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In this paper, we show a handy approximate approach to provide a lower bound 
of the Hausdorff dimension of a given subset in [0, 1) related to β-transformation 
dynamical system. Here approximation means from special class with β-shift 
satisfying the specification property or being subshift of finite type to general β > 1. 
As an application, we obtain the multifractal spectra for the recurrence rate of the 
first return time of β-transformation, including the cases returning to the ball and 
cylinder.
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1. Introduction

Let (X, B, μ, T, d) be a metric measure-preserving system (m.m.p.s.), by which we mean that (X, d) is 
a metric space, B is a σ-field containing the Borel σ-field of X and (X, B, μ, T ) is a measure-preserving 
dynamical system. Under the assumption that (X, d) has a countable base, Poincaré recurrence theorem 
implies that μ-almost all x ∈ X is recurrent in the sense

lim inf
n→∞

d
(
Tnx, x

)
= 0 (1.1)

(for example, see [11]). Later, Boshernitzan [4] has improved it by a quantitative result

lim inf
n→∞

n1/αd
(
Tnx, x

)
< ∞, μ-almost everywhere (a.e. for short),

where α is the dimension of the space in some sense.
The above results describe whether or not a point is recurrent and how far the orbit will return to 

the initial point. Recurrence time is an important aspect used to characterize the behaviors of orbits in 
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dynamical systems. Of the research conducted on recurrence time, the first return time of a point has been 
well studied in the last decade. The first return time of a point x ∈ X into the set A is defined by

τA(x) = inf
{
k ∈ N : T kx ∈ A

}
.

Ornstein and Weiss [21] proved that for a finite partition ξ of X, if there exists a T -invariant ergodic Borel 
probability measure μ, then

lim
n→∞

log τξn(x)(x)
n

= hμ(ξ), μ-a.e.

where ξn(x) is the intersection of ξ, T−1(ξ), · · · , T−n+1(ξ) which contains x, and hμ(ξ) denotes the measure-
theoretic entropy of T with respect to the partition ξ. Feng and Wu [10] considered the recurrence set of 
the one-sided shift space on m symbols ({0, 1, . . . , m − 1}N, σ), where the partition ξ is the cylinders sets 
{[0], [1], . . . , [m − 1]}. They proved that the set

{
x ∈ {0, 1, . . . ,m− 1}N : lim inf

n→∞

log τξn(x)(x)
n

= α, lim sup
n→∞

log τξn(x)(x)
n

= γ

}

has Hausdorff dimension one for any 0 ≤ α ≤ γ ≤ +∞ (see also [26]). Lau and Shu [15] extended this 
result to the dynamical systems with specification property by considering the topological entropy instead 
of Hausdorff dimension. Barreira and Saussol [2] replaced the cylinders ξn(x) with the balls B(x, r) according 
to quantity

τr(x) = inf
{
n ≥ 1 : Tnx ∈ B(x, r)

}
,

and defined the lower and upper recurrence rates of x by

R(x) = lim inf
r→0

Rr(x), R(x) = lim sup
r→0

Rr(x),

where Rr(x) = log τr(x)
− log r . They proved that

R(x) = dμ(x), R(x) = dμ(x), μ-a.e. (1.2)

with the conditions that μ has a so-called long return time (see [2]) and dμ(x) > 0 for μ-a.e. x, where 
dμ(x), dμ(x) are the lower and upper pointwise dimensions of μ at a point x ∈ X respectively. A simple 
consequence of this result is a reformulation of Boshernitzan’s theory by noting that

lim inf
n→∞

n1/αd
(
Tnx, x

)
= 0

holds for all α > dμ(x). Many researchers have studied the problem when the formulation (1.2) holds 
from many different viewpoints. For example, Saussol [25, Theorem 3] proved that formulation (1.2) holds 
if the transformation T is piecewise Lipschitz with some condition and the decay of the correlation is 
super-polynomial.

Let A(Rr(x)) be the set of the accumulation points of Rr(x) as r → 0 and J a compact sub-interval of 
(0, +∞). Olsen [20] studied the following set

G ∩
{
x ∈ K : A

(
Rr(x)

)
= J

}
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for the self-conformal set (satisfying a certain separation condition) K with the natural self-map induced 
by the shift, where G is an open set with G ∩K �= ∅. He proved that such a set shares the same Hausdorff 
dimension as K. This result can be applied to the case of N -adic transformation with N ∈ N.

In this investigation we consider the similar problem for the β-transformation Tβ with any β > 1, which 
includes the cases of full-shift (β = N), subshift of finite type, and cases with, but not limited to, specification 
condition. We use the notation τβr (x), Rβ

r (x), Rβ(x), Rβ(x) to emphasize the dynamical system ([0, 1), Tβ). 
Denote by μβ the Tβ-invariant measure equivalent with the Lebesgue measure L.

Firstly, we prove the following.

Proposition 1.1. The set A(Rβ
r (x)) is a closed interval for any x ∈ [0, 1).

Proof. When limr→0 R
β
r (x) exists, the accumulation set just contains one point and then the claim holds. 

Now we consider the case that such limit does not exist, say a := lim infr→0 R
β
r (x) < lim supr→0 R

β
r (x) := b.

For any a < c < b, fix arbitrary small δ > 0, choose a decreasing sequence {rk} tending to zero as 
k → ∞ such that Rβ

rk
(x) ≤ c ≤ Rβ

(1+δ)rk(x). Such sequence can be found since a < b. Noting that 
τβ(1+δ)rk(x) ≤ τβrk(x), we know that Rβ

(1+δ)rk(x) ≤ Rβ
rk

(x)(1 + log(1+δ)
log rk

). Therefore,

Rβ
rk

(x) ≤ c ≤ Rβ
(1+δ)rk(x) ≤ Rβ

rk
(x)

(
1 + log(1 + δ)

log rk

)
,

which implies limk→∞ Rβ
rk

(x) = c. Thus we get the desired. �
It is known that the dynamical system ([0, 1), Tβ) satisfies the conditions of metric theorem (Theorem 3) 

in [25] by noting that the measure μβ is exponentially mixing (see [23]). Applying this metric result and 
noting that dμβ

(x) = dμβ
(x) = 1 for L-almost every x ∈ [0, 1), we obtain

lim
r→0

Rβ
r (x) = 1

for L-almost every x ∈ [0, 1).

