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TREE-SHIFTS: IRREDUCIBILITY, MIXING, AND THE

CHAOS OF TREE-SHIFTS

JUNG-CHAO BAN AND CHIH-HUNG CHANG

Abstract. Topological behavior, such as chaos, irreducibility, and mix-
ing of a one-sided shift of finite type, is well elucidated. Meanwhile, the
investigation of multidimensional shifts, for instance, textile systems is
difficult and only a few results have been obtained so far.

This paper studies shifts defined on infinite trees, which are called
tree-shifts. Infinite trees have a natural structure of one-sided symbolic
dynamical systems equipped with multiple shift maps and constitute
an intermediate class in between one-sided shifts and multidimensional
shifts. We have shown not only an irreducible tree-shift of finite type,
but also a mixing tree-shift that are chaotic in the sense of Devaney.
Furthermore, the graph and labeled graph representations of tree-shifts
are revealed so that the verification of irreducibility and mixing of a
tree-shift is equivalent to determining the irreducibility and mixing of
matrices, respectively. This extends the classical results of one-sided
symbolic dynamics.

A necessary and sufficient condition for the irreducibility and mixing
of tree-shifts of finite type is demonstrated. Most important of all, the
examination can be done in finite steps with an upper bound.

1. Introduction

Over the past few decades, there have been many researches about chaotic

systems. For instance, the strange attractor in the Lorenz system, period

doubling in quadratic maps, and Julia sets in complex-valued functions have

been studied by scientists in many disciplines. The main reasoning is that

the chaotic and random behavior of solutions of deterministic systems is an

inherent feature of many nonlinear systems.

Nevertheless, for most systems, the theoretical analysis of the chaotic be-

havior is difficult. One of the most frequently used techniques is transferring
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the original system to a conjugate or semiconjugate symbolic dynamical sys-

tem and then investigating the chaotic behavior in symbolic dynamics (see

[7] and the references therein).

In the classical symbolic dynamical systems, shifts of finite type are an

important class for investigation. A shift of finite type is a set of right-infinite

or bi-infinite paths in a finite graph. Moreover, investigating the graph

representation of a shift of finite type reveals some important properties

such as irreducibility, mixing, and spatial chaos (see [10, 12]).

In [1, 2], the authors introduce the notion of shifts defined on infinite

trees, that are called tree-shifts. Infinite trees have a natural structure of

one-sided symbolic dynamical systems equipped with multiple shift maps.

The ith shift map applies to a tree that gives the subtree rooted at the

ith children of the tree. Sets of finite patterns of tree-shifts of finite type

are strictly testable tree languages. Such testable tree languages are also

called k-testable tree languages. Probabilistic k-testable models are used

for pattern classification and stochastic learning. Readers are referred to

[15] for more details. It is also remarkable that Müller and Spandl show

that there exists an embedding map from a topological dynamical system

on metric Cantor space to a cellular automaton defined on Cayley graph,

which preserves topological entropy [14].

Tree-shifts are interesting for elucidation since they constitute an inter-

mediate class in between one-sided shifts and multidimensional shifts. The

conjugacy of multidimensional shifts of finite type (also known as textile sys-

tems or tiling systems) is undecidable (see [6, 9, 13] and references therein).

Namely, there is no algorithm for determining whether two tiling systems

are conjugate Nevertheless, Williams indicates that the conjugacy of one-

sided shifts of finite type is decidable (see [12]). Aubrun and Béal extend

Williams’ result to tree-shifts; more precisely, they show that the conjugacy

of irreducible tree-shifts of finite type is decidable [1]. Furthermore, Aubrun

and Béal accomplish other celebrated results in tree-shifts, such as realizing

tree-shifts of finite type and sofic tree-shifts via tree automata, developing

an algorithm for determining whether a sofic tree-shift is a tree-shift of finite

type, and the existence of irreducible sofic tree-shifts that are not the factors

of tree-shifts of finite type. Readers are referred to [1, 2] for more details.

This paper is the first part of serial works about tree-shifts. In this in-

vestigation, we focus on the topological complexity of tree-shifts such as ir-

reducibility, mixing, dense periodic points, and topological transitivity. By



TREE-SHIFTS: IRREDUCIBILITY, MIXING, AND THE CHAOS OF TREE-SHIFTS 3

elaborating on the topological behavior which a tree-shift is capable of, we

intend to reveal the connection between tree-shifts and nonlinear dynamical

systems.

Investigating the irreducible components of dynamical systems is essen-

tial. It is known that every shift space can be decomposed into several

irreducible subshift spaces, and the dynamical behavior of the whole system

is determined by the dynamical behavior of these irreducible subsystems.

For instance, suppose X is a shift of finite type which consists of several

irreducible subshifts of finite type, say, X1,X2, . . . ,Xn for some n. Then

the topological entropy of X is the maximum of entropies of these subshifts.

More explicitly, h(X) = maxi{h(Xi)}. Readers are referred to [10, 12] for

more details.

It is known that the full shift is chaotic in the sense of Devaney [7]. In

other words, the full shift is topologically transitive, sensitive, and contains

a set of periodic points which is dense in itself. In this paper, we investigate

some topological behavior, such as chaos, irreducibility, and mixing, of tree-

shifts. By demonstrating an equivalent condition for the irreducibility of a

tree-shift, which is defined in [1, 2], we extend Aubrun and Béal’s definition

to define the notion of mixing. Moreover, the graph representations and

labeled graph representations of tree-shifts of finite type are revealed. It fol-

lows that elaborating the properties of tree-shifts of finite type is equivalent

to studying their corresponding adjacency matrices and symbolic adjacency

matrices, which extends the results of one-sided symbolic dynamics. Most

important of all, the verification of irreducibility and mixing can be done in

finite steps with an upper bound.

We show that a mixing tree-shift is chaotic. Furthermore, an irreducible

tree-shift of finite type is also a chaotic system. Notably, mixing is a sufficient

condition for tree-shifts being chaotic, and no further condition is needed.

Whenever presumption mixing is replaced by irreducible, the tree-shift has

to be of finite type to ensure the chaos. This extends the classical results in

symbolic dynamics.

Remarkably, determining whether a multidimensional system is chaotic is

difficult. Boyle et al. [5] show that, for a two dimensional tiling system, block

gluing is a sufficient condition for exhibiting dense periodic points, which

is one of the conditions for Devaney chaos. Herein, a higher dimensional

shift space is called block gluing if there is a constant κ such that any two

patterns with distance larger than κ can be embedded into a bigger pattern.
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Meanwhile, the sufficient condition for the denseness of periodic points in

a multidimensional system remains unknown. Furthermore, Ban et al. [4]

introduce two sufficient conditions for the primitivity of two-dimensional

shifts of finite type. In this work, we demonstrate that mixing is a sufficient

condition for a tree-shift (which may or may not be a tree-shift of finite

type) to be chaotic in the sense of Devaney.

