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Abstract: Although advancement has been observed in global navigation satellite systems and these
systems are widely used, they cannot provide effective navigation and positioning services in covered
areas and areas that lack strong signals, such as indoor environments. Therefore, in recent years,
indoor positioning technology has become the focus of research and development. The magnetic
field of the Earth is quite stable in an open environment. Due to differences in building and internal
structures, this type of three-dimensional vector magnetic field is widely available indoors for indoor
positioning. A smartphone magnetometer was used in this study to collect magnetic field data for
constructing indoor magnetic field maps. Moreover, an acceleration sensor and a gyroscope were
used to identify the position of a mobile phone and detect the number of steps travelled by users
with the phone. This study designed a procedure for measuring the step length of users. All obtained
information was input into a pedestrian dead reckoning (PDR) algorithm for calculating the position
of the device. The indoor positioning accuracy of the PDR algorithm was optimised using magnetic
gradients of magnetic field maps with a modified particle filter algorithm. Experimental results
reveal that the indoor positioning accuracy was between 0.6 and 0.8 m for a testing area that was
85 m long and 33 m wide. This study effectively improved the indoor positioning accuracy and
efficiency by using the particle filter method in combination with the PDR algorithm with the magnetic
fingerprint map.

Keywords: indoor positioning; magnetic fingerprint map; pedestrian dead reckoning; particle filter

1. Introduction

Outdoor positioning performance has approached perfection due to the global navigation satellite
system (GNSS). Moreover, in the past decade, research and development was focused on indoor
positioning [1]. According to the 2015 US survey, approximately 70%–80% of the population use mobile
personal navigation services through smartphones [2]. Thus, there is a potential for developing indoor
positioning and navigation conducted using a mobile phone.

GNSS signals are affected by the shadowing of building indoors. Moreover, Wi-Fi, iBeacon,
and RFID require additional infrastructure and regular maintenance, which is expensive. The inertial
navigation system (INS) and pedestrian dead reckoning (PDR) algorithms do not require the collection
of external signals. However, errors accumulate rapidly over time when these algorithms are used.
Moreover, the accuracy of image positioning is high, but the image processing method is complex and
requires high-performance hardware. Magnetic positioning does not require additional hardware
equipment, but its accuracy is lower than that of image positioning. Each of the aforementioned
technology has its own advantages and disadvantages. Currently, there is no single technology
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that provides all necessary factors. We should identify user requirements and combine different
technologies to address those requirements with the lowest cost, highest range, and highest accuracy
possible. Table 1 presents the current indoor positioning technologies [1], and Table 2 compares the
more frequent use of wireless indoor position technologies [3].

Table 1. Overview of the indoor positioning technologies [1].

Technology Typical
Accuracy

Typical
Coverage (m)

Typical Measuring
Principle Typical Application

Cameras 0.1 mm–dm 1–10 Angle measurements
from images

Metrology, robot
navigation

Infrared cm–m 1–5 Thermal imaging, active
beacons

People detection,
tracking

Tactile and Polar
Systems µm–mm 3–2000 Mechanical,

interferometry
Automotive,
metrology

Sound cm 2–10 Distances from time of
arrival Hospital, tracking

WLAN/Wi-Fi m 20–50 Fingerprinting Pedestrian navigation,
lbs

RFID dm–m 1–50 Proximity detection,
fingerprinting Pedestrian navigation

Ultra-Wideband cm–m 1–50 Body reflection, time of
arrival Robotics, automation

High Sensitive
GNSS 10 m global Parallel correlation,

assistant GPS
Location based

services

Pseudolites cm–dm 10–1000 Carrier phase ranging Gnss challenged pit
mines

Other Radio
Frequencies m 10–1000 Fingerprinting,

proximity Person tracking

Inertial Navigation 1% 10–100 Dead reckoning Pedestrian navigation

Magnetic Systems mm–cm 1–20 Fingerprinting and
ranging Hospital, mines

Infrastructure
Systems cm–m building Fingerprinting,

capacitance
Ambient assisted

living

Table 2. Comparison more frequent use of Wireless Indoor Positioning.