Theorem 1.1. Let β > 1 be any real number and J a closed interval in [0, +∞]. Denote

Gβ
J =

{
x ∈ [0, 1) : A

(
Rβ

r (x)
)

= J
}
.

Then

dimH Gβ
J = 1,

where dimH denotes the Hausdorff dimension.

Remark 1. Due to Proposition 1.1, Theorem 1.1 is equivalent to say dimH Gβ
α,γ = 1, where

Gβ
α,γ =

{
x ∈ [0, 1) : lim inf

r→0
Rβ

r (x) = α, lim sup
r→0

Rβ
r (x) = γ

}
(1.3)

with 0 ≤ α ≤ γ ≤ +∞.

Choose α = γ in (1.3), then we have the following.
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Corollary 1. Let β > 1 be a real number and 0 ≤ α ≤ +∞. Denote

Gβ
α =

{
x ∈ [0, 1) : lim

r→0
Rβ

r (x) = α
}
.

Then dimH Gβ
α = 1.

Now we turn to consider the first return time of the point to the cylinders containing itself. For any 
n ∈ N and x ∈ [0, 1), define

τβn (x) = inf
{
m ≥ 1 : Tm

β x ∈ In(x)
}
,

where In(x) is the cylinder of n containing x. Let Rβ
n(x) = log τβ

n (x)
n . Denoted by A(Rβ

n(x)) the set of all 
accumulation points of Rβ

n(x) as n → ∞. Similarly with Proposition 1.1 and Theorem 1.1, we can prove the 
following proposition and theorem.

Proposition 1.2. The set A(Rβ
n(x)) is a closed interval for any x ∈ [0, 1).

Theorem 1.2. Let β > 1 be any real number and J a closed interval in [0, +∞]. Denote

Eβ
J =

{
x ∈ [0, 1) : A

(
Rβ

n(x)
)

= J
}
.

Then

dimH Eβ
J = 1.

The paper is organized as follows. Definitions and known results of β-transformations, as well as Hausdorff 
dimensions and measures, are given in Section 2. In Section 3, we provide a kind of approximation method 
from the specification case to the general case followed by a detailed proof for Theorem 1.2 and Theorem 1.1
in Section 4.

2. Preliminaries

2.1. Basic notions and notation for β-transformations

Rényi [24] introduced the β-expansions of real numbers in 1957, where 1 < β ∈ R. More specifically 
stated, the β-expansion of x ∈ [0, 1) is the following

x =
∞∑

n=1

εn(x, β)
βn

, (2.4)

where ε1(x, β) = [βx], [x] is the integer part of x and εn(x, β) = ε1(Tn−1
β (x), β) for all n ≥ 2. Here Tβ is 

the β-transformation on the unit interval [0, 1) defined as

Tβ(x) = βx− [βx].

The numbers ε1(x, β), ε2(x, β), . . . , εn(x, β), . . . are the β-digits of the β-expansion of x and this sequence is 
denoted by ε(x, β), that is,

ε(x, β) =
(
ε1(x, β), ε2(x, β), . . . , εn(x, β), . . .

)
.
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Sometimes we write εn(x) instead of εn(x, β) if there is no confusion. It is well known that the Lebesgue 
measure is Tβ-invariant and ergodic when β is an integer. When β /∈ N, Rényi [24] proved that there exists 
a unique invariant measure μβ which is equivalent to the Lebesgue measure (the density formula was given 
by Gel’fond [12] and Parry [22] independently). Furthermore, the β-transformation is ergodic and strong 
mixing with respect to μβ (see Fan et al. [8], Philipp [23] and Rényi [24]).

From the definition of β-digit {εn(·, β)}, we know that the set of possible values of β-digits is Aβ =
{0, 1, . . . , β−1} when β is an integer, otherwise, Aβ = {0, 1, . . . , [β]}. Let (AN

β , σ) be the symbolic dynamics 
with σ the shift transformation on AN

β . For any words u, v in the symbolic space, uv denotes the concatenation 
of u and v. Denote w|n as the prefix of the sequence w ∈ AN

β with length n. The finite word un (n ∈ N)
and sequence u∞ mean uu · · ·u︸ ︷︷ ︸

n

and uu · · ·u · · · respectively. We denote by Σβ the set of the admissible 

sequences in AN

β , that is,

Σβ =
{
w ∈ AN

β : there exists some x ∈ [0, 1) such that ε(x, β) = w
}
.

Let Σn
β be the set of admissible words of length n, that is,

Σn
β =

{
w ∈ An

β : there exists some x ∈ [0, 1) such that ε(x, β)|n = w
}
.

When β is an integer, Σβ is simply AN

β (or more precisely AN

β = Sβ defined below); when β is not an integer, 
Σβ was characterized by Parry [22] (see Theorem 2.1 below) by the β-expansion of the number 1, denoted 
by ε(1, β), which can be obtained in a similar manner as the β-expansion of numbers in [0, 1). We say that 
ε(1, β) is infinite if there are infinitely many non-zero elements in the sequence ε(1, β), otherwise, it is said 
to be finite. For finite case, i.e., ε(1, β) = (ε1(1), · · · , εn(1), 0∞) with εn(1) �= 0 for some n ≥ 1, we take 
ε∗(1, β) = (ε1(1), ε2(1), · · · , εn−1(1), (εn(1) − 1))∞ as the infinite expansion of 1. We will still write ε∗(1, β)
instead of ε(1, β) for infinite cases for the sake of simplicity so that there is no ambiguity in the rest of this 
paper. To state the following theorem, we give two notations ≺ and �, the lexicographical orders on AN

β . 
That is, let w, w′ ∈ AN

β , then w ≺ w′ means that there exists n ≥ 1 such that wn < w′
n and wj = w′

j for all 
j < n, and w � w′ means that w ≺ w′ or w = w′.

