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Thismanuscript considers the learning problemofmulti-layer neural networks (MNNs)with an activation
function which comes from cellular neural networks. A systematic investigation of the partition of the
parameter space is provided. Furthermore, the recursive formula of the transition matrix of an MNN is
obtained. By implementing the well-developed tools in the symbolic dynamical systems, the topological
entropy of an MNN can be computed explicitly. A novel phenomenon, the asymmetry of a topological
diagram thatwas seen in Ban, Chang, Lin, and Lin (2009) [J. Differential Equations 246, pp. 552–580, 2009],
is revealed.
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1. Introduction

In the past few decades, multi-layer neural networks (MNNs,
Hornik, Stinchcombe, & White, 1989, Widrow & Lehr, 1990) have
received considerable attention and have been successfully ap-
plied to many areas such as combinatorial optimization (Hopfield
& Tank, 1985; Peterson & Söderberg, 1989), signal processing, pat-
tern recognition (Alsultanny & Aqul, 2003; Widrow, 1962) and ar-
tificial intelligence (AI) (Bengio, 2009).

One important reason for coupling NNs is the simulation of
the visual systems of mammals (Fukushima, 2013a, 2013b, each
layer symbolizes a single cortex in the visual system) and it is
proved that the mammal brain is organized in deep architectures1
(Serre et al., 2007), i.e., the number of layers in MNNs is large.
Due to the architecture depth of themammal brain, scientists have
been interested in learning and training deep architectures (Bengio
& LeCun, 2007; Utgoff & Stracuzzi, 2002) since 2002. Hinton
et al. obtained great successful results on deep architectures in
2006 by using Deep Belief Networks (DBNs) (Hinton, Osindero,
& Teh, 2006) and Restricted Boltzmann Machine (RBM) (Freund
& Haussler, 1994) methods, and have applied to many fields
since then, e.g., classification tasks, regression, dimensionality

∗ Corresponding author.
E-mail addresses: jcban@mail.ndhu.edu.tw (J.-C. Ban),

chihhung@mail.fcu.edu.tw (C.-H. Chang).
1 Except for the simulation of the visual systems of mammals, deep architectures

are often used to learn some complicated functions expressing high-level
abstractions, e.g., language and AI-level tasks.
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reduction, modeling textures, modeling motion, natural language
processing, object segmentation, information retrieval, robotics
and collaborative filtering. A general reference is referred to
Bengio (2009), and reader could find the complete bibliography
therein. Related topics are that how to distinguish the different
hidden layers and how two hidden layers make a difference
(Kurková & Sanguineti, 2013). In Ban, Chang, and Lin (2012), Ban
et al. established the mathematical foundation on the structures
of hidden layers. More precisely, some checkable conditions are
provided to ensure whether two hidden layers are conjugate, shift
equivalent or finite shift equivalent (Lind & Marcus, 1995). This
gives a connection between deep and shallow architectures.

Due to the learning algorithm and training processing, the
investigation of mosaic solutions is most essential in MNNmodels,
and such models indeed produce abundant output patterns and
make the learning algorithm more efficient. In neural networks,
many types of activation function, e.g., linear, McCulloch–Pitts,
signum, Sigmoid, Ramp functions, are chosen for many specific
purposes. The activation function indicates that under what
conditions the synapses will be activated. Different activation
functions make different output function spaces and produce
different dynamical systems. In this paper, we consider a different
activation function which comes from cellular neural networks
(CNNs). Namely,

f (x) =
1
2
(|x + 1| − |x − 1|).

CNNs, introduced by Chua and Yang in 1988 (Chua & Yang, 1988),
have many applications in the area of image processing (Chua,
1998). The topics of pattern formation and spatial chaos for mosaic
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solutions have been discussed in CNN (Juang & Lin, 2000) and
multi-layer CNN (MCNN, Ban et al., 2009) models. However, it
seems that there are a few studies onMNNmodels. The aim of this
paper is to set up themathematical foundation for theMNNmodel
with the above activation function. The method we have provided
herein ismore general, an easy extension leading us to consider the
classical McCulloch–Pitts model and signum activation function.
More or less, this elucidation has provided a connection of learning
algorithm between MNN and MCNN, or CNN and NN.

This paper is organized as follows. In Section 2 we consider
the two-layer NN. The partition of parameter space, stable
local patterns and the generation of global mosaic patterns are
discussed. We also prove that the global mosaic solution space
forms a sofic space in classical symbolic dynamical systems. Thus,
the complexity (topological entropy) can be computed by using
the knowledge of sofic space from symbolic dynamical systems.
In Section 3 we consider the general case of MNN and some
results parallel to a two-layer case are provided. Finally, the strange
phenomena of the asymmetry of topological entropy are presented
in Section 4.