While the theory of one-dimensional symbolic dynamics is well-established,

the results of multidimensional shift spaces are relatively fewer. This work

elaborates tree-shifts, which constitute an intermediate category between

one-sided shifts and multidimensional shifts, and characterizes the topolog-

ical properties of tree-shifts systematically. Aside from accomplishing the

chaos, irreducibility, and mixing of a tree-shift, we extend the theory of

symbolic dynamics as follows:

1) Suppose X is a tree-shift and X[m] is the mth higher block tree-shift of

X (see Definition 2.3). Then X and X[m] are topological conjugate for

all m ∈ N.
2) Every tree-shift of finite type is conjugate to a vertex tree-shift (see

Definition 4.1), and every vertex tree-shift is a Markov tree-shift.

3) Every tree-shift of finite type X has a labeled graph representation to-

gether with a symbolic adjacency matrix S. X is irreducible (resp. mix-

ing) if and only if S is irreducible (resp. primitive). (See Definitions 4.11

and 4.15.)

4) An n × n symbolic matrix S is irreducible if and only if, for each i, j,

there exists a positive integer ki,j ≤ n2n−1 such that Ski,j(i, j) contains
the formal sum of a complete prefix set. S is primitive if and only

if there exists a positive integer k ≤ n322(n−1) such that, for each i, j,

Sk(i, j) contains the formal sum of a complete prefix set.

The rest of this paper is organized as follows. Section 2 defines some

notions, such as irreducibility, mixing, and periodicity, of tree-shifts. Each

tree-shift of finite type being conjugate to a Markov tree-shift is also revealed

therein. Section 3 investigates the chaos of tree-shifts. The graph and

labeled graph representations of tree-shifts of finite are elucidated in Section

4. Beyond that, the necessary and sufficient conditions for irreducibility

and mixing are also demonstrated. Section 5 ends this paper with some

concluding remarks.
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2. Definitions

This section recalls some basic definitions of symbolic dynamics on infinite

trees. The nodes of infinite trees considered in this paper have a fixed

number of children and are labeled in a finite alphabet. To clarify the

discussion, we focus on binary trees, but all results extend to the case of

trees with d children for a fixed positive integer d. Hence the class of classical

one-sided shift spaces is a special case in the present study.

Let Σ = {0,1} and let Σ∗ be the set of words over Σ. More specifically,

Σ∗ = ⋃n≥0Σ
n, where Σn = {w1w2⋯wn ∶ wi ∈ Σ for 1 ≤ i ≤ n} is the set of

words of length n for n ∈ N and Σ0 = {ǫ} consists of the empty word ǫ. An

infinite tree t over a finite alphabet A is a function from Σ∗ to A. A node of

an infinite tree is a word of Σ∗. The empty word relates to the root of the

tree. Suppose x is a node of a tree. x has children xi with i ∈ Σ. A sequence

of words (xk)1≤k≤n is called a path if, for all k ≤ n − 1, xk+1 = xkik for some

ik ∈ Σ. For the rest of this investigation, a tree is referred as an infinite tree

unless otherwise stated.

Let t be a tree and let x be a node, we refer tx to t(x) for simplicity. A

subset of words L ⊂ Σ∗ is called prefix-closed if each prefix of L belongs to

L. A function u defined on a finite prefix-closed subset L with codomain A
is called a pattern (or block), and L is called the support of the pattern. A

subtree of a tree t rooted at a node x is the tree t′ satisfying t′y = txy for

all y ∈ Σ∗ such that xy is a node of t, where xy = x1⋯xmy1⋯yn means the

concatenation of x = x1⋯xm and y1⋯yn.
Suppose n is a nonnegative integer. Let Σn = ⋃n

k=0Σ
k denote the set of

words of length at most n. We say that a pattern u is a block of height

n (or an n-block) if the support of u is Σn−1, denoted by height(u) = n.
Furthermore, u is a pattern of a tree t if there exists x ∈ Σ∗ such that

uy = txy for every node y of u. In this case, we say that u is a pattern of t

rooted at the node x. A tree t is said to avoid u if u is not a pattern of t.

If u is a pattern of t, then u is called an allowed pattern of t.

We denote by T (or AΣ∗) the set of all infinite trees on A. For i ∈ Σ, the
shift transformations σi from T to itself are defined as follows. For every

tree t ∈ T , σi(t) is the tree rooted at the ith child of t, that is, σi(t)x = tix
for all x ∈ Σ∗. For the purpose of simplification of the notation, we omit

the parentheses and denote σi(t) by σit. The set T equipped with the

shift transformations σi is called the full tree-shift of infinite trees over A.



6 JUNG-CHAO BAN AND CHIH-HUNG CHANG

1

1

1

01

0

11

0

1

10

1

01

Figure 1. A part of an infinite tree of the tree-shift XF ,
where F is the set of blocks of height 2 whose label sum is
odd.

Suppose w = w1⋯wn ∈ Σ∗. Define σw = σwn ○ σwn−1 ○ ⋯ ○ σw1
. It follows

immediately that (σwt)x = twx for all x ∈ Σ∗.
Given a collection of patterns F , let XF denote the set of all trees avoiding

any element of F . A subset X ⊆ T is called a tree-shift if X = XF for some

F . We say that F is a set of forbidden patterns (or a forbidden set) of X.

It can be seen that a tree-shift satisfies σwX ⊆X for all w ∈ Σ∗.
Denote the set of all blocks of height n of X by Bn(X), and denote the

set of all blocks of X by B(X). Suppose u ∈ Bn(X) for some n ≥ 2. Let σiu
be the block of height n − 1 such that (σiu)x = uix for x ∈ Σn−2. The block

u is written as u = (uǫ, σ0u,σ1u).
A set of patterns L is called factorial if u ∈ L and v is a sub-pattern of

u implies v ∈ L. We say that v is a sub-pattern of u if v is a subtree of u

rooted at some node x of u. The set L is called extensible if for any pattern

u ∈ L with support S(u), there exists a pattern v ∈ L with support S(v)
such that S(u) ⊂ S(v), v coincides with u on S(u), and for any x ∈ S(u),
we have xi ∈ S(v) for all i ∈ Σ.

Suppose L is a factorial and extensible set of patterns. Let X (L) be the

collection of trees whose patterns belong to L. Then X (L) is a tree-shift and

B(X (L)) = L. Conversely, if X is a tree-shift, then X = X (B(X)). This

result is similar to the one known for the classical shift spaces. Readers are

referred to [2, 12] for more details.