Technology Accuracy Advantages Disadvantages

Bluetooth/iBeacon cm–m
• Low power consumption
• Small equipment

• Software correction required
• Poor stability

RFID dm–m
• Low cost
• Short reaction time

• Low transmission
• Poor anti-interference ability

Wi-Fi m
• Large-scale positioning
• High anti-interference ability

• High power consumption
• Low precision

Zigbee m
• Low power consumption
• High efficiency

• Slow information transfer
• Low precision

UWB cm
• High precision
• High security

• High cost
• High power consumption
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The Microsoft Indoor Localization Competition of 2016 reported the accuracy of fusion of
geomagnetism and Wi-Fi was better than many other positioning methods [4]. This is meaning
geomagnetic signal map is expected to exceed the traditional Wi-Fi to distinguish fingerprints in
different locations [5]. The use of magnetic field measurements, unlike typical Wi-Fi or Bluetooth
positioning measurements, are unaffected by moving humans, providing more time-invariant location
information [5]. Based on the aforementioned factors, a smartphone magnetometer was used in
this study to collect magnetic field data for constructing indoor magnetic fingerprint maps, and an
acceleration sensor and a gyroscope were used to record the position of a mobile phone and detect
the number of steps taken by a user with the smartphone. All obtained information was input into
the PDR algorithm to calculate the position of the smartphone [6–8]. Compared with other wireless
positioning systems, PDR has an easier operation and a lower cost for common users because no
additional equipment is required. However, PDR results estimated from inertial measurement unit
(IMU) data have errors that are accumulated over time. Thus, many methods have been proposed for
correcting PDR positioning errors, such as combining various sensors and wireless devices for error
correction [2,3] and conducting algorithmic advancements for obtaining heading direction and step
length estimations [9–16]. This study optimised the PDR algorithm by using the difference magnetic
fingerprint between real-time measurement and magnetic fingerprint map data to calculate the weight
then put in a particle filter method (in this study call modified particle filter) to get the position of user.
It does not need extra devices just using a smartphone to achieve indoor navigation.

2. Methodology

Three types of sensors were used in this study—a gyroscope, an accelerometer, and a magnetometer.
Data from the three sensors were used for calculating heading direction, conducting step detection,
and creating magnetic maps, respectively (Figure 1).
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Figure 1. Sensors used in the structure involving the PDR algorithm and magnetic maps.

Android Studio was used for developing the test environment and for transferring data from
sensors. Sensor data were transferred to a computer through a mobile entity. Then, MATLAB
(Mathworks, Natick, MA, USA) was used for compiling the algorithm and illustrating results. In other
words, sensor data collection and PDR algorithm compilation were performed using Android Studio
and MATLAB, respectively.
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2.1. Accelerometer Data and Pace Detection

When a smartphone is placed on a flat surface, accelerometer data contain intense vibrations,
which represent noise. Therefore, accelerometer data have to be smoothed using a filter. Ning compared
the accuracies of the Savitzky–Golay (SG) filter and fast Fourier transform (FFT) for smoothing pace
detection data [16]. The result revealed that the SG filter is more accurate than FFT. Moreover, as the
pace increased, the rate could be reduced to 1.1% [16]. The SG filter was proposed in 1964 [17] and
has been widely used for smoothing data and filtering noise. The advantage of this filter is that the
shape of data and the width of each wave are retained while filtering noises. Thus, during the data
smoothing process, the number of waves of smoothed data is equal to that of raw data.

Consequently, Equation (1) is used in this study for computing the resultant acceleration force of
the three axes (Accvalue), and the SG filter was selected for smoothing data:

Accvalue =
√

ax2 + ay2 + az2 (1)

In Figure 2, the vertical axis presents acceleration values, the horizontal axis presents the time
axis, and the red line denotes the result of smoothed data. Although the shapes of smoothed data
do not vary to a great extent, some incorrect peaks have to be filtered using time setting and the
wave crest threshold (green line). The wave crest threshold is the average of the total acceleration,
9.8528 m/s2. Moreover, the points at which every complete waves and the threshold value firstly
intersect are viewed as the timing when feet are overlapped during walking and as the time points of
estimating directions.
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after smoothing, green: threshold).