2. Two-layer neural networks

A one-dimensional multi-layer neural network (MNN) is real-
ized as

d
dt

x(k)
i (t) = −x(k)

i (t) + z(k)
+ a(k)f (x(k)

i (t))

+


ℓ∈N

b(k)
ℓ f (x(k−1)

i+ℓ (t)),

d
dt

x(1)
i (t) = −x(1)

i (t) + z(1)
+ a(1)f (x(1)

i (t))

+


ℓ∈N

a(1)
ℓ f (x(1)

i+ℓ(t)),

(1)

for some N ∈ N, k = 2, . . . ,N and i ∈ Z. We called the finite
subset N ⊂ Z the neighborhood, and the piecewise linear map
f (x) =

1
2 (|x+1|−|x−1|) is called the output function. The template

T = [A, B, z] is composed of a feedback template A = (A1, A2) with
A1 = (a(1), . . . , a(N)), A2 = (a(1)

ℓ )ℓ∈N , a controlling template B =

(B2, . . . , BN), and the threshold z = (z(1), . . . , z(N)), where Bk =

(b(k)
ℓ )ℓ∈N for k ≥ 2. A stationary solution x = (x(1)

i , . . . , x(N)
i )i∈Z ∈

RZ∞×N of (1) is calledmosaic if |x(k)
i | > 1 for 1 ≤ k ≤ N, i ∈ Z. The

output y = (y(1)
i . . . y(N)

i )i∈Z ∈ {−1, 1}Z∞×N of a mosaic solution is
called amosaic pattern, where y(k)

i = f (x(k)
i ). The solution space Y of

(1) stores the mosaic patterns y, and the output space Y(N) of (1) is
the collection of the output patterns in Y, more precisely,

Y(N)
= {(y(N)

i )i∈Z : (y(1)
i . . . y(N)

i )i∈Z ∈ Y}.

A neighborhood N is called the nearest neighborhood if N =

{−1, 1}. The investigation of the output space of (1) is essential
for elucidating the complexity of MNNs. The framework is clarified
by presenting our methodology of the two-layer neural networks
with the nearest neighborhood. The formalized general results are
postponed to the next section (see Fig. 1).

2.1. Partition of parameters

To investigate the complexity of the behavior of (1), the
prescription of parameters is essential. Generally there is an
infinite choice of templates. Since, for MNNs, the neighborhood N
is finite and the template is invariant for each i, the solution space
is determined by the so-called basic set of admissible local patterns.
This subsection demonstrates that the parameter space can be
divided into finitely equivalent regions so that the two templates
Fig. 1. Three-layer neural networks with nearest neighborhood.

T1, T2 of (1) assert the same solution space if and only if T1 and T2
belong to the same region. In other words, there are only finitely
different behavior being observed if the neighborhood N is given.

The basic set of admissible local patterns of the first layer is a
subset of

{− − −, − − +, − + −, − + +, + − −, + − +, + + −, + + +};

the basic set of admissible local patterns of the second layer is a
subset of the ordered set {p1, . . . , p8}, where p1, . . . , p8 are

−

− −
,

−

− +
,

−

+ −
,

−

+ +
,

+

− −
,

+

− +
,

+

+ −
,

+

+ +
, (2)

respectively. (Here we refer to the patterns 1 and −1 as + and
−, respectively.) First we consider the local patterns of the second
layer. For simplicity, we denote the local pattern α

α1 α2
by α�α1α2.

Suppose y is a mosaic pattern, for each i ∈ Z; the necessary and
sufficient condition for y(2)

i = 1 is

a(2)
− 1 + z2 > −(b(2)

−1y
(1)
i−1 + b(2)

1 y(1)
i+1), (3)

and the necessary and sufficient condition for y(2)
i = −1 is

a(2)
− 1 − z2 > b(2)

−1y
(1)
i−1 + b(2)

1 y(1)
i+1. (4)

It is seen that (3) and (4) divide the a(2)–z2 plane into 25
subregions; each subregion is encoded as [m, n], where 0 ≤ m, n ≤

4, and [m, n] indicates that every pair of parameters (a(2), z(2)) in
that region satisfiesm and n inequalities in (3) and (4), respectively.
Set

B(2)(+) =


y(2)

� y(1)
1 y(1)

2 : y(1)
1 , y(1)

2 ∈ {−1, 1}

satisfy (3), y(2)
= 1


,

B(2)(−) =


y(2)

� y(1)
1 y(1)

2 : y(1)
1 , y(1)

2 ∈ {−1, 1}

satisfy (4), y(2)
= −1


.

