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Abstract This paper studies the initial value problemofmulti-layer cellular neural networks.
We demonstrate that the mosaic solutions of such system is topologically conjugated to a
new class in symbolic dynamical systems called the path set (Abram and Lagarias in Adv
Appl Math 56:109–134, 2014). The topological entropies of the solution, output, and hidden
spaces of amulti-layer cellular neural networkwith initial condition are formulated explicitly.
Also, a sufficient condition for whether the mosaic solution space of a multi-layer cellular
neural network is independent of initial conditions is addressed. Furthermore, two spaces
exhibit identical topological entropy if and only if they are finitely equivalent.

Keywords Initial value problem · Cellular neural networks · Sofic shift · Path set

Mathematics Subject Classification Primary 37B10

1 Main Results

In the past few decades, cellular neural networks (CNNs) introduced by Chua and Yang
[14,15] have been one of the most investigated paradigms for neural information processing
[13]. In a wide range of applications, the CNNs are required to be completely stable, i.e., each
trajectory should converge toward some stationary state. In the study of stationary solutions,
the investigation of mosaic solutions is most essential in CNNs due to the learning algorithm

B Chih-Hung Chang
chchang@nuk.edu.tw

Jung-Chao Ban
jcban@mail.ndhu.edu.tw

1 Department of Applied Mathematics, National Dong Hwa University, Hualien 970003, Taiwan,
ROC

2 Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 81148, Taiwan,
ROC

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-015-9471-9&domain=pdf


70 J Dyn Diff Equat (2016) 28:69–92

and training processing. More abundant output patterns make the learning algorithm more
efficient.

Multi-layer cellular neural networks (MCNNs), which are the coupled systems based on
CNNs, have received considerable attention and have been successfully applied to many
areas such as signal propagation between neurons, image processing, pattern recognition,
information technology, CMOS realization and VLSI implement [4,9,12,14,16–19,25,28,
30,34–36,36]. One important reason for coupling CNNs is the simulation of the visual
systems of mammals ([22,23], with each layer symbolizing a single cortex in the visual
system). In [33], the authors demonstrated a sufficient condition for the complete stability
of MCNNs. Recently, Ban and Chang [6] showed that for MCNNs, more layers infer more
phenomena that the models are capable of. This work intends to investigate the complexity
of the space consisting of mosaic solutions under the constraint of initial conditions.

A multi-layer cellular neural network is realized as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
x (n)
i (t) = −x (n)

i (t) + z(n) +
∑

k∈N
(a(n)

k f (x (n)
i+k(t)) + b(n)

k f (x (n−1)
i+k (t))),

...

d

dt
x (2)
i (t) = −x (2)

i (t) + z(2) +
∑

k∈N
(a(2)

k f (x (2)
i+k(t)) + b(2)

k f (x (1)
i+k(t))),

d

dt
x (1)
i (t) = −x (1)

i (t) + z(1) +
∑

k∈N
a(1)
k f (x (1)

i+k(t)),

(1)

for some integer n ≥ 2, i ∈ N, and t ≥ 0. Herein x (�)
i (t) = 0 for 1 ≤ � ≤ n and t ≥ 0

provided i ≤ 0. The so-called neighborhood N is a finite subset of integers Z; the output
function

f (x) = 1

2
(|x + 1| − |x − 1|) (2)

is a piecewise linear map. A = [A(1), . . . , A(n)] and B = [B(2), . . . , B(n)] are the feedback
and controlling templates, respectively, where A( j) = [a( j)

k ]k∈N , B(l) = [b(l)
k ]k∈N for 1 ≤

j ≤ n, 2 ≤ l ≤ n; z = [z(1), . . . , z(n)] is the threshold. The template T of (1) consists of the
feedback and controlling templates and the threshold, namely, T = [A,B, z].

Given a ∈ R
n and � ∈ N, the initial value problem (IVP) of a MCNN is investigating

those solutions that satisfy (1) with initial condition a at coordinate �. More precisely, instead
of studying the space

X =
{
x(t) = (x ( j)

i (t))i∈N,1≤ j≤n ∈ R
∞×n : x(t) satisfies (1)

}
(3)

which consists of all possible solutions of (1), the IVP of a MCNN focuses on investigating
the space

Xa =
{
x(t) = (x ( j)

i (t))i∈N,1≤ j≤n ∈ R
∞×n : x(t) satisfies (1), (x ( j)

� (0))nj=1 = a
}

. (4)

For ease of notation, we omit the time variable t and let f (x) = ( f (x ( j)
i ))i∈N,1≤ j≤n , where

x = (x ( j)
i )i∈N,1≤ j≤n ∈ R

∞×n and f is the output function defined in (2). Set

Y = {y = (y( j)
i )i∈N,1≤ j≤n ∈ R

∞×n : y = f (x), x ∈ X} (5)
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and
Ya = {y = (y( j)

i )i∈N,1≤ j≤n ∈ R
∞×n : y = f (x), x ∈ Xa}. (6)

For 1 ≤ m ≤ n, define �(m) : R
∞×n → R

∞×1 by �(m)(x) = (x (m)
i )i∈N, where x =

(x ( j)
i )i∈N,1≤ j≤n . Set

Y(m)
a = {y = (yi )i∈N : y = �(m)(y), y ∈ Y}. (7)

We call Ya the solution space, Y
(n)
a the output space, and Y(m)

a the m -th hidden space of (1)
with initial condition (

x ( j)
�

)n

j=1
(0) = a, � ∈ N, a ∈ R

n, (8)

where 1 ≤ m ≤ n − 1.
The present paper focuses on those completely stable solutions in the space Xa that tend

to a mosaic solutions in finite time. More specifically, there exists T > 0 such that, if
x = (x ( j)

i ) in (4), then |x ( j)
i (t)| > 1 for all i, j , and t ≥ T . To make the investigation

self-contained and more readable, we recall some results about the complete stability and
exponential convergence of MCNNs in the following. There are a lot of related references,
those referred ones are constrained by the authors’ interest.

Among wide applications of MCNNs, many of them, such as image recognition, require
the complete stability, which means that every solution of (1) converges to an equilibrium
solution. Meanwhile, the binary outputs of the solutions of MCNNs are also needed; more
precisely, mosaic solutions are essential for these applications. For those sufficient conditions
that make a one-layer CNN completely stable, many of them are followed by |xi | > 1 for
all i ∈ Z, where x = (xi ) is an equilibrium solution of the system. Despite of some theoret-
ical results, numerical experiments infer that most solutions converge exponentially to the
equilibria. The complete stability and exponential convergence of MCNNs is also demon-
strated. Reader is referred to [5,20,21,26,31–33] and the references therein for more details.
This motivates the investigation of those solutions x = (x ( j)

i )i∈N,1≤ j≤n of (1) satisfying

|x ( j)
i (t)| > 1 for all i, j in finite time.