Example 2.1. Figure 1 illustrates an infinite tree of a tree-shift XF on the

alphabet A = {0,1} defined by a finite set F of forbidden blocks of height 2.

The forbidden blocks are those whose label sum is odd; more precisely,

F = {(uǫ, u0, u1) ∶ uǫ + u0 + u1 = 1 (mod 2)}.
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Suppose x is a node, that is, x ∈ Σ∗. Denote by ∣x∣ the length of x. For

any two trees t and t′, define

(1) d(t, t′) = { 2−n, n =min{∣x∣ ∶ tx ≠ t′x} < ∞;
0, otherwise.

Then d is a metric on T and is similar as the metric defined on symbolic

dynamics (cf. [12]).

Let T and T ′ be the full tree-shifts over finite alphabets A and A′, respec-

tively, and let X be a tree-subshift of T . (That is, X is itself a tree-shift and

X ⊆ T .) A function φ ∶ X → T ′ is called a sliding block code if there exists a

positive integer m and a map Φ ∶ Bm(X) → A′ such that φ(t)x = Φ(u), the
image of m-block of t rooted at x with respect to Φ, for all x ∈ Σ∗. The local
map Φ herein is called an m-block map, and a block map is a map which is

an m-block map for some positive integer m.

In the theory of symbolic dynamics, the Curtis-Lyndon-Hedlund theorem

(see [8]) indicates that, for two shift spaces X and Y , a map φ ∶ X → Y is

a sliding block code if and only if φ is continuous and φ ○ σx = σY ○ φ. A

similar discussion extends to tree-shifts; in other words, φ is a sliding block

code (between tree-shifts) if and only if φ is continuous and commutes with

all tree-shift maps σi for i ∈ Σ.
If a sliding block code φ ∶ X → Y , herein X and Y are tree-shifts, is onto,

then φ is called a factor code from X to Y . A tree-shift Y is a factor of X

if there is a factor code from X onto Y . If φ is one-to-one, then φ is called

an embedding of X into Y .

A sliding block code ψ ∶ Y → X is called an inverse of φ if ψ(φ(x)) = x
for all x ∈ X and φ(ψ(y)) = y for all y ∈ Y . In this case, we say that φ is

invertible and write ψ = φ−1.
Definition 2.2. A sliding block code φ ∶ X → Y is a conjugacy from X to

Y if it is invertible. Two tree-shifts X and Y are called conjugate, denoted

by X ≅ Y , if there is a conjugacy from X to Y .

Let X be a tree-shift and let m be a positive integer. We define the mth

higher block tree-shift (or mth higher block presentation) of X, denote by

X[m], as follows. Let A′ = Bm(X) be the collection of all allowed m-blocks

in X. Define the mth higher block code φm ∶X → (A′)Σ∗ by

(2) φm(t)x = u,
where u is the m-block in t rooted at x.
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Definition 2.3. For m ∈ N, the mth higher block tree-shift X[m] of a tree-

shift X is the image X[m] = φm(X) in the full tree-shift (A′)Σ∗ .
Notably, φm comes from an m-block map and hence is a sliding block

code. Let ψ ∶ X[m] → X be the sliding block code obtained from the one-

block map Ψ ∶ A′ →A defined as

Ψ(u) = uǫ,
where u ∈ Bm(X) is an m-block. It is then seen that φm is invertible with

inverse ψ. This demonstrates the following theorem, which is an extension

of a classical result in symbolic dynamics.

Theorem 2.4. Tree-shifts X and X[m] are conjugate for all m ∈ N.
Example 2.5. Let X be the tree-shift discussed in Example 2.1. Relabeling

B2(X) as A′ = {0,1,2,3}, where 0,1,2,3 is

0

00

0

11

1

10

1

01

respectively. Theorem 2.4 infers that X is conjugate to the tree-shift X ′ =
φ2(X) over A′. Suppose t ∈ X is an infinite tree with the pattern in Figure

1 rooting at ǫ. Then the subtree φ2(t)∣Σ3
of φ2(t) is

2

2

31

1

23

A tree-shift X = XF is called a tree-shift of finite type (TSFT) if the

forbidden set F is finite. Suppose X is a TSFT with forbidden set F . It

follows immediately from Theorem 2.4 that, without loss of generality, we

may assume that u is a 2-block for each u ∈ F . A TSFT whose forbidden

set consists of 2-blocks is called a Markov tree-shift. Readers are referred to

[1] for more details.

3. Chaotic Tree-shifts

This section defines the notion of chaos which is suitable for tree-shifts

and investigates whether a given tree-shift is chaotic. There are several

definitions for chaos, such as Devaney chaos (see [7]) and Li-Yorke chaos (see

[11]) for instance, in dynamical systems. In this elucidation, we elucidate the
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chaotic tree-shifts in the sense of Devaney. We recall Devaney’s definition

of chaos first.

Let V be a metric space with metric d. T ∶ V → V is said to be topolog-

ically transitive if for any pairs of open sets U1,U2 ⊂ V there exists k > 0

such that T kU1 ∩U2 ≠ ∅.
Let x ∈ V . We call x a periodic point for T if there exists k > 0 such that

T kx = x; in this case, {x,Tx, . . . , T k−1x} is called a periodic orbit.

If there exists δ > 0 such that, for any x ∈ V and any neighborhood U of

x, there exists y ∈ U and n ∈ N such that d(T nx,T ny) > δ, then we say that

T has sensitive dependence on initial conditions.

These three notions are the basic ingredients of a chaotic system.

Definition 3.1. A dynamical system T is chaotic if:

(a) Periodic points for T are dense in V .

(b) T is topologically transitive.

(c) T depends sensitively on initial conditions.

3.1. Irreducible Tree-Shifts. This subsection defines the notions of irre-

ducibility and mixing for tree-shifts. The definitions addressed below are

strong. However, these definitions are natural in the way that they extend

the theory of shift spaces to tree-shifts.

Let P ⊂ Σ∗ be a subset of words. P is called a prefix set if no word in P

is a prefix of another one. The length of P , denoted by ∣P ∣, is the longest

word in P . More specifically,

∣P ∣ = { max{∣x∣ ∶ x ∈ P}, P is a finite set;∞, otherwise.

A finite prefix set P is called a complete prefix set (CPS) if any x ∈ Σ∗, such

that ∣x∣ ≥ ∣P ∣, has a prefix in P .

Definition 3.2. A tree-shift X is irreducible if for each pair of blocks u, v

with u, v ∈ Bn(X), there is a tree t ∈X and a complete prefix set P ⊂ ⋃k≥nΣ
k

such that u is a subtree of t rooted at ǫ and v is a subtree of t rooted at x

for all x ∈ P .

