
Λ

1−
(

Λ
µ2

)4 .

For a general case with buffer sizeK, we get

µ1 > αKΛ =

(
1− Λ

µ2

)(
Λ

µ2

)K

Λ

(
1−

(
Λ

µ2

)K+1
)−1

.

A.6 The Convex of the Expected Social Waiting Cost for no

Real­time

It is proved by Theorem 1 of Wan and Wang [36]. By differentiating S1(θ) with respect to

θ twice, we obtain

S ′′
1 (θ) = E[W1]

′′G(θ)+2[E[W1]
′−E[W2]

′]G′(θ)+(E[W1]−E[W2])G
′′(θ)+E[W2]

′′(ξ−G(θ)).

(A.6.1)

First, E[W2] is convex upward, because it is based on an M/M/1/K queue model. Same for

E[W1], it is convex upward by λeff
1 , because it is based on an M/M/1 queue model. Second,

E[W1] − E[W2] is increasing and positive. The queue length of toll station is bounded and

it charge a premium, those cause E[W1] ≥ E[W2]. Third, G(θ) is the integral function of the

expected value of a probability distribution, so it is positive and increasing. Using integration by

part G′′(θ) = 1/f(θ) > 0. Finally, for any given θ, ξ ≥ G(θ) ≥ 0. Applying these conditions

to (A.6.1), we obtain S ′′
1 (θ) ≥ 0.

A.7 The Distributions

These descriptions of selected probability distributions are excerpted fromwikipedia [9] [6]

[8]. In this thesis, we consider that a random variable Θ which is the waiting cost per unit time

for a customer has the probability density function f(θ). This function shows the probabilities
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of customers’ time value when a customer enters the system. For example, in the probability

density function shown in Figure A.1, when a customer enters the system, the probability which

his/her time value less than twenty per unit time is about 0.86.

(a) The probability density function (b) The cumulative distribution function

Figure A.1: A distribution of customers’ time value

A.7.1 The Uniform Distribution

The uniform distribution is a symmetric probability distribution. Each interval with the

same length has the same probability on the distribution’s support. The distribution is defined

by the two parameters, a and b, which are its minimum and maximum values. If a random

variable X has uniform distribution, it can be written as X ∼ U(a, b). The probability density

function of an uniform distribution is

f(x) =


1

b−a
for a ≤ x ≤ b,

0 for x < a or x > b.

The cumulative distribution function is given by

F (x) =


x−a
b−a

for a ≤ x ≤ b,

1 for x > b.

The expected value of an uniform distributed random variable X is given by E[X] =

1
2
(a+ b). The variance of X is given by V ar[X] = 1

12
(b− a)2.
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A.7.2 The Exponential Distribution

The exponential distribution is a continuous probability distribution. The exponential

distribution can be used to represent the time interval at which an independent random event

occurs. The distribution is defined by a non­negative parameter λ, which is the number of times

the event occurs per unit of time. The distribution is denoted byExp(λ). The probability density

function of an exponential distribution is

f(x) =


λe−λx x ≥ 0,

0 x < 0.

The cumulative distribution function of an exponential random variable is

F (x) =


1− e−λx x ≥ 0,

0 x < 0.

The expected value of an exponential distribution is 1
λ
. The variance is 1

λ2 .

A.7.3 The Pareto Distribution

The Pareto distribution is a power­law probability distribution that is used in description

of social, geophysical, and many other types of observable phenomena. The Pareto distribution

is characterized by a scale parameter xm and a shape parameter α where xm is the minimum

possible value of random variableX , and α is a positive parameter. The distribution is denoted

by Pa(xm,α). The probability density function of Pareto distribution is

f(x) =


αxα

m
xα+1 x ≥ xm,

0 x < xm.
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The cumulative distribution function of a random variable following a Pareto distribution is

f(x) =


1−

(
xm
x

)α
x ≥ xm,

0 x < xm.