Theorem 2.1. (See [22].) Let β > 1 be a real number and ε∗(1, β) the infinite expansion of the number 1. 
Then w ∈ Σβ if and only if

σk(w) ≺ ε∗(1, β) for all k ≥ 0.

Let Sβ be the closure of the set Σβ. It is well known that Sβ = AN

β when β is an integer and otherwise, 
(Sβ , σ|Sβ

) is a subshift of (AN

β , σ), where σ|Sβ
is the restriction of σ to Sβ . Theorem 2.1 implies the following 

characterization of Sβ.

Corollary 2. (See [3,16,22].) Let β > 1 be a real number and ε∗(1, β) the infinite expansion of the number 1. 
Then

Sβ =
{
w ∈ AN

β : σkw � ε∗(1, β) for all k ≥ 0
}
.

Proposition 2.1. (See [22].) The function β �→ ε∗(1, β) is increasing with respect to the variable β > 1. 
Therefore, if 1 < β1 < β2, then

Σβ1 ⊂ Σβ2 , Σn
β1

⊂ Σn
β2

(for all n ≥ 1) and Sβ1 ⊂ Sβ2 .
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Topological entropy of Tβ and the measure-theoretical entropy of μβ share the same value log β, and 
μβ is the unique measure of maximal entropy (see Dajani and Kraaikamp [6], Hofbauer [13], Ito and 
Takahashi [14]). In 1989, Blanchard [3] outlined a classification for all numbers β > 1 according to the 
topological properties of Sβ, furthermore, the Lebesgue measures and Hausdorff dimensions of all classes 
were calculated by Schmeling [27]. Recently, Li and Wu [17] provided another classification by the quantity 
�n(β), which is defined as

�n(β) = sup
{
k ≥ 0 : ε∗n+j(1, β) = 0 for all 1 ≤ j ≤ k

}
(2.5)

for all n ≥ 0. Let

A0 =
{
β ∈ (1,+∞) : lim sup

n→∞
�n(β) < ∞, i.e.,

{
�n(β)

}
is bounded

}
and A1 = (1, +∞)\A0. The key function �n(β) states the maximal length of the string of 0’s following 
εn(1, β) in ε(1, β). All β’s such that Sβ is a subshift of finite type are contained in A0, and moreover, β ∈ A0
if and only if Sβ satisfies the specification property. Buzzi [5] proved that the set of β > 1 such that the 
map Tβ has the specification property is of zero Lebesgue measure. It is known that the set A0 has full 
Hausdorff dimension (see [27]) and is dense in (1, ∞) (see [22]).

Definition 2.1. For any w ∈ Σn
β , we call

In(w) =
{
x ∈ [0, 1) : ε1(x) = w1, ε2(x) = w2, . . . , εn(x) = wn

}
,

a cylinder of order n. It is a left-closed and right-open interval. Furthermore, if |In(w)| = β−n, we say In(w)
is full or w is full.

The full cylinder In(w) means that any admissible word can be concatenated following w (see also [9]). 
The following lemma from [17] describing a way to get full cylinders, will be used to prove Lemma 4.1 and 
Lemma 4.2 below.

Lemma 2.1. (See [17].) Let β > 1 be a real number and ε1ε2 · · · εn an admissible word. Denote Mn(β) =
max1≤k≤n{�k(β)}, then for any m > Mn(β), the cylinder

In+m(ε1, ε2, · · · , εn, 0, · · · , 0︸ ︷︷ ︸
m

)

is a full cylinder of order n + m and its length equals β−(n+m).

It is simple to deduce that |In(w)| ≤ β−n for any w ∈ Σn
β , where | · | denotes the length of an interval. 

The following proposition characterizes the sizes of cylinders by the classification in [17].

Proposition 2.2. (See [17].) β ∈ A0 if and only if there exists a constant C such that for all x ∈ [0, 1) and 
n ≥ 1,

Cβ−n ≤
∣∣In(x)

∣∣ ≤ β−n.

Define a projection function πβ from Sβ to [0, 1] as the following:

πβ(w) =
∞∑ wi

βi
where w = (w1, w2, . . . , wi, . . .) ∈ Sβ . (2.6)
i=1
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Then πβ is one-to-one except at the countable many points for which the β-expansions are finite and the 
restriction of πβ to which is two-to-one. It is easy to know that πβ is continuous and πβ ◦ σ = Tβ ◦ πβ .

2.2. Hausdorff dimensions and measures

Let us recall the definitions of both the Hausdorff measures and dimensions, as well as a useful mass 
distribution principle which will be used later. A finite or countable collection of subsets {Ui} of R is called 
a δ-cover of a set E ⊂ R if |Ui| < δ for all i and E ⊂

⋃∞
i=1 Ui. Let E be a subset of R and s ≥ 0. For all 

δ > 0, we define

Hs
δ(E) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of E
}
.

The s-dimensional Hausdorff measure of E is defined as

Hs(E) = lim
δ→0

Hs
δ(E).

We know that there exists a critical point s0 such that Hs(E) = ∞ if s < s0 and Hs(E) = 0 if s > s0. This 
point is called the Hausdorff dimension of E, denoted by dimH E, that is,

dimH E = inf
{
s : Hs(E) = 0

}
= sup

{
s : Hs(E) = ∞

}
.

The following mass distribution principle is usually used to estimate a lower bound for the Hausdorff 
dimension of a set. We refer to Falconer [7] and Mattila [18] for further properties of Hausdorff dimension.

Theorem 2.2 (Mass distribution principle). Let E ⊂ R and μ be a finite measure with μ(E) > 0. Suppose 
that there exist s ≥ 0, C > 0 and δ > 0 such that

μ(U) ≤ C|U |s (2.7)

for all sets U with |U | ≤ δ, where |U | denotes the diameter of the set U . Then

dimH E ≥ s.

Remark 2. In (2.7), we can replace the set U by any ball B(x, r) of radius r centered at x with r which is
sufficiently small.

