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中文ဇ要

BERT在自然語言處理的領域中是一個強而有力的深度學習的模型，它

的模型架構使得它可以透徹的了解我們使用的語言，在不同的任務中像是

機器翻譯或是問答任務上都有很不錯的成果。在本篇論文中，我們證實了

BERT 可以使用數據形態的資料去預測結果，並且實際上做了一個例子，

探討它在數據型資料輸入時的表現，我們將美國職棒大聯盟球員的數據作

為輸入，使用 BERT進行關於球員未來全壘打表現的預測，並且將其預測

結果與 LSTM以及現行球員表現預測系統 ZiPS做比較。我們發現在 2018

年的測試資料中，使用 BERT預測的準確率高達 50%，LSTM有 48.8%而

ZiPS只有 25.4%；在 2019年的測試資料中，雖然表現略有下滑，但 BERT

的 44.4%準確率仍舊高於 LSTM的 42.8%以及 ZiPS的 30.1%。總體來說，

BERT能夠對於數據形態的資料有深度的了解，使得它的表現比起傳統的方

式來說更加穩定和精確，同時我們也找到了球員表現預測的一個新方法。

關ᓉϪ：BERT、棒球、深度學習、長短期記憶模型、神經網路、球員

表現預測、預測系統、Transformer
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Abstract

BERT is a powerful deep learning model in nature language processing. It

performs well in various language tasks such as machine translation and question

answering since it has great ability to analyzeword sequence. In this paper, we show

that BERT is able to make prediction with numerical data input instead of text. We

want to predict output with numerical data and verify its performance. In particular,

we choose the home run performance prediction taskwhich input the stats of players

in Major League Baseball. We also compare result of BERT-based approach with

the performance of LSTM-based model and the popular projection system ZiPS.

In testing data of year 2018, Bert-based approach reaches 50.6% accuracy while

LSTM-based model has 48.8% and ZiPS gets only 25.4% accuracy rate. In 2019,

BERT achieves 44.4% accuracy but 42.8% of LSTM-based and 30.1% of ZiPS.

BERT is not only able to handle the numerical input with time series, but also

performs stably and better than those traditional methods. Moreover, we found

a new effective way in player performance prediction.

Keywords—BERT, baseball, deep learning, long short-termmemory, neural network,

player performance prediction, projection system, Transformer
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Chapter 1

Introduction

In recent years, deep learning approaches achieve unprecedented performance on a broad

range of problems from various area. Sequential deep learning model such as Recurrent Neural

Networks (RNN) [31] and Long Short-Term Memory (LSTM) [13] have proven very powerful

for applications in the data with time series. In 2017, Google announced a whole new model

called “Transformer” [37] which based on attention and has impressive performance in Natural

Language Processing (NLP) tasks. Bidirectional Encoder Representations from Transformers

(BERT) [7] is a modified model from Transformer. It reached state-of-the-art in many tasks

such as neural machine translation and question answering problem. BERT has ability to get

information about sequence input with its good embedding. Since BERT is able to predict

language sequence data so well, we are curious about the input of numeric sequence data. We

want to use the ability about BERT dealing with language to solve the problem with number

sequence. It will be a new effective way in the prediction of numeric data with time series by

the structure of BERT. Therefore, we aim to investigate the performance of BERTwhenwe input

the numerical data in this paper. In particular, we focus on the prediction of player performance

in Major League Baseball (MLB).

Baseball is one of themost popular sports around theworld. People watch the ball game and

talk about players and teams they like after a busy day. There are several organized professional

baseball leagues such as MLB and Minor League Baseball in the United States and Canada and

Nippon Professional Baseball (NPB) in Japan. MLB is the most well-known baseball league

around the world. Since professional baseball players are increasingly guaranteed expensive

long-term contracts, team managers (such as team owner or coaches) tend to understand each

1
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player’s status beforehand. Therefore, it is important to predict players’ performance for the

coming year. Then, team managers could figure out who have the potential to be the rising star,

and who should be traded immediately. Therefore, performance prediction system is valuable in

practical since it provides additional information for team managers to make a better decision.

Most performance prediction systems are constructed based on historical data of each player. In

other words, most prediction systems are constructed based on regression analysis or seasonal

time series analysis. Hence, we also want to create a new prediction system by deep learning.

