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1 Introduction.

In the dimension theory of dynamical system, only the Hausdorff dimension of invariant

sets of conformal dynamical system is well understood. Since the work of Bowen, who
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was the first to express the Hausdorff dimension of an invariant set as a solution of an

equation involving topological pressure. Ruelle [18] refined Bowen’s method and get

the following result. If J is a mixing repeller for a C1+α conformal expanding map

f on a Riemannian manifold M , then the Hausdorff dimension of J can be obtained

as the zero t0 of t 7→ πf (−t log ||Dxf ||), where πf denotes the topological pressure

functional. This statement is known as the Bowen-Ruelle formula, and we sometimes

call the equation involving topological pressure Bowen equation. And Gatzouras and

Peres relaxed the smoothness C1+α to C1 in [12].

Recently, different version of topological pressure has become an useful tool in

calculating the Hausdorff dimension of a non-conformal repeller. For C1 non-conformal

repellers, Zhang used singular values of the derivative Dxf
n for all n ∈ N, to define

a new equation which involves the limit of a sequence of topological pressure, then

he showed that the upper bound of the Hausdorff dimension of repeller was given

by the unique solution of the equation, see [20] for details. Barreira considered the

same problem in [2]. By using the non-additive thermodynamic formalism which was

introduced in [3] and singular value of the derivative Dxf
n for all n ∈ N, he gave

an upper bound of box dimension of repeller under the additional assumptions that

the map was C1+α and α-bunched. This automatically implies that for Hausdorff

dimension. In [7], by using the sub-additive topological pressure which was studied

in [8], the author proved that the upper bound of Hausdorff dimension for C1 non-

conformal repellers obtained in [2, 11, 20] were same and it was the unique root of

Bowen equation for sub-additive topological pressure, we point out that the map is

only need to be C1 without any additional condition in [7].

In [1], the authors introduced the notion of average conformal repeller in the deter-

ministic dynamic systems which was a generalization of quasi-conformal and asymp-

totically conformal repeller in [3, 17], and they proved that the Hausdorff dimension

and box dimension of average conformal repellers was the unique root of Bowen equa-

tion for sub-additive topological pressure. In that paper, the map is only needed C1,

without any additional condition.

For random repellers, Kifer proved that the Hausdorff dimension of a measurable

random conformal repeller was the root of the Bowen equation which can be seen

as a random version of the deterministic case, see [13] for details. And in [4], the

authors generalized this result to almost-conformal case. In [21], using the idea in

the deterministic case [1], authors introduced the notion of random average conformal

repeller, and they proved that the Hausdorff dimension of random average conformal

repellers was the unique root of Bowen equation for random sub-additive topological

pressure which was studied in [22].

Motivated by the work in [4], where the authors showed that the Hausdorff di-

mension of the conformal repeller was stable under random perturbation, we consider
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a random perturbation of the deterministic average conformal repeller which is mod-

eled using the notion of a bundle random dynamical system(RDS for short). Namely,

let ϑ be an ergodic invertible transformation of a Lebesgue space (Ω,W,P) and con-

sider a measurable family T = {T (ω) : M → M} of C1+α maps, that is to say,

(ω, x) 7→ T (ω)x is assumed to be measurable. This determines a differentiable RDS

via T (n, ω) := T (ϑn−1ω) ◦ · · · ◦ T (ϑω) ◦ T (ω)(n ∈ N). Further, Let E ⊂ Ω ×M be

a measurable set such that all ω-sections Eω := {x ∈ M : (ω, x) ∈ E} are compact.

If K denotes the collection of all compact subsets of M endowed with the Hausdorff

topology, this is equivalent to saying that K-valued multifunction ω 7→ Eω is measur-

able. Here and in what follows we think of Eω being equipped with the trace topology,

i.e. an open set A ⊂ Eω is of the form A = B ∩ Eω with some open set B ⊂ M . We

call E is T -invariant if T (ω)Eω = Eϑω P − a.s., and in this situation the Hausdorff

dimension of the fiber Eω is a P-a.s. constant, see [10]. The map Θ : E → E is defined

by Θ(ω, x) = (ϑω, T (ω)x), and we call it the skew product transformation.