The basic set of admissible local patterns of the second layer is
denoted by B(2)

= (B(2)(+), B(2)(−)). Similarly, for each i ∈ Z,
the necessary and sufficient conditions for y(1)

i = 1 and y(1)
i = −1

are

a(1)
− 1 + z1 > −(a(1)

−1y
(1)
i−1 + a(1)

1 y(1)
i+1), (5)

and

a(1)
− 1 − z1 > a(1)

−1y
(1)
i−1 + a(1)

1 y(1)
i+1, (6)

respectively. Set

B(1)(+) =


y(1)
1 y(1)y(1)

2 : y(1)
1 , y(1)

2 ∈ {−1, 1}

satisfy (5), y(1)
= 1


,

B(1)(−) =


y(1)
1 y(1)y(1)

2 : y(1)
1 , y(1)

2 ∈ {−1, 1}

satisfy (6), y(1)
= −1


.
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The basic set of admissible local patterns of the first layer is
denoted by B(1)

= (B(1)(+), B(1)(−)). The solution space Y of
(1) is then described as

Y = {y = (y(1)
i y(2)

i )i∈Z : y(2)
i � y(1)

i−1y
(1)
i+1 ∈ B(2), y(1)

i−1y
(1)
i y(1)

i+1 ∈B(1)
}.

Since the inequalities (3), (4), (5), and (6) are all linear, each
component of the basic set of admissible local patterns, that
is, B(1)(+), B(1)(−), B(2)(+), and B(2)(−), satisfies the so-
called linear separation property (cf. Ban et al., 2009, Hsu,
Juang, Lin, & Lin, 2000, Lay, 1992). More precisely, let V =

{(−1, −1), (−1, 1), (1, −1), (1, 1)} be a subset of Z2 and let B∗ be
the embedding of patterns in B without a centered pattern in Z2,
where B = B(1)(+), B(1)(−), B(2)(+), B(2)(−). For instance, if

B = {
−

− −
,

−

− +
,

−

+ −
},

then B∗
= {(−1, −1), (−1, 1), (1, −1)}. The linear separa-

tion property indicates that B is a subset of the basic set of
admissible local patterns of (1) if and only if there is a line
separating B∗ and V \ B. Fig. 2 asserts that there are only 6
different geometrical structures satisfying the separation prop-
erty. Namely, there are 12 packs of admissible local patterns B ∈

{B(1)(+), B(1)(−), B(2)(+), B(2)(−)}.
Let P8 = {(a(2), b(2)

−1, b
(2)
1 , z(2), a(1), a(1)

−1, a
(1)
1 , z(1))} denote the

parameter space of (1). Theorem 2.1 asserts that P8 can be
partitioned into finitely many subregions so that two templates
in the same partition exhibit the same basic set of admissible
local patterns. Namely, T1, T2 are located in the same subregion
if and only if Y1 = Y2, where Yi is the solution space of (1)
corresponding to the template Ti for i = 1, 2. To see this, define
ξ1, ξ2 : {−1, 1}Z2×1 → R by

ξ1(w1, w2) = a(1)
−1w1 + a(1)

1 w2,

ξ2(w1, w2) = b(2)
−1w1 + b(2)

1 w2.

Since (3) and (4) partition the a(2)–z(2) plane into 25 regions, the
‘‘order’’ (i.e., the relative position) of lines a(2)

− 1 + (−1)ℓz2 =

(−1)ℓξ2(y
(1)
i−1, y

(1)
i+1), ℓ = 1, 2, can be uniquely determined accord-

ing to the following procedures:

(1) The signs of b(2)
−1, b

(2)
1 (i.e., the parameters are positive or

negative).
(2) Themagnitude of b(2)

−1, b
(2)
1 (i.e., |b(2)

−1| > |b(2)
1 | or |b(2)

−1| < |b(2)
1 |).

This partitions the a(2)–b(2)
−1–b

(2)
1 –z(2) plane into 8 × 25 = 200

subregions. (Recall that a(2)
− 1 + (−1)ℓz2 = (−1)ℓξ2(y

(1)
i−1, y

(1)
i+1),

ℓ = 1, 2, y(1)
i−1, y

(1)
i+1 ∈ {−1, 1}.) Similarly, the a(1)–a(1)

−1–a
(1)
1 –z(1)

plane is partitioned into 200 subregions. Hence the parameter
spaceP8 is partitioned into less than 40,000 equivalent subregions.