3. Approximation method for the β-shift

Let 1 < β′ < β. Since Σβ′ ⊂ Σβ , we know that Hβ′

β := πβ(Σβ′) is a Cantor set of πβ(Σβ) = [0, 1). Let 
m ≥ 1 and denote

F β
m =

{
x ∈ [0, 1) : 0m /∈ ε(x, β)

}
,

where 0m /∈ ε(x, β) means that the word 0m does not appear in ε(x, β). Sometimes we use the notations Iβn(x)
and Iβ

′
n (x) to distinguish the cylinders of n containing x w.r.t. β-expansion and β′-expansion respectively.

Remark 3.

x ∈ Hβ′

β ⇐⇒ ε(x, β) ∈ Σβ′ .
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Define the function h : Hβ′

β → [0, 1) as

h(x) = πβ′
(
ε(x, β)

)
.

Theorem 3.1. (1) For any x ∈ Hβ′

β , we have

ε
(
h(x), β′) = ε(x, β).

(2) The function h is bijective and strictly increasing on Hβ′

β .
(3) The function h is continuous on Hβ′

β .
(4) If additionally assume β′ ∈ A0 with M = max{�n(β′) : n ≥ 1}, then h is Hölder continuous on Hβ′

β , 
moreover,

∣∣h(x) − h(y)
∣∣ ≤ 2β′M+1|x− y|

log β′
log β (3.8)

for any x, y ∈ Hβ′

β .
(5) If additionally assume β′ ∈ A0 with M = max{�n(β′) : n ≥ 1} and m > M , then

∣∣h(x) − h(y)
∣∣ ≥ β′ −(m+1)|x− y|

log β′
log β (3.9)

for any x, y ∈ Hβ′

β ∩ F β
m.

Proof. (1) It is clear from the definitions of Hβ′

β and h.
(2) Suppose h(x) = h(y); by (1), we have ε(x, β) = ε(h(x), β′) = ε(h(y), β′) = ε(y, β) which implies 

x = y. That is, h is injective. For any z ∈ [0, 1), take x = πβ(ε(z, β′)) ∈ Hβ′

β . It is easy to check that 
h(x) = z, that is, h is surjective.

For any x < y, we have ε(x, β) ≺ ε(y, β). Thus h(x) < h(y) since πβ′ is strictly increasing on Σβ′ .
(3) Let x ∈ Hβ′

β . We will prove that h is continuous at x, that is,

lim
y→x,

y∈Hβ′
β

h(y) = h(x). (3.10)

If ε(x, β) is infinite, then there exist infinitely many n ∈ N such that y ∈ Iβn (x), that is, ε(y, β)|n = ε(x, β)|n. 
By (1), we have ε(h(y), β′)|n = ε(h(x), β′)|n, that is, h(y) ∈ Iβ

′
n (h(x)), which implies (3.10) holds. If ε(x, β)

is finite, that is, x is the endpoint of some cylinders, note that Hβ′

β is a Cantor set, we know that y cannot
approach x from left. Then y → x means that y tends to x from right. Since the cylinder In(x) is left-closed 
and right-open, we have that y ∈ Iβn (x) for infinitely many n. Thus (3.10) holds similarly with the infinite 
case.

(4) Without loss of generality, we assume x > y since it is similar for the case x < y and (3.8) holds 
trivially if x = y. Let n ≥ 1 be the smallest integer such that εn(x, β) > εn(y, β). We divide the left proof 
to two cases according to εn(x, β) = εn(y, β) + 1 or not.

Case I: εn(x, β) > εn(y, β) + 1. By (1) and 2 ≤ εn(x, β) − εn(y, β) ≤ β′, we have
∣∣h(x) − h(y)

∣∣ =
(
εn(x, β) − εn(y, β)

)
β′ −n +

(
Tn
β′h(x) − Tn

β′h(y)
)
β′ −n ≤

(
β′ + 1

)
β′ −n

and

|x− y| =
(
εn(x, β) − εn(y, β)

)
β−n +

(
Tn
β x− Tn

β y
)
β−n ≥ β−n.
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Therefore,

∣∣h(x) − h(y)
∣∣ ≤ (

β′ + 1
)
|x− y|

log β′
log β .

Case II: εn(x, β) = εn(y, β) + 1. Denote

j = min
{
k ≥ 1 : εn+1(x, β) · · · εn+k(x, β) �= 0k or εn+1(y, β) · · · εn+k(y, β) �= ε

(
1, β′)∣∣

k

}
.

By the definition of j, there is at least one other cylinder, denoted by Iβn+j(w), between Iβn+j(x) and Iβn+j(y). 
Since Iβ

′

n+j+M+1(w0M+1) is full for Σβ′ , we know that the cylinder Iβn+j+M+1(w0M+1) is full for Σβ . It 
implies

|x− y| ≥
∣∣Iβn+j+M+1

(
w0M+1)∣∣ = β−(n+j+M+1).

By (1) and the definition of j, the cylinders Iβ
′

n+j−1(h(y)) and Iβ
′

n+j−1(h(x)) are consecutive in Σn+j−1
β′ . 

Then

∣∣h(x) − h(y)
∣∣ ≤ 2β′ −(n+j−1) ≤ 2β′M+2|x− y|

log β′
log β .

(5) Let n be the smallest integer such that εn(x, β) �= εn(y, β), also that for εn(h(x), β′) �= εn(h(y), β′)
by (1). Then x, y ∈ Iβn−1(x) = Iβn−1(y), and thus

|x− y| ≤ β−(n−1).

We assume, without loss of generality, x > y, which indicates h(x) > h(y) by (2). Since x ∈ F β
m, we know 

that h(x) ∈ F β′
m . So h(x) and h(y) lie on the two sides of the cylinder Iβ

′

n+m(ε(h(x), β′)|n, 0m), which is full 
since m > M . Thus

∣∣h(x) − h(y)
∣∣ ≥ β′ −(n+m) ≥ β′ −(m+1)|x− y|

log β′
log β . �

Corollary 3.

dimH Hβ′

β = log β′

log β .

Proof. On the one hand, by Theorem 3.1(4), we have

1 = dimH h
(
Hβ′

β

)
≤ log β

log β′ dimH Hβ′

β .