In this paper, we only predict individual baseball players’home runs (HR) in MLB because

it is one of the most critical index to understand the power and the talent of a baseball player. We

use BERT and propose several deep learning models based on the LSTM structure. To evaluate

the capacity of our models, we compare our prediction results to other prediction systems used

in practical.

Our code is available athttps://github.com/hsuanchengsun/BERT-baseball.

2

https://github.com/hsuanchengsun/BERT-baseball
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Chapter 2

Related Work

In this chapter, we talk about related work in two parts: numerical data applied on BERT

and using neural network to predict baseball players’ stats. However, there is less case about

the first topic. We believe that there will be more and more research on this in the future.

On the other topic, Lyle (2007) had used artificial neural networks and other machine

learning methods to predict six of hitter’s stats [21]. He focused on ensemble learning and

compared the results with the other prediction systems. The performance of his methods

outperforms the prediction system in three items.

Koseler and Stephan (2017) mentioned that there is only 9% of baseball analysis research

that neural network is one of their method [17]. They believed that the situation will be changed

in the future since deep learning is an effective way in application.

3
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Chapter 3

Deep Learning

Artificial intelligence (AI) technology has been an important study since late of last century

which aim to make computer acting like a human. We started from some simple model [24].

We multiplied input with weights to fit the real output. However, it is not easy to modify the

weights in model with complex structure after we measured the difference between prediction

and real answer. Back propagation announced in 1986 [31] had solved this problem and be the

effective way to update parameters in a deep structure. Deep learning are not a robust method

until database and hardware update. It shows the ability to handle huge amount of data with

systematic model. In 2012, AlexNet [18], which based on convolution neural network (CNN)

[19], became the champion of the Large Scale Visual Recognition Challenge (ILSVRC) which is

the biggest competition of object detection and image classification in the world. AlphaGo [32]

also beat professional go player by the power of deep learning. Nowadays, deep learning is

used in variety of field, such as object detection [29], natural language processing (NLP) [28]

and image classification [11].

Generally, deep learning is a structure of artificial neural network (ANN) [15] with at least

one layer. Before taking a close look at deep learning structure and how does it work, we need

to know about the concept of neural network. The basic idea is to make computer be able to

simulate what human think. After seeing a picture or listening to people, we will judge these

thing and know the exact meaning of them. That process just like a function. Deep learning is

trying to simulate the pattern from our brain to the computer. We aim to develop a function f to

copy all the things, for example,

f (“I love you.”) =“I love you, too.”

4
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No matter the input is a picture or a sentence, we can all have a suitable output. But

what is the system in our brain? Well, we got an answer from the researches in biology [20].

Neuroscientists found that there is a complex connection between different neurons in our

bodies. The huge neural network help human to think and life. Hence, we would like to copy

the structure on the computer and that is ANN. We hope deep learning is the function such that

computers have the same activities as human. By the good device like graphic processing unit

(GPU) and ability to build larger datasets, our result gets better day after day.

3.1 Neuron and Neural Networks

Figure 3.1: A neuron in neural netwoks

As shown in Figure 3.1, suppose x1, x2 and x3 be the input of the neuron in R. Then we

will give three random independent weights w1, w2 and w3 to each of them, respectively, which

would be adjusted while training the model. There is also a flexible bias b in the neuron, so we

have the operation w1x1 + w2x2 + w3x3 + b now. Finally, an activation function ϕ will make

the output h for the neuron i.e.

h = ϕ(
3∑

i=1
xiwi + b)

A full picture of an example of neural network structure is showed in Figure 3.2. It has

three parts for total: input layer, hidden layers and output layers in the left side, middle and

5
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Figure 3.2: The structure of neural netwoks

right side, respectively. It presents that the output is predicted by the neurons in hidden layers

after input data are given. We focus on how to use lots of neurons in hidden layers to get the

outputs corresponding to the inputs. The framework of hidden layer can be complex or simple.

Building such kind of deep learning model is not difficult. First, we have to decide the amount

of layers and neurons. Secondly, we use input data doing supervised learning. Finally, we set

a loss function to evaluate the prediction and update the parameters to get a better result. I will

explain all the detail step by step in the following chapter.