The definition of irreducible tree-shifts is given in [2]. It is demonstrated

therein that, for any two conjugate tree-shifts X and Y , X is irreducible if

and only if Y is irreducible.
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Suppose W ⊂ Σ∗ is a subset of finite words and x ∈ Σ∗. We define the

concatenation of x and W , denoted by xW , as

xW = {xw ∶ w ∈W}.
Let t be a tree in the tree-shift X and let u be a subtree of t rooted at x for

some x ∈ Σ∗. For the clarification of discussion, the notation t∣xS(u) means

the block u.

Theorem 3.3. Suppose X is a tree-shift. The following are equivalent.

(i) X is irreducible.

(ii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X), where n,m ∈ N, there
exists {Pw}w∈Σn−1 with Pw being a CPS for any w ∈ Σn−1 and t ∈ X

such that

t∣S(u) = u and t∣wxS(v) = v for all w ∈ Σn−1, x ∈ Pw.

(iii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X), where n,m ∈ N, there
exists {Pk}1≤k≤l for some l with Pk being a CPS for 1 ≤ k ≤ l and t ∈ X

such that t∣S(u) = u and, for each w ∈ Σn−1,

t∣wxS(v) = v for all x ∈ Pk for some k.

Proof. It suffices to show that (i) is equivalent to (ii) since (ii) being a

necessary and sufficient condition for (iii) can be verified in a straightforward

manner.

Suppose X is irreducible. For each pair of blocks u ∈ Bn(X), v ∈ Bm(X)
with n,m being positive integers, a straightforward examination indicates

that there is a tree t ∈X and a complete prefix set P ⊂ ⋃k≥nΣ
k such that

t∣S(u) = u and t∣xS(v) = v for all x ∈ P

whether n =m or not. For each w ∈ Σn−1, set

Pw = {w′ ∶ ww′ ∈ P}.
Note that Pw ≠ ∅ for any w ∈ Σn−1 since P is a CPS. Furthermore, ⋃w∈Σn−1 Pw =

P . It remains to show that Pw is a CPS for each w.

Suppose Pw is not a CPS for some w ∈ Σn−1. Without loss of generality,

we may assume that ∣Pw ∣ +n > ∣P ∣. Then there exists α = α1 . . . αl such that

α1 . . . αk ∉ Pw for 1 ≤ k ≤ l and l > ∣Pw ∣. This implies that wα does not have

a prefix in P , which contradicts to the presumption that P is a CPS.

Conversely, suppose {Pw}w∈Σn−1 is a collection of CPS for a given pair

of n-blocks u and v. Let P = ⋃w∈Σn−1 Pw. It suffices to show that P is
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a CPS. The demonstration can be performed via the analogous argument

given above. Hence X is an irreducible tree-shift.

This completes the proof. �

We remark that Theorem 3.3 not only clarifies the intuition of the notion

of irreducible tree-shifts but indicates the height of blocks u and v in Def-

inition 3.2 need not be the same. Moreover, Theorem 3.3 can be used to

define the notion of mixing tree-shifts.

Definition 3.4. A tree-shift X is mixing if there exist two CPS P0 and P1

such that, for each pair of blocks u, v ∈ B(X), there is a tree t ∈ X satisfying

t∣S(u) = u and t∣wxS(v) = v for all x ∈ Pwn−1 ,

where n = ∣u∣ and w = w1 . . . wn−1 ∈ Σ
n−1.

Remark 3.5. It follows immediately that a mixing tree-shift is itself irre-

ducible.

3.2. Chaotic Tree-Shifts in the Sense of Devaney. This subsection

defines the notion of periodic points of tree-shifts. Note that, instead of

only one shift map for a shift space, there are two shift maps, say σ0 and

σ1, for tree-shifts. After defining periodic trees, we then reveal whether a

tree-shift is chaotic in the sense of Devaney.

Definition 3.6. Let X be a tree-shift. An infinite tree t ∈ X is periodic if

there is a CPS P such that σxt = t for all x ∈ P , where σx = σxk
○σxk−1

○. . .○σx1

for x = x1 . . . xk.

Theorem 3.7. Suppose a tree-shift of finite type X is irreducible. Then the

periodic points of X are dense in X.

Proof. To demonstrate that the periodic points are dense in X, it suffices

to show that for any t ∈ X and n ∈ N, there is a tree t′ ∈ X which is periodic

and t′∣Σn−1 = t∣Σn−1 , where Σm = ⋃m
k=0Σ

k is the collection of words whose

length are at most m.

Suppose t ∈ X and n ∈ N are given. We construct a periodic tree t′ as

follows.

Let u = t∣Σn−1 be the n-block of t rooted at ǫ. Since X is irreducible,

without loss of generality, we may assume that there exist two CPS P0, P1

and a tree t1 ∈ X such that

t1∣S(u) = u and t1∣ww′S(u) = u for all w ∈ Σn−1,w
′
∈ Pwn−1 .
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Set

L = Σn−1⋃( ⋃
w∈Σn−2

w0P0S(u))⋃( ⋃
w∈Σn−2

w1P1S(u))
⋃( ⋃

w∈Σn−2

w0P c
0 )⋃( ⋃

w∈Σn−2

w1P c
1 )

and v = t1∣L, where P c
i = Σ∣Pi∣ ∖ Pi for i = 0,1. Notably, v is a subtree of t1

but not necessary a block. Without loss of generality, we may assume that

n ≥ ∣F ∣, where F is the forbidden set of X. It comes from X being a TSFT

that there exists t2 ∈ X such that

t2∣S(v) = v and (σww′t
2)∣S(v) = v for all w ∈ Σn−1,w

′
∈ Pwn−1 .

More precisely, it is seen that σww′v = u for all w ∈ Σn−1,w
′ ∈ Pwn−1 . X being

a TSFT with ∣F ∣ ≤ n infers that the concatenation of σww′v and v which

overlaps the top n-block is allowed in B(X).
Analogous to the construction of t2, we construct infinite trees t3, t4, . . .

in X which satisfies

tk∣S(v) = v and (σ(ww′)it
k)∣S(v) = v

for all w ∈ Σn−1,w
′ ∈ Pwn−1 , k ≥ 2, and i ≤ k − 1. Let t′ = limk→∞ t

k and

P = ⋃w∈Σn−1 wPwn−1 . It can be verified that P is a CPS and σxt
′ = t′ for all

x ∈ P . In other words, t′ is a periodic tree in X.

This completes the proof. �

Theorem 3.8 shows that, beyond Theorem 3.7, any mixing tree-shift con-

tains dense periodic trees.

Theorem 3.8. Suppose X is a mixing tree-shift. Then the periodic points

of X are dense in X.