Then dimH Hβ′

β ≥ log β′

log β .
On the other hand, by the relationship between Hausdorff dimension and topological entropy in symbolic 

space Sβ , we know that dimH Σβ′ = log β′

log β . Since the projection πβ : Sβ → [0, 1) is Lipschitz, that is, 
|πβ(w) − πβ(w′)| ≤ d(w, w′) for any w, w′ ∈ Sβ , where d(w, w′) = β− inf{k≥0:wk+1 	=w′

k+1}, we have

dimH Hβ′

β = dimH πβ(Σβ′) ≤ dimH Σβ′ = log β′

log β .

That is, dimH Hβ′

β ≤ log β′

log β . �
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Remark 4. (1) From Corollary 3, we know limβ′→β dimH Hβ′

β = 1.
(2) Note that

B :=
{
x ∈ [0, 1) : the orbit of x under Tβ is not dense in [0, 1]

}
=

∞⋃
m=0

F β
m,

in [16], where the authors proved dimH B = 1, then supm≥0 dimH F β
m = 1, that is,

lim
m→∞

dimH F β
m = 1.

The function h induces a method to provide a lower bound of the Hausdorff dimension of a given set 
E ⊂ [0, 1). Firstly, consider a subset E ∩Hβ′

β ⊂ E and use the Hölder function h in Theorem 3.1 to transfer 
it to h(E ∩ Hβ′

β ), whose dimension may be easier to be calculated by choosing β′ ∈ A0 or β′ satisfying 

that Sβ′ is subshift of finite type. Secondly, give a lower bound of dimH h(E ∩Hβ′

β ) and then by the Hölder 
exponent of h (Theorem 3.1(4)) obtain a lower bound of dimH E ∩Hβ′

β , also that of dimH E. That is,

dimH E ≥ dimH E ∩Hβ′

β ≥ log β′

log β dimH h
(
H ∩Hβ′

β

)
.

Finally, let β′ approximate to β.
In the following section, we will apply this approximate method to prove Theorem 1.1 and Theorem 1.2.

4. Proof of Theorem 1.2 and Theorem 1.1

In this section we give a detailed proof for Theorem 1.2 and Theorem 1.1. First, we obtain several lemmas 
for β ∈ A0 and then go on to prove Theorem 1.2 and Theorem 1.1 using the approximation method given 
in last section.

4.1. The case of bases in A0

Let β ∈ A0 and Mβ ≥ max{�n(β) : n ≥ 1}. Denote

WN =
{
0Mβw0Mβ : w ∈ Σ

N−2Mβ

β

}
,

where 2Mβ ≤ N ∈ N and by WN

N the set of sequences u1u2 · · ·un · · · with un ∈ WN . Let m ∈ N and put

F β
N,m =

{
x ∈ [0, 1) : ε(x, β) =

(
0Mβwn0Mβ

)
n≥1 ∈ WN

N , 0m /∈ wn for all n ∈ N
}
.

Lemma 4.1. Let β ∈ A0. For any N > 2Mβ and Mβ < m ≤ N − 2Mβ, we have

dimH
(
F β
N,m

)
≥ sβN,m := 1 − 2Mβ

N
− N − 2Mβ

mN

(
1 − log(β − 1)

log β

)
. (4.11)

Proof. We will show a mass distribution μ supported on F β
N,m and then apply the mass distribution principle.

Firstly, we define the measure μ as a weak limit of a sequence of measures {μk}k≥1 given step by step.

Step I. Define μ1(I1(ε1)) = 1 if ε1 = 0 and otherwise, μ1(I1(ε1)) = 0.
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Step II. Assuming μk−1 is well defined, now we define the measure μk by the following three cases according 
to the position k. Denote the set

P =
{
iN + j, (i + 1)N −Mβ + j : i = 0, 1, 2, . . . , j = 1, 2, . . . ,Mβ

}
.

Case (i). k ∈ P . Define μk(Ik(ε1, . . . , εk−1, εk)) = μk−1(Ik−1(ε1, . . . , εk−1)) if εk = 0 and otherwise, 
μk(Ik(ε1, . . . , εk−1, εk)) = 0.

Case (ii). k = iN + Mβ + j with i = 0, 1, 2, . . . and 1 ≤ j < m. Let

μk

(
Ik(ε1, . . . , εk−1, εk)

)
= |Ik(ε1, . . . , εk−1, εk)|

|Ik−1(ε1, . . . , εk−1)|
μk−1

(
Ik−1(ε1, . . . , εk−1)

)
. (4.12)

Case (iii). k = iN + Mβ + j with i = 0, 1, 2, . . . and m ≤ j ≤ N − 2Mβ . If ε1 · · · εk−1 does not end up with 
0m−1, then μk(Ik(ε1, . . . , εk−1, εk)) is defined by the formula (4.12) and otherwise,

μk

(
Ik(ε1, . . . , εk−1, εk)

)
=

{
0 if εk = 0,

|Ik(ε1,...,εk−1,εk)|
|Ik−1(ε1,...,εk−1)\Ik(ε1,...,εk−1,0)|μk−1(Ik−1(ε1, . . . , εk−1)) if εk �= 0.

Step III. Continuing the procedures in Step II as k → ∞, we obtain a sequence of measures {μk}k≥1
satisfying the condition

μk

(
Ik(ε1, . . . , εk)

)
=

∑
(ε1,...,εk,εk+1)∈Σk+1

β

μk+1
(
Ik+1(ε1, . . . , εk, εk+1)

)

for any (ε1, . . . , εk) ∈ Σk
β and k ≥ 1.

Step IV. Denote by μ a weak limit of the sequence of measures {μk}k≥1.
From the construction of μ, we know that it is supported on F β

N,m.
Secondly, we will prove that the measure μ satisfies the condition (2.7) for any cylinder and any ball.

Step (a). For any 0Mβw0Mβ ∈ WN , we claim that

μ
(
IN

(
0Mβw0Mβ

))
≤

(
β

β − 1

)N−2Mβ
m 1

βN−2Mβ
. (4.13)

In fact, by Step II Case (i), we know μ(IN (0Mβw0Mβ )) = μ(IN−Mβ
(0Mβw)). Let j (0 ≤ j ≤ N−2Mβ

m ) be the 
times that the word 0m−1 appears in w and

w = ε1 · · · εi10m−1εi1+m · · · εij0m−1εij+m · · · εN−2Mβ
.