3.2 Activation Function

Activation function takes an important role in whole process which make the output being

nonlinear to simulate the neurons behavior of human. Moreover, it produces a better result to

the data in real world since most of situations are not able to be predicted linearly. Here we show

some common activations functions:

1. Sigmoid

Equation:

sigmoid : R → (0, 1), sigmoid(x) =
1

1 + e−x

6
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Graph:

Figure 3.3: Sigmoid function

2. Hyperbolic tangent (tanh)

Equation:

tanh : R → (−1, 1), tanh(x) =
(ex − e−x)

(ex + e−x)

Graph:

Figure 3.4: Hyperbolic tangent(tanh)

7
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3. Rectified Linear Units (ReLU) [25]

Equation:

relu : R → [0,∞), relu(x) =

⎧
⎪⎨

⎪⎩

0 for x < 0

x for x ≥ 0

Graph:

Figure 3.5: Rectified Linear Units(ReLU)

4. Softmax

Equation:

softmax : Rn → Rn, softmax(x)i = exi
n∑

j=1
exj

for i = 1, ..., n where x = (x1, ..., xn)

Of course, choosing linear function is fine. Generally, we choose the same activation

function for every neurons in hidden layers and one for the final neuron depend on our output.

Now each neuron has its own output from the inputs. This process from the input layer to

output layer through hidden layers is called feed-forward. Also, each output will be the input of

all neurons in next layer, which connect whole networks. Hence, the structure shown in Figure

3.2 is also called fully connected feed-forward neural network.

8
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3.3 Loss Function

What should we do next? Remember that keeping the computer fitting the truth is our

priority. After deciding the model structure, we have lots of parameters which equals to weights

and bias, denoted by

θ = {wi, bj}, 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N

Then we do the addition and multiplication on them and get output after activation function.

Denoted by fθ, the final prediction of the neural network under the parameter set θ . Therefore,

finding the best set of parameters θ∗ to make the forecasting fθ∗ as close as possible to truth is

our goal. But first of all, we need to define what is“close”to the answer y and our output ŷ. Here

we need loss function L being the judge to tell us the quantization of distance between them.

The exact number of L(θ) : Rm+n → R mention the loss between the output under parameter

set θ and the answer. Hence L(θ∗) will be our target which is the minimum number among all

sets. We show some common loss functions below:

1. Mean Square Error (MSE)

Equation:

MSE(θ) = 1
k

k∑
i=1

∥yi − fθ(xi)∥2

where k is the total number of data.

2. Mean Absolutely Error (MAE)

Equation:

MAE(θ) = 1
k

k∑
i=1

|yi − fθ(xi)|

where k is the total number of data.

3. Binary Cross Entropy (BCE)

Equation:

BCE(θ) = 1
k

k∑
i=1

[yi(log(fθ(xi))) + (1− yi)(1− log(fθ(xi)))]

where k is the total number of data and each yi = 0 or 1.

9
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4. Categorical Cross Entropy (CCE)

Equation:

CCE(θ) = 1
k

c∑
j=1

k∑
i=1

yji(log(fθ(xji)))

where k is the total number of data and c is the total categories of answers.

3.4 Gradient Decent and Backpropagation

After having L(θ), we need to adapt whole parameters to lower the loss. The way we used

is called gradient decent. Here is an example for only one parameter in θ, see Figure 3.6.

Figure 3.6: Gradient decent with one parameter

Suppose loss function L is the green line. X axis is the weight θ and Y axis denote the

L(θ). Our goal is to get the minimum value of L(θ). Obviously, there are two pointsA(a, L(a))

and B(b, L(b)) located at the right and left side of the minimum location of L, respectively. We

hope to move a and b to the minimal spot on loss function. Since the slope L’(a) > 0 at A,

a − L’(a) will be left of A which has a chance to get a smaller loss. Similarly, we can shift B

right to reduce the loss by b−L’(b) because L’(b) < 0. Hence, we obtain a conclusion quickly

that we can have θ with lower loss by deducting the derivative for the parameter. This is the

core concept of gradient decent. If we have several parameters, we can calculate the gradient

i.e. partial derivatives of each weight and bias. The following shows the process:

10
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Suppose we have parameters set θ = {w1, w2, ..., wm, b1, b2, ..., bn} and a loss function L.