The aim of this paper is to make rigorous the statement that if a bundle RDS is

close to an average conformal expanding map on a repeller then the corresponding

Hausdorff dimension are close.

The paper is organized as follows. In section 2, we will recall the main result

in [1]. In section 3, we introduce some random notions and our model of random

perturbation, we point out that this was essentially inspired by a remarkable result

of Liu [15]. In section 4, we formulate and prove our main result which says that the

Hausdorff dimension of an average conformal repeller is stochastically stable.

2 Dimension of average conformal repeller

In this section, we will recall the notion of sub-additive topological pressure and the

main result in [1] which says that the Hausdorff dimension of an average conformal

repeller can be given by the unique root of the sub-additive topological pressure. More-

over, we will give some preliminary results.

Let f : X → X be a continuous map on a compact space X with metric d.

A subset E ⊂ X is called an (n, ǫ)-separated set with respect to f if x 6= y ∈ E

implies dn(x, y) := max0≤i≤n−1 d(f
ix, f iy) > ǫ. Let F = {φn}n≥1 denote a sub-additive

potential on X , that is to say φn : X → R is continuous for each n ∈ N and satisfying

φn+m(x) ≤ φn(x) + φm(f
n(x)), ∀n,m ∈ N, x ∈ X.

Following the way in [8], we define the sub-additive topological pressure

πf (F , n, ǫ) = sup

{

∑

x∈E

exp φn(x) : E is an (n, ǫ)− separated subset of X

}
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and then call

πf (F) = lim
ǫ→0

lim sup
n→∞

1

n
log πf (F , n, ǫ)

the sub-additive topological pressure of F with respect to f . If there is no confusion

caused, we simply call πf(F) the sub-additive topological pressure of F .

Remark 1. (1)When the continuous potential F = {φn} on X is additive, i.e. φn(x) =
∑n−1

i=0 φ(f
ix) for some continuous function φ : X → R, then πf (F) is the classical

topological pressure, see [19] for details, and we denote it simply by πf (φ); (2)When

the continuous potential F = {φn} on X is sup-additive, that is to say, φn+m(x) ≥

φn(x) + φm(f
nx), ∀n,m ∈ N, x ∈ X, we also can define the sup-additive topological

pressure. And the pressures are equal under some special case, see [1].

Let M(X, f) denote the space of all f -invariant Borel probability measures and

E(X, f) denote the subset of M(X, f) with ergodic measures. For µ ∈ M(X, f), let

hµ(f) denote the measure-theoretic entropy of f with respect to µ, and let F∗(µ) denote

the following limit

F∗(µ) = lim
n→∞

1

n

∫

φndµ.

The relation between πf (F), hµ(f) and F∗(µ) is given by the following variational

principle which is proved in [8], and the random version of the following theorem is

proved in [22].

Theorem 2.1 (Variational principle). Let F be a sub-additive potentials on a compact

metric space X, and f : X → X is a continuous transformation, then

πf (F) =

{

−∞, if F∗(µ) = −∞ for all µ ∈ M(X, f)

sup{hµ(f) + F∗(µ) : µ ∈ M(X, f),F∗(µ) 6= −∞}, otherwise.

Proposition 2.1. let fi : Xi → Xi(i = 1, 2) be a continuous map of a compact metric

space (Xi, di), and F = {φn} is a sub-additive potential on X2. If ϕ : X1 → X2 is a

surjective continuous map with ϕ ◦ f1 = f2 ◦ ϕ then πf2(F) ≤ πf1(F ◦ ϕ), and if ϕ is a

homeomorphism then πf2(F) = πf1(F ◦ ϕ), where F ◦ ϕ = {φn ◦ ϕ}.

Proof. We first check that F ◦ ϕ is indeed a sub-additive potential on the compact

metric space X1. In fact

φn+m ◦ ϕ(x) ≤ φn(ϕx) + φm(f
n
2 ϕx) = φn ◦ ϕ(x) + φm ◦ ϕ(fn1 x)

the equality follows from the fact that ϕ ◦ f1 = f2 ◦ ϕ.