That is, il (1 ≤ l ≤ j) are just the positions which the word 0m−1 follows. Therefore, combining Step II 
Case (ii) and Case (iii) in the construction, μ(IN−Mβ

(0Mβw)) can be written as, in the following paragraph 
of calculations, we omit the subindex of the orders of the cylinders for simplicity,

|I(0Mβε1 · · · εN−2Mβ
)|

|I(0Mβε1 · · · εN−2Mβ−1)|
· · ·

|I(0Mβε1 · · · εij+m+1)|
|I(0Mβε1 · · · εij0m−1εij+m)|μ

(
I
(
0Mβε1 · · · εij0m−1εij+m

))
=

|I(0Mβε1 · · · εN−2Mβ
)|

|I(0Mβε1 · · · εij0m−1εij+m)|
|I(0Mβε1 · · · εij0m−1εij+m)| · μ(I(0Mβε1 · · · εij0m−1))

|I(0Mβε1 · · · εij0m−1)|\|I(0Mβε1 · · · εij0m−10)|

=
∣∣I(0Mβε1 · · · εN−2Mβ

)∣∣ |I(0Mβε1 · · · εij0m−1)|
−(Mβ+ij+m−1) −(Mβ+ij+m)

μ(I(0Mβε1 · · · εij0m−2))
Mβ m−2 ,
β − β |I(0 ε1 · · · εij0 )|
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where the last equality is from Lemma 2.1 and the definition of the measure μ. Continuing the computation, 
the quantity above is equal to

β

β − 1
|IN−Mβ

(0Mβε1 · · · εN−2Mβ
)|

|IMβ+ij+m−2(0Mβε1 · · · εij0m−2)|μ
(
IMβ+ij+m−2

(
0Mβε1 · · · εij0m−2))

= · · ·

=
(

β

β − 1

)j |IN−Mβ
(0Mβε1 · · · εN−2Mβ

)|
|IMβ

(0Mβ )| μ
(
IMβ

(
0Mβ

))

≤
(

β

β − 1

)N−2Mβ
m 1

βN−2Mβ
,

where the last inequality holds because j ≤ N−2Mβ

m , |IN−Mβ
(0Mβε1 · · · εN−2Mβ

)| ≤ β−(N−Mβ), |IMβ
(0Mβ )| =

β−Mβ and μ(IMβ
(0Mβ )) = 1. Thus (4.13) holds.

Step (b). We will prove that (2.7) holds for any cylinder Ik(ε1, · · · , εk). Without loss of generality, assume 
ε1 · · · εk is the prefix of some word in F β

N,m, otherwise, (2.7) will naturally hold since μ(Ik(ε1, · · · , εk)) = 0. 
Noting that Ik(ε1, · · · , εk) ⊂ Itk(0Mβw10Mβ · · · 0Mβw[ k

N ]0Mβ ), where tk = [ k
N ]N , we know

μ
(
Ik(ε1, · · · , εk)

)
≤ μ

(
Itk

(
0Mβw10Mβ · · · 0Mβw[ k

N ]0Mβ
))

= μ
(
IN

(
0Mβw10Mβ

))
· · ·μ

(
IN

(
0Mβw[ k

N ]0Mβ
))

≤
((

β

β − 1

)N−2Mβ
m 1

βN−2Mβ

)[ k
N ]

≤
(

1
βk

)sβN,m

≤ C−sβN,m

∣∣Ik(ε1, · · · , εk)
∣∣sβN,m ,

where the equality is from the construction of the measure μ, the second inequality is derived from (4.13)
and C is an absolute constant in Proposition 2.2.

Step (c). For any ball B(x, r), there exists k ∈ N such that β−k−1 < r ≤ β−k, then B(x, r) can be covered 
by at most 2C−1 adjoint cylinders at level k by Proposition 2.2. Combining this and Step (b), we know that 
(2.7) holds for any ball.

Finally, the application of the mass distribution principle (Theorem 2.2) implies (4.11). �
Recall

F β
m =

{
x ∈ [0, 1) : 0m /∈ ε(x, β)

}
.

We remark that the set F β
m is related to the dynamical systems with holes (for example, see [1]) and also 

can be written as the following type of badly approximable points

F β
m =

{
x ∈ [0, 1) : Tn

β x ≥ β−m for all n ∈ N
}
.

The general badly approximable set for β = 2 was studied in [19]. Note that F β
N,m ⊂ F β

2m+2Mβ
; letting 

N → ∞ in Lemma 4.1, we obtain the following.

Remark 5. Let β ∈ A0. For any m > 2Mβ , we have

dimH
(
F β
m

)
≥ 1 − 2

(
1 − log(β − 1)

)
.

m− 2Mβ log β
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Lemma 4.2. Let β ∈ A0 and J be a closed interval. Then

dimH
(
Eβ

J ∩ F β
3m

)
≥ sβm := 1 − 1

m

(
1 − log(β − 1)

log β

)

for any m ≥ 2Mβ.

Proof. The idea of the proof will eventually be to construct a function f : F β
N,m → Eβ

J ∩F β
3m such that f−1

is nearly Lipschitz (in particular Hölder for every exponent < 1).
Choose a sequence {an} in J such that {an} is dense in J and |an+1−an| ≤ 1

n+1 and let bn = [en(an+n− 1
2 )], 

where [·] represents the integer part of a real number. For any given N ∈ N with N > m − 2Mβ , we can 
obtain recursively a sequence {cn} of natural numbers such that

bn ≤ N + N

n∑
i=1

ci +
n∑

i=1
(i + Mβ + 1) < bn + N. (4.14)

It is simple to check that such {cn} can be uniquely determined. Denote

dn = N + N
n∑

i=1
ci +

n−1∑
i=1

(i + Mβ + 1).