The aim of this study is two fold. First we compute the spatial complexity ofYa andY
(m)
a ,

1 ≤ m ≤ n. We achieve this by characterizing the underlined shift spaces of them. That is,
we prove that Ya and Y(m)

a , 1 ≤ m ≤ n are topologically conjugate to path sets (Theorem
1.2); then using the latest result for path sets to compute the entropy. Secondly, we present the
classification result. That is, we characterize when two shift spaces in {Ya,Y

(1)
a , . . . ,Y(n)

a }
are finitely shift equivalent. Such an equivalence relation provides the relations between
the inner structures of two shift spaces. Roughly speaking, two mosaic solution spaces are
finitely shift equivalent revealing that such two spaces produce “almost” the same structures
and share the same complexities. Theorem 1.5 shows that the topological entropy is the
complete invariant for the finite shift equivalent. This extends the classical result on sofic
systems [27] to path sets. MCNNs seems a natural application of this new result. We achieve
the above goals by raising a series of interesting problems.

Problem 1 How to calculate the topological entropy of Ya and Y(m)
a , 1 ≤ m ≤ n?

Such a topic reveals the deep relationship with symbolic dynamical systems. We recall
some recent results first. In 1-d CNN, it has been proved that the space of themosaic solutions
forms a 1-d subshift of finite type (SFT, [24]). Recently, it has also been proved that themosaic
solution of a MCNN forms a sofic space ([7,10,11]), which is a factor of SFT. The mosaic
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Fig. 1 The fractal set of the hidden and output spaces of the two-layer CNN in Example 2.2. Assigning
the patterns −1 and +1 by 0 and 1 embeds Y(1) and Y(2) in the closed interval [0, 1] by the expansion
φ(α) = �i≥1

αi
2i
, where α = (αi ) ∈ {0, 1}N. The fractal sets on the left and right hand sides are the hidden

and output spaces, respectively

Fig. 2 The fractal set of the hidden and output spaces of IVP of the two-layer CNN in Example 2.2. It is

demonstrated that Y(1)
a and Y(2)

a exhibit identical topological entropy, and hence they are finitely equivalent

solution of Ya and Y(m)
a , 1 ≤ m ≤ n, indeed produce new shift spaces, called path sets [2].

Such shift spaces are recently defined by Abram and Lagarias, which is a generalisation of
classical sofic space, and has many applications on number theory (p-adic expansions [1]).
A main difference between a sofic shift and a path set is that a path set may not be invariant
under the shift map σ(x)i = xi+1, where x ∈ AN, A is a finite set. Reader is referred to [2]
and the references therein for more details.

The difference between X and Xa is that Xa may be observed as a projection of X , and
Xa is not invariant under the shift map (defined later), where X = Y,Y(1),Y(2). Namely,
X is topologically conjugated to a sofic shift in symbolic dynamical systems, while Xa
is topologically conjugated to a path set in general. Such essentially different topological
structure motivates the investigation. Figures 1 and 2 present the output and hidden spaces
with/without the constraint of initial condition. To answer Problem 1, recall that the number
of distinct solution spaces of (1) without initial condition is finite, if the neighborhood
N is fixed. More precisely, suppose N = {−d, . . . ,−1, 0, 1, . . . , d} for some d ∈ N.
The following proposition demonstrates that the parameter space is partitioned into finitely
equivalent subregions.

Proposition 1.1 (See [11]) Let PN be the parameter space of (1), where N = (4d + 3)n −
2d − 1. There is a positive integer K and unique set of open subregions {Pk}Kk=1 satisfying

(1) Pn = ⋃K
k=1 Pk, where U refers to the closure of U;

(2) Pi
⋂

Pj = ∅ if i �= j ;
(3) Templates T, T

′ ∈ Pk for some k if and only if YT = YT′ .

A straightforward examination infers that Proposition 1.1 still holds for the solution spaces
of IVP of (1), as it does for the output and hidden spaces.

This following result indicates that these spaces of IVP of (1) are topologically conjugated
to path sets.

Theorem 1.2 Given a ∈ R
n. SupposeYa,Y

(n)
a , andY(m)

a are the solution, output, and hidden
spaces of (1) with initial condition (8), 1 ≤ m ≤ n − 1. Then Ya and Y

(m)
a are topologically

conjugated to path sets for 1 ≤ m ≤ n.

Theorem 1.3 gives an affirmative answer for Problem 1.

123



J Dyn Diff Equat (2016) 28:69–92 73

Theorem 1.3 Suppose X ∈ {Ya,Y
(1)
a , . . . ,Y(n)

a } and (G, v) is a reachable presentation
(defined later) of X. If the labeled graph G is right-resolving, then

h(X) = log λ, (9)

where λ is the spectral radius of the transition matrix T of the underlying graph G of G.
Herein a labeled graph is right-resolving if no two edges from the one vertex carry the same
label.

Notably, every path set has a reachable right-resolving labeled graph presentation (cf. [2]
Theorem 3.2). After investigating the spatial complexity of the space of IVP of MCNNs, it
is natural to ask the following problem.

Problem 2 Suppose the template of a MCNN is given. (In this case, the solution space Y
is determined.) Is the system independent of the initial condition? More specifically, is Ya
identical to Yb up to some shifts, where Ya and Yb are the solution spaces with respect to
two different initial conditions?

We say a MCNN is independent of initial condition if for any two initial conditions a and
b, there exists k ∈ N such that either σ k(Ya) = Yb or σ k(Yb) = Ya. Roughly speaking, a
MCNN is independent of initial condition if each pattern of the solution under initial condition
one can be obtained by eliminating some digits of a pattern of the solution space under initial
condition two.

Theorem 1.4 Suppose G is the graph presentation (defined later) of the solution space of
a MCNN. If G is irreducible, then the system is independent of initial condition. Moreover,
h(Xa) = h(Xb) for any initial conditions a,b, where X ∈ {Y,Y(1), . . . ,Y(n)}.

Furthermore, we investigate the finite equivalence between two path sets. Theorem 1.2
demonstrates that the hidden and output spaces of MCNNs under initial condition are topo-
logically conjugated to path sets. That means the investigation of the topological structure
of the hidden and output spaces under initial condition is equivalent to elucidating the topo-
logical structure of path sets, and finite equivalence between two path sets is an important
topological relation. The formal definition of finite equivalence is referred to Definition 3.8.
Roughly speaking, two path sets P1 and P2 are finitely equivalent if there exists a graph
G together with vertices v1, v2 and two labeling L1,L2 such that (Gi , vi ) is either a right-
resolving or a left-resolving presentation of Pi for i = 1, 2, where Gi = (G,Li ). Note here
that a labeled graph is called left-resolving if no two edges end at one vertex carrying the
same label. Theorem 1.5 shows that identical topological entropy is a necessary and sufficient
condition for two spaces of IVP of MCNNs being finitely equivalent.

Theorem 1.5 Given a ∈ R
n. SupposeYa,Y

(n)
a , andY(m)

a are the solution, output, and hidden
spaces of (1) with initial condition (8), 1 ≤ m ≤ n − 1 . For X1,X2 ∈ {Ya,Y

(1)
a , . . . ,Y(n)

a },
if X1 and X2 are irreducible, then X1 and X2 are finitely equivalent if and only if they admit
the same topological entropy.