The expected value of a random variable following a Pareto distribution is

E[X] =


∞ α ≤ 1,

αxm
α−1

α > 1.

The variance of a random variable following a Pareto distribution is

V ar[X] =


∞ α ∈ (1, 2],

(
xm
α−1

)2 α
α−2

α > 2.

Note that if α ≤ 1, the variance does not exist.
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Appendix B

MATLAB Codes

In this study, we use Matlab as a computing tool [25].

B.1 Program for Distributions of Customers’ Time Values

We consider the variable type ∈ {1, 2, 3} denotes the type of the distributions where

represents the uniform distribution when type = 1, represents the exponential distribution when

type = 2, and represents the Pareto distribution when type = 3.

B.1.1 Parameters of Distributions

Output a vector of parameters of uniform distribution when the variable type is 1. Output

the parameter of exponential distribution when the variable is 2. Output the parameters of Pareto

distribution when the variable is 3.

function Z=parameter_distribution_(type)

if type==1

min=0;

max=20;

Z=[min max];

end

if type==2

kappa=0.1;
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Z=[kappa 0];

end

if type==3

alpha=10/9;

xm=1;

Z=[alpha xm];

end

end

B.1.2 The Cumulative Distribution Function of Θ

Let the variable type ∈ {1, 2, 3} represents the type of the distributions and θ is the

variable of the distribution. Output the value of the cumulative distribution function.

function Z=F(type,theta)

parameter_distribution=parameter_distribution_(type);

if type==1

min=parameter_distribution(1);

max=parameter_distribution(2);

Z=1;

if theta<=max

Z=(theta­min)/(max­min);

if theta<min

Z=0;

end

end

end

if type==2

kappa=parameter_distribution(1);

if theta>0

Z=1­exp(­kappa*theta);

else

Z=0;
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end

end

if type==3

alpha=parameter_distribution(1);

xm=parameter_distribution(2);

if theta>=xm

Z=1­(xm/theta)^alpha;

else

Z=0;

end

end

end

B.1.3 The Function of Expected Value of f(θ)

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output the value of expected value function of the probability density function.

function Z=G(type,theta)

parameter_distribution=parameter_distribution_(type);

if type==1

min=parameter_distribution(1);

max=parameter_distribution(2);

Z=(max^2­min^2)/(max­min)/2;

if theta<=max

Z=(theta^2­min^2)/(max­min)/2;

if theta<min

Z=0;

end

end

end

if type==2

kappa=parameter_distribution(1);
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if theta<0

Z=0;

else

Z=­exp(­kappa*theta)*theta­kappa*exp(­kappa*theta) ...

/(kappa^2)+(1/kappa);

end

end

if type==3

alpha=parameter_distribution(1);

xm=parameter_distribution(2);

if theta>=xm

if alpha==1

Z=xm*log(abs(theta))­xm*log(abs(xm));

else

Z=alpha*xm^alpha*theta^(1­alpha)/(1­alpha) ...

­(alpha*xm^alpha*xm^(1­alpha)/(1­alpha));

end

else

Z=0;

end

end

end

B.1.4 Inverse Function of the Distribution Cumulative Function of Θ

Let type ∈ {1, 2, 3} represents the type of the distributions and pro is the value of the

cumulative distribution function. Output the value of corresponding θ.

function Z=F_inverse(type,pro)

if pro>=1

pro=0.99;

else

if pro<0
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pro=0;

end

end

Z=fzero(@(x) F(type,x)­pro,0.5);

end

B.2 Taylor Series of Exponential Function

B.2.1 Taylor Expansion of Exponential Function

Let n is the number of terms. Output the value of Taylor expansion of the exponential

function of the first n terms.

function Z=Taylor_T(n,x)

a=0;

for i=0:n

a=a+x^i/prod(1:i);

end

Z=a;

end

B.2.2 Error of Taylor Expansion of Exponential Function

Let n is the number of terms. Output the value of error of Taylor expansion of the

exponential function of the first n terms.

function Z=Taylor_R(n,x)

Z=expm(x)­Taylor_T(n,x);

end

B.3 Program for a No Real­time Information Scenario

We consider the variable type ∈ {1, 2, 3} represents the type of the distributions where

represents the uniform distribution when type = 1, represents the exponential distribution when
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type = 2, and represents the Pareto distribution when type = 3. In addition, p is the toll price,

K is the buffer size of toll station, Λ is total arrival rate, and µ is a vector consisting of service

rates µ1 and µ2.