Theorem 2.1. There is a positive integer K and a unique set of open
subregions {Pk}Kk=1 satisfying

(i) P8 =
K

k=1 Pk.
(ii) Pi


Pj = ∅ if i ≠ j.

(iii) Templates T, T′
∈ Pk for some k if and only if B(T) = B(T′).

2.2. Spatial complexity of two-layer neural networks

This subsection is devoted to the discussion of the behavior
exhibited by MNNs. First the structure of the solution space and
output space are investigated. It is shown that the solution space
Y is a topological Markov chain while the output space Y(2) is
a so-called sofic shift space in symbolic dynamical systems. After
elucidating the topological structure, it was followed by the study
of the spatial complexity of the solution space and output space.
Herein by spatial complexity we mean the topological entropy, a
quantity that measures the growth rate of the number of patterns
when enlarging the size of the lattice.

In order to investigate the structure of the solution space, we
assign the local patterns an ordering since the solution space Y
is determined by the basic set of admissible local patterns, and
then define the ordering matrix to clarify the global patterns in the
solution space. The ordering matrix of the two-layer NNs which is
defined by X2 is given in Box I. It is seen that X2(p, q) consists of
two local patterns in B(2), and X2 is self-similar; more specifically,
if we write X2 =


X2;11 X2;12
X2;21 X2;22


, where X2;ij is a 4 × 4 matrix for

all i, j, then the bottom patterns of X2;ij(p, q) and X2;i′j′(p, q) are
identical for all i, i′, j, j′, p, q. Let

a00 = −−, a01 = −+, a10 = +−, a11 = ++, (7)

define

ai1i2ai′2 i3 = ∅ ⇔ i2 ≠ i′2. (8)

If ai1i2ai′2 i3 ≠ ∅, then it is a pattern with size 3 × 1 and denoted by
ai1i2i3 . The ordering matrix of the first layer is defined by

Moreover, applying the matrix product to X1 shows that

stores all patterns with size 4 × 1.
To investigate the complexity of MNNs, we introduce the

transition matrix first. As the ordering matrix records the behavior
of the global patterns, the transition matrix relates to the number
of global patterns. Suppose B(T) = (B(1), B(2)) is the basic set of
admissible local patterns of (1) with respect to the template T. The
transition matrix T is defined by

T(i, j) =

1, pi, pj ∈ B(2) and αi−1αj−1αi+1,

αj−1αi+1αj+1 ∈ B(1)
;

0, otherwise;
(9)

herein pk is defined in (2) and is presented as αk � αk−1αk+1 for
k = 1, . . . , 8. Furthermore, the transition matrix of the second
layer T2 ∈ M8×8({0, 1}) is defined by

T2(i, j) = 1 if and only if pi, pj ∈ B(2) (10)

while the transition matrix of the first layer T1 ∈ M4×4({0, 1}) is
defined by

T1(i, j) = 1 if and only if X1(i, j) ∈ B(1). (11)

The discussion above demonstrates that T 2
1 stores all admissible

patterns of length 4; denote T 2
1 = (Ti,j)2i,j=1 as four smaller 2 × 2

matrices. Define T 1 by

T 1(p, q) = Ti,j(k, l), where p = 2i + j − 2, q = 2k + l − 2. (12)
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Fig. 2. The basic set of admissible local patterns is constrained from the linear separation property. In other words, there are only 6 combinations for the choice of local
patterns without centered entry.
Box I.
A straightforward examination from the structure of the ordering
matrices X1 and X2 asserts Theorem 2.3, which decomposes T into
the product of T1 and T2. Before presenting the theorem, two kinds
of products of matrices are defined as follows.

Definition 2.2. Suppose M ∈ Mk1×k2(R) and N ∈ Mℓ1×ℓ2(R). The
Kronecker product (or tensor product)M ⊗ N ofM and N is defined
by

M ⊗ N = (M(i, j)N) ∈ Mk1ℓ1×k2ℓ2(R). (13)

Suppose P,Q ∈ Mr×r(R). TheHadamard product (or inner product)
P ◦ Q of P and Q is defined by

(P ◦ Q )(i, j) = P(i, j)Q (i, j). (14)

Theorem 2.3. Suppose T is the transitionmatrix of (1), and T1 and T2
are the transition matrices of (1) with respect to the first and second
layer, respectively. Let T 1 be defined as in (12). Then

T = T2 ◦ (E2 ⊗ T 1), (15)

where Ek is a k × k matrix with all entries being 1’s.