Themain contribution of the present paper is revealing the topological conjugacy between
the initial value problems of differential systems and symbolic dynamical systems. This infers
that the more properties we know about path sets, the more we know about the topological
structure of the solution spaces derived from differential equations with initial conditions,
and vice versa. It is essential to find an equivalent relation in systems of differential equations
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so that we can characterize how many different types of dynamical phenomena are exhibited
and investigate their detailed structures. To achieve this goal, an invariant quantum is needed,
and topological entropy is one of the well-known invariant quantum. A classical result, which
features topological entropy, in symbolic dynamical system is the so-called finite equivalence
in Markov shift spaces. More precisely, two Markow shift spaces are finitely equivalent if
and only if they have identical topological entropy. In this case, there is a covering space
and two finite-to-one factors from the covering space to these two Markov shift spaces. This
elucidation extends finite equivalence to path sets. In other words, two initial value problems
of MCNNs are finitely equivalent if and only if they have coincident topological entropy.
This result is novel in symbolic dynamics and is important for differential equations. Most
important, the whole process is routinely checkable.

The rest of this work is organized as follows. Section 2 addresses two examples for our
main results. The proofs of theorems are postponed to Sect. 3, and the equivalent partition
of the parameter space is elucidated in Appendix.

2 Examples

To give an over all picture of the present investigation, we examine two examples in this
section. The detailed discussion is revealed in Sect. 3. First example addresses the difference
between the hidden and output spaces of a MCNN and the influence of the initial condition.

Example 2.1 Suppose the MCNN is given by

⎧
⎪⎨

⎪⎩

d

dt
x (2)
i (t) = −x (2)

i (t) + 2.5 + 4y(2)
i (t) + 6y(2)

i+1(t) + 3y(1)
i (t) + 2y(1)

i+1(t),

d

dt
x (1)
i (t) = −x (1)

i (t) − 0.3 + 2y(1)
i (t) − y(1)

i+1(t).
(10)

To elucidation of the solution space, we should identify the basic set of admissible local
patterns first (see the Appendix). A straightforward verification infers that the basic set of
admissible local patterns is

B = −−−− , −−−+ , −−
+− , +−

+− , ++−− , ++−+ , ++
+−

After determining the admissible local patterns, the transition matrix (defined in (12)) is used
for elucidating the spatial complexity of the system. In this case, the transition matrix T of
the solution space Y is

T =

⎛

⎜
⎜
⎝

1 1 0 0
1 0 0 0
0 0 1 1
1 0 1 0

⎞

⎟
⎟
⎠ ,

and its graph presentation is seen in Fig. 3. However, the transition matrix does not present
the hidden and output spaces. To reveal the dynamics of the hidden and output spaces, we
introduce the symbolic transition matrix (defined in (15)). The symbolic transition matrices
of Y(1) and Y(2) of (2.1) are
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Fig. 3 The graph presentation of
the solution space in Example
2.1. It consists of two irreducible
subgraphs

v1 v4

v2 v3

v1 v4

v2 v3

G(1)

v1 v4

v2 v3

G(2)

s2 s3

s1

s3 s2

s1

s3

s1 s1

s1

s4 s4

s4

s3

Fig. 4 The labeled graph presentation of the hidden and output spaces in Example 2.1. G(1) represents the
hidden space Y(1) while G(2) represents the output space Y(2). It is seen that neither G(1) nor G(2) are
right-resolving

S(1) =

⎛

⎜
⎜
⎝

s1 s2 ∅ ∅

s3 ∅ ∅ ∅

∅ ∅ s1 s2
s3 ∅ s3 ∅

⎞

⎟
⎟
⎠ and S(2) =

⎛

⎜
⎜
⎝

s1 s1 ∅ ∅

s1 ∅ ∅ ∅

∅ ∅ s4 s4
s3 ∅ s4 ∅

⎞

⎟
⎟
⎠

respectively, where

s1 = −−, s2 = −+, s3 = +−, s4 = + + .

The labeled graph presentation of the hidden and output spaces are pictured in Fig. 4. Notably
the topological dynamics of the solution spaces with initial vertices v1 and v4 are different.
Suppose the initial condition a is given such that the graph presentation of Y(1)

a and Y(2)
a are

G(1) and G(2) with initial vertex v1 respectively. Theorem 3.6 asserts that the path topological
entropy of the hidden space is hP (Y(1)

a ) = log g while the path topological entropy of the
output space is hP (Y(2)

a ) = 0. The detail discussion is elucidated in Sect. 3.

Example 2.2 demonstrates the finite equivalence of the hidden and output spaces. The
upcoming example also presents a MCNN which is independent of initial condition. Fur-
thermore, due to the labeled graph presentation of the hidden and output spaces are not
right-resolving, the investigation of Example 2.2 is more complicated than the previous
example.

Example 2.2 Consider the MCNN given by
⎧
⎪⎨

⎪⎩

d

dt
x (2)
i (t) = −x (2)

i (t) + 0.9 − 0.3y(2)
i (t) − 1.2y(2)

i+1(t) + 0.7y(1)
i (t) + 2.3y(1)

i+1(t),

d

dt
x (1)
i (t) = −x (1)

i (t) + 0.9 + 2.9y(1)
i (t) + 1.7y(1)

i+1(t).

(11)
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Fig. 5 The graph presentation of
the solution space in Example 2.2

v2 v4

v3v1

Then the basic set of admissible local patterns is

B = −+−− , −+
+− , +−−+ , +−

++ , ++−+ , ++
++ .

The transition matrix T of the solution space Y is

T =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 1 0
0 1 0 1
0 1 0 1

⎞

⎟
⎟
⎠ ,

and its graph presentation is seen in Fig. 5.
Suppose the initial condition is given so that the initial vertex ofY(1)

a andY(2)
a is v3. In this

case, the right-resolving presentations of the hidden and output spaces after applying subset
construction method (introduced in Sect. 3.2) are irreducible and are shown as follows.

v3 v2, v4

v2 v4

v3s2

s3

s4
s2

s3

s4

s4
s3

It comes immediately that the transition matrices of Y(1)
a and Y(2)

a are

T(1) =
(
0 1
1 1

)

and T(2) =
⎛

⎝
0 1 0
1 0 1
1 0 1

⎞

⎠

respectively. It is easy to see that the MCNN is independent of initial condition and Theorem
3.6 infers that hP (Y(1)

a ) = hP (Y(2)
a ) = log g for all initial conditions, where g = (1+√

5)/2
is the golden mean. Theorem 3.9 demonstrates that Y(1)

a and Y(2)
a are finitely equivalent, and

their common underlying graph is seen in Fig. 6. The detailed investigation is referred to
Example 3.10.
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Fig. 6 The common graph
presentation of the hidden and
output spaces in Example 2.2

(α1, β1) (α3, β2)

(α2, β2)

3 The Complexity of Initial Value Problems of Multi-layer Cellular Neural
Networks

This section elucidates the complexity of initial value problems of MCNNs. We introduce a
methodology for the computation of an indicator of the complexity. By complexity we refer
to the topological entropy.