B.3.1 The Main Program

The main program inputs some basic parameters and calls the subprogram to calculate

various performances, then it optimizes the expected social waiting costs by ”fmincon” and the

expected profit of manager by ”GlobalSearch”, respectively.

clear;

%Basic parameter

type=1;

p=10;

K=10;

Lambda=1;

mu_1=5/6;mu_2=5/6;

mu=[mu_1 mu_2];

epsilon=10^(­5);

delta=0.01;

%The constraints of optimization

lb=[0];

ub=[];

A=[];

b=[];

Aeq=[];

beq=[];

%The initial theta

theta0=(F_inverse(type,mu_1/Lambda) ...

+F_inverse(type,Lambda­mu_2/Lambda))/2;

theta=
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Newton_formula_theta(type,p,K,Lambda,mu,epsilon,delta,theta0);

lambda=lambda_(type,Lambda,theta);

lambda_eff=formula_eff(type,K,Lambda,mu,theta);

formula_W=formula_(type,K,Lambda,mu,theta);

formula_S=S(type,formula_W,theta);

formula_O=O(lambda_eff,formula_W,theta);

min_theta_society=fmincon(@(x) ...

S(type,formula_(type,K,Lambda,mu,x),x), ...

theta0,A,b,Aeq,beq,lb,ub,@(x) mycon(type,K,Lambda,mu,0.5,x))

fun=@(x) ­O(formula_eff(type,K,Lambda,mu,x), ...

formula_(type,K,Lambda,mu,x),x),theta0,A,b,Aeq,beq,lb,ub, ...

@(x) mycon(type,K,Lambda,mu,0.5,x))

rng default

opts=optimoptions(@fmincon,’Algorithm’,’sqp’);

problem=createOptimProblem(’fmincon’,’objective’,fun,’x0’,theta0, ...

’lb’,lb,’ub’,ub,’nonlcon’,@(x) mycon(type,K,Lambda,mu,0.5,x) ...

,’options’,opts);

gs=GlobalSearch;

[max_theta_manager,f]=run(gs,problem);

B.3.2 The Planned Arrival Rate

Output a vector consisting of the planned arrival rates λ1 and λ2, where type ∈ {1, 2, 3}

represents the type of the distributions and θ is the variable of the distribution.

function Z=lambda_(type,Lambda,theta)

lambda_1=Lambda*F(type,theta);

lambda_2=Lambda*(1­F(type,theta));

Z=[lambda_1 lambda_2];

end
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B.3.3 The Effective Arrival Rate

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output a vector consisting of the effective arrival rates λeff
1 and λeff

2 , where K, Λ,

and µ are inputs.

function Z=formula_eff(type,K,Lambda,mu,theta)

lambda=lambda_(type,Lambda,theta);

xi=lambda(2)/mu(2);

if xi==1

piK=1/(K+1);

else

piK=(1­xi)*xi^K/(1­xi^(K+1));

end

lambda_eff_1=lambda(1)+piK*lambda(2);

lambda_eff_2=(1­piK)*lambda(2);

Z=[lambda_eff_1 lambda_eff_2];

end

B.3.4 The Expected Waiting Time

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output a vector consisting of the expected waiting time E[W1] and E[W2], where

K, Λ, and µ are inputs.