2.2. Heading Direction Calculation

Heading direction calculation is very important then high-density data are required to compute
rotation angles at every moment. Data are obtained in terms of the angular velocity of the axis (as shown
in Figures 3 and 4). The angle was the first-order integral of the angular velocity, and the concurrent
angle changes were identified through the integration of the sampling time and angular velocity data
(Equation (2)) [18]. Therefore, the obtained data have to be converted into the corresponding angle
format while calculating the rotation of the z axis for calculating follow-up coordinates.

Angular Velocity
(

radian
s

)
=

Angle
Time

(2)
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2.3. Step Length

The estimation of the step length is often based on the length of the leg and the walking
frequency [19]. However, considering the reality, the user does not know his or her leg length or walking
frequency. Therefore, this study designs a function “Step Count” key in the program after walking a
known distance, the program will record the current time and acceleration value, in the follow-up
processing to determine the number of steps that users walk during this period, using Equation (3) to
initially calculate the user’s step length, as the basis for subsequent positioning calculation:

Step Length =
Distance

Step
(3)

2.4. Pedestrian Dead Reckoning

PDR is a relative positioning technology that estimates the positions of users through moving
distances and direction observations that are conducted from the initial positions of users by using
inertial sensors (Figure 5).
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PDR can be expressed as follows:

Xt = Xt−1 + ŝ[t−1,t] sinΨ[t−1, t]

Yt = Yt−1 + ŝ[t−1,t] cosΨ[t−1, t] (4)

where (Xt, Yt) and (Xt−1, Yt−1) represent coordinates at time t and (t − 1), respectively. Here, ŝ[t−1,t]
represents the moving distance from (t − 1) to t, which was defined as the length of a user’s step in this
study. Moreover, Ψ[t−1, t] indicates a user’s moving direction at (t − 1) which was defined as user’s
heading direction in this study.

2.5. Magnetic Field Intensity Values and Fingerprint Recognition Elements

A magnetic signal has an obvious disadvantage that less number of fingerprint recognition
elements are available for use. When the relationship between the coordinate system of the acceleration
sensor and international terrestrial reference system (ITRS) is uncertain, the directions of gravity can
only be detected using an acceleration sensor. However, the number of the fingerprint recognition
elements of the sensor decrease to two—gravitational direction and horizontal direction. In Figure 6,
blue arrows represent the coordinates of a mobile sensor, the orange arrows represent the coordinates
of the ITRS, M denotes the magnetic direction, and m represents the magnetic component of the reverse
direction of acceleration.
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Though the relationships between sensor coordinates system, ITRS, and the true north are
unknown, the components of XY plane are the same, despite the true north. This study employs the
INS signal and magnetic field intensity values to calculate the angle (θ) between the directions of
the magnetic field and gravity through Equation (5) and to determine magnetic components in the
direction of gravity and the horizon [20]:

cos(θ) =
mxMx + myMy + mzMz√

m2
x + m2

y + m2
z

√
M2

x + M2
y + M2

z

(5)

2.6. Magnetic Field Positioning

The inspiration for magnetic positioning was attained from the fact that animals rely on the
magnetic field of the Earth to locate their destination. Moreover, an indoor environment has steel
structures that provide a unique spatially varying environmental magnetic field that is used for
positioning. Animals use the magnetic field of the Earth in a similar manner, but the spatial scale
is smaller [21]. In positioning and navigation applications, the magnetic field is used to determine
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the azimuth angle or heading direction [22]. However, a magnetic field anomaly exists in indoor
environments. Thus, determining the accurate heading direction is difficult. Fingerprint recognition
methods can use these magnetic field anomalies constructively [20]. In fact, the more obvious the
abnormality is, the more unique is the magnetic “fingerprint,” the more features are attained in the
fingerprint, and the better is the positioning result. Gozick et al. collected 2000 data samples by using
mobile phones with built-in magnetometers, identified some landmarks, and created a magnetic map
of multiple floors in a building [22].