Proof. The demonstration is similar to the discussion of Theorem 3.7. Hence

we only address the main difference in the construction of periodic trees.

Suppose t ∈ X and n ∈ N are given. Since X is mixing, there exists two

CPS P0, P1 that connect any two blocks in X. We construct a periodic tree

t′ as follows.

Let u = t∣Σn−1 be the n-block of t rooted at ǫ and let t1 be the same one

constructed in the proof of Theorem 3.7. Set n1 = max{∣P0∣, ∣P1∣} + 2n − 1
and let v1 = t

1∣Σn1−1
be the n1-block of t1 rooted at ǫ.

Suppose tk is constructed. Let nk = kmax{∣P0∣, ∣P1∣} + 2n − 1 and let

vk = t
k ∣Σnk−1

be the nk-block of tk rooted at ǫ. It follows from X being
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mixing that there exists tk+1 ∈ X such that

tk ∣S(vk) = vk and tk ∣ww′S(u) = u for all w ∈ Σnk−1,w
′
∈ Pwnk−1

.

Let t′ = limk→∞ t
k. It is seen without difficulty that t′ is a periodic tree.

This derives the desired result. �

Theorem 3.9. If X is an irreducible tree-shift, then X is topologically tran-

sitive.

Proof. It suffices to show that X contains a dense orbit.

Let B(X) be an ordered set with lexicographic order. Since X is irre-

ducible, we can construct trees t1, t2, . . . , tk, . . . in X such that ui is a subtree

of tk for 1 ≤ i ≤ k. Let t = limk→∞ t
k. Then t forms a dense orbit.

This completes the proof. �

A straightforward examination elaborates that every tree-shift is expand-

ing; in other words, any tree-shift depends sensitively on initial conditions.

Combining this observation with Theorems 3.7, 3.8, and 3.9, we obtain the

following corollary.

Corollary 3.10. Suppose X is a tree-shift.

(a) If X is an irreducible TSFT, then X is chaotic.

(b) If X is mixing, then X is chaotic.

4. Graph Representations of Tree-Shifts of Finite Type

In this section, we define the graph and matrix representations of a tree-

shift of finite type. The elucidation extends the concept of graph and matrix

representation of shifts of finite type in classical symbolic dynamics. Fur-

thermore, the concept of graph representations of tree-shifts of finite type

motivates possible directions for future research.

A tree-shift of finite type X is a k-height tree-shift of finite type if its

forbidden set consists of (k + 1)-blocks. Recall that a one-height TSFT

is called a Markov tree-shift. Theorem 2.4 suggests that, without loss of

generality, we may assume every TSFT X is a Markov tree-shift.

A graph G consists of a finite set V of vertices (or states) together with a

finite set E of edges. Each edge e ∈ E starts at a vertex denoted by i(e) ∈ V
and terminates at a vertex denoted by t(e) ∈ V. Equivalently, the edge e has
an initial state i(e) and a terminal state t(e). An alternative expression of

the edge e is e = (a, b), where a ∈ V is the initial state of e and b ∈ V is the

terminal state.
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A graph is called essential if there is no stranded vertex. More precisely,

each vertex in an essential graph is an initial state of one edge and is a

terminal state of another edge.

The adjacency matrix A of graph G is defined as A = (A(I, J)), where
I, J ∈ V are the vertices in G and A(I, J) denotes the number of edges in

G with initial state I and terminal state J . Without loss of generality, we

assume that there is at most one edge with initial state I and terminal state

J for all I, J . Suppose G0 and G1 are two graphs. The disjoint union of

G0 and G1, denoted by G = G0⊔G1, is the graph consisting of vertex set

V(G) = V(G0)⋃V(G1) together with edge set E(G) = E(G0)⋃ E(G1). In

other words, G consists of two separate graphs.

Definition 4.1. Let G = G0⊔G1 be the disjoint union of graphs G0 and G1,

and let A0 and A1 be the adjacency matrix of G0 and G1, respectively. The

vertex tree-shift XG is the tree-shift over the alphabet A = {0,1, . . . ,m − 1},
wherem =max{∣V(G0)∣, ∣V(G1)∣} and Ai is indexed by {0,1, . . . , ∣V(Gi)∣−1}
for i = 0,1, specified by

(3) XG = {t ∈ AΣ∗ ∶ A0(tx, tx0) = 1 and A1(tx, tx1) = 1 for all x ∈ Σ∗}.
The shift maps on XG are σ0 and σ1 as defined in Section 2.

The following proposition comes immediately from Theorem 2.4 and Def-

inition 4.1. Hence the proof is omitted.

Proposition 4.2. Every vertex tree-shift is a Markov tree-shift. Conversely,

every tree-shift of finite type is conjugate to a vertex tree-shift.

For the rest of this paper, a tree-shift of finite type is referred as a vertex

tree-shift with essential graph representation unless otherwise stated. Sup-

pose x = x1x2 . . . xl ∈ Σ
∗. Define Ax = Axl

Axl−1
⋯Ax1

as the product of A0

and A1; increase the size of matrix if necessary. A necessary and sufficient

condition for tree-shift X being irreducible then follows.

Theorem 4.3. Suppose X is a TSFT with graph representation G =G0⊔G1

and adjacency matrices A0 and A1.

(a) If X is irreducible, then A0 and A1 are both of the same size and irre-

ducible. In other words, ∣V(G0)∣ = ∣V(G1)∣.
(b) X is irreducible if and only if for each pair i, j ∈ A there exists a CPS

P such that Ax(i, j) > 0 for all x ∈ P .

(c) X is mixing if and only if there exists a CPS P such that Ax(i, j) > 0
for all x ∈ P and i, j ∈ A.



TREE-SHIFTS: IRREDUCIBILITY, MIXING, AND THE CHAOS OF TREE-SHIFTS 15

Proof. (a) Without loss of generality, we assume that A0 is an m×m matrix

and A1 is a (m+1)×(m+1) matrix. Consider two one-blocks 0 and m, it is

easily seen that there is no tree t ∈ X and k ∈ N such that tǫ = 0 and t0k =m.

In other words, there exists no CPS P and tree t such that tǫ = 0 and tx =m

for all x ∈ P . This contradicts the presumption that X is irreducible.

Similar argument demonstrates that X is not irreducible if either A0 or

A1 is not irreducible.

(b) To see that X is irreducible if and only if for each pair i, j ∈ A there

exists a CPS P such that Ax(i, j) > 0 for all x ∈ P , it suffices to show the

“if” part.