Let ǫ > 0 and choose δ > 0 such that d2(ϕ(x), ϕ(y)) > ǫ implies d1(x, y) > δ, this

fact follows from the uniform continuity of ϕ.
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Let E be an (n, ǫ)-separated set with respect to f2. Since ϕ is surjective, there

exists a subset F ⊂ X1 so that ϕ|F : F → E is a bijection. It follows from the above

observation that F is an (n, δ)-separated set with respect to f1. Hence, we have

πf2(F , n, ǫ) = sup{
∑

x∈E expφn(x) : E is an (n, ǫ)-separated subset of X2}

= sup{
∑

y∈F exp φn(ϕy) : E is an (n, ǫ)-separated subset of X2

and ϕ|F : F → E is a bijection}

≤ sup{
∑

y∈F exp φn(ϕy) : F is an (n, δ)-separated subset of X1}

= πf1(F ◦ ϕ, n, δ)

Since ǫ→ 0 then δ → 0, then we can have

πf2(F) ≤ πf1(F ◦ ϕ)

If ϕ is a homeomorphism then we can apply the above with f1, f2, ϕ,F replaced by

f2, f1, ϕ
−1,F ◦ ϕ respectively to give πf2(F) ≥ πf1(F ◦ ϕ). Thus the proof is finished.

Proposition 2.2. Let f : X → X be a continuous map on a compact metric space,

and φ : X → R is a continuous function on X. Suppose ϕǫ : X → R is a continuous

function on X for every ǫ > 0 and limǫ→0 ϕǫ = φ, then

lim
ǫ→0

πf (ϕǫ) = πf (φ).

Proof. This immediately follows from the continuity of the classical topological pres-

sure.

Now we introduce the definition of average conformal repeller. And the dimension

of the repeller can be obtained by the unique root of the corresponding sub-additive

topological pressure.

Let M be a C∞ m-dimensional Riemannian manifold. Let U be an open subset

of M and f : U → M be a C1 map. Suppose J ⊂ U is a compact f -invariant

subset. Let M(f |J), E(f |J) denote the set of all f -invariant measures and the set of

all ergodic invariant measures supported on J respectively. For any µ ∈ E(f |J), by the

Oseledec multiplicative ergodic theorem (see [16]), we can define Lyapunov exponents

λ1(µ) ≤ λ2(µ) ≤ · · · ≤ λm(µ), m = dimM .

Definition 2.1. A compact f -invariant set J is called an average conformal repeller

for f if for any µ ∈ E(f |J), λ1(µ) = λ2(µ) = · · · = λm(µ) > 0.

Remark 2. We point out that if J is an average conformal repeller for f , it is indeed

a repeller in the usual way(see [9]) that: ∃λ > 1, C > 0 such that for all x ∈ J and

v ∈ TxM

||Dxf
n(v)|| ≥ Cλn||v||, ∀n ≥ 1.
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Proposition 2.3. If J is an average conformal repeller for f , then

πf (Φ) = lim
n→∞

1

n
πfn(− log ‖Dxf

n‖)

where Φ = {− log ‖Dxf
n‖}n≥1 is a sup-additive potential and πf (Φ), πfn(− log ‖Dxf

n‖)

denote the sup-additive topological pressure of Φ with respect to f , classical topological

pressure of − log ‖Dxf
n‖ with respect to fn respectively.

Proof. Let Ψ = {− logm(Dxf
n)}n≥1 denotes the sub-additive potential. First note

that by the definition of topological pressure, we have

1

k
πfk(− log ‖Dxf

k‖) ≤
1

k
πfk(− logm(Dxf

k)), ∀k ≥ 1.

And since J is an average conformal repeller, the measure-theoretic entropy map µ 7→

hµ(f) is upper-semi-continuous by remark 2. By proposition 2.2 in [7], we have

lim
k→∞

1

k
πfk(− logm(Dxf

k)) = πf(Ψ)

where πf (Ψ) denotes the sub-additive topological pressure of Ψ with respect to f . Thus

we have

lim sup
k→∞

1

k
πfk(− log ‖Dxf

k‖) ≤ πf (Ψ) = πf(Φ), (2.1)

where the last equality is proved in [1] since J is an average conformal repeller for f .