Proposition 1.1 (also known as the separation property) infers there are finitely many
kinds of nonequivalent templates for MCNNs if we focus on mosaic solutions. (For the
reader’s convenience, we examine the separation property in the Appendix.) More than that,
the investigation of MCNNs is equivalent to the investigation of the basic sets of admissible
local patterns. Recall that we refer toY,Y(1), andY(2) the solution, hidden, and output spaces
without the constraint of the initial condition and refer toYa,Y

(1)
a , andY(2)

a those with initial
condition a. Suppose a basic set of admissible local patterns B is given, the solution space Y
is then represented as

the output space Y(2) and hidden space Y(1) are

Y(2) =
{

(yi )i∈N :
(
yi
ui

)

i∈N
∈ Y for some (ui )i∈N

}

and

Y(1) =
{

(ui )i∈N :
(
yi
ui

)

i∈N
∈ Y for some (yi )i∈N

}

respectively.

3.1 The Topological Structure of the Solution, Hidden, and Output Spaces

First considering (23) without initial condition, substitute mosaic patterns −1 and 1 with
symbols − and +, respectively. Define the ordering matrix of {−,+}Z2×2 by
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X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−− −+ +− ++
−− −−−− −−−+ −+−− −+−+
−+ −−+− −−++ −++− −+++
+− +−−− +−−+ ++−− ++−+
++ +−+− +−++ +++− ++++

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (xpq)1≤k,l≤4

We emphasize that each entry in X is a 2× 2 pattern since B consists of 2× 2 local patterns.
Once the size of local patterns varies, there exists a corresponding ordering matrix which
represents the basic set of admissible local patterns. Suppose that B is given. The transition
matrix T ∈ M4(R) is a 4 × 4 matrix defined by

T(k, l) =
{
1, if xkl ∈ B;
0, otherwise.

(12)

After determining the transition matrix, the solution space Y can be described via a directed
graph as follows.

Let

v1 ≡ −− , v2 ≡ −
+ , v3 ≡ +− , v4 ≡ +

+ .

Then vi is in the vertex setV if and only if neither the i-th row nor the i-th column ofT are zero
vectors. There exists an edge e = (vi1 , vi2) ∈ E from vi1 to vi2 if and only if T(i1, i2) = 1.
The graph G = (V, E) is called a graph presentation of T. A graph is called irreducible is
its corresponding matrix is irreducible; namely, there exists a path for any two vertices. It
follows immediately that the solution space Y is the collection of infinite paths in G. More
precisely, set

XG = {(gi )i∈N : gi ∈ V, (gi , gi+1) ∈ E for i ∈ N},
thenY = XG . In other words,Y is a shift of finite type (SFT) in symbolic dynamical systems
(cf. [10,24]). For example, suppose the basic set of admissible local patterns B is given as in
Example 2.1. Then the transition matrix of the solution space Y is

T =

⎛

⎜
⎜
⎝

1 1 0 0
1 0 0 0
0 0 1 1
1 0 1 0

⎞

⎟
⎟
⎠ ,

and the graph presentation G = (V, E) is seen in Fig. 3.

For ease of notation, denote by y1y2 
 u1u2 and
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Then we can write Y as

Y = {y 
 u : y ∈ Y(2),u ∈ Y(1)}.
Since the solution space consists of the output and hidden spaces, the dynamical behavior of
the output space Y(2) is influenced by the hidden space Y(1), and vice versa. For instance, a
phenomenon which cannot be seen in one-layer cellular neural networks is that Y(1) would
break the symmetry of the entropy diagram of Y(2) [8,11]. This motivates the study of the
IVP for Y(1) and Y(2).

Since the output space Y(2) and the hidden space Y(1) are both factors of the solution
spaceY, the transition matrix T and its corresponding graph G are not capable of elucidating
Y(1) andY(2). Aside from the transition matrix and directed graph introduced in the previous
subsection, the so-called symbolic transition matrix and labeled graph are presented instead.

Let A = {s1, s2, s3, s4}, where
s1 = −−, s2 = −+, s3 = +−, s4 = + + .

For α1 = α1;1α1;2, α2 = α2;1α2;2 ∈ A, denote the compound symbol α1α2 by α1;1α1;2α2;2
if and only if α1;2 = α2;1. In such a manner we can define a word of arbitrary length with
symbols being in A. Suppose G = (V, E) and T are the graph presentation and transition
matrix of Y. Define L(1),L(2) : E → A by

L(1)(e) = s2τ(i−1)+τ( j−1)+1, τ (c) := cmod 2; (13)

L(2)(e) = s2[(i−1)/2]+[( j−1)/2]+1, [·] is the Gauss function; (14)

where e = (vi , v j ). These two labeling functions L(1) and L(2) define two labeled graphs
G(1) = (G,L(1)) and G(2) = (G,L(2)), respectively. For � = 1, 2, set

XG(�) = {(ωi )i∈N : L(�)(ei ) = ωi , ei ∈ E for i ∈ N}.
In [10,11], the authors demonstrated that the output space Y(2) is topologically conjugated
to XG(2) and the hidden space Y(1) is topologically conjugated to XG(1) . A space that is
represented as a labeled graph is called a sofic shift, which is an extension of a SFT. The
reader is referred to [27] for more details.

Similar to extending a directed graph to a labeled graph, the transition matrix can be
extended to a symbolic transition matrix. The symbolic transition matrix S(�) with respect to
the labeled graph G(�) is defined by

S(�)(p, q) =
{

α j , if T (�)(p, q) = 1 and L(�)((vp, vq)) = α j ;
∅, otherwise.

(15)

Herein the empty symbol ∅ means there exists no local pattern in B related to its corre-
sponding entry in the ordering matrix. A labeled graph is called right-resolving if edges
start from the same vertex carrying different labels. Similarly, a labeled graph is called
left-resolving if edges end at the same vertex carrying different labels. It follows from this
definition that the symbolic transition matrix S of a right-resolving labeled graph must sat-
isfy S(p, q) �= S(p, q ′) for all p, q, q ′ if S(p, q) �= ∅. Conversely, suppose S(p, q) �= ∅.
S(p, q) �= S(p, q ′) for all p, q, q ′ demonstrates that no two edges starting from the same
initial state carry the same label. In other words, a labeled graph is right-resolving if and only
if the multiplicity of every nonempty symbol is less than or equal to one in each row of its
corresponding symbolic transition matrix.
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Continuing with Example 2.1, the graph presentation G of the output space Y is seen
in Fig. 3. The labeled graph presentation G(1) and G(2) of the hidden space Y(1) and the
output space Y(2) are presented in Fig. 4; their corresponding symbolic transition matrices
are

S(1) =

⎛

⎜
⎜
⎝

s1 s2 ∅ ∅

s3 ∅ ∅ ∅

∅ ∅ s1 s2
s3 ∅ s3 ∅

⎞

⎟
⎟
⎠ and S(2) =

⎛

⎜
⎜
⎝

s1 s1 ∅ ∅

s1 ∅ ∅ ∅

∅ ∅ s4 s4
s3 ∅ s4 ∅

⎞

⎟
⎟
⎠

respectively. Notably neither G(1) nor G(2) are right-resolving. In [11], the authors indicated
the structure of the solution, hidden, and output spaces.