function Z=formula_(type,K,Lambda,mu,theta)

lambda=lambda_(type,Lambda,theta);

xi=lambda(2)/mu(2);

if xi==1

piK=1/(K+1);

else

piK=(1­xi)*xi^K/(1­xi^(K+1));

end

lambda_eff_1=lambda(1)+piK*lambda(2);
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lambda_eff_2=(1­piK)*lambda(2);

lambda_eff=[lambda_eff_1 lambda_eff_2];

if xi==1

W2=K/2/mu(2);

else

W2=(1/(1­xi)­(1+K*xi^(K+1))/(1­xi^(K+1)))/lambda_eff(2);

if lambda_eff(2)==0

W2=0;

end

end

W1=1/(mu(1)­lambda_eff(1));

Z=[W1 W2];

end

B.3.5 The Balanced Function of θ

Output a function value where the function is defined by Eq(θ) := p/([E[W1(θ)] −

E[W2(θ)]])− θ.

function Z=Eq_(p,theta,W)

Z=p/(W(1)­W(2))­theta;

end

B.3.6 The Search Algorithm of Computing θ

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output the balanced waiting time cost rate θ, where p, K, Λ, µ, a positive number

ϵ, and a positive number δ are inputs.

function ...

Z=Newton_formula_theta(type,p,K,Lambda,mu,epsilon,delta,theta)

W=formula_(type,K,Lambda,mu,theta);
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for i=1:100

if abs(Eq_(p,theta(i),W))<=epsilon

break;

else

if W(1)­W(2)<0

i=i­1;

delta=delta/2;

end

W=formula_(type,K,Lambda,mu,theta(i));

Eq=Eq_(p,theta(i),W);

W_epsilon=formula_(type,K,Lambda,mu,theta(i)+epsilon);

Eq_epsilon=Eq_(p,theta(i)+epsilon,W_epsilon);

theta=[theta theta(i)­(Eq*epsilon*delta/(Eq_epsilon­Eq))];

end

end

lambda_eff=formula_eff(type,K,Lambda,mu,theta(i));

if lambda_eff(1)<=mu(1)

Z=0;

else

Z=theta(i);

end

end

B.3.7 TheComplementaryCumulativeDistribution Function of theWaiting

Time

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output a vector consisting of the function values P (W1 > t) and P (W2 > t),

which defined as (2.2.9). Where K, Λ, µ, and a positive number t are inputs.

function ...
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Z=formula_probability_waiting_time(type,Lambda,K,mu,t,theta)

mu_1=mu(1);mu_2=mu(2);

pw=0;

lambda=lambda_(type,Lambda,theta);

xi_2=lambda(2)/mu(2);

for i=0:K

if xi_2==1

pi=1/(K+1);

else

pi=(1­xi_2)*xi_2^i/(1­xi_2^(K+1));

end

pw=pw+pi*Taylor_T(i,mu_2*t);

end

lambda_eff_1=lambda(1)+pi*lambda(2);

xi_1=lambda_eff_1/mu(1);

probability_waiting_time_1=exp((xi_1­1)*mu_1*t);

probability_waiting_time_2=pw*exp(­mu_2*t);

Z=[probability_waiting_time_1 probability_waiting_time_2];

end

B.3.8 The Expected Social Waiting Cost

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output the expected social waiting cost S1(θ), whereW is the output of Appendix

B.3.4.

function Z=S(type,W,theta)

parameter_distribution=parameter_distribution_(type);

if type==1
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min=parameter_distribution(1);

max=parameter_distribution(2);

xi=(max^2­min^2)/(max­min)/2;

end

if type==2

kappa=parameter_distribution(1);

xi=1/kappa;

end

if type==3

alpha=parameter_distribution(1);

xm=parameter_distribution(2);

xi=alpha*xm/(alpha­1);

end

EF=[G(type,theta) xi­G(type,theta)];

Z=EF*W’;

end

B.3.9 The Expected Profit of Manager

Output the value of the expected revenue per unit time of the toll system O1(θ), which

defined as (3.2.1).

function Z=O(lambda_eff,W,theta)

p=theta*(W(1)­W(2));