2.7. Particle Filter

Issues, such as the possibility of having similar magnetic values in places that are far apart, how
to determine the current location of a user, and how to set the search range of fingerprint identification,
should be discussed. Le Grand and Thrun directly used information collected using a mobile device
for obtaining the particle state at each time breakpoint (t) and for determining the current state of a
user by assigning appropriate weights to parameters, such as velocity v, angular velocity ω, location
(x, y), and direction θ (Equation (6)) [23]:

v(t + ∆t) = v(t) + εlinear
acceleration∆t

ω(t + ∆t) = ω(t) + ε
angular
acceleration∆t[

x(t + ∆t)
y(t + ∆t)

]
=

[
x(t)
y(t)

]
+

[
cos(θ(t))
sin(θ(t))

]
v(t + ∆t)∆t

θ(t + ∆t) = θ(t) +ω(t + ∆t)∆t


(6)

Xie et al. (2015) used a mobile device to collect information for determining the particle state.
In their study, the velocity v and angular velocity ω data were eliminated, and instead, step l data were
used as the basis for calculating the next coordinate by using Equation (7) to cause the particle to enter
the next time breakpoint state. The step length that best conforms to the user’s current state can be
determined by adding the Gaussian distribution noise (Gθ and Gl), increasing the particle search range,
assigning appropriate weight through collected magnetic values, and by finally weighting the step
state to its expectations [24].

θt+1
i = θt

i + ∆θ+ Gθ xt+1
i

yt+1
i

 =
 xt

i

yt
i

+
 cos

(
θt+1

i

)
sin

(
θt+1

i

)  ∗ (l + Gl)
(7)

In the study conducted by Xie et al. (2015), weight is computed by comparing the magnetic
value of each particle obtained through observation and the value in the magnetic field database for
calculating the covariance matrix. Finally, Equation (8) is used to assign a different weight to each
particle, where w is the weight, z is the observation measurement, s is a certain state in the magnetic field
database, and n is the order of z. Here, V represents the covariance matrix obtained after comparing
observed magnetic value and the value in the database for each particle [24]:

wt+1
i = P(zt+1

− zt
∣∣∣st

i , st=1
i )

= 1

(2π)
n
2 |V|

1
2

exp
{
−

1
2

[
(zt+1

− zt) − (obv(st+1
i ) − obv(st

i)
]T

V−1
[
(zt+1

− zt) − (obv(st+1
i ) − obv(st

i)
]} (8)

The particle filter method was used to avoid any difference between values obtained during the
establishment phase of the fingerprint map database and positioning stages. Moreover, fingerprint
differences were used to assign appropriate weights to each particle for obtaining coordinates and
orientation that best match the user’s state. Information required at the beginning of the positioning
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process includes the initial position, orientation, and step length. The step length estimation is often
based on users’ leg lengths and walking frequencies. However, in a practical scenario, users usually
do not know their leg length or walking frequency. Thus, the step length of users can be estimated
by calculating the number of steps taken between two points. In this study, a function was designed
in the programme to allow a user to walk a particular distance. Then, in follow-up processing steps,
the number of steps in the route and the user’s step length were calculated. Weight is a crucial
parameter in the particle filter method. Equation (8) is proposed by Xie et al. 2015 [24], when it used in
this study’s testing area encountering a significant turn will not be able to carry out. After examination
found that is the weighting problem. It will overweight the position near the wall then cannot make
the turn. Therefore, this study modified the weighting model and named the modified particle filter.
The modified particle filter weighting model is shown in Equation (9):

wt+1
i = P(zt+1

− zt
∣∣∣st

i , st=1
i )