We also give learning rate η ∈ R to control the speed of gradient decent. If the learning rate is

too big, then we may not able to reach the minimum loss. On the other side, we will waste a

lot of time if learning rate is too small. Hence, deciding a suitable learning for deep learning is

important. For general siuation, we start the learning rate from a small value. The gradient∇L

and the new θ will be as following:

∇L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L
∂w1

∂L
∂w2

...

∂L
∂wm

∂L
∂b1

∂L
∂b2

...

∂L
∂bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θnew =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wnew
1

wnew
2

...

wnew
m

bnew1

bnew2

...

bnewn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wm

b1

b2

...

bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− η∇L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 − η ∂L
∂w1

w2 − η ∂L
∂w2

...

wm − η ∂L
∂wm

b1 − η ∂L
∂b1

b2 − η ∂L
∂b2

...

bn − η ∂L
∂bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We usually use optimizer to adjust learning rate to help gradient descent finding the minimum

value faster. There are two kind of method, one is changing through time, the other changes

learning rate depend on the gradient [30]. Moreover, that is an efficient way to start the gradient

decent from the final layer to the beginning. We can use chain rule to calculate the gradient of

former layers easily. This procedure is called backpropagation [9] [31], which make the whole

parameters be well adjusted.

3.5 Overfitting, Dropout and Batch Normalization

Training model is like teaching a student. We want this student have ability to solve the

future problem by learning from training input. However, the student might be too smart. Our

model can know everything about training data but it has no idea about how to predict testing

stats. Overfitting is called to describe the phenomenon. It can be observed by performing

11
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perfectly during training with high accuracy and low loss but the prediction of testing data

reflects low accuracy and high loss. Figure 3.7 shows the case of overfitting. Suppose orange

line is the true function. We can have a great result to classify all the data with this line and it

is the target of our model. However, our model learned the function as blue line which pass all

the training data points. Clearly, it cannot predict testing data point very well. Overfitting is

caused by a lot of situations. For example, lack of training data lead models to memorize them

all. The complicated architecture of model may generate this problem [40]. Hence, we have to

find some way to deal with it. These methods are called regularization.

Figure 3.7: Overfitting

Traditionally, we add 1-norm(L1) and 2-norm(L2) of parameters to loss function as the

penalty to let them being small [26]. L1-regularlizaion and L2-regularlizaion force the model

not to weight too much on some features in training data which prevent overfitting. Dropout [12]

is another simple way to avoid overfitting. It is similar to L1- and L2-regularlizaion which make

model not to rely on some special features and it has less calculation then them. We are used to

send a batch of data once a time instead of one data when we train the model. During each batch,

we will randomly choose some outputs in hidden layer to be the input of next layer instead of all.

Parameters in this thinned sub-network will be update by back-propagation while other masked

12
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ones stay the same. The process will be applied repeatedly which can be write as following:

rlj ∼ Bernoulli(p)

ĥl = r ∗ hl

h(l+1)
i = ϕ(

N∑

k=1

ĥl
kw

l+1
k + b(l+1)

i )

where rlj denote the j-th random variable produced by Bernoulli distribution in the l-th hidden

layer with probability p, 1 ≤ l ≤ L and 1 ≤ j ≤ N . hl is the output of l-th hidden layer

and the k-th element denotes as ĥl
k. ∗ is the element-wise product. wl+1

k and b(l+1)
i denotes the

weights and bias in the i-th neuron in (l+1)-th hidden layer. ϕ denotes the activation function.

When predicting with the model, the masked information is not feasible. Hence, we use dropout

by multiplying each output of neuron in hidden layers by p to get the same expected value in

training [34].

Batch normalization (BN) is the other regularization way though it is designed to solve the

convergence of deep learning model [14]. For a simple way, we take the hidden layer as matrix

computation. Suppose we have n input batch {x1, · · · , xn} with dimension d during training.

