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Abstract. Let ℬ be a real separable Banach space of Rademacher type p (1 ≤ p ≤ 2).

In this article, we study the Chung’s strong law of large numbers for a sequence of

independent ℬ-valued random elements. We generalize the results of Hu and Taylor,

Jardas et al. and Woyczyński.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent random variables. The Chung’s
strong law of large numbers (SLLN) for random variables states that if EXn = 0
for n ≥ 1; and 0 < an ↑ ∞ and ' is a positive, even and continuous function
such that

'(t)

∣t∣
↑ and

'(t)

t2
↓ as ∣t∣ ↑, (1)

then
∞
∑

n=1

E'(Xn)

'(an)
<∞
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implies
∑∞

n=1
Xn

an
converges almost surely. Hu and Taylor [4] proved Chung’s

SLLN for arrays of rowwise independent random variables. Jardas et al. [5]
extended Chung’s SLLN to a sequence of independent random variables weighted
by a positive increasing sequence of real numbers, by using a sequence �n of
positive Borel functions satisfying conditions which are weaker than Chung’s
condition (1). Woyczyński [7] generalized Chung’s result for random elements in
Banach spaces. The results in this article are generalizations of those in [4, 5, 7].

Let ℬ be a real separable Banach space with norm ∥ ⋅ ∥. We say that X is
a ℬ-valued random element if X is a Borel measurable function defined on a
probability space (Ω,ℱ ,P) and taking values in ℬ.

Let {
i, 1 ≤ i ≤ n} be a symmetric Bernoulli family, that is, {
i, 1 ≤ i ≤ n}
is a family of independent and identically distributed random variables with
P{
1 = −1} = P{
1 = 1} = 1

2 . Then ℬ is said to be of Rademacher type p
(1 ≤ p ≤ 2) if there exists a constant 0 < C <∞ such that

E

∥

∥

∥

∥

∥

n
∑

i=1


iXi

∥

∥

∥

∥

∥

p

≤ C

n
∑

i=1

E∥Xi∥
p

for any finite collection {X1, . . . , Xn} of ℬ-valued random elements. Hoffmann-
Jørgensen and Pisier [3] proved that a real separable Banach space ℬ is of
Rademacher type p if and only if there exists a constant 0 < C < ∞ such
that

E

∥

∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

∥

p

≤ C

n
∑

i=1

E∥Xi∥
p (2)

where {X1, . . . , Xn} is any finite collection of independent ℬ-valued random
elements with mean zero and finite p-th moment. Throughout this article we
assume 1 ≤ p ≤ 2.

We organize this article as the following:

In Section 2, we state the main results of this article. In Section 3, we state
and prove some lemmas which will be needed in Section 4. In Section 4, we give
the proofs of the main theorems.

2. Main Results

Let {�n, n ≥ 1} be a sequence of positive Borel functions which satisfy the
following property:

There are Cn, Dn > 0, �n ≥ 1, �n ≤ p, n ≥ 1, such that for u ≥ v,

Cn

u�n

v�n

≤
�n(u)

�n(v)
≤ Dn

u�n

v�n

.

The main results of this article are the following theorems.
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Theorem 2.1. Let ℬ be a real separable Banach space of Rademacher type p, and

{Xn, n ≥ 1} independent ℬ-valued random elements with EXn = 0. Then for

every sequence {an, n ≥ 1} of positive numbers with

∞
∑

n=1

An

E�n(∥Xn∥)

�n(an)
<∞, where An = max{

1

Cn

, CnDn},

∑∞
n=1

Xn

an

converges a.s.

Theorem 2.2. Let ℬ be a real separable Banach space of Rademacher type p,

and let {Xni, 1 ≤ i ≤ kn, n ≥ 1}, kn → ∞ as n → ∞, be an array of rowwise

independent ℬ-valued random elements with EXni = 0 for every ni. Then for

every array {ani, 1 ≤ i ≤ kn, n ≥ 1} of positive numbers with

∞
∑

n=1

kn
∑

i=1

An

E�n(∥Xni∥)

�n(ani)
<∞, where An = max{

1

Cn

, CnDn},

∑kn

i=1
Xni

ani

converges to 0 a.s.