Given a pair u, v ∈ B(X), for any w ∈ Σ∣u∣−1, there exists a CPS Pw such

that Ax(uw, vǫ) > 0 for all x ∈ Pw. Therefore, there exists a tree t(w) ∈ X

with t
(w)
ǫ = uw and t

(w)
x = vǫ for all x ∈ Pw. Moreover, we can choose t(w)

which satisfies t(w)∣xS(v) = v for all x ∈ Pw. Let M = max{∣Pw ∣ ∶ w ∈ Σ∣u∣−1},
and let v(w) = t(w)∣ΣM+∣v∣−1

. X is a Markov tree-shift indicates that there is

a tree t ∈X such that t∣S(u) = u and t∣wS(v(w)) = v
(w) for all w ∈ Σ∣u∣−1.

Set P = ⋃w∈Σ∣u∣−1 wPw. It can be verified that P is a CPS, t∣S(u) = u,
and t∣xS(v) = v for all x ∈ P . This demonstrates that X is irreducible and

completes the proof.

(c) The discussion is similar to the elaboration in (b), hence is omitted.

�

Suppose A,B ∈ Mn(R) are n × n matrices. We say that A ≤ B if

A(i, j) ≤ B(i, j) for 1 ≤ i, j ≤ n. Furthermore, A < B means that A ≤ B

and A(i, j) < B(i, j) for some i, j. A careful but routine verification elabo-

rates the following corollary, thus the proof is omitted.

Corollary 4.4. Suppose X is a TSFT with adjacency matrices A0 and A1.

(a) If A0 = A1 = A, then X is irreducible if and only if A is irreducible.

(b) If A0 = A1 = A, then X is mixing if and only if A is primitive.

(c) Suppose Y is an irreducible tree-shift with adjacency matrices B0 and

B1. If A0 ≥ Bi1 and A1 ≥ Bi2 for some 0 ≤ i1, i2 ≤ 1, then X is

irreducible.

(d) If A0 (resp. A1) is irreducible and A1 ≥ A0 (resp. A0 ≥ A1), then X is

irreducible.

The following example elucidates a mixing tree-shift with two distinct

adjacency matrices.
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Example 4.5. Suppose X is a TSFT with adjacency matrices

A0 = (1 1
1 1
) and A1 = (1 1

1 0
) .

It can be seen that A0 and A1 are both primitive matrices. Moreover,

A1A0 = (2 2
1 1
) is a positive matrix. Let P = {0,10,11}. Then P is a CPS

and Theorem 4.3 (c) infers that X is mixing.

Proposition 4.6. Suppose X is a TSFT with 2 × 2 adjacency matrices A0

and A1. If A0 and A1 are both irreducible and A0A1 = A1A0, then X is

irreducible.

Proof. Theorem 4.3 mentions that, to show that X is irreducible, it suffices

to elaborate for every i, j ∈ A there exists a CPS P such that Ax(i, j) > 0
for all x ∈ P . For a given pair i, j ∈ {0,1}, we divide the proof into 4 cases.

Case 1. A0(i, j) > 0 and A1(i, j) > 0. The desired CPS is P = {0,1}.
Case 2. A0(i, j) = 0 and A1(i, j) > 0. Notably, A0 is a 2 × 2 irreducible

matrix infers that A2
0(i, j) > 0.

Case 2a. If (A0A1)(i, j) > 0, then P = {00,01,1} is the desired CPS.

Case 2b. Suppose (A0A1)(i, j) = 0. It is seen then

A0(i, j)A1(j, j) +A0(i, ĵ)A1(ĵ, j) = 0,
where ĵ + j = 1. Since A2

0(i, j) > 0 and A1 is irreducible, we have

(A2
0A1)(i, j) ≥ A2

0(i, j)A1(j, j) > 0.
The commute of A0 and A1 implies (A0A1A0)(i, j) > 0. Furthermore,

(A0A
2
1)(i, j) = A0(i, j)A2

1(j, j) +A0(i, ĵ)A2
1(ĵ, j)

≥ A0(i, ĵ)A2
1(ĵ, j) > 0.

In this case, a CPS P is considered as P = {00,010,011,1}.
Case 3. A0(i, j) > 0 and A1(i, j) = 0. Analogous to the discussion in Case

2, it comes that P = {0,10,11} if (A1A0)(i, j) > 0, and P = {0,11,100,101}
if (A1A0)(i, j) = 0.
Case 4. A0(i, j) = A1(i, j) = 0. Since A0 and A1 are irreducible, it follows

that A2
0(i, j) > 0, A2

1(i, j) > 0, A0(i, ĵ) > 0, and A1(̂i, j) > 0.
Case 4a. If (A0A1)(i, j) > 0, then P = {00,01,10,11} is the desired CPS.

Case 4b. Suppose (A0A1)(i, j) = 0. More specifically,

A0(i, j)A1(j, j) +A0(i, ĵ)A1(ĵ, j) = 0.
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Irreducibility of A0 and A1 asserts that

(A0A
2
1)(i, j) ≥ A0(i, ĵ)A2

1(ĵ, j) > 0
and

(A2
0A1)(i, j) ≥ A2

0(i, j)A1(j, j) > 0.
The commute of A0 and A1 implies

(A0A1A0)(i, j) > 0, (A1A
2
0)(i, j) > 0, and (A1A0A1)(i, j) > 0.

This suggests a CPS is then given by P = {00,11,010,011, 100, 101}.
Cases 1 - 4 conclude that X is irreducible. This completes the proof. �

To conclude this section, we introduce a necessary and sufficient condi-

tion for determining whether a TSFT X is irreducible, which extends the

corresponding result in symbolic dynamics.

A labeled graph G is a pair (G,L), where G is a graph with edge set E ,

and the labeling L ∶ E → Υ assigns each edge e of G a label L(e) from the

finite alphabet Υ. The underlying graph of G is G.

Just as a graph G is conveniently described by its adjacency matrix A, a

labeled graph G has an analogous symbolic adjacency matrix S. The entry

S(I, J) is the formal sum of the labels of all edges from I to J , or a “zero”

character ∅ if there are no such edges.

Suppose X is a TSFT with graph representation G = G0⊔G1 and ad-

jacency matrices A0 and A1. The labeled graph representation G is de-

fined as follows. The underlying graph G of G is the union of G0 and

G1. More precisely, G has vertex set V(G) = V(G0) = V(G1) and edge set

E(G) = E(G0)⋃E(G1). The labeling L ∶ E(G)Ð→ Σ = {0,1} is defined as

(4) L(e) = { 0, if e ∈ E(G0);
1, if e ∈ E(G1);

For π = e1e2 . . . ek a path in G, i.e., t(ei) = i(ei+1) for i = 1, . . . , k − 1, let
L(π) = L(e1)L(e2) . . .L(ek)

be the simplification of notation. We remark that an alternative expres-

sion of a path π = e1e2 . . . ek is π = v0v1 . . . vk, where vi ∈ V(G) and ei+1 =(vi, vi+1). Suppose w = w1w2 . . . wk ∈ Σ
k is a labeled path in G. The collec-

tion of underlying paths of w in G is then described as L−1(w). Furthermore,

the collection of terminal states of w is

(5) Vw = {t(π) ∶ π ∈ L−1(w)}.
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Definition 4.7. A labeled path w = w1w2 . . . wk in G is a cycle if Vw = Vw1

and wk = w1.