We will now define the function f on F β
N,m. For any x ∈ F β

N,m with its β-expansion ε(x, β) =
(0Mβwn0Mβ )n≥1, we firstly construct a sequence {ξ∗} from ε(x, β). Write

ξ(0) =
(
ξ
(0)
i

)
= ε1ε2 · · · εN0Mβw10Mβ0Mβw20Mβ · · · 0Mβwn0Mβ · · · ,

where ε1ε2 · · · εN is the prefix of ε(1, β) with length N , that is, ξ(0) is obtained by adding the word ε1ε2 · · · εN
before ε(x, β). We have ξ(0) ∈ Sβ using Lemma 2.1 since ε(x, β) begins with the string of 0’s with length 
Mβ . Denote u1 := ξ(0)|10Mβv1 with v1 �= ξ

(0)
1+Mβ+1. Let

ξ(1) =
(
ξ
(1)
i

)
= ξ(0)∣∣

d1
u10Mβwc1+10Mβ0Mβwc1+20Mβ · · · ,

that is, insert the word u1 between the positions d1 and d1 + 1 of ξ(0). Assuming ξ(k−1) is well defined, we 
obtain ξ(k) according to inserting uk := ξ(k−1)|k0Mβvk with vk �= ξ

(k−1)
k+Mβ+1 between the positions dk and 

dk + 1 of ξ(k−1), that is,

ξ(k) =
(
ξ
(k)
i

)
= ξ(k−1)∣∣

dk
uk0Mβwck+10Mβ0Mβwck+20Mβ · · · .

As this procedure continues, we get a sequence {ξ(k)}k≥1 with ξ(k)|dk
= ξ(k−1)|dk

for all k ≥ 2 and denote 
ξ∗ = (ξ∗i ) as the limit point of the sequence {ξ(k)}. That is,

ξ∗ = ε1 · · · εN0Mβw10Mβ · · · 0Mβwc10Mβu10Mβwc1+10Mβ · · · 0Mβwcn0Mβun0Mβwcn+10Mβ · · · .

According to Theorem 2.1, we know ξ(k) ∈ Σβ and ξ∗ ∈ Sβ . Denote

x∗ = πβ

(
ξ∗
)

= ξ∗1
β

+ ξ∗2
β2 + · · · + ξ∗n

βn
+ · · · .

Then ε(x∗, β) = ξ∗.
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We claim that

dn−Mβ
≤ τβn

(
x∗) ≤ dn for all n > N. (4.15)

Indeed, we have τβn (x∗) ≤ dn since ε(x∗, β) = ξ∗ and

σdn
(
ξ∗
)

= un0Mβwcn+10Mβ · · · = ξ∗
∣∣
n
0Mβvn0Mβwcn+10Mβ · · ·

from the construction of ξ∗ and x∗. All that remains to be proven is τβn (x∗) ≥ dn−Mβ
, since the word ξ∗|n

does not appear in any first dn−Mβ
positions of ξ∗ except the initial position. In fact, from the structure of 

x and the construction of ξ∗, we know that ξ∗|n does not appear in the positions lying in any 0Mβwi0Mβ

(i ≥ 1) since ξ∗|n begins with the first N digits of the β-expansion of the number 1 and the maximal length 
of the string of 0’s in ξ∗|N is less than Mβ . Combining |ui| = i + Mβ + 1 < n for all 1 ≤ i < n −Mβ − 1
and because the last letter of ui is not the same with ξ∗i+Mβ+1, we know that ξ∗|n does not appear in ui

(1 ≤ i < n −Mβ). So (4.15) holds.
We claim that

lim
n→∞

(
log τβn (x∗)

n
− an

)
= 0, (4.16)

which implies

A

(
log τβn (x∗)

n

)
= J (4.17)

since {an} is dense in J . Now we verify the equality (4.16). Indeed, by (4.14), we have

bn ≤ dn + (n + Mβ + 1) < bn + N. (4.18)

Combine (4.18) and (4.15), to obtain

bn−Mβ
− (n + 1) ≤ τβn

(
x∗) ≤ bn + N − (n + Mβ + 1) ≤ bn (4.19)

whenever n > N . Note that because bn = [en(an+n− 1
2 )], we know

lim
n→∞

(
log bn
n

− an

)
= 0 and lim

n→∞

( log(bn−Mβ
− (n + 1))
n

− an

)
= lim

n→∞
(an−Mβ

− an).

By |an+1−an| ≤ 1
n+1 , we have obtained limn→∞(an−Mβ

−an) = 0. Therefore, by (4.19), we find that (4.16)
holds.

Define the function f as f(x) = x∗ for any x ∈ F β
N,m. Combining (4.17) and the structure of ξ∗, we know

f
(
F β
N,m

)
⊂ Eβ

J ∩ F β
3m (4.20)

whenever m ≥ 2Mβ .
We consider f−1 on f(F β

N,m) as f−1(x∗) = x, that is, delete the first N digits and the digits between 
di + 1 and di + i + Mβ + 1 positions for all i ≥ 1. That is, the words ε1 · · · εN and un (n ≥ 1) are removed 
from ξ∗. We claim that f−1 is (1 − η)-Hölder for any η > 0. In fact, for any x∗, y∗ ∈ In(x∗), where n is the 
largest integer such that y∗ ∈ In(x∗) (assume εn+1(x∗, β) > εn+1(y∗, β) without loss of generality), then 
x, y ∈ In′(x) for some n′ from the definition of f−1. By (4.14), we know that dn is of exponential rate and 
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that the total number of deleted digits |un| have a polynomial growth rate, therefore n′ ≥ n(1 − η) can be 
assured when n is large enough. Since x∗ ∈ F β

3m, we have∣∣x∗ − y∗
∣∣

= εn+1(x∗, β) − εn+1(y∗, β)
βn+1 + 1

βn+1

(
εn+2(x∗, β)

β
+ · · ·

)
− 1

βn+1

(
εn+2(y∗, β)

β
+ · · ·

)

≥ 1
βn+1 + 1

βn+1+3m − 1
βn+1 = 1

βn+1+3m .

Note that |x − y| ≤ β−n′ ≤ β−n(1−η), so
∣∣f−1(x∗)− f−1(y∗)∣∣ ≤ (

β1+3m)1−η∣∣x∗ − y∗
∣∣1−η

.