On the other hand, for any µ ∈ M(f |J) ⊂ M(fk|J), we have

hµ(f) + Φ∗(µ) = lim
k→∞

1

k
(hµ(f

k) +

∫

− log ‖Dxf
k‖dµ)

≤ lim inf
k→∞

1

k
πfk(− log ‖Dxf

k‖),

the last inequality is follows from the classical variational principle for additive topo-

logical pressure of − log ‖Dxf
k‖ with respect to fk, see [19]. Again because J is an

average conformal repeller, by the variational principle for the sup-additive topological

pressure(see [1]), we have

πf (Φ) ≤ lim inf
k→∞

1

k
πfk(− log ‖Dxf

k‖). (2.2)

Thus the desired result immediately follows from (2.1) and (2.2).

The dimension of an average conformal repeller can be given by the following the-

orem in [1].

Theorem 2.2. Let f be C1 dynamical system and J be an average conformal re-

peller for f , then the Hausdorff dimension of J is zero of t 7→ πf (−tΨ), where

Ψ = {logm(Dxf
n) : x ∈ J, n ∈ N} and m(A) = ||A−1||−1.
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3 Random notations

In this section, we will give some random notions and some well-known results. Firstly,

let (Ω,W,P) and ϑ,E, T be described in section 1, and let M1
P
(E, T ) denote the space

of Θ-invariant measures with marginal P on Ω of the RDS, E1
P
(E, T ) denote the subset

of M1
P
(E, T ) with ergodic measures of the RDS.

Let L1
E(Ω, C(M)) denote the collection of all integrable random continuous func-

tions on fibers, i.e. a measurable f : E → R is a member of L1
E(Ω, C(M)) if

f(ω) : Eω → R is continuous and ‖f‖1 :=
∫

‖f(ω)‖dP(ω) < ∞, where ‖f(ω)‖ =

supx∈Eω |f(ω, x)|. If we identify f and g provided ‖f − g‖1 = 0, then L1
E(Ω, C(M))

becomes a Banach space with the norm ‖ · ‖1. A family Φ = {ϕn}n≥1 of integrable

random continuous functions on E is called sub-additive if for P-almost all ω,

ϕn+m(ω, x) ≤ ϕn(ω, x) + ϕm(Θ
n(ω, x)) for all n,m ∈ N, x ∈ Eω.

Let ǫ : Ω → (0, 1] be a measurable function. A set F ⊂ Eω is said to be (ω, ǫ, n)-

separated for T , if x, y ∈ F, x 6= y implies y /∈ Bω(n, x, ǫ), where Bω(n, x, ǫ) := {y ∈

Eω : d(T (k, ω)x, T (k, ω)y) < ǫ(ϑkω) for 0 ≤ k ≤ n − 1} and d is the given metric on

M .

Let Φ = {ϕn}n≥1 be a sub-additive function sequence with ϕn ∈ L1
E(Ω, C(M)) for

each n. As usual, we put

πT (Φ)(ω, ǫ, n) = sup{
∑

x∈F

eϕn(ω,x) : F is an (ω, ǫ, n)-separated subset of Eω}

πT (Φ)(ǫ) = lim sup
n→∞

1
n

∫

log πT (Φ)(ω, ǫ, n)dP(ω)

πT (Φ) = lim
ǫ↓0

πT (Φ)(ǫ)

The last quantity is called the sub-additive topological pressure of Φ with respect to

T . We just mention that the above definition is reasonable, see [22] for details.

Remark 3. (i) If the function sequence Φ = {ϕn} can be written as ϕn(ω, x) =
∑n−1

i=0 ϕ(Θ
i(ω, x)) for some function ϕ ∈ L1

E(Ω, C(M)), then we call πT (Φ) the random

additive topological pressure, see [4, 14] for details, denote it simply by πT (ϕ). (ii)

Since P is ergodic in the model which we consider, so the limits in the above definition

will not change P-almost everywhere without integrating against P.

Lemma 3.1. For i = 1, 2, let Xi be compact metric spaces, Ei measurable bundles

over Ω with compact fibers in Xi, and ϕi topological bundle random dynamical systems

on Ei. If ψ = {ψ(ω) : E1
ω → E2

ω} is a family of homeomorphism between E1
ω and E2

ω

satisfying ϕ2(ω) ◦ ψ(ω) = ψ(ϑω) ◦ ϕ1(ω), P− a.s., and F = {fn}n≥1 is a sub-additive

potential in L1
E2
(Ω, C(X2)) then

πϕ2
(F) = πϕ1

(F ◦ ψ)
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where F◦ψ = {fn◦ψ}n≥1 denotes the member of L1
E1
(Ω, C(X1)) defined by fn(ω, ψ(ω)x)

for each n ≥ 1.