=

∣∣∣∣∣ 1
(z t+1

− zt) − (obv(st+1
i ) − obv(st

i ))

∣∣∣∣∣ (9)

In the weight distribution conducted using Equation (9), zt and zt+1 represent the magnetic
fingerprint values at t and t + 1 collected at testing area, respectively, and obv

(
st

i

)
and obv

(
st+1

i

)
denote

the t and t + 1 coordinates of magnetic fingerprint values in the magnetic field fingerprint map
database. This weighting model is the absolute value of the inverse value of the difference between
the actual magnetic fingerprint observed t and t + 1 time positions and the difference in the magnetic
fingerprint database.

During the particle filter calculation, each step state may be updated due to the orientation and
step accumulation error or the relationship with the wall; thus, some particles will be estimated to be in
the magnetic fingerprint map database where there is no data, such as those of a wall, room, or elevator.
Therefore, a resampling mechanism should be incorporated in the algorithm. Particles that are not in
the walking range of a user or appear at an impossible location should be removed, and remaining
particles should be resampled. Resampled particles should not be excessively concentrated at a certain
position. Therefore, sampling should be conducted at the weighted average position of remaining
particles by using the normal distribution method so that the estimated trajectory can be reversed
to the normal trajectory. Finally, all particles are calculated using the weighted average method
(Equation (10)), including x coordinates, y coordinates, azimuth angle, and step size [20]:

ŝ =
N∑

i=1

si · wi (10)

3. Study Area and Data Collection

This study used a combination of the particle filter method and magnetic field maps to assist
PDR for indoor positioning. Thus, it is necessary to collect indoor magnetic field fingerprint data for
creating an environmental magnetic field fingerprint map database. Then, the modified particle filter
method that is proposed in this study was used. In this method, the magnetic field fingerprint database
and PDR were used together for indoor navigation. Results collected in the experimental area and
magnetic field fingerprint database are introduced in this section.

3.1. Experimental Area

The experimental area of this study was the sixth floor of the general building of the National
ChengChi University, Taipei, Taiwan (Figure 7). The testing area size is 33 m × 85 m.
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3.2. Magnetic Field Fingerprint Map Results

The application of a programming interface that was developed in Android Studio is presented in
Figure 8. The interface also determines the number of steps and calculates the step length. The raw data
of the magnetic field fingerprint values were collected at a spacing of 40 cm apart along the corridor by
a Samsung S8 smartphone in this study. It obeyed Potortì et al.’s proposed standard procedure [25].
The interpolation method was used to create three magnetic fingerprint maps, which in the gravitational
direction, horizontal direction, and resultant direction of the magnetic field. The indoor magnetic field
data of all corridors on the sixth floor of the general building were collected. Moreover, the interpolation
method was used to create three magnetic maps of the magnetic fingerprint map (Figure 9).
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4. Positioning Results

In the positioning process, the particle filter method was combined with the PDR algorithm to
determine the position and value of the magnetic fingerprint. Then, the result was matched with the
experimental area magnetic fingerprint database to find the best position (Figure 10).

In this section, we compared and analysed the results of different weighting methods of the particle
filter—Xie’s method [24] and the modified weighting method proposed in this study. The testing route
is displayed in Figure 11. The route has two different angles (90◦ and 45◦) and left and right turns.
A route with a width of less than 2 m is a challenging route because an accurate positioning accuracy is
required to complete the entire route. In this study, some checkpoints (yellow circles) were set up on
the way not only to confirm the closure difference at endpoints (green circles) but also to check if there
are excessive offsets in the path.
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4.1. Comparison of Different Methods

Ten participants followed the designed route in a sequence. Then, Xie’s method and the proposed
modified particle filter method were used to compute the locations of participants. The computation
results are presented in Tables 3 and 4.

Table 3. Xie’s method.