Suppose x ∈ Σ∗ is a finite word. A prefix x′ of x is denoted by x′ ⪯ x.

The following lemma illustrates that an irreducible TSFT contains no cycle

w ∈ Σ∗ and i, j ∈ A such that Aw′(i, j) = 0 for all w′ ⪯ w.

Lemma 4.8. Suppose X is an irreducible TSFT with graph representation

G =G0⊔G1 and adjacency matrices A0 and A1. Then, for each pair i, j ∈ A,

there is no cycle w ∈ Σ∗ such that Aw′(i, j) = 0 for all prefix w′ of w.

Proof. Suppose there is a cycle w ∈ Σm such that Aw′(i, j) = 0 for all w′ ⪯ w

and for some i, j. We claim that, for any CPS P , there is x ∈ P such that

Ax(i, j) = 0. This derives a contradiction since X is irreducible.

Obviously, if there exists x ∈ P such that x ⪯ w, then Ax(i, j) = 0.
Suppose x /⪯ w for all x ∈ P . P being a CPS asserts that there exists a CPS

P1 such that ŵP1 ⊂ P , where ŵ = w1w2 . . . wm−1. If there is x ∈ P1 such that

x ⪯ w, then Aŵx(i, j) = Ax(i, j) = 0 since w is a cycle. Otherwise, analogous

to the earlier discussion, there exists a CPS P2 such that ŵP2 ⊂ P1.

Repeating the above processes, it is seen that there is a unique k ∈ N

satisfying k∣w∣ ≤ ∣P ∣ < (k + 1)∣w∣. Hence there exists x ∈ Pk+1 such that

ŵkx ∈ P and Aŵkx(i, j) = 0. The proof is complete. �

Recall that every TSFT X over a finite alphabet A is associated with

a graph representation G = G0⊔G1 and a labeled graph representation

G = (G,L), herein G is obtained from merging G0 with G1. More specifically,

the vertex set of G is, up to the change of symbols, the alphabet A. Theorem

4.9 elaborates that the verification of irreducibility of X can be done in finite

steps.

Theorem 4.9. Suppose X is a TSFT with graph representation G =G0⊔G1

and n × n adjacency matrices A0 and A1. If there exists w ∈ Σn2n−1 and

i, j ∈A such that Aw′(i, j) = 0 for all w′ ⪯ w, then X is not irreducible.

Proof. Note that A0,A1 being n × n matrices infers that ∣A∣ = n. We claim

that each word w of length n2n−1 contains a cycle. Lemma 4.8 asserts that

X is not irreducible.

Without loss of generality, we assume that wn2n−1 = 0. The irreducibility

of A0 and A1 imply that there exists 1 ≤ k1 ≤ n such that wk1 = 0. Similarly,

there exists kl + 1 ≤ kl+1 ≤ kl + n such that wkl = 0 for l ≥ 1 and kl+1 ≤ n2
n−1.

It follows that w1w2 . . . wn2n−1−1 contains at least (2n−1 − 1) 0’s. Moreover,
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the possible choices of terminal states of L−1(0) is 2n−1 − 1. The Pigeonhole
Principle ensures Vw1...wkl

= Vw for some l, where Vω is defined in (5) for

ω ∈ Σ∗. That is, w contains a cycle.

This completes the proof. �

Suppose X is a TSFT with labeled graph representation G = (G,L) and
adjacency matrices A0 and A1. Recall that A0,A1 are both 0-1 matrices.

For k = 0,1, define the symbolic adjacency matrix Sk as

(6) Sk(i, j) = { k, Ak(i, j) = 1;∅, otherwise.

The symbolic adjacency matrix S of G is defined as S = S0 + S1, where

the summation is the formal sum of the labels. Notably, every entry in

Sk is the summation of words in Σ∗. Combining the symbolic adjacency

matrix S together with Theorem 4.9 signifies Corollary 4.10. The proof is

straightforward, and hence is omitted.

Corollary 4.10. Let X be a TSFT with n×n symbolic adjacency matrix S.

Let S = Σn2n−1

k=1 Sk. Then X is irreducible if and only if, for each pair i, j ∈ A,

S(i, j) contains the formal sum of entries of P for some CPS P .

Definition 4.11. An n × n symbolic matrix M over an finite alphabet Λ

is called irreducible if, for 1 ≤ i, j ≤ n, there exists l ∈ N such that Ml(i, j)
contains the formal sum of a CPS P in Λ∗.

Combining Corollary 4.10 together with Definition 4.11 we have extended

the theorem which verifies the irreducibility of shifts of finite type in symbolic

dynamics. Namely,

A TSFT X is irreducible if and only if the corresponding

symbolic adjacency matrix S is irreducible. Moreover, an

n × n symbolic adjacency matrix S is irreducible if and only

if, for each i, j, Ski,j(i, j) contains the formal sum of a CPS

with ki,j ≤ n2
n−1.

Example 4.12. Suppose X is a TSFT with adjacency matrices

A0 = (1 1
1 0
) and A1 = (0 1

1 1
) .

Theorem 4.3 (or Proposition 4.6) infers that X is an irreducible TSFT.

It is seen that the symbolic adjacency matrix of X is

S = ( 0 0 + 1
0 + 1 1

) .
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0 1

0 + 1

0 + 1
10

Figure 2. Labeled graph representation for the irreducible
tree-shift of finite type investigated in Example 4.12.

See Figure 2 for the labeled graph representation of X. Note that 0,1 in S

are symbols rather than integers. Moreover,

S2
= (2 ⋅ 00 + 01 + 10 + 11 00 + 2 ⋅ 01 + 11

00 + 2 ⋅ 10 + 11 00 + 01 + 10 + 2 ⋅ 11
)

and

S + S2
= (0 + 2 ⋅ 00 + 01 + 10 + 11 0 + 1 + 00 + 2 ⋅ 01 + 11

0 + 1 + 00 + 2 ⋅ 10 + 11 1 + 00 + 01 + 10 + 2 ⋅ 11
) .

This shows that, for each i, j ∈ {0,1}, a CPS Pi,j contained in S + S2 is

P0,0 = {0,10,11}, P0,1 = {0,1},
P1,0 = {0,1}, P1,1 = {00,01,1}.

It also concludes that X is irreducible.