Theorem 3.1 Suppose Y,Y(1), and Y(2) are the solution, hidden, and output spaces of a
MCNN, respectively. Then Y is a shift of finite type, and Y(1) and Y(2) are sofic shifts.

Notably a shift of finite type is also a sofic shift. In other words, sofic shifts generalize the
concept of shifts of finite type.

Next we consider the topological structure of the solution, hidden, and output spaces under
the influence of initial conditions. The initial condition is given by

(
x (2)
k

x (1)
k

)

= a for some a ∈ R
2, k ∈ N. (16)

Without loss of generality, we may assume that i = 1. Recall that we focus on the mosaic

solutions; namely, the spaceXa defined in (4) consists of

(
x (2)
i

x (1)
i

)

i∈N
satisfying |x (�)

i (t)| > 1

for i ∈ N, � = 1, 2, provided t ≥ T for some T > 0. In this case, the solution space Ya, the
hidden space Y(1)

a , and the output space Y(2)
a are realized as

Ya =
{

y =
(
y(2)
i

y(1)
i

)

i∈N
: y(2)

1

y(1)
2

∈
{−

− ,
−
+ ,

+
− ,

+
+

}}

⊆ {−,+}N∞×2 , (17)

and

Y(�)
a =

{
y =

(
y(�)
i

)

i∈N : y = �(�)(y), y ∈ Y
}

, � = 1, 2. (18)

More precisely, the solution space Ya consists of paths in its corresponding graph G starting
from a particular vertex, and so are the hidden and output spaces. Notably, Y(�)

a consists
of labeled paths starting from a particular vertex in G(�) for � = 1, 2. This concludes that,
considering the IVP of (23), the solution space Ya, the hidden space Y(1)

a , and the output
space Y(2)

a are topologically conjugated to the so-called path sets in symbolic dynamical
systems (cf. [2]).

Definition 3.2 Suppose G = (G,L) is a labeled graph with underlying directed graph
G = (V, E) and labeling L : E → A. The path set (or pointed follower set) P = XG(v)

is the subset of AN made up of the symbol sequences of successive edge labels of all pos-
sible one-sided infinite walks in G issuing from the distinguished vertex v. Many different
(G, v) may give the same path set P ⊂ AN, and we call any such (G, v) a presentation of
P .

123



J Dyn Diff Equat (2016) 28:69–92 81

Theorem 3.1 and the above discussion derive our first main theorem that the solution,
hidden, and output spaces with initial condition are path sets. In other words, we have the
following theorem, which is the case that n = 2 in Theorem 1.2.

Theorem 3.3 SupposeYa,Y
(1)
a , andY(2)

a are the solution, hidden, and output spaces of (23)
with initial condition (16). Then Ya, Y

(1)
a , and Y(2)

a are path sets.

3.2 The Spatial Complexity of the Solution, Hidden, and Output Spaces

The previous subsection reveals that either one of the solution, hidden, and output spaces is
topologically conjugated to a path set. Following the topological structure of these spaces,
it is on the topic of complexity which this subsection considers. One of the most frequently
used quantum for the index of spatial complexity is the topological entropy. Notably, the
topological entropy measures the growth rate of a number of patterns of an invariant closed
space. Meanwhile, the solution, hidden, and output spaces under initial condition, that are
demonstrated as path sets, are not invariant. By complexity, instead of the classical topological
entropy, we focus on the so-called path topological entropy.

Definition 3.4 (See [2]) Suppose P is a path set. Let N I
n (P) denote the number of distinct

initial blocks of length n in P . The path topological entropy of P is defined by

h p(P) = lim sup
n→∞

1

n
log N I

n (P). (19)

The difference between the topological entropy and the path topological entropy is that
the topological entropy considers the growth rate of all distinct blocks in the given space
(cf. [3]). More precisely, let Nn(P) denote the number of distinct blocks of length n occurring
anywhere in a path set P . The topological entropy of P is

htop(P) = lim sup
n→∞

1

n
log Nn(P). (20)

In [2], the authors showed that the topological entropy of a path set coincides with its path
topological entropy.

Theorem 3.5 (See [2]) For a path set P ,

hP (P) = htop(P). (21)

It is known that the topological entropy of a sofic shift relates to the spectral radius of
its corresponding transition matrix (cf. [27]). Theorems 3.3 and 3.5 indicate that the path
topological entropy of either one of the solution, hidden, and output spaces also relates to the
spectral radius of its corresponding transition matrix if the transition matrix comes from a
reachable presentation. Herein a presentation (G, v) of a path setP is called reachable if each
vertex of G can be reached by a directed path from v. This derives the following theorem,
which is the case that n = 2 in Theorem 1.3.

Theorem 3.6 Suppose X ∈ {Ya,Y
(1)
a ,Y(2)

a } and (G, v) is a reachable presentation of X. If
the labeled graph G is right-resolving, then

hP (X) = log λ, (22)

where λ is the spectral radius of the transition matrix T of the underlying graph G of G.
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v1 v3, v4

v1, v2 v4

v2 v3

s1

s1
s3

s4

s1

s4

s3

Fig. 7 The right-resolving labeled graph presentation of the output spaces in Example 2.1 after applying
SCM

In general, the labeled graph of a presentation may not be right-resolving (cf. Fig. 4).
Nevertheless, applying the so-called subset constructionmethod (SCM) to the original labeled
graph G derives a right-resolving labeled graph H. Moreover, the space represented by H is
identical to the original one, say, XG = XH. It is easily seen that, by applying SCM, every
path set has a reachable right-resolving presentation (G, v). We introduce SCM to make the
investigation self-contained. For the details, the reader is referred to [2,27].
SubsetConstructionMethodLet X be a sofic shift over the alphabetA having a presentation
G = (G,L). If G is not right-resolving, then a new labeled graphH = (H,LH ) is constructed
as follows. The vertices I of H are the nonempty subsets of the vertex set V(G) of G. If
I ∈ V(H) and a ∈ A, let J denote the set of terminal vertices of edges in G starting at some
vertices in I and labeled a, i.e., J is the set of vertices reachable from I using the edges
labeled a.

1) If J = ∅, do nothing.
2) If J �= ∅, J ∈ V(H) and draw an edge in H from I to J labeled a.

Carrying this out for each I ∈ V(H) and each a ∈ A produces the labeled graph H. Then,
each vertex I in H has at most one edge with a given label starting at I . This implies thatH
is right-resolving.