As has been demonstrated in Ban et al. (2012, 2009), Juang
and Lin (2000), the solution space of a multi-layer cellular neural
network is a so-called shift of finite type (SFT, also known as a
topological Markov shift) in the symbolic dynamical systems, and
the output space is a sofic shift (sofic), which is the image of an
SFT under a surjective map. We give a brief elucidation about the
fact that the output space Y(2) is a sofic shift to make the present
manuscript self-contained. A detailed instruction for the symbolic
dynamical systems is referred to Lind and Marcus (1995).

A labeled graph G = (G, L) consists of an underlying graph
G = (V, E) and the labeling L : E → A which assigns to each
edge a label from the finite alphabet A, where V and E refer to the
sets of vertices and edges, respectively. A sofic shift X is defined by

X = {(ωi)i∈Z : ωi = L(ei), ei ∈ E, ter(ei) = init(ei+1)}

for some labeled graph G, where ter(e) and init(e) mean the
terminal and initial vertices of the edge e ∈ E , respectively.
Without loss of generality, we may assume that there is at most
one edge connecting two vertices. The transition matrix T of the
labeled graph G is indexed by the vertices V and T(p, q) = 1 if
and only if there is an edge from p to q. Set the alphabet A =

{a00, a01, a10, a11}, where aij is defined in (7).
Notably, the transition matrix T is not capable of recording the

exact number of those paths carrying different labels in general. In
other words, T cannot reflect the spatial complexity of the output
space Y(2) properly. The main difficulty is that a labeled path may
be recorded several times in the transition matrix. To overcome
this, we introduce the symbolic transition matrix.

Define the symbolic transition matrix as

S =


a00 a01
a10 a11


⊗ E4


◦ T, S(i, j) = ∅ if T(i, j) = 0. (16)
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Let V = {p1, . . . , p8}, and eij ∈ E if init(eij) = pi, ter(eij) = pj and
T(i, j) = 1. Define L : E → A by

L(eij) = ai j, where k =


k − 1
4


,

where ⌊·⌋ is the Gauss function. Let G = (G, L) be the labeled
graph with an underlying graph G = (V, E) and labeling L. It is
seen that the output space Y(2)

= X is the sofic shift defined by G.
This demonstrates Theorem 2.4.

Theorem 2.4. The output space Y(2) is a sofic shift.

One of the most frequently used quantums for the measure of
the spatial complexity is the topological entropy, which measures
the growth rate of the number of global patterns with respect to
the size of lattices. Let X be a symbolic space and let Γn(X) denote
the number of patterns in X of length n. The topological entropy of
X is defined by

h(X) = lim
n→∞

logΓn(X)

n
, provided the limit exists.

The spaceX is called pattern formation if h(X) = 0, and spatial chaos
otherwise. Similar to Ban et al. (2009), it can be verified that the
topological entropy of the output space of (1) is h(Y(2)) = log ρT if
the labeled graph constructed from T is right-resolving, where ρT is
the spectral radius of T. Here a labeled graph G = (G, L) is called
right-resolving if the restriction of L to EI is one-to-one, where EI
consists of those edges starting from I .

If G is not right-solving, there exists a labeled graph H , derived
by applying the subset construction method (SCM) to G, such that
the sofic shift defined by H is identical to the original space. The
new labeled graph H = (H, L′) is constructed as follows.

The vertices I of H are the nonempty subsets of the vertex set V
of G. If I ∈ V ′ and a ∈ A, let J denote the set of terminal vertices of
edges in G starting at some vertices in I and labeled a, i.e., J is the
set of vertices reachable from I using the edges labeled a. There are
two cases.

(1) If J = ∅, do nothing.
(2) If J ≠ ∅, J ∈ V ′ and draw an edge in H from I to J labeled a.

Carrying this out for each I ∈ V ′ and each a ∈ A produces the
labeled graphH . Then, each vertex I inH has atmost one edgewith
a given label starting at I . This implies that H is right-resolving.

Theorem 2.5 (Lind & Marcus, 1995). Suppose a labeled graph G =

(G, L) is not right-resolving, and H = (H, L′) is a right-resolving
labeled graph constructed via the SCM. Then the sofic shifts defined by
G and H are identical.

The above illustration shows that the topological entropy of the
output space is related to the transition matrix.

Theorem 2.6. Let G be the labeled graph obtained from the transition
matrix T of (1). The topological entropy of the output space Y(2) is

h(Y(2)) =


log ρT, if G is right-resolving;
log ρH, otherwise; (17)

where H is the transition matrix of the labeled graph H which is
obtained by applying the SCM to G.