Proof. We first check the new defined potential F ◦ ψ = {fn ◦ ψ}n≥1 is indeed sub-

additive. Precisely, we have

fn+m ◦ ψ(ω, x) = fn+m(ω, ψ(ω)x)

≤ fn(ω, ψ(ω)x) + fm(ϑ
nω, ϕ2(n, ω)ψ(ω)x)

= fn ◦ ψ(ω, x) + fm(ϑ
nω, ψ(ϑnω)ϕ1(n, ω)x)

= fn ◦ ψ(ω, x) + fm ◦ ψ(ϑnω, ϕ1(n, ω)x).

Let µ ∈ M1
P
(E1, ϕ1) and write µψ for the member of M1

P
(E2, ϕ2) defined by

ψ(ω)∗µω. We have h
(r)
µ (ϕ1) = h

(r)
µψ(ϕ2) (see theorem 2.2.2 in [5]) and limn→∞

1
n

∫

fn ◦

ψdµ = limn→∞
1
n

∫

fndµψ, by the variational principle of random sub-additive topolog-

ical pressure in [22] we have πϕ1
(F ◦ ψ) ≤ πϕ2

(F). By symmetry we get the reverse

inequality and hence the desired result.

Definition 3.1. Let T be a RDS over ϑ. A generator of RDS T is a family A =

{A(ω) = (Ai(ω)) : A(ω) is an open cover of Eω} with

(i) A(ω) is finite for all ω ∈ Ω;

(ii) ω 7→ d(x,Ai(ω)) is measurable for all x ∈M and all i ∈ N;

(iiii) for each sequence (An)n∈N of sets we have An ∈ A(ϑnω) for all n ∈ N implies

that
⋂∞
n=0 T (n, ω)

−1Ān contains at most one point.

Definition 3.2. Let T be a RDS over ϑ. We call T is (positive)expansive if there

exists a (0, 1)-valued random variable ∆ such that

d(T (n, ω)x, T (n, ω)y) ≤ ∆(ϑnω) for all n ∈ N

implies x = y.

Definition 3.3. A generator A of a given RDS T is called a strong generator if

lim
k→∞

diam
k−1
∨

i=0

T (i, ω)−1A(ϑiω) = 0 uniformly in ω

An expansive RDS is said to be strongly expansive if it possesses a strong generator.

Let U ⊂ M be an open subset of the Riemannian manifold M with Ū ∈ K and

let C(U,M) denote the space of all continuous maps from U to M endowed with the

compact open topology.

8



Definition 3.4. Assume f ∈ C(U,M) and J ∈ K with fJ = J . A family {Tǫ}ǫ>0 of

C(U,M)-valued random variables is called a random perturbation of f on J if

(i) limǫ→0 Tǫ = f in probability;

(ii) there exists a family of K-valued random variables {Jǫ}ǫ>0 such that

(a) for each ǫ > 0 we have that P-a.s. Tǫ(ω)Jǫ(ω) = Jǫ(ϑω);

(b) limǫ→0 Jǫ = J in probability.

{Tǫ}ǫ>0 is said to be structurally stable if there exists a family {hǫ}ǫ>0 of C(J,M)-valued

random variables such that

(iii) for each ǫ > 0 we have that hǫ(ω) : J → Jǫ(ω) is a homeomorphism and Tǫ(ω) ◦

hǫ(ω) = hǫ(ϑω) ◦ f P-a.s.;

(iv) limǫ→0 hǫ = id in probability.

See [4] for examples of strongly expansive bundle RDS and structurally stable ran-

dom perturbation. Put X = U and let Cα(X,R) denote the space of all Hölder

continuous functions on X with Hölder exponent α. We endow Cα(X,R) with the

usual norm || · ||α := || · || + | · |α, where || · || is the sup-norm and | · |α is the least

Hölder constant, namely, |ϕ|α := supx,y∈X,x 6=y
|ϕ(x)−ϕ(y)|
d(x,y)α

. Then using proposition 2.2 we

can get the following important proposition which is proved in [4], we cite here just for

complete.