No. Closure Error
(m)

Relative
Precision

Check Point 1
Error (m)

Check Point 2
Error (m)

Check Point 3
Error (m)

1 0.346 1/402 1.067 0.666 0.651
2 0.958 1/145 0.869 1.211 0.399
3 2.145 1/65 0.971 1.017 0.596
4 2.628 1/53 1.011 1.542 0.322
5 0.487 1/286 0.721 2.435 3.071
6 1.126 1/123 0.603 1.019 0.643
7 1.210 1/115 0.283 1.448 0.666
8 1.293 1/107 1.072 1.414 0.920
9 1.971 1/71 1.964 1.291 2.100

10 0.889 1/156 1.160 0.907 1.278

Mean 1.305 1/106 0.972 1.295 1.065

Table 4. Modified particle filter method.

No. Closure Error
(m)

Relative
Precision

Check Point 1
Error (m)

Check Point 2
Error (m)

Check Point 3
Error (m)

1 0.545 1/255 1.297 1.299 0.599
2 0.585 1/238 0.407 0.388 0.829
3 2.174 1/64 0.272 0.245 0.334
4 0.990 1/140 0.552 0.744 0.216
5 0.303 1/458 0.241 0.419 0.629
6 1.095 1/127 0.702 0.718 0.788
7 0.266 1/523 0.202 1.079 0.626
8 0.884 1/157 0.452 1.539 0.503
9 0.424 1/328 0.289 1.027 0.751
10 1.448 1/96 0.595 0.579 0.420

Mean 0.871 1/160 0.501 0.804 0.569
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Tables 2 and 3 reveal that the mean closure error of Xie’s method is 1.305 m and of the modified
particle filter method is 0.871 m. The cumulative distribution functions of the two methods are
illustrated in the same graph that is shown in Figure 12. Under a closure error of 1 m, location errors
obtained using the modified particle filter method and Xie’s method are 85% and 75%, respectively.
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4.2. Results of the Modified Particle Filter Method

Based on the comparison results of Xie’s method and the modified particle filter method, an
experiment was conducted in which 15 participants, including male and female participants, walked
back and forth along the design route of the experimental area. All data were processed using the
modified particle filter method, and results are shown in Table 5 and Figures 13 and 14. The results of
the male participants were poor. Moreover, the average positioning error for male participants was
approximately 1 m and that for female participants was in the range of 0.6 to 0.7 m.

Table 5. Results of 15 participants for each male and female.

Male (m) Female (m)

Average closure error (Go) 1.101 0.753
Average closure error (Back) 0.580 0.318

Average error in the path 0.643 0.663
Relative accuracy in the path 1/216 1/210

Figures 13 and 14 present the trajectory of the 30 people in the experiment. In the figures,
the blue line segment represents male, and the red line segment represents female. The green circle
at the end of the positioning track indicates the location at which the last positioning ended for each
experimenter’s route.
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5. Conclusions

The results of this study reveal that the indoor positioning accuracy is in the range of 0.6 to 0.8 m
when the proposed method is used. As shown in Table 6, the proposed method is better than other
related studies. In this study, the modified particle filter method and indoor magnetic field map were
combined to optimise the PDR algorithm. This combination not only reduces the construction cost but
also improves the positioning efficiency and accuracy.

Table 6. Comparison between the indoor positioning accuracy of different methods.

Literature Authors Positioning Method Accuracy (m) Precision (m) Testing Area Size

Le Grand and Thrun,
2012 [23] Particle Filter 0.95 0.7 for line

1.2 for circle
7 m × 7 m
4 m × 4 m

Xie et al., 2015 [24] Particle Filter 1.0 80% within 1.6
50% within 0.8 72 m × 64 m

Lee, Ahn, and Han,
2018 [26]

Deep Leaning-based
Classification 1.7 80% within 2

50% within 0.8
15 m × 22 m
15 m × 65 m

Huang et al., 2018 [5] Particle Filter 1.13 80% within 1.5
50% within 1 1.5 m × 10 m

This Study Modified Particle Filter 0.7 80% within 1
50% within 0.64 33 m × 85 m
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