LetX be the iuput matrix with i-th column vector be xi,W be the weights matrix and B be the

bias matrix, 1 ≤ i ≤ n. Then the BN will be:

Z = W ·X +B

µ =
1

n

n∑

i=1

zi

σ2 =
1

n

n∑

i=1

(zi − µ)2

ẑi =
zi − µ√
σ2 + ϵ

ẑ′i = γ ∗ ẑi + β

where zi is the i-th column of Z, ϵ > 0 to avoid σ = 0, γ and β are the parameter to be learned,

and ∗ denotes the element-wise product. The final normalized output ẑ′i can be applied activation

function to be the input of next layer. While testing, we do not have mean and variance. We use

global mean and variance from the whole data or use moving average and variance in training

13
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process. Our model can be more stable, converge faster if we operate BN. Also, the demand of

regularization reduces.

14
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Chapter 4

Recurrent Neural Networks

An old school pun says that“Why shouldn’t we believe a man in bed?”The answer is

that“Because he is lying.”For people know English, this is a common joke which the word has

two meaning. However, it is a tough problem for computer to understand such complex thing

with order. As mention in last chapter, deep learning is just like a function. Our input can be

numbers, pictures and also sentence. How can neural network have ability to deal with text or

data with time series? Well, recurrent neural network (RNN) [31] is an useful method to handle

the problem. A RNN model get information from every past time input and has a strong ability

to obtain the knowledge behind the squence. Hence RNN can make a good prediction about

sequential data. It has a wide variety of application, such as knowing tomorrow’s weather by

information of past n days, output a sentence from the previous one and generating a paragraph

from a topic input. I will show all the detail in the following sections.

4.1 RNN Cell

Different form the neuron in normal neural networks, we call it a“RNN cell”as a basic

element in RNN, see Figure 4.1. It still contains inputs, weights, output and activation function.

But we have to take data series into account now. Suppose x = {xt}Tt=1 be a sequential data,

xt ∈ Rn for all 1 ≤ t ≤ T, n ∈ N. Let ht be the hidden state at time t, ht ∈ Rm for all 0 ≤ t ≤ T ,

m ∈ N, and h0 = 0. At each time t, we input the corresponding data xt and the hidden state

ht−1 which produced by the cell at time t − 1. Hidden state will store the knowledge of input

before time t and keep updating itself for each input after t. Weights for the data input and state

15
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Figure 4.1: The structure of an RNN cell

and bias would be the same through time. General equation for the k-th cell status at time t can

be written as:

ht
k = ϕk(xt, ht−1) = ϕk(W T

x · xt +W T
h · ht−1 + bk).

where n is the dimension of data andm is the dimension of hidden state. Wx ∈ Rn×1 is the data

input weights metric andWh ∈ Rm×1 is the weights metric of hidden state input. bk denotes the

bias in ϕk.

Hidden state has not only the result of the cell, but also the information from the other cells

in the same layer. Here is an easy example in Figure 4.2. For simply, weights and bias are not

shown in the picture.

Suppose we have two cell ϕ1 and ϕ2 in a layer. x = {xt}Tt=1 is a sequential data in R3.

At each time t, both cells will get input from the original data xt
1, x

t
2, x

t
3 and the hidden state

ht−1
1 , ht−1

2 , 1 ≤ t ≤ T . The output ht
1 from ϕ1 will be:

ht
1 = ϕ1(

3∑
i=1

wxi · xt
i +

2∑
i=1

whi · ht−1
i + b1)

Similarly, the output ht
2 from ϕ2 will be:

ht
2 = ϕ2(

3∑
i=1

wxi · xt
i +

2∑
i=1

whi · ht−1
i + b2)

16
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Figure 4.2: Multiple cells in one layer

Actually, hidden state can be the input for activation functions to generate output depend

on our tasks. In the language model, we can see every word it produced. Or we just need the

final result for weather prediction.

Figure 4.3: Unfolded RNN cell

As the structure on the left side in Figure 4.3, we use one RNN cell in the model. y ∈ RT

and x ∈ RT are the prediction and input vector, respectively. We can also unfold the operation

in RNN cell as the right side in Figure 4.3. It is similar to the normal NN but all the process

from time 1 to time T take place in one cell.