3. Preliminary Lemmas

The following lemmas will be needed in the next section.

Lemma 3.1. [1, p. 103] Let X, Y be independent ℬ-valued random elements with

E∥X∥r <∞ and E∥Y ∥r <∞ for some r ≥ 1. If EX = 0, then

E∥X + Y ∥r ≥ E∥Y ∥r.

Lemma 3.2. Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of ℬ-valued
random elements. If

∑∞
n=1 P{Xn ∕= Yn} < ∞, then

∑∞
n=1(Xn − Yn) converges

a.s.

Proof. The proof is just as the same as for random variables (see [2, p. 108]).

Lemma 3.3. Let X be a ℬ-valued random element with EX = 0 and E∥X∥r <
∞, r ≥ 1. Suppose that X∗ is the symmetrized version of X, i.e., X∗ = X − Y ,

where X and Y are independent and have the same distribution. Then

E∥X∥r ≤ E∥X∗∥r ≤ 2pE∥X∥r.

Proof. Let  (X) = ∥X∥r for r ≥ 1. Then  is a convex function. Since X∗ is
the symmetrized version of X , by the conditional expectation ([8, p. 43]),

E{X∗∣X} = E{X − Y ∣X} = X
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and by the conditional Jensen’s inequality ([1, p. 110]), we have that

∥X∥r = ∥E{X∗∣X}∥r ≤ E{∥X∗∥r∣X}.

Therefore

E∥X∥r ≤ E{E{∥X∗∥r∣X}} = E∥X∗∥r.

Lemma 3.4. (Kahane inequality [6]) Let {Xi, 1 ≤ i ≤ n} be ℬ-valued random

elements. Then for 1 ≤ r, s <∞, there exists K > 0 such that

(

E

∥

∥

∥

∥

∥

n
∑

i=1


iXi

∥

∥

∥

∥

∥

r) 1

r

≤ K ⋅

(

E

∥

∥

∥

∥

∥

n
∑

i=1


iXi

∥

∥

∥

∥

∥

s) 1

s

where {
i, 1 ≤ i ≤ n} is a symmetric Bernoulli sequence.

The following two lemmas are the extensions of the Kolmogorov’s inequality
and the Kolmogorov’s three series theorem, respectively, in Banach spaces.

Lemma 3.5. Let {Xn, n ≥ 1} be independent ℬ-valued random elements with

EXn = 0 and E∥Xn∥
r <∞, r ≥ 1, for all n. Then for every " > 0

P{ max
1≤j≤n

∥Sj∥ > "} ≤
E∥Sn∥

r

"r
, where Sn =

n
∑

i=1

Xi.

Proof. Fix " > 0. Let

Δ = {! : max
1≤j≤n

∥Sj(!)∥ > "}.

Put

Δk = {! : max
1≤j≤k−1

∥Sj(!)∥ ≤ ", ∥Sk(!)∥ > "}

(for k = 1, max1≤j≤k−1 ∥Sj(!)∥ is taken to be 0). These Δk’s are disjoint and
Δ =

∪n

k=1 Δk. Since {Xn, n ≥ 1} is independent, EXn = 0, and E∥Xn∥
r < ∞

for all n, by Lemma 3.1, we have that

E∥Sn∥
r ≥ E∥Sk∥

r

≥

n
∑

k=1

∫

Δk

∥Sk∥
rdP

≥ "rP (Δ).

Hence

P{ max
1≤j≤n

∥Sj∥ > "} ≤
E∥Sn∥

r

"r
.
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Lemma 3.6. Let {Xn, n ≥ 1} be a sequence of independent ℬ-valued random

elements with E∥Xn∥
r <∞, r ≥ 1. Define for a fixed constant � > 0,

Yn(!) =

{

Xn(!), if ∥Xn(!)∥ ≤ �;
0, if ∥Xn(!)∥ > �.