Remark 4.13. It is remarkable that the choice of CPS is not unique, which

is seen from the above example.

An extension of Corollary 4.10 reveals a necessary and sufficient condition

for verifying whether a TSFT is mixing.

Theorem 4.14. Let X be a TSFT with n×n symbolic adjacency matrix S.

Then X is mixing if and only if there exists an integer k ≤ n322(n−1) such

that Sk(i, j) contains the formal sum of entries of a CPS P for 1 ≤ i, j ≤ n.

Definition 4.15. An n×n symbolic matrix M over an finite alphabet Λ is

called primitive if there exists l ∈ N such that Ml(i, j) contains the formal

sum of a CPS P in Λ∗ for 1 ≤ i, j ≤ n.

Combining Theorem 4.14 together with Definition 4.15 we have extended

the theorem which verifies the mixing of shifts of finite type in symbolic

dynamics. Namely,

A TSFT X is mixing if and only if the corresponding sym-

bolic adjacency matrix S is primitive. Moreover, an n ×

n symbolic adjacency matrix S is primitive if and only if
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Sk(i, j) contains the formal sum of a CPS with k ≤ n322(n−1)

for each i, j.

Proof of Theorem 4.14. It suffices to show that, for a primitive matrix S,

Sk(i, j) contains the formal sum of a CPS with k ≤ n322(n−1) for each i, j.

Notably, a primitive symbolic matrix is itself irreducible. Since S is prim-

itive, there exists k1 ∈ N such that Sk1(1,1) contains the formal sum of

entries of a CPS. It is easily seen that Sl is irreducible for all l ∈ N. Hence,

there exist k2, k3, . . . , kn ∈ N such that, for l ≤ l ≤ n, Sk1⋯kl(i, i) contains the
formal sum of entries of a CPS for 1 ≤ i ≤ l. In other words, each diagonal

entry of Sk1⋯kn contains the formal sum of a CPS.

Write Sk1⋯kn =D+S, where D is an n×n diagonal matrix such that each

entry of D is either empty or the formal sum of a CPS. It can be seen that S

is irreducible. Corollary 4.10 indicates that every entry of Σn2n−1

i=1 S
i
contains

a CPS. It follows that

(Sk1⋯kn)n2n−1 = (D + S)n2n−1 ≥ n2n−1∑
i=1

S
i
,

where two symbolic matricesM,N are denoted byM ≥N ifM(i, j) contains
N(i, j) for all i, j. Therefore, every entry of (Sk1⋯kn)n2n−1 contains a CPS.

Furthermore, Theorem 4.9 asserts that ki ≤ n2
n−1 for 1 ≤ i ≤ n. Hence,

(Sk1⋯kn)n2n−1 ≤ (Sn2n−1)n⋅(n2n−1) = Sn322(n−1) .

This completes the proof. �

Example 4.16. The tree-shift of finite type X discussed in Example 2.1,

by Theorem 2.4, is conjugate to the vertex tree-shift X ′ over A′ = {0,1,2,3},
where 0,1,2,3 is

0

00

0

11

1

10

1

01

respectively, with adjacency matrices

A0 =

⎛⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

⎞⎟⎟⎟⎠
and A1 =

⎛⎜⎜⎜⎝

1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

⎞⎟⎟⎟⎠
.
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0 3

1 2

0,1

0

0,1

1

10

0

0

1

0,1

0,1

1

Figure 3. Labeled graph representation for the mixing tree-
shift of finite type elaborated in Example 4.16, which is con-
jugate to the tree-shift given in Example 2.1.

See Figure 3 for the labeled graph representation of X ′. The symbolic

adjacency matrix of X ′ is

S =

⎛⎜⎜⎜⎝

0 + 1 0 + 1 ∅ ∅

∅ ∅ 0 + 1 0 + 1
0 0 1 1
1 1 0 0

⎞⎟⎟⎟⎠
.

It follows from

S2
=

⎛⎜⎜⎜⎝

(0 + 1)2 (0 + 1)2 (0 + 1)2 (0 + 1)2(0 + 1)2 (0 + 1)2 (0 + 1)2 (0 + 1)2(0 + 1)2 (0 + 1)2 (0 + 1)2 (0 + 1)2(0 + 1)2 (0 + 1)2 (0 + 1)2 (0 + 1)2
⎞⎟⎟⎟⎠

that the any two blocks can be connected through the CPS P = {00,01,10,11}.
This demonstrates that X ′ is mixing, and so is X.

5. Conclusion and Discussion

In this article, we define the notions of chaos (in the sense of Devaney) for

tree-shifts and show that both mixing tree-shifts and irreducible tree-shifts

of finite type are chaotic. Furthermore, the graph and labeled graph repre-

sentations of tree-shifts of finite type are given. The necessary and sufficient

condition for determining whether a tree-shift of finite type is irreducible is

revealed. More precisely, with the introduction of the adjacency matrix and

symbolic adjacency matrix, the irreducibility and mixing of X is verified via



TREE-SHIFTS: IRREDUCIBILITY, MIXING, AND THE CHAOS OF TREE-SHIFTS 23

matrix operations. Most importantly, the verification can be done in finite

steps with an upper bound.

This work extends the theory of irreducibility and the mixing of shifts of

finite type and matrices in symbolic dynamics. Further investigations such

as the irreducibility of sofic tree-shifts are in preparation. In the mean time,

the following open problems remain of interest.

A tree-shift X is called a specification tree-shift if there exists finite com-

plete prefix sets P1, P2, . . . , Pℓ such that, for any two u and v, there is a tree

t ∈ X satisfying the property: For each w ∈ Σ∣u∣−1, there exists 1 ≤ i ≤ ℓ such

that

t∣S(u) = u and twxS(v) = v for all x ∈ Pi.

It is easily seen that

X is mixing Ô⇒ X is specification Ô⇒ X is irreducible.

The following problems then arose.

Problem 1. Suppose X is a specification tree-shift. Is X chaotic? More-

over, is X chaotic if X is a specification tree-shift of finite type?

Problem 2. Suppose X is a tree-shift of finite type with the symbolic

adjacency matrix S. How do we determine whether X is specific via S?

Let ∣Bm(X)∣ denote the number ofm-blocks inX. The topological entropy

of X is defined as

h(X) = lim
m→∞

ln2 ∣Bm(X)∣
m

whenever the limit exists, where ln2 = ln ○ ln.

Problem 3. Suppose X is a tree-shift. Does h(X) > 0 imply the chaos of

X?

Problem 4. Suppose X is an irreducible tree-shift of finite type. Is h(X) >
0? Does X being a mixing tree-shift imply h(X) > 0?

The topological entropy of tree-shifts of finite type is investigated in [3].

In the mean time, the above problems remain open.
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