Proposition 3.1. Let {Tǫ}ǫ>0 be a structurally stable random perturbation of f on J .

And let {ϕǫ}ǫ>0 be a family of Cα(X,R)-valued random variables satisfying

lim
ǫ→0

||ϕǫ − φ||α = 0 in L1(P)

for some φ ∈ Cα(X,R). Then

lim
ǫ→0

πTǫ(ϕǫ) = πf (φ).

4 Stability of the Hausdorff dimension under ran-

dom perturbations

In this section we will prove that the Hausdorff dimension of the average conformal

repeller is stable under suitable random perturbation.

The following proposition can be proved by slightly modification of the proof of

theorem 1.1 in [15].
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Proposition 4.1. Assume J is an average conformal repeller for a C1+α map f : U →

M . There exists a C1 neighborhood U(f) ⊂ C1+α(U,M) of f such that the following

holds:

(i) For every random variable T : Ω → U(f) there exists a K-valued random variable

J(ω) ⊂ U satisfying T (ω)J(ω) = J(ϑω), and a C0(U,M)-valued random variable h

such that each h(ω) is a homeomorphism between J and J(ω) and T (ω) ◦ h(ω) =

h(ϑω) ◦ f on J .

(ii) If {Tǫ : Ω → U(f)}ǫ>0 is a family of random variables with limǫ→0 Tǫ = f in

probability(with respect to the C1 distance), then limǫ→0 hǫ = id in probability and thus

limǫ→0 Jǫ = J in probability. Here hǫ and Jǫ are the corresponding objects associated

to Tǫ by (i).

In other words, each family {Tǫ}ǫ>0 of U(f)-valued random variables with limǫ→0 Tǫ = f

in probability is a structurally stable random perturbation of f on J .

Now we state and prove our main result.

Theorem 4.1. Assume J is an average conformal repeller for a C1+α map f : U →M .

There exists a C1 neighborhood U(f) ⊂ C1+α(U,M) of f such that the assertions of

proposition 4.1 hold with the following additional property.

If {Tǫ : Ω → U(f)}ǫ>0 is a random perturbation of f with

lim
ǫ→0

Tǫ = f in L1(Ω, C1+α(U,M))

then

lim
ǫ→0

dimH(Jǫ(ω)) = dimH(J) P-a.s.

where dimH(·) denote the Hausdorff dimension of a set. Moreover, if L ⊂ J is compact

and f -invariant, then limǫ→0 dimH(hǫ(ω)L) = dimH(L) P-a.s.

Proof. In the following we will follow Bogenschütz and Ochs’ proof [4] to obtain the

desired result. Choose an open neighborhood V of J such that V is a compact subset

of U . Then U(f) can be chosen in such a way that Jǫ(ω) ⊂ V for every ǫ > 0, ω ∈ Ω.

Fix ǫ > 0. For (ω, x) ∈ Ω× V set

ηǫ(ω, x) := ||DxTǫ(ω)|| and λǫ(ω, x) := m(DxTǫ(ω)).

By taking appropriate U(f), we can assume that log λǫ, log ηǫ ∈ L1
Jǫ
(Ω, C(M)).

For the clarity of the proof, we divide the proof into several steps.

Step 1: We claim that Tǫ satisfies the following formula

λǫ(ω, x)−K(ω)d(x, y)α ≤
d(Tǫ(ω)x, Tǫ(ω)y)

d(x, y)
≤ ηǫ(ω, x) +K(ω)d(x, y)α (4.3)
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for every ω ∈ Ω and x 6= y ∈ Jǫ(ω), where K : Ω → R+ with log+K ∈ L1(P). We will

prove the inequality (4.3) in the rest of this step.

Choose r0 > 0 such that A := {x : dist(x, V ) ≤ r0} ⊂ U . Define

K0(ω) = |DTǫ(ω)|α,A = sup

{

‖DxTǫ(ω)−DyTǫ(ω)‖

d(x, y)α
: x, y ∈ A, x 6= y

}

.

For the simplicity of notations, we restrict M to be the case of an open subset of Rd,

since the general case can be done via local coordinates. We let |·| denote the Euclidian

norm on R
d and write T instead of Tǫ(ω) for convenience.