Then the series
∑∞

n=1Xn converges if the following three series all converge:

(i)
∑∞

n=1 P{Xn ∕= Yn},

(ii)
∑∞

n=1EYn,

(iii)
∑∞

n=1E∥Yn − EYn∥
r.

Proof. Suppose that (i), (ii) and (iii) all converge. Let Zn = Yn − EYn. Then
EZn = 0 and E∥Zn∥

r <∞. By Lemma 3.5, for all m ∈ N,

P

{

max
n≤j≤n′

∥

∥

∥

∥

∥

j
∑

k=n

Zk

∥

∥

∥

∥

∥

>
1

m

}

≤ mrE

∥

∥

∥

∥

∥

∥

n′

∑

k=n

Zk

∥

∥

∥

∥

∥

∥

r

.

So

P

{

max
n≤j≤n′

∥

∥

∥

∥

∥

j
∑

k=n

Zk

∥

∥

∥

∥

∥

≤
1

m

}

≥ 1−mrE

∥

∥

∥

∥

∥

∥

n′

∑

k=n

Zk

∥

∥

∥

∥

∥

∥

r

≥ 1− Cmr

n′

∑

k=n

E∥Zk∥
r.

By (iii),

n′

∑

k=n

E∥Yk − EYk∥
r −→ 0, as n, n′ −→ ∞.

Then

lim
n→∞

lim
n′→∞

P

{

max
n≤j≤n′

∥

∥

∥

∥

∥

j
∑

k=n

(Yk − EYk)

∥

∥

∥

∥

∥

≤
1

m

}

= 1.

By Borel-Cantelli Lemma,
∑∞

n=1(Yn − EYn) converges a.s. Also by (ii), we get
that

∑∞
n=1 Yn converges a.s. In addition, by (i) and Lemma 3.2,

∑∞
n=1(Yn−Xn)

converges a.s. Then almost sure convergence of
∑∞

n=1 Yn implies almost sure
convergence of

∑∞
n=1Xn.

4. Proofs

Proof of Theorem 2.1. Let Yn = XnI{∥Xn∥≤an} and Zn = XnI{∥Xn∥>an} for all
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n, where I is the indicator function. First,

∞
∑

n=1

P

{

Xn

an
∕=
Yn

an

}

≤
∞
∑

n=1

∥

∥

∥

∥

Zn

an

∥

∥

∥

∥

P{∥Xn∥ > an}

≤

∞
∑

n=1

E

∥

∥

∥

∥

Zn

an

∥

∥

∥

∥

�n

≤
∞
∑

n=1

1

Cn

E

[

�n(∥Zn∥)

�n(an)

]

≤

∞
∑

n=1

An

E�n(∥Xn∥)

�n(an)
<∞.

Next, since Xn = Yn + Zn and EXn = 0,
∑∞

n=1E
[

Yn

an

]

= −
∑∞

n=1E
[

Zn

an

]

provided the limits exist. For each N ∈ N,

E

∥

∥

∥

∥

∥

−

N
∑

n=1

Zn

an

∥

∥

∥

∥

∥

≤

N
∑

n=1

E

∥

∥

∥

∥

Zn

an

∥

∥

∥

∥

�n

≤

N
∑

n=1

An

E�n(∥Xn∥)

�n(an)
<∞,

so −
∑N

n=1E
[

Zn

an

]

exists for all N ∈ N. Now by the convergence of
∑∞

n=1 An ⋅

E�n(∥Xn∥)
�n(an)

, we know that {−
∑N

n=1E[Zn

an

], N ≥ 1} is a Cauchy sequence in the

Banach space, hence −
∑∞

n=1E[Zn

an

], the limit of the sequence, exists. Therefore
∑∞

n=1E[Yn

an

] converges. Finally,

∞
∑

n=1

E

∥

∥

∥

∥

Yn

an
− E

[

Yn

an

]∥

∥

∥

∥

p

≤ 2pC

∞
∑

n=1

E

∥

∥

∥

∥

Yn

an

∥

∥

∥

∥

�n

≤ 2pC
∞
∑

n=1

Dn

E�n(∥Yn∥)

�n(an)

≤ 2pC

∞
∑

n=1

An

E�n(∥Xn∥)

�n(an)
<∞.