Z=lambda_eff(2)*p;

end

B.3.10 The Constraints of Optimization

Let type ∈ {1, 2, 3} represents the type of the distributions and θ is the variable of the

distribution. Output a vector consisting of the values ciq and ceq, which is used to nonlinear

inequality ciq < 0 and nonlinear equation ceq = 0. WhereK, Λ, µ, and a positive number c are
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inputs. This is based on the constraints of the optimization problem to choose whether to use

the annotation part.

function [ciq,ceq]=mycon(type,K,Lambda,mu,c,theta)

lambda=lambda_(type,Lambda,theta);

xi=lambda(2)/mu(2);

if xi==1

piK=1/(K+1);

else

piK=(1­xi)*xi^K/(1­xi^(K+1));

end

lambda_eff_1=lambda(1)+piK*lambda(2);

W=formula_(type,K,Lambda,mu,theta);

pwt=formula_probability_waiting_time(type,Lambda,K,mu,W(1),theta);

%pwt=formula_probability_waiting_time(type,Lambda,K,mu,W(2),theta);

ciq=[W(2)­W(1) pwt(1)­c];

%ciq=[W(2)­W(1) pwt(2)­c];

ceq=[];

end

B.4 Program for a Real­time Information Scenario

We consider the variable type ∈ {1, 2, 3} represents the type of the distributions where

represents the uniform distribution when type = 1, represents the exponential distribution when

type = 2, and represents the Pareto distribution when type = 3. In addition, p is the toll price,

K is the buffer size of toll station, Λ is total arrival rate, µ is a vector consisting of service rates

µ1 and µ2, n = 0, 1, · · · indicates the queue length of the gratis station, m = 0, 1, 2, · · · , K

indicates the queue length of the toll station, and n0 is the queue length of the gratis station such

that all customers try to enter the gratis station.
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B.4.1 The Main Program

The main program inputs some basic parameters, tests the stability condition and calls the

subprogram to calculate various performances, then it optimizes the expected social waiting

costs or the expected profit of manager by ”GlobalSearch”.

clear;

%Basic parameter

type=1;

p=10;

K=10;

Lambda=1;

mu_1=5/6;mu_2=5/6;

mu=[mu_1 mu_2];

epsilon=10^(­3);

n0=fix(abs(p)*mu_1/(F_inverse(type,epsilon/Lambda))+K*mu_1/mu_2);

%The constraints of optimization

lb=[0];

ub=[];

A=[];

b=[];

Aeq=[];

beq=[];

sigma=sigma_(K,Lambda,mu);

pi=pi_(type,p,K,Lambda,mu,n0,sigma);

EL=EL_(K,n0,sigma,pi)

S_=S(type,K,n0,p,mu,sigma,pi,epsilon)

O_=O(type,K,Lambda,n0,p,mu,sigma,pi)

fun=@(x) S(type,K,n0,x,mu,sigma_(K,Lambda,mu), ...

pi_(type,x,K,Lambda,mu,n0,sigma_(K,Lambda,mu)),epsilon);

70



DOI:10.6814/NCCU201901241

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

% fun=@(x) ­O(type,K,Lambda,n0,x,mu,sigma_(K,Lambda,mu), ...

pi_(type,x,K,Lambda,mu,n0,sigma_(K,Lambda,mu)));

stability_condition=mu(1)­Lambda*(1­Lambda/mu(2)) ...

*((Lambda/mu(2))^K)/(1­(Lambda/mu(2))^(K+1));

rng default

opts=optimoptions(@fmincon,’Algorithm’,’sqp’);

problem=createOptimProblem(’fmincon’,’objective’,fun,’x0’,50,...

’lb’,lb,’ub’,ub,’nonlcon’, ...