17
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Then we can define the layer ϕ : Rn × Rm → Rm by

ϕ(xt, ht−1) = ϕ(W T
x · xt +W T

h · ht−1 + b)

where n is the dimension of data andm is the dimension of hidden state, n, m ∈ N. xt and ht−1

are same as above. Wx ∈ Rn×m is the data input weights metric andWh ∈ Rm×m is the weights

metric of cell status input. b ∈ Rm denotes the bias. Moreover, let f be whole model which

have multiple layers. If we collect all the hidden state at time t, we can write the prediction at

time by

yt = f(xt, ht−1)

The architecture of RNN is similar to NN, only the calculation of cell is differ from neuron.

However, the structure of RNN in Figure 4.3 would make the model going too deep. This led

to gradient vanishing [10] which is the reason of overfitting while training the model. To solve

the unstable problem, we need a powerful model.

4.2 Long Short-Term Memory

The architecture of Long Short-TermMemory (LSTM) [13]which enhance the performance

as well as deal with the unstable problem of original RNN [10]. Besides the initial cell unit,

there are three more ”gate” in a LSTM cell which be coefficients in (0, 1) to adjust the input.

Moreover, it outputs not only a cell status but also a memory from this cell. These improvements

help LSTM know the information have to be forgotten, others need to be remembered.

At first we introduce gate in LSTM, as shown in Figure 4.4. Similarly to RNN cell, LSTM

cell follows the recursive way. At time t, we have:

f t = σ(Wxf · xt +Whf · ht−1 + bf )

it = σ(Wxi · xt +Whi · ht−1 + bi)

ot = σ(Wxo · xt +Who · ht−1 + bo)

where f t, it, ot are called forget gate, input gate and output gate, respectively. xt is the data

input at time t, and ht−1 is the hidden state at time t − 1. They are all independent neuron, so

they have different weight metrics and bias. σ denotes sigmoid function. Finally, let f be all the

layers in RNN, we can collect all input at time t. The t-th prediction ŷt will be ŷt = f(xt, ht−1)

18
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Figure 4.4: LSTM cell structure

Then these values will be used in the next step to produce cell state and hidden state:

C̃t = tanh(Wxc · xt +Whc · ht−1 + bc)

Ct = f t · Ct−1 + it · C̃t

ht = ot · tanh(Ct)

where C̃ is another neuron in the cell. Ct is the cell state which stores information to build

hidden state ht. It will not be input to other cells. Hidden state will share with other cells as

usual. Generally, LSTM uses cell state to decide hidden state. It has three gates which are the

best coefficients to adjust different part in LSTM. Teaching machine to know the importance of

knowledge in different time is the purpose of LSTM.

4.3 Attention

Machine translation is one of the most important application in Natural Language

Processing (NLP) projects. We need a sentence output after previous sentence has done. This

kind of task called sequence to sequence(seq2seq) which is a classic problem in translation

model. The unequal length of input and output sentence is the main difficulty. For example,
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『這是一本書』in Chinesemeans ”This is a book” in English. Different length input makes RNN

and LSTM cell had a hard time. In 2014, a research team from Google announced an encoder-

decoder liked neural network which solved sequence to sequence problem perfectly [35]. They

use two LSTM structure which modified the progress from RNN Encoder–Decoder [4] and had

a better performance.

Figure 4.5: Encoder and decoder in seq2seq

Figure 4.5 is the structure of model. The words are the input. Squares in the middle is the

LSTM cell in different time. “EOS” is a token represents “end of sequenc” which mentions

model the sentence ends here. C is the final output from encoder. Each part has its own

RNN framework with different input. Encoder is the first part of model which started from the

beginning to the word before EOS in input. Containing as many as possible useful information

about the input is the role of it. In encoder, the variable-length sequence will be encoded to a

fixed-length vector. Words will be input one by one at each time t. We just need final hidden

C = hTof time T . We consider it as the summary about the input sequence and is helpful for

decoder generates output. Hence, let fe denotes the LSTM in encoder, we have

ht = fe(ht−1, xt)

C = hT = fe(hT−1, xT )

which are same as the process we know in last section.