We conclude this subsection by considering the following
example.

Example 2.7. Suppose 0 < −a(1)
1 < −a(1)

−1 and 0 < −b(2)
1 <

−b(2)
−1. Pick [m, n] = [2, 3] in the a(1)–z(1) plane and [m, n] =

[2, 2] in the a(2)–z(2) plane. (For instance, T = (A, B, z) with
A1 = (2.2, 1.7), A2 = (−4, −2), B = (−2.6, −1.4), and z =
(−1.2, 0.3).) The basic sets of admissible local patterns for the first
and second layers are

B(1)
= {− + −, − + +, + − +, + − −, − − +}

and

B(2)
=


+

− −
,

+

− +
,

−

+ +
,

−

+ −


,

respectively. The transition matrices for the first and second layer
are

T1 =

0 1 0 0
0 0 1 1
1 1 0 0
0 0 0 0

 and

T2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


respectively. Observe that

T 2
1 =

0 1 0 1
1 0 1 0
0 1 1 1
0 0 0 0

 ⇒ T 1 =

0 1 1 0
0 1 1 0
0 1 0 0
1 1 0 0

 .

Therefore, the transitionmatrix and the symbolic transitionmatrix
of the MNN are

T =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and

S =



∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ a01 ∅ ∅
∅ ∅ ∅ ∅ a01 a01 ∅ ∅
∅ ∅ a10 ∅ ∅ a11 ∅ ∅
∅ ∅ a10 ∅ ∅ a11 ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


respectively. Since the labeled graphG, which is obtained from T, is
not right-resolving, applying the subset construction method to G
derives a right-resolving labeled graphH (cf. Fig. 3). The transition
matrix of H , indexed by p3, p4, p5, p6, {p5, p6}, is

H =


0 0 0 1 0
0 0 0 0 1
1 0 0 1 0
1 0 0 1 0
0 0 1 1 0

 .

Theorem 2.6 indicates that the topological entropy of the output
space Y(2) is h(Y(2)) = log ρH = log g , where g =

1+
√
5

2 is the
golden mean.
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Fig. 3. The labeled graph H obtained by applying the SCM to G. An extra vertex
p9 = {p5, p6} is created so that H is right-resolving.

3. Multi-layer neural networks

This section extends the results that are obtained in the
previous section to N-layer neural networks for N ≥ 2.

Suppose T = (A, B, z) is a template of (1) with respect to a
neighborhood N = {−d, . . . ,−1, 1, . . . , d}. The parameter space
Pn, where n = (2d + 2)N , consists of N subspaces P (k)

=

{(a(k), z(k), b(k)
−d, . . . , b

(k)
d )} = R2d+2 for 2 ≤ k ≤ N and P (1)

=

{(a(1), z(1), a(1)
−d, . . . , a

(1)
d )} = R2d+2. For each k there existsMk ∈ N

and a unique collection of open subsets {P (k)
i }

Mk
i=1 of P (k) such that

(i) P (k)
=
Mk

i=1 P (k)
i.

(ii) P (k)
i


P (k)
j = ∅ if i ≠ j.

(iii) Templates T, T′
∈ P (k)

i for some i if and only if B(T) = B(T′).

Let K = K1 · K2 · · · KN , define

Pi = (P (1)
i1

, . . . , P (N)
iN

), i = iN +

N−1
j=1


(ij − 1)

N
ℓ=j+1

Kℓ


,

for 1 ≤ ij ≤ Kj, 1 ≤ j ≤ N . Theorem 3.1 asserts that the parameter
space Pn has a unique partition.

Theorem 3.1. Let Pn be the parameter space of (1), where n = (2d+
2)N. There is a positive integer K and unique set of open subregions
{Pk}Kk=1 satisfying

(i) Pn =
K

k=1 Pk.
(ii) Pi


Pj = ∅ if i ≠ j.

(iii) Templates T, T′
∈ Pk for some k if and only if B(T) = B(T′).

To clarify the formalism of the ordering matrix XN of N-
layer NNs, we consider the MNNs with respect to the nearest
neighborhood (i.e., d = 1) and start from reconstructing the
ordering matrix X2 as a 16 × 16 matrix by enlarging the size of
local patterns into a rectangle (see Fig. 4). The case where d ≥ 2
can be elucidated analogously. It comes immediately that X2 still
associates with self-similarity. Enlarge the local patterns of (1)
so that they are the patterns in the newly constructed ordering
matrix. For example, if − � −− is an admissible local pattern in
B(2), then the following 8 local patterns are selected: X2(1, 1),
X2(1, 5), X2(2, 3), X2(2, 7), X2(9, 1), X2(9, 5), X2(10, 3), and X2
(10, 7).