We apply SCM to G(2), a labeled graph presentation of the output space Y(2) in Example
2.1, as an example. It is seen that the label on both the edges from v1 to v2 and from v1
to itself are s1, and the label on the edges starting from v3 are s4. Hence two new vertices
{v1, v2} and {v3, v4} are constructed. The newly generated labeled graphH(2) is obtained as
in Fig. 7.

Recall that a MCNN (23) is independent of initial conditions if, for any two initial con-
ditions a,b, there exists k ∈ N such that either σ k(Xa) = Xb or σ k(Xb) = Xa, where
X ∈ {Y,Y(1),Y(2)}. An immediate consequence of Theorem 3.5 is that a MCNN is inde-
pendent of initial condition if the graph presentation G of the solution space without initial
condition is irreducible. The proof is straightforward, and thus is omitted. Example 3.10
infers that an MCNN which is independent of initial condition does not relate to an irre-
ducible graph presentation. This derives the following theorem, which is the case that n = 2
in Theorem 1.4.

Theorem 3.7 Let G be the graph presentation of the solution space of a MCNN without
initial condition which is obtained from the basic set of admissible local patterns. Then the
prescribed MCNN is independent of initial condition if G is irreducible.
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One of the well-known applications of entropy is classifying shift spaces into equivalent
classes (cf. [27]). Aside from calculating the path topological entropy of the solution, hid-
den, and output spaces of MCNNs, it is interesting to investigate the finer structure, say,
the relationship between the hidden and output spaces. Herein we focus on the finite shift
equivalence of spaces. Let X and Y be two shift spaces. A map φ : X → Y is called a factor
map if φ is onto. A factor map φ : X → Y is finite-to-one if there exists M ∈ N such that
the cardinality of φ−1(y) is less than or equal to M for y ∈ Y , where φ−1(y) indicates the
pre-image of y. Two shift spaces X and Y are finitely equivalent (FE), denoted by X ∼F Y , if
there exists a shift of finite typeW together with finite-to-one factor maps φX : W → X and
φY : W → Y . We say that W is a common extension of X and Y , and the triple (W, φX , φY )

is a finite equivalence between X and Y .

Definition 3.8 Two path sets P1 and P2 are said to be finitely equivalent if there exist an
irreducible directed graph G and two factors �1, �2 such that, for i = 1, 2, �i : XG → XGi

is finite-to-one, where (Gi , vi ) is a presentation of Pi .

Notably, path sets are not shift invariant in general. (cf. [2]). Theorem 3.9 asserts that
irreducible path sets are FE if and only if they are carrying the same path topological entropy.
Hence we derive the following theorem, which is the case that n = 2 in Theorem 1.5.

Theorem 3.9 Suppose Y(1)
a and Y(2)

b are the hidden and output spaces of a MCNN with

initial condition. If Y(1)
a and Y(2)

b are both irreducible, then Y(1)
a ∼F Y(2)

b if and only if

hP (Y(1)
a ) = hP (Y(2)

b ).

Proof Y(1)
a and Y(2)

b share the same path topological entropy coming immediately from the

FE of Y(1)
a and Y(2)

b . It suffices to show that hP (Y(1)
a ) = hP (Y(2)

b ) infers Y(1)
a ∼F Y(2)

b .

Since the presentations of Y(1)
a and Y(2)

b come from the same underlying graph G, it is
seen that they have identical path topological entropy whenever both their presentations are
right-resolving. It remains to show that at least one of the presentation is not right-resolving.
The key to showing that Y(1)

a and Y(2)
b are FE is constructing the underlying graph of their

presentations. The construction is similar to the proof in [27, Theorem8.3.8], whichwe restate
herein for the reader’s convenience.

Applying SCM if necessary, with the abuse of notations, we assume that G(i) is right-
resolving with transition matrix T(i) for i = 1, 2. In [29], Parry demonstrated that two shifts
with the same topological entropy infer there exists an integral matrix that commutes with
their transition matrices. More specifically, there exist nonnegative integral matrices E, F
such that T(2)E = ET(1) and T(1)F = FT(2). We use the matrix F to construct the desired
graph M . Let A = T(1) and B = T(2) for ease of notations. First we introduce an auxiliary
graph N .

The auxiliary graph N is formed as follows. The vertex set V(N ) of N is the disjointed
union of V(G(1)) and V(G(2)), where G(i) is the underlying graph of G(i) for i = 1, 2. There
are three types of edges in N : A-edges, B-edges, and F-edges. The A-edges are simply all
edges in G(1), now regarded as having initial and terminal states in V(N ). The B-edges are
defined similarly. The F-edges are between G(1) and G(2); more specifically, for each pair
I ∈ V(G(1)) and J ∈ V(G(2)), there are F(I, J ) edges in N from I to J . For each path of
length two in N from I ∈ V(G(1)) to J ∈ V(G(2)) is either a left-bottom path or a top-right
path that are seen as follows.
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I

J

I

J

f

b

a

f

Let LB(I, J ) denote the set of all left-bottom paths from I to J , and T R(I, J ) the set
of all top-right paths from I to J . The equation (AF)(I, J ) = (FB)(I, J ) asserts that
|LB(I, J )| = |T R(I, J )|. Hence for each I, J we can define a bijection

�I J : LB(I, J ) → T R(I, J ).

We assemble all these bijections to form a bijection

� :
⋃

I∈V(G(1))

J∈V(G(2))

LB(I, J ) →
⋃

I∈V(G(1))

J∈V(G(2))

T R(I, J ).

Each left-bottom path f b is paired by � to a top-right pair a f ′, and each such pair can be
put together to form a closed box as follows.

I

J

I

J

Γ←→ =⇒

I

J

f

b

a

f f

b

a

f

We denote the resulting box by �( f, a, b, f ′). Such a box is determined by its left-bottom
path f b and also by its top-right path a f ′.

Using N to construct the required common extension using a new graph M . The vertex
set V(M) is the set of all F-edges in N , and the edge set E(M) is the set of all boxes
�( f, a, b, f ′). The initial state of �( f, a, b, f ′) is f and �( f, a, b, f ′) terminates at the
vertex f ′.

Define φ(1) : E(M) → E(G(1)) and φ(2) : E(M) → E(G(2)) by

φ(1)(�( f, a, b, f ′)) = a and φ(2)(�( f, a, b, f ′)) = b,

respectively. It is straightforward to verify thatφ(1) is left-resolving andφ(2) is right-resolving.
Furthermore, the edge map φ(i) : E(M) → E(G(i)) induces vertex map �(i) : V(M) →
V(G(i)) for i = 1, 2. This infers there exist two vertices v1, v2 ∈ V(M) such that (M,L(1) ◦
φ(1), v1) and (M,L(2) ◦ φ(2), v2) are presentation of Y(1)

a and Y(2)
b , respectively.