@(x) mycon(type,K,Lambda,n0,x,mu,0.5),’options’,opts);

gs=GlobalSearch;

[x,f]=run(gs,problem)

B.4.2 The Planned Arrival Rate

Output a vector consisting of the planned arrival rates λ1 and λ2 at the system state (n, m),

where type ∈ {1, 2, 3} represents the type of the distributions.

function Z=lambda_(type,p,K,Lambda,mu,n0,n,m)

mu_1=mu(1);mu_2=mu(2);

if n<=m*(mu_1/mu_2) || m==K

lambda_1=Lambda;

end

if n<n0 && n>m*(mu_1/mu_2) && m<K

lambda_1=Lambda*F(type,p/(n/mu_1­m/mu_2));

end

if n>=n0 && m<K

lambda_1=0;

end

lambda_2=Lambda­lambda_1;
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Z=[lambda_1 lambda_2];

end

B.4.3 The Transfer Matrix

Output the matrix Bn and Cn, which defined as (2.3.6).

function Z=Bn(type,p,K,Lambda,mu,n0,n)

mu_1=mu(1);mu_2=mu(2);

lambda_2_n=[];

for i=0:K­1

lambda_n=lambda_(type,p,K,Lambda,mu,n0,n,i);

lambda_2_n=[lambda_2_n lambda_n(2)];

end

Z=mu_2*([1 zeros(1,K)]’)*[1 zeros(1,K)] ...

­(Lambda+mu_2+mu_1)*diag(ones(K+1,1)) ...

+mu_2*diag(ones(K,1),­1)+diag(lambda_2_n,1);

end

function Z=Cn(type,p,K,Lambda,mu,n0,n)

lambda_1_n=[];

for i=0:K­1

lambda_n=lambda_(type,p,K,Lambda,mu,n0,n,i);

lambda_1_n=[lambda_1_n lambda_n(1)];

end

lambda_1_n=[lambda_1_n Lambda];

Z=diag(lambda_1_n);

end

B.4.4 The Eigenvalue of K­Matrix

Output the eigenvalue of K­matrix, which defined as (2.3.7).

function Z=sigma_(K,Lambda,mu)
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mu_1=mu(1);mu_2=mu(2);

B=mu_2*([1 zeros(1,K)]’)*[1 zeros(1,K)] ...

­(Lambda+mu_2+mu_1)*diag(ones(K+1,1)) ...

+mu_2*diag(ones(K,1),­1)+Lambda*diag(ones(K,1),1);

A=mu_1*eye(K+1);

P=A*ones(1,size(A,2))’*[zeros(1,K) 1];

K=­(B+P)/A;

eigK_=eig(K);

for i=1:size(K,2)

if eigK_(i)>0 && eigK_(i)<1

sigma=eigK_(i);

end

end

Z=sigma;

end

B.4.5 The Stationary Probability

Let type ∈ {1, 2, 3} represents the type of the distributions. Output a vector of the

stationary probability [π0,π1,π2], where p, K, Λ, µ, n0 and the eigenvalue of K­matrix σ are

inputs.

function Z=pi_(type,p,K,Lambda,mu,n0,sigma)

mu_1=mu(1);mu_2=mu(2);

C0=Cn(type,p,K,Lambda,mu,n0,0);

B0=Bn(type,p,K,Lambda,mu,n0,0)+mu_1*eye(K+1);

A=mu_1*eye(K+1);

C00=[zeros((K+1)*(n0­1),K+1);Cn(type,p,K,Lambda,mu,n0,n0­1)];

B0_=[B0 C0 zeros(K+1,(K+1)*(n0­2))];
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for i=0:n0­3

B0_=[B0_;zeros(K+1,(K+1)*i) A ...

Bn(type,p,K,Lambda,mu,n0,i+1) Cn(type,p,K,Lambda,mu,n0,i+1) ...

zeros(K+1,(K+1)*(n0­3­i))];

end

B00=[B0_;zeros(K+1,(K+1)*(n0­2)) A ...

Bn(type,p,K,Lambda,mu,n0,n0­1)];

A00=[zeros(K+1,(K+1)*(n0­1)) A];

C=([zeros(1,K) Lambda]’)*[zeros(1,K) 1];

B=mu_2*([1 zeros(1,K)]’)*[1 zeros(1,K)] ...