Write

X2 =

X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

 ,

Xij =

xij;11 xij;12 xij;13 xij;14
xij;21 xij;22 xij;23 xij;24
xij;31 xij;32 xij;33 xij;34
xij;41 xij;42 xij;43 xij;44


(18)
for 1 ≤ i, j ≤ 4 as Fig. 4. xij;kl means the pattern
ar1r2 ar′2r3
as1s2 as′2s3

, where

r1 =


i − 1
2


, r2 = i − 1 − 2r1, r ′

2 =


j − 1
2


,

r3 = j − 1 − 2r ′

2,

s1 =


k − 1
2


, s2 = k − 1 − 2s1, s′2 =


l − 1
2


,

s3 = l − 1 − 2s′2.

(19)

If ar1r2ar ′2r3 = ∅ or as1s2as′2s3 = ∅, then xij;kl = ∅. Furthermore, if
xij;kl ≠ ∅, then it is denoted by the pattern ar1 ar2 ar3

as1 as2 as3
in {+, −}

Z3×2 .

By implementing the redefined ordering matrix, we can formulate
the explicit expression of the ordering matrix XN of N-layer NNs.
The ordering matrix XN of all possible local patterns in {+, −}

Z3×N

is defined recursively as

XN =

X11 X12 ∅ ∅
∅ ∅ X23 X24
X31 X32 ∅ ∅
∅ ∅ X43 X44

 , (20)

where

Xi1 j1 =


Xi1 j1;11 Xi1 j1;12 ∅ ∅

∅ ∅ Xi1 j1;23 Xi1 j1;24

Xi1 j1;31 Xi1 j1;32 ∅ ∅
∅ ∅ Xi1 j1;43 Xi1 j1;44

 , (21)

Xi1 j1;i2 j2;···;ik jk

=


Xi1 j1;i2 j2;···;ik jk;11 Xi1 j1;i2 j2;···;ik jk;12 ∅ ∅

∅ ∅ Xi1 j1;i2 j2;···;ik jk;23 Xi1 j1;i2 j2;···;ik jk;24

Xi1 j1;i2 j2;···;ik jk;31 Xi1 j1;i2 j2;···;ik jk;32 ∅ ∅
∅ ∅ Xi1 j1;i2 j2;···;ik jk;43 Xi1 j1;i2 j2;···;ik jk;44

 ,

(22)

for 1 ≤ k ≤ N − 2, and

Xi1 j1;i2 j2;···;iN−1 jN−1

=


xi1 j1;···;iN−1 jN−1;11 xi1 j1;···;iN−1 jN−1;12 ∅ ∅

∅ ∅ xi1 j1;···;iN−1 jN−1;23 xi1 j1;···;iN−1 jN−1;24

xi1 j1;···;iN−1 jN−1;31 xi1 j1;···;iN−1 jN−1;32 ∅ ∅
∅ ∅ xi1 j1;···;iN−1 jN−1;43 xi1 j1;···;iN−1 jN−1;44

 ,

(23)

where 1 ≤ ik, jk ≤ 4, and 1 ≤ k ≤ N . The construction contains a
self-similarity property in XN . As discussed in the previous section,
xi1j1;i2j2;···;iN−1jN−1;iN jN means the pattern

(ar11r12ar ′12r13) � (ar21r22ar ′22r23) � · · · � (arN1rN2ar ′N2rN3)

in {+, −}
Z3×N , where ark1rk2ar ′k2rk3 is defined in (8), and

rk1 =


ik − 1

2


, rk2 = ik − 1 − 2rk1,

r ′

k2 =


jk − 1

2


, rk3 = jk − 1 − 2r ′

k2.

The pattern is∅ if ark1rk2ar ′k2rk3 = ∅ for some1 ≤ k ≤ N . Otherwise,
it is denoted by the pattern

(ar11ar12ar13) � (ar21ar22ar23) � · · · � (arN1arN2arN3)

in {+, −}
Z3×N .