For x, y ∈ Jǫ(ω) with 0 < |x− y| < r0, we put e := y−x
|y−x|

and get that

|T (x)− T (y)| =

∣

∣

∣

∣

∣

∫ |y−x|

0

Dx+teT (e) dt

∣

∣

∣

∣

∣

≤

∫ |y−x|

0

‖Dx+teT‖dt

≤ |y − x| sup{‖Dx+zT‖ : |z| ≤ |y − x|}

≤ |y − x|(‖DxT‖+K0(ω)|y − x|α).

Thus, we get that

|T (x)− T (y)|

|y − x|
≤ ηǫ(ω, x) +K0(ω)|y − x|α.

On the other hand, we can get that

1

|y − x|

∣

∣

∣

∫ |y−x|

0
Dx+teT (e) dt

∣

∣

∣

≥ inf{|Ae| : A ∈ convex hull of Dx+teT, 0 ≤ t ≤ |y − x|}

≥ |DxT (e)| − sup{|Ae| : A ∈ convex hull of (Dx+teT −DxT ),

0 ≤ t ≤ |y − x|}

≥ λǫ(ω, x)−K0(ω)|y − x|α.

The last inequality follows from the definition of λǫ immediately.

Put

K(ω) = max

{

K0(ω),
diamV

r0
,
max{||DxTǫ(ω)|| : x ∈ V }

rα0

}

and then the inequality (4.3) immediately follows.

Step 2: We claim that
∫

log ΛǫndP > 0

for some n ≥ 1, where Λǫn(ω) = minx∈Jǫ(ω)
∏n−1

k=0 λǫ(ϑ
kω, Tǫ(k, ω)x).

Recall that J is an average conformal repeller for f . It is easy to see that lim
ǫ→0

log Λǫn =

minx∈J{logm(Dfn−1xf) + · · · + logm(Dxf)} > 0 in probability. By making U(f)

smaller if necessary we have that | log(|DxTe|)| is uniformly bounded for all T ∈
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U(f), x ∈ V , and e ∈ TxM with |e| = 1. Thus lim
ǫ→0

log Λǫn = min
x∈J

{logm(Dfn−1xf)+ · · ·+

logm(Dxf)} > 0 also in L1(P), which implies supn≥1
1
n

∫

log ΛǫndP > 0 for sufficiently

small ǫ. This finishes the proof of the claim.

Step 3: We claim that Tǫ is strongly expansive. By remark 2 we know f is

expanding on J , then there exists a neighborhood V of J , a constant c > 0, and

an integer n ≥ 1 such that |Dxf
n(e)| ≥ 1 + c for every x ∈ V and e ∈ TxM with

|e| = 1. We can choose U(f) in such a way that |Dx(Tn ◦ · · · ◦T1)(e)| ≥ 1+ c
2
whenever

T1, . . . , Tn ∈ U(f), x ∈ V , and e ∈ TxM with |e| = 1, and that Jǫ(ω) ⊂ V for every

ǫ > 0 and ω ∈ Ω. Then Tǫ is uniformly expanding and thus strongly expanding on the

bundle {Jǫ(ω)}ω∈Ω.

Step 4: Let L ⊂ J be a compact subset with fL = L. We apply corollary 3.5 in

[4] to the bundle RDS Tǫ on Jǫ = {(ω, x) : x ∈ hǫ(ω)L}. Let πǫ denote the pressure

functional of Tǫ restricted to Jǫ, then we can get that there exist sǫ1 ≥ tǫ1 ≥ 0 such that

πǫ(−t
ǫ
1 log ηǫ) = 0 = πǫ(−s

ǫ
1 log λǫ)

and

tǫ1 ≤ dimH(hǫ(ω)L) ≤ sǫ1 P-a.s.

If we consider the system Tǫ(n, ω) and log ‖DxTǫ(n, ω)‖, logm(DxTǫ(n, ω)) for every

n > 0, and let πn,ǫ denote the pressure functional of Tǫ(n, ω) restricted to Jǫ, then we

can get that

tǫn ≤ dimH(hǫ(ω)L) ≤ sǫn P-a.s.

where tǫn, s
ǫ
n satisfying πn,ǫ(−t

ǫ
n log ‖DxTǫ(n, ω)‖) = 0 = πn,ǫ(−s

ǫ
n logm(DxTǫ(n, ω))).