­(Lambda+mu_2+mu_1)*diag(ones(K+1,1)) ...

+mu_2*diag(ones(K,1),­1)+Lambda*diag(ones(K,1),1);

Q_=[ones(n0*(K+1),1) zeros(n0*(K+1),K+1) B00 C00

zeros(n0*(K+1),K+1);

ones(K+1,1) zeros(K+1,K+1 A00 B C;

ones(K+1,1) diag(sigma*ones(1,K+1)) zeros(K+1,n0*(K+1))

A B;

[1/(1­sigma)*ones(K+1,1)] diag(­ones(1,K+1))

zeros(K+1,n0*(K+1)) zeros(K+1,K+1) A];

pi=(Q_’\[1;zeros(size(Q_’,1)­1,1)])’;

pi0=pi(1:n0*(K+1));

pi1=pi(n0*(K+1)+1:(n0+1)*(K+1));

pi2=pi((n0+1)*(K+1)+1:(n0+2)*(K+1));

Z=[pi0 pi1 pi2];

end
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B.4.6 The Expected Queue length

Output a vector consisting of the expected waiting time E[L1] and E[L2], whereK, n0, σ,

and the stationary probability [π0,π1,π2] calculating above are inputs.

function Z=EL_(K,n0,sigma,pi)

pi0=pi(1:n0*(K+1));

pi1=pi(n0*(K+1)+1:(n0+1)*(K+1));

pi2=pi((n0+1)*(K+1)+1:(n0+2)*(K+1));

L=[];

for i=0:n0­1

L=[L i*ones(1,K+1)];

end

EL1=pi0*L’+(n0)*pi1*ones(K+1,1)+(n0*(1­sigma)+1)/(1­sigma)/ ...

(1­sigma)*pi2*ones(K+1,1);

L=[];

for i=0:K

L=[L i];

end

pi=[zeros(1,K+1)];

for i=0:n0­1

pi=pi+pi0(1+i*(K+1):(i+1)*(K+1));

end

pi=pi+pi1+pi2/(1­sigma);

EL2=pi*L’;

Z=[EL1 EL2];

end
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B.4.7 The Expected Social Waiting Cost

Let type ∈ {1, 2, 3} represents the type of the distributions. Output the expected social

waiting cost S2(p), where p, K, n0, σ, a positive ϵ, and the stationary probability [π0,π1,π2]

calculating above are inputs.

function Z=S(type,K,n0,p,mu,sigma,pi,epsilon)

parameter_distribution=parameter_distribution_(type);

if type==1

min=parameter_distribution(1);

max=parameter_distribution(2);

xi=(max^2­min^2)/(max­min)/2;

end

if type==2

kappa=parameter_distribution(1);

xi=1/kappa;

end

if type==3

alpha=parameter_distribution(1);

xm=parameter_distribution(2);

xi=alpha*xm/(alpha­1);

end

mu_1=mu(1);mu_2=mu(2);

pi0=pi(1:n0*(K+1));

pi1=pi(n0*(K+1)+1:(n0+1)*(K+1));

pi2=pi((n0+1)*(K+1)+1:(n0+2)*(K+1));

a=0;

for i=1:n0*K

EF=[];

for j=0:K

theta=p/(i/mu_1­j/mu_2);
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if theta <=0

theta=0;

end

if theta==inf

EF=[EF [i/mu_1 j/mu_2]*[0;xi]];

else

EF=[EF [i/mu_1 j/mu_2]*[G(type,xita);xi­G(type,xita)]];

end

if i<=n0­1

pin=pi0(i*(K+1)+1:(i+1)*(K+1));

end

if i==n0

pin=pi1;

end

if i>=n0+1

pin=pi2*(sigma^(i­n0­1));

end

if pin*EF’< epsilon

break;

else

a=a+pin*EF’;

end

end

Z=a;

end

B.4.8 The Expected Profit of Manager

Output the value of the expected revenue per unit time of the toll system O2(p), which

defined as (3.2.3). Where p,K,Λ, n0, µ, σ, and the stationary probability [π0,π1,π2] calculating

above are inputs.