This completes the proof (Fig. 8). ��

Example 3.10 Suppose the templates of a MCNN are given by the following:

[a(1), a(1)
r , z(1)] = [2.9, 1.7, 0.1]

[a(2), a(2)
r , b(2), b(2)

r , z(2)] = [−0.3,−1.2, 0.7, 2.3, 0.9]
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Fig. 8 If Y(1)
a and Y(2)

b are
finitely equivalent, then we can
construct a new graph M such
that M is the underlying graph of

presentation of Y(1)
a and Y(2)

b .

Herein Y(1)
a and Y(2)

b are factors

of X (1)
v1 and X (2)

v2 , respectively,

and X (1), X (2) are shifts of finite
type

XM

X
(1)
v1 X

(2)
v2

Y(1)
a Y(2)

b

Then the basic set of admissible local patterns is

B = −+−− , −+
+− , +−−+ , +−

++ , ++−+ , ++
++ .

The transition matrix T of the solution space Y is

T =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 1 0
0 1 0 1
0 1 0 1

⎞

⎟
⎟
⎠ ,

and the symbolic transition matrices of the hidden and output spaces are

S(1) =

⎛

⎜
⎜
⎝

∅ ∅ s1 ∅

∅ ∅ s3 ∅

∅ s2 ∅ s2
∅ s4 ∅ s4

⎞

⎟
⎟
⎠ and S(2) =

⎛

⎜
⎜
⎝

∅ ∅ s2 ∅

∅ ∅ s2 ∅

∅ s3 ∅ s4
∅ s3 ∅ s4

⎞

⎟
⎟
⎠

respectively. See Fig. 9 for the graph presentation of Y(1) and Y(2), respectively.
The right-resolving graph presentation H(1) of Y(1) is referred to as Fig. 10, and the

symbolic transition matrix is

S
(1) =

⎛

⎜
⎜
⎜
⎜
⎝

∅ ∅ s1 ∅ ∅

∅ ∅ s3 ∅ ∅

∅ ∅ ∅ ∅ s2
∅ ∅ ∅ ∅ s4
∅ ∅ s3 ∅ s4

⎞

⎟
⎟
⎟
⎟
⎠

.

It is easy to see that hP (Y) = hP (Y(1)) = hP (Y(2)) = log g for all initial conditions, where
g = (1+√

5)/2 is the goldenmean.Moreover, theMCNN is independent of initial condition.
Let

E =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0
0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠

and F =

⎛

⎜
⎜
⎝

0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

⎞

⎟
⎟
⎠ .
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v2 v4

v3v1

v2 v4

v3v1

G(1) G(2)

s3

s2

s2

s1

s4
s4

s2

s3

s4

s2

s4
s3

Fig. 9 The graph presentation of the hidden and output spaces of Example 3.10. It can be seen that G(2) is
right-resolving while G(1) is not

Fig. 10 The labeled graph
obtained by applying SCM to
G(1) in Example 3.10

v2, v4

v4

v3

v1v2

s3

s2
s1

s4s3

s4

v3 v2, v4

v2 v4

v3s2

s3

s4
s2

s3

s4

s4
s3

Fig. 11 The graph presentation of the hidden and output spaces in Example 3.10. The left one presents Y(1)

and the right one presents Y(2)

Then H(1)E = ET(2) and T(2)F = FH(1), where H(1) is the transition matrix of H(1).
Suppose the initial condition is given so that the presentations of Y(1)

a and Y(2)
a are

(H(1), v3) and (G(2), v3), respectively. In this case, the presentations of the hidden and output
spaces are irreducible and are shown as in Fig. 11.

With an abuse of notation we denote the transition matrix and symbolic transition matrix
of Y(i)

a by T(i) and S(i) respectively for i = 1, 2. Then

S(1) =
(

∅ s2
s3 s4

)

and S(2) =
⎛

⎝
∅ s2 ∅

s3 ∅ s4
s3 ∅ s4

⎞

⎠

respectively. Define

F =
⎛

⎝
1 0
0 1
0 1

⎞

⎠ .
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It comes immediately thatS(2)F = FS(1) and thereforeT(2)F = FT(1). Theorem3.9 indicates
that Y(1)

a and Y(2)
a are FE.

We use F to construct the common graph presentation of Y(1)
a and Y(2)

a . The vertex set of
the common graph M consists of F-edges as follows.

(α1, β1), , (α2, β2), , (α3, β2),

where αi and β j are vertices of, with the abuse of notations, G(2) and H(1) respectively for
1 ≤ i ≤ 3, 1 ≤ j ≤ 2. Next we need to define the edges of M . Fix states αi ∈ G(2) and
β j ′ ∈ H(1). For each edge αi → αi ′ in G(2), there is an edge from (αi , β j ) to (αi ′ , β j ′) if
and only if (αi ′ , β j ) is an F-edge and β j → β j ′ is an edge of H(1). For example, consider
i = 1 and j ′ = 1. Then i ′ = 2 and j = 2 is the only choice. Since there is no such F-edge
(α1, β2), there is no edge generated. Instead, consider i = 1 and j ′ = 2. Then i ′ = 2 and
j = 1, 2. Since (α1, β2) is not an F-edge, we conclude that

(α1, β1) → (α2, β2)

is an edge in M . Repeating this procedure derives the edges of M are as follows.

(α1, β1) → (α2, β2)

(α2, β2) → (α1, β1) (α3, β2)

(α3, β2) → (α1, β1) (α3, β2)

Notably the above procedure is actually the same as making a choice � of bijections as is
presented in the proof of Theorem 3.9, and that the graph determined by such transitions
is isomorphic to the graph M constructed there. Consider α1 and β2 for example. The only
left-bottom path from α1 to β2 is

α1

β1 β2

(α1, β1)

(β1, β2)

On the other hand, the only top-right path from α1 to β2 is

α1

β2

α2

(α2, β2)

(α1, α2)

This gives the part �α1,β2 of the bijection �, and together these define the graph. The edge
(α1, β1) → (α2, β2) in M corresponds to the following box.
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α1

β1 β2

α2

(α1, β1)

(β1, β2)

(α1, α2)

(α2, β2)

See Fig. 6 for the underlying graph M .
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Appendix: Equivalent Relation for Templates

The essential study of (1) is investigating two-layer cellular neural networks with the nearest
neighborhood; namely, n = 2 and N = {−1, 0, 1}. For the clarification of the investigation,
we assume that a(1)

−1 = a(2)
−1 = 0. Under such condition, (1) is represented as

⎧
⎪⎨

⎪⎩

d

dt
x (2)
i (t) = −x (2)

i (t) + z(2) + a(2)y(2)
i (t) + a(2)

r y(2)
i+1(t) + b(2)y(1)

i (t) + b(2)
r y(1)

i+1(t),

d

dt
x (1)
i (t) = −x (1)

i (t) + z(1) + a(1)y(1)
i (t) + a(1)

r y(1)
i+1(t),

(23)
where i ∈ N, t ≥ 0, and y( j)

i = f (x ( j)
i ) for j = 1, 2. Since, for all i, j , |x ( j)

i (t)| > 1

provided t is large enough, the output y( j)
i (t) is either 1 or −1 after finite time. Hence we

omit the time factor in the following discussion.