Therefore, dimH(F β
N,m) ≤ 1

1−η dimH f(F β
N,m). Letting η → 0, by (4.20) and Lemma 4.1, we have

dimH
(
Eβ

J ∩ F β
3m

)
≥ sβN,m.

Letting N → ∞, we obtain dimH(Eβ
J ∩ F β

3m) ≥ sβm. �
Corollary 4. If β ∈ A0, then dimH Eβ

J = 1.

Proof. Since Eβ
J ∩ F β

3m ⊂ Eβ
J , Lemma 4.2 implies that Corollary 4 holds by letting m → ∞. �

Remark 6. For the recurrence rate τβr (x) to the ball, we can similarly with Lemma 4.2 prove that

dimH
(
Gβ

J ∩ F β
3m

)
≥ sβm (4.21)

for any β ∈ A0. In fact, we construct the same x∗ as Lemma 4.2; we claim that

In+1
(
x∗) ⊂ B

(
x∗, r

)
⊂ In−3N

(
x∗) (4.22)

for any r > 0 and |In+1(x∗)| < r ≤ |In(x∗)|. So τβn−3N (x∗) ≤ τβr (x∗) ≤ τβn+1(x∗), which implies 
A( log τβ

r (x∗)
− log r ) = J since |In(x∗)| ≈ β−n (change the base e to β in {bn} that is, bn = [βn(an+n− 1

2 )]), 
thus (4.21) holds following the same argument with the proof of Lemma 4.2. Now we prove (4.22), 
indeed, In+1(x∗) ⊂ B(x∗, r) is from |In+1(x∗)| < r. From the β-expansion of x∗, we know that 
0m+2Mβ does not appear and 0Mβ0Mβ does appear in εn−3N+1(x∗, β) · · · εn(x∗, β). Then the full cylinder 
In(ε1(x∗, β), · · · , εn−3N (x∗, β), 03N ) lies on the left side of In(x∗) and its length equals to β−n (≥ |In(x∗)|). 
Similarly, we can find a full cylinder of order n inside In−3N (x∗) lying on the right side of In(x∗). Therefore, 
(4.22) holds.

4.2. General case for any β

Denote

Eβ,β′

J =
{
x ∈ Hβ′

β : A
(
Rβ

n(x)
)

= J
}

and

Gβ,β′

J =
{
x ∈ Hβ′

β ∩ F β
m : A

(
Rβ

r (x)
)

= J
}
.

Recall h : Hβ′
→ [0, 1) defined as h(x) = πβ′(ε(x, β)).
β
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Lemma 4.3. For any given closed interval J , we obtain

h
(
Eβ,β′

J

)
= Eβ′

J .

Proof. By Theorem 3.1(1), we know τβ
′

n (h(x)) = τβn (x) for any x ∈ Hβ′

β and n ∈ N. Thus h(Eβ,β′

J ) ⊂
Eβ′

J . Meanwhile, for any y ∈ Eβ′

J , note that h is bijective, take z = h−1(y) ∈ Hβ′

β . We obtain ε(z, β) =
ε(h(z), β′) = ε(y, β′) by Theorem 3.1(1), thus z ∈ Eβ,β′

J , which implies Eβ′

J ⊂ h(Eβ,β′

J ). �
Finally, we will summarize the proof of Theorem 1.2.

Proof of Theorem 1.2. Let β′ ∈ A0 and β′ ≤ β. According to Lemma 4.3 and Theorem 3.1(4), note that 
Eβ,β′

J ⊂ Eβ
J , then we have

dimH
(
Eβ′

J

)
= dimH

(
h
(
Eβ,β′

J

))
≤ log β

log β′ dimH
(
Eβ,β′

J

)
≤ log β

log β′ dimH
(
Eβ

J

)
.

That is, dimH(Eβ
J ) ≥ log β′

log β dimH(Eβ′

J ). By applying Lemma 4.2 to β′, we obtain

dimH
(
Eβ

J

)
≥ log β′

log β sβ
′

m .

Since A0 is dense in (1, ∞), let β′ → β, and we obtain dimH Eβ
J = 1. �

Lemma 4.4. Let β′ ∈ A0. For any given closed interval J and m ∈ N. We have

h
(
Gβ,β′

J

)
= Gβ′

J ′ ∩ F β′

m ,

where J ′ = log β
log β′ J .

Proof. Applying Theorem 3.1(4) and (5) to any x ∈ Hβ′

β and T k
β x, and noting that h(T k

β x) = T k
β′h(x), we 

have

β′ −(m+1)∣∣x− T k
β x

∣∣ log β′
log β ≤

∣∣h(x) − T k
β′h(x)

∣∣ ≤ 2β′M+1∣∣x− T k
β x

∣∣ log β′
log β .

Thus

τβ
′

c1(r)
(
h(x)

)
≤ τβr (x) and τβc2(r)(x) ≤ τβ

′

r

(
h(x)

)
,

where c1(r) = 2β′M+1r
log β′
log β and c2(r) = β′ (m+1)r

log β
log β′ . Therefore,

Rβ′(
h(x)

)
= log β

log β′R
β(x) and Rβ′(

h(x)
)

= log β
log β′R

β(x). (4.23)

Noting that h(F β
m) = F β′

m by Theorem 3.1(1), together with (4.23), we obtain h(Gβ,β′

J ) = Gβ′

J ′ ∩ F β′
m . �

Proof of Theorem 1.1. By Lemma 4.4, we have

dimH Gβ′

J ′ ∩ F β′

m = dimH h
(
Gβ,β′

J

)
≤ log β

′ dimH Gβ,β′

J ≤ log β
′ dimH Gβ

J ,
log β log β
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where the first inequality is from Theorem 3.1(4) and the second inequality is because Gβ,β′

J ⊂ Gβ
J . Applying

(4.21) to β′, we get

dimH Gβ′

J ′ ∩ F β′

3m ≥ sβ
′

m .

Thus

dimH Gβ
J ≥ log β′

log β sβ
′

m .

By letting m → ∞, we obtain

dimH Gβ
J ≥ log β′

log β .

Let β′ → β, and we obtain dimH Gβ
J = 1. �
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