By Lemma 3.6, convergence of the three series implies almost sure convergence
of
∑∞

n=1
Xn

an
. The proof is complete.

Proof of Theorem 2.2. Let Yni = XniI{∥Xni∥≤ani} and Zni = XniI{∥Xni∥>ani}

for all n and all i. For each " > 0,

P

{

∞
∪

n=m

{
∥

∥

∥

∥

∥

kn
∑

i=1

(
Zni

ani
− E

[

Zni

ani

]

)

∥

∥

∥

∥

∥

> "

}}

≤
∞
∑

n=m

P

{∥

∥

∥

∥

∥

kn
∑

i=1

(
Zni

ani
− E

[

Zni

ani

]

)

∥

∥

∥

∥

∥

> "

}
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≤
2

"

∞
∑

n=m

kn
∑

i=1

E

∥

∥

∥

∥

Zni

ani

∥

∥

∥

∥

≤
2

"

∞
∑

n=m

kn
∑

i=1

E

∥

∥

∥

∥

Zni

ani

∥

∥

∥

∥

�n

≤
2

"

∞
∑

n=m

kn
∑

i=1

An

E�n(∥Xni∥)

�n(ani)
.

From the hypothesis, we have

lim
m→∞

P

{

∞
∪

n=m

{∥

∥

∥

∥

∥

kn
∑

i=1

(
Zni

ani
− E

[

Zni

ani

]

)

∥

∥

∥

∥

∥

> "

}}

= 0.

So
∥

∥

∥

∥

∥

kn
∑

i=1

Zni

ani
− E

[

kn
∑

i=1

Zni

ani

]∥

∥

∥

∥

∥

−→ 0 a.s.

Then
kn
∑

i=1

Zni

ani
− E

[

kn
∑

i=1

Zni

ani

]

converges to 0 a.s.

Similarly, for each " > 0,

P

{

∞
∪

n=m

{
∥

∥

∥

∥

∥

kn
∑

i=1

(
Yni

ani
− E

[

Yni

ani

]

)

∥

∥

∥

∥

∥

> "

}}

≤
∞
∑

n=m

P

{∥

∥

∥

∥

∥

kn
∑

i=1

(
Yni

ani
− E

[

Yni

ani

]

)

∥

∥

∥

∥

∥

> "

}

≤
2C

"p

∞
∑

n=m

kn
∑

i=1

E

∥

∥

∥

∥

Yni

ani

∥

∥

∥

∥

p

≤
2C

"p

∞
∑

n=m

kn
∑

i=1

E

∥

∥

∥

∥

Yni

ani

∥

∥

∥

∥

�n

≤
2C

"p

∞
∑

n=m

kn
∑

i=1

An

E�n(∥Xni∥)

�n(ani)
.

We have that

lim
m→∞

P

{

∞
∪

n=m

{∥

∥

∥

∥

∥

kn
∑

i=1

(
Yni

ani
− E

[

Yni

ani

]

)

∥

∥

∥

∥

∥

> "

}}

= 0.

So
∥

∥

∥

∥

∥

kn
∑

i=1

Yni

ani
− E

[

kn
∑

i=1

Yni

ani

]∥

∥

∥

∥

∥

−→ 0 a.s.
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Then
kn
∑

i=1

Yni

ani
− E

[

kn
∑

i=1

Yni

ani

]

converges to 0 a.s.

Since EXni = 0, therefore
∑kn

i=1
Xni

ani

converges to 0 a.s.
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