function Z=O(type,K,Lambda,n0,p,mu,sigma,pi)
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pi0=pi(1:n0*(K+1));

pi1=pi(n0*(K+1)+1:(n0+1)*(K+1));

pi2=pi((n0+1)*(K+1)+1:(n0+2)*(K+1));

a=0;

for i=1:n0*K

EP=[];

for j=0:K

lambda=lambda_(type,p,K,Lambda,mu,n0,i,j);

EP=[EP p*lambda(2)];

end

if i<=n0­1

pin=pi0(i*(K+1)+1:(i+1)*(K+1));

end

if i==n0

pin=pi1;

end

if i>=n0+1

pin=pi2*(sigma^(i­n0­1));

end

a=a+pin*EP’;

end

Z=a;

end

B.4.9 The Complementary Cumulative Distribution Function of The

Waiting Time

Output a vector consisting of the function values P (W1 > t) and P (W2 > t), which

defined as (2.3.10). Where K, n0, µ, σ, [π0,π1,π2] and a positive number t are inputs.

function Z=probability_waiting_time(K,n0,mu,sigma,pi,t)
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mu_1=mu(1);mu_2=mu(2);

pi0=pi(1:n0*(K+1));

pi1=pi(n0*(K+1)+1:(n0+1)*(K+1));

pi2=pi((n0+1)*(K+1)+1:(n0+2)*(K+1));

pi_t=[zeros(1,K+1)];

for i=0:n0­1

pi_t=pi_t+pi0(1+i*(K+1):(i+1)*(K+1));

end

pi_t=pi_t+pi1+pi2/(1­sigma);

PW_=[];

a=0;

for i=0:K

a=a+pi_t(1+i)*Taylor_T(i,mu_2*t);

end

probability_waiting_time_2=a*exp(­mu_2*t);

pi_g=[];

for i=0:n0­1

pi_g=[pi_g sum(pi0(1+i*(K+1):(i+1)*(K+1)))];

end

pi_g=[pi_g sum(pi1) sum(pi2)];

PW_=0;

for i=0:n0+1

PW_=PW_+pi_g(i+1)*Taylor_T(i,mu_1*t)*exp(­mu_1*t);

end

probability_waiting_time_1=PW_ ...

+sum(pi2*(Taylor_T(n0+1,mu_1*t)*sigma/(1­sigma) ...

+Taylor_R(n0+1,mu_1*t*sigma)/(sigma^(n0+1)) ...

/(1­sigma))*exp(­mu_1*t));

Z=[probability_waiting_time_1 probability_waiting_time_2];

end
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B.4.10 The Constraints of Optimization

Let type ∈ {1, 2, 3} represents the type of the distributions. Output a vector consisting

of the values ciq and ceq, which is used to nonlinear inequality ciq < 0 and nonlinear equation

ceq = 0. Where p, K, Λ, n0, µ, and a positive number c are inputs. This is based on the

constraints of the optimization problem to choose whether to use the annotation part.

function [ciq,ceq]=mycon(type,K,Lambda,n0,p,mu,c)

sigma=sigma_(K,Lambda,mu);

pi=pi_(type,p,K,Lambda,mu,n0,sigma);

EL=EL_(K,n0,sigma,pi);

fun_=@(t) probability_waiting_time(K,n0,mu,sigma,pi,t);

intigral_W=integral(fun_,0,50,’ArrayValued’,true);

pwt=probability_waiting_time(K,n0,mu,sigma,pi,intigral_W(1));

%pwt=probability_waiting_time(K,n0,mu,sigma,pi,intigral_W(2));

ciq=[pwt(1)­c];

%ciq=[pwt(2)­c];

ceq=[];

end
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