Suppose y =
(
y(2)
1 y(2)

2 y(2)
3 · · ·

y(1)
1 y(1)

2 y(1)
3 · · ·

)

∈ Y is a mosaic pattern. For i ∈ N, y(1)
i = 1 if and only

if x (1)
i > 1. This derives

a(1) + z(1) − 1 > −a(1)
r y(1)

i+1. (24)

Similarly, y(1)
i = −1 if and only if x (1)

i < −1. This implies y(1)
i = −1 if and only if

a(1) − z(1) − 1 > a(1)
r y(1)

i+1. (25)

The same argument asserts

a(2) + z(2) − 1 > −a(2)
r y(2)

i+1 − (b(2)y(1)
i + b(2)

r y(1)
i+1) (26)

and

a(2) − z(2) − 1 > a(2)
r y(2)

i+1 + (b(2)y(1)
i + b(2)

r y(1)
i+1) (27)

are the necessary and sufficient condition for y(2)
i = −1 and y(2)

i = 1, respectively. Define
ξ1 : {−1, 1} → R and ξ2 : {−1, 1}Z3×1 → R by

ξ1(w) = a(1)
r w, ξ2(w1, w2, w3) = a(2)

r w1 + b(2)w2 + b(2)
r w3.
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Set

That is,

Since two-layer cellular neural networks are locally coupled systems,B(1) andB(2) represents
the basic sets of admissible local patterns of the first and second layer of (23), respectively.
The set of admissible local patterns B of (23) is then

This is to say, the investigation of the equivalent relation for the templates is identical to the
discussion of the equivalent relation for the basic sets of admissible local patterns. The fact
that y(1), y(1)

r ∈ {−1, 1} indicates a(1) + z(1) − 1 = −ξ1(y
(1)
r ) and a(1) + z(1) − 1 = ξ1(y

(1)
r )

partition a(1)-z(1) plane into 9 regions. More precisely, a(1)-z(1) plane is partitioned by

a(1) + z(1) − 1 = a(1)
r , a(1) + z(1) − 1 > −a(1)

r ,

and

a(1) − z(1) − 1 = a(1)
r , a(1) − z(1) − 1 = −a(1)

r .

Encode these nine regions as [p, q] for 0 ≤ p, q ≤ 2, then a pair of parameters (a(1), z(1)) ∈
[p, q] infers that (a(1), z(1)) satisfies m inequalities in (24) and n inequalities in (25). The
relative positions of

a(1) + z(1) − 1 = a(1)
r and a(1) + z(1) − 1 > −a(1)

r

and the relative positions of

a(1) − z(1) − 1 = a(1)
r and a(1) − z(1) − 1 = −a(1)

r

remain to be determined. The “order” of lines a(1)+z(1)−1 = (−1)�ξ1(y
(1)
r ), � = 0, 1, in the

plane come from the sign of a(1)
r , this demonstrates that the parameter space {(a(1), a(1)

r , z(1))}
is partitioned into 2 × 9 = 18 equivalent regions. (Notably, the order of lines a(1) − z(1) −
1 = ξ1(y

(1)
r ) and a(1) − z(1) − 1 = −ξ1(y

(1)
r ) is determined seamlessly once the order of

a(1) + z(1) − 1 = (−1)�ξ1(y
(1)
r ) is given.) Namely, any two sets of parameters located in the

same region determine the identical basic set of admissible local patterns B(1). See Fig. 12a.
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Fig. 12 The partition of a(1)-z(1) and a(2)-z(2) planes. In (a), �+
i and �−

i , i = 1, 2, that represent the lines in

(24) and (25) have partitioned the a(1)-z(1) plane into nine regions. In (b), �+
i and �−

i , represent the lines in

(26) and (27), ave partitioned the a(2)-z(2) plane into nine regions, where 1 ≤ i ≤ 8

In an analogous manner, y(2), y(2)
r , u(2), u(2)

r ∈ {−1, 1} indicates that a(2) + z(2) − 1 >

−ξ2(y
(2)
r , u(2), u(2)

r ) and a(2) + z(2) − 1 > ξ2(y
(2)
r , u(2), u(2)

r ) partition a(2)-z(2) plane into
81 regions. Encode these regions as [p, q] for 0 ≤ p, q ≤ 8, then a pair of parameters
(a(2), z(2)) ∈ [p, q] infers that (a(2), z(2)) satisfies m inequalities in (26) and n inequalities
in (27). Furthermore, the order of a(2) + z(2) − 1 = ξ2(y

(2)
r , u(2), u(2)

r ) can be uniquely
determined according to the following procedures.

(1) The signs of a(2)
r , b(2), b(2)

r .
(2) The magnitude of a(2)

r , b(2), b(2)
r .

(3) The competition between the parameter with the largest magnitude and the others.
In other words, suppose m1 > m2 > m3 represent |a(2)

r |, |b(2)|, |b(2)
r |. We need to

determine whether m1 > m2 + m3 or m1 < m2 + m3.

This partitions the parameter space {(a(2), a(2)
r , b(2), b(2)

r , z(2))} into 8× 6× 2× 81 = 7776
regions and each region is associated with a basic set of admissible local patterns (cf. Fig.
12b).

The above discussion demonstrates the following proposition.

Proposition A.1 Let P8 = {(a(1), a(1)
r , a(2), a(2)

r , b(2), b(2)
r , z(1), z(2))} be the parameter

space of (23). There is a positive integer K and unique set of open subregions {Pk}Kk=1
satisfying

(1) P8 = ⋃K
k=1 Pk, where U refers to the closure of U;

(2) Pi
⋂

Pj = ∅ if i �= j ;
(3) Templates T, T

′ ∈ Pk for some k if and only if YT = YT′ .

Example A.2 Suppose a(1)
r < 0 and a(2)

r , b(2), b(2)
r are all positive. Moreover, choose

a(2)
r , b(2), b(2)

r such that

a(2)
r > b(2) > b(2)

r and a(2)
r > b(2) + b(2)

r .
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For instance, a(1)
r = −1, a(2)

r = 6, b(2) = 3, and b(2)
r = 2. Then the position of each line is

settled. We number the partitions of a(1)-z(1) and a(2)-z(2) planes by a pair [m�, n�], � = 1, 2,
where m�, n� illustrate how many inequalities

a(�) + z(�) − 1 > −ξ�(·) and a(�) − z(�) − 1 > ξ�(·)
are satisfied, respectively. Thus 0 ≤ m1, n1 ≤ 2 and 0 ≤ m2, n2 ≤ 8. Pick [m1, n1] = [1, 2]
and [m2, n2] = [6, 4], for instance, a(1) = 2, z(1) = −0.3, a(2) = 4, and z(2) = 2.5. It is
easy to check that the basic set of admissible local patterns is

B = −−−− −−−+ , −−
+− , +−

+− , ++−− , ++−+ , ++
+−
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