The newly defined ordering matrix indicates that its corre-
sponding transition matrix is of larger dimension. Notably, Theo-
rem 3.2 asserts that enlarging the local patterns to be rectangles
helps for the determination of the transition matrix T of the solu-
tion space. The proof is similar to the elucidation in the previous
section and Ban et al. (2009), and thus is omitted.
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Fig. 4. The enlarged ordering matrix of two-layer neural networks.
Theorem 3.2. Suppose T is the transitionmatrix of the solution space
of (1), and Tk is the transition matrix of the kth layer. Then

T = (TN ⊗ E4N−1) ◦ (E4 ⊗ TN−1) ∈ M4n+1×4n+1(R), (24)

where

Tk = (Tk ⊗ E4k−1) ◦ (E4 ⊗ Tk−1) ∈ M4k+1×4k+1(R),

for 3 ≤ k ≤ N − 1, (25)

and

T2 = T2 ◦ (E4 ⊗ T1) ∈ M16×16(R). (26)

In particular, if N = 2, then

T = T2 ◦ (E4 ⊗ T1). (27)

The topological entropy of the output space comes immediately
from Theorem 3.2.

Theorem 3.3. Let G be the labeled graph obtained from the transition
matrix T of (1). The topological entropy of the output space Y(N) is

h(Y(N)) =


log ρT, if G is right-resolving;
log ρH, otherwise; (28)

where H is the transition matrix of the labeled graph H which is
obtained by applying the SCM to G.

4. The asymmetry of a topological entropy diagram

This section reveals a phenomenon that indicates the influence
of the controlling template to the topological behavior of the
output space, an analogous occurrence that was observed in Ban
et al. (2009).

Consider a two-layer neural network with a controlling tem-
plate B = (b(2)

−1, b
(2)
1 ) satisfying b(2)

1 > b(2)
−1 > 0. Suppose the basic

set of admissible local patterns of the first layer consists of all pat-
terns with size 3 × 1. In other words, there is no constraint for the
input of the second layer. It is seen that, for any region [m, n] in
the a(2)–z(2) plane such that m, n ≥ 1, the topological entropy of
the output space Y(2) is log 2. In this case, the topological entropy
diagram is symmetric, that is, h([m, n]) = h([n,m]) for m, n ≥ 1.
Nevertheless, the symmetry is broken up by a feedback template.
Notably, the topological entropy diagramof single layer neural net-
works is symmetric (cf. Ban & Chang, submitted for publication).
Fig. 5. The topological entropy diagram of the output space might by broken
for MNNs. Consider a two-layer NN with parameter (a(1), z(1), a(1)

−1, a
(1)
1 ) =

(1.5, −2, 2, −4) and (b(2)
−1, b

(2)
1 ) = (1, 3). The topological entropy for each spatially

chaotic region in the a(2)–z(2) plane is h([m, n]) = log t[m,n] , where t[3,1] = t[3,2] =

λ ≈ 1.8019 is the maximal root of x3 − x2 − 2x + 1.

Let (a(1)
−1, a

(1)
1 ) be a pair that satisfies, for example, −a(1)

1 >

a(1)
−1 > 0. Take [m, n] = [2, 3] in the a(1)–z(1) plane. The basic set

of admissible local patterns of the first layer is
{− − −, − − +, + − +, − + −, + + −},

and its corresponding transition matrix is

T1 =

1 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0

 .

Observe that the topological entropy of the space derived by
the first layer is log g . The topological entropy diagram of the
output space, as seen in Fig. 5, is asymmetric. Such a phenomenon
illustrates that the influence of the controlling template cannot be
depreciated.

5. Conclusion

In this paper, we investigate the topological structure of the so-
lution spaceY andoutput spaceY(N) ofmulti-layer neural networks
(1). It is demonstrated that Y is a topologicalMarkov chain and Y(N)

is a sofic shift space in symbolic dynamical systems.More precisely,
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the solution space is presented by a directed graph G, while the
output space is presented by a labeled graph G = (G, L) for some
labeling L. Applying the theory of symbolic dynamics we indicate
that the topological entropy of Y relates to the transition matrix T,
which is obtained from G; meanwhile, the topological entropy of
the output space corresponds to the symbolic transition matrix S,
which is obtained from G.

The ordering matrix of the solution space Y exhibits the self-
similarity. Following the structure of the self-similarity is the
recurrence formula of the transition matrix T, this goes to an
algorithm for the computation of the topological entropies of the
solution space and output space for arbitrary number of layers we
are interested.

We remark that the elucidation of the output space Y(N) can
be applied to the investigation of the nth hidden space Y(n) for
1 ≤ n ≤ N − 1. Herein the nth hidden space Y(n) is indicated by

Y(n)
= {(y(n)

i )i∈Z : (y(1)
i · · · y(N)

i )i∈Z ∈ Y}.

Hence we can investigate the inner structure of MNNs and the re-
lation between any two layers. Further discussion is under prepa-
ration.
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