Furthermore, by theorem 2.2 the Hausdorff dimension of L is the unique t0 ≥ 0 with

πf |L(−t0Ψ) = 0, where Ψ = {logm(Dxf
n) : x ∈ L, n ∈ N}.

Step 5: We first note that, for each fixed positive integer n, we have

lim
ǫ→0

‖ log ‖DxTǫ(n, ω)‖ − log ‖Dxf
n‖‖α = 0

and

lim
ǫ→0

‖ logm(DxTǫ(n, ω))− logm(Dxf
n)‖α = 0 in L1(P),

since | log ‖DxTǫ(n, ω)
±‖| is uniformly bounded for the fixed positive integer n. By the

proposition 3.1, for each fixed positive integer n, we have

lim
ǫ→0

1

n
πn,ǫ(−t log ‖DxTǫ(n, ω)‖) =

1

n
πfn|L(−t log ‖Dxf

n‖)

and

lim
ǫ→0

1

n
πn,ǫ(−t logm(DxTǫ(n, ω))) =

1

n
πfn|L(−t logm(Dxf

n))
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for each t ≥ 0. Moreover, by proposition 2.2 in [7] and proposition 2.3 we have

lim
n→∞

1

n
πfn|L(−t log ‖Dxf

n‖) = lim
n→∞

1

n
πfn|L(−t logm(Dxf

n)) = πf |L(−tΨ).

Hence, we obtain for each t ≥ 0 that

lim
n→∞

lim
ǫ→0

1

n
πn,ǫ(−t log ‖DxTǫ(n, ω)‖) = lim

n→∞
lim
ǫ→0

1

n
πn,ǫ(−t logm(DxTǫ(n, ω)))

= πf |L(−tΨ).

Step 6: To complete the proof, given δ > 0. Since t 7→ πf |L(−tΨ) is strictly

decreasing, there exist N > 0, ǫ0 > 0 such that for each ǫ ≤ ǫ0, we have

πN,ǫ(−(t0 + δ) log ‖DxTǫ(N, ω)‖) < 0 < πN,ǫ(−(t0 − δ) log ‖DxTǫ(N, ω)‖)

and

πN,ǫ(−(t0 + δ) logm(DxTǫ(N, ω))) < 0 < πN,ǫ(−(t0 − δ) logm(DxTǫ(N, ω))).

This immediately implies

t0 − δ < tǫN ≤ dimH(hǫ(ω)L) ≤ sǫN < t0 + δ. (4.4)

The desired result then immediately follows.

Remark 4. (1) In [4], Bogenschütz and Ochs proved that the Hausdorff dimension of

a conformal repeller is stable under random perturbations. Using their ideas, we show

that the same is true for average conformal repeller. The differences between theorem

4.1 and Bogenschütz and Ochs’s theorem are:

i) In order to use the corollary 3.5 in [4], it is the same from step 1 to step 3;

ii) In order to prove the Hausdorff dimension of average conformal repeller is stable

under random perturbation, we should consider the iteration of the RDS from step 4

to step 6. And this process need the technic of sub-additive topological pressure and

sup-additive topological pressure. In [4], the authors need not consider the iteration of

the RDS, so they need only additive topological pressure.

(2) Since the bundle Tǫ is uniformly expanding on the bundle {Jǫ(ω)}ω∈Ω, the result

in [15] told us that there exists a equilibrium states of the topological pressure πǫ. Then

modifying subtly the proof in [1] we can get that the zero of the sub-additive topological

pressure is the upper bound of the Hausdorff dimension of the bundle {Jǫ(ω)}ω∈Ω.

Proposition 4.2. Under the conditions of theorem 4.1, we have

lim
ǫ→0

h
(r)
top(Tǫ) = htop(f),

where h
(r)
top(Tǫ) denote the topological entropy of the random dynamical system Tǫ gener-

ated by the random perturbation of f and htop(f) denote the classical topological entropy

of deterministic dynamical system.
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Proof. This can be immediately deduced from proposition 3.1 by taking the potential

functions to be the zero-valued functions.
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