In the next step, decoder use different RNN model to generate variable-length sequence

from fixed-length vector. It begins from the EOS token in input sentence and stops while

20
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predicting EOS in the output. To distinct different LSTM in encoder and decoder, we set fd

be the LSTM in decoder, st be the cell status and yt be the input at time t. For the hidden state st

at time t, the input for RNN not only include the previous word and cell status but also contain

the summary c we got from encoder. Then the word is predicted by the previous words and C

with softmax. Therefore, we have the equation of hidden state in decoder:

st = fb(st−1, yt, C)

This kind of encoder-decoder model helps advancing the performance in machine translation.

However, it is not efficient to use a static summary c from whole input sentence to predict

one word. As our example,「書本」in Chinese means “book” in English, so they should have

strong connection. But other words may not be helpful to predict ”book”. Therefore, it is useful

if we can take different weights of every words in input sequence. This skills is called attention,

which the decoder will pay attention to those parts in sentence input for they need [2]. First,

we consider bidirectional RNN as the encoder. The original direction of RNN is from time 1 to

time T , so we obtain hidden state from h1
s to hT

s . In some case we need to finish it one more

time on the reverse side, which we get hidden state from hT
r to h1

r . That’s all for bidirectional

RNN. Here we combine ht
s and ht

r together to be ht as the hidden state in encoder. Second, we

calculate the score etj for each hidden state in encoder at time t by

etj = a(st−1, hj), 1 ≤ j ≤ T

where a is called aligned model, which is a number represents how close of your j-th input and

t-th output. The score depends on the relationship of them. Then we find weights αt
j of each ht

b

by

αt
j =

exp(etj)
T∑

i=1
exp(eti)

, 1 ≤ j ≤ T

which is softmax. Last, we obtain attention ct and hidden state st in decoder at time t by

ct =
T∑

j=1

αt
jhj

st = fd(st−1, yt, ct)

This way improves the performance of model in NLP tasks. But there is a question: Can we use

attention without RNN structure? We will talk about this topic in next chapter.

21
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Chapter 5

Bidirectional Encoder Representations

from Transformers

5.1 Word Embedding

In NLP model, our input are usually words, but computers can only accept numbers. How

can we switch words into numerical data for neural networks? This is a tough problem in NLP

field which is called word embedding. We try to develop strong methods transferring words to

numbers which are able to represent our complicated language by numbers. Intuitively, we

use one-hot encoding, which is a n-dimensional vector, to embed the word. For example,

we can count appearance of each word in the data we use. Then we sort the number and let

[ 1, 0, 0, · · · , 0] to be the embedding for the word which shows the most. [ 0, 1, 0, · · · , 0]

for the second most and so on. They are all n-dimensional vector which depend on totally n

independent words. In an easy way, we can just done word embedding for n-dimensional one-

hot encoding randomly to every words. However, this kind of embedding is not useful. Imaging

that we have 10 thousand of words in a text with millions of words. Our input will be too large

and the embedding result may not efficient for other texts. Hence, there are lots of research to

lower the dimension of word vector and try to embed by the relation between words, such as

word2vec [22] [23], GloVe [27] and ELMO [28].
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5.2 Transformer

In 2017, research team from Google announced a whole new model in deep learning called

“Transformer” [37]. It made a huge difference by using nothing about the structure of RNN or

CNN. Transformer only include self attention skill in its encoder and decoder architecture. It

reached the state of the art in machine translation task at that time and became a popular structure

in NLP. Here we introduce the framework.

In the beginning, we talk about the input and output of transformer. Same as other machine

translation task, the original sentence will be input of encoder and the translation will be input

of decoder. While predicting, the output word at time t will be the input at time t+1 to just like

we mention in seq2seq model. This property is called auto-regressive. However, that would

lead to inefficiency during training because a wrong prediction will make the next incorrect one.

The model will take a long time to learn. Hence, we train the model with teacher forcing [38].

In other words, we always input the correct answer no matter what is the output of model to

reduce training time.

Transformer divides every words to sub-word units [39] which is called wordpiece

embedding and switch them to index sequence. For example, ”transformer” will be split to

“trans” and “former” and the sequence will be [1, 2]. By this way, we can easily compose any

word in the world. Then we will give them an index in the beginning and the other one in the

end which represent “start of sequence” (<SOS>) and “end of sequence” (<EOS>). We will set a

maximum number of sequence length and eliminate all the sequence which is longer than that in

the next step. We also fill up every sequence to the maximum length with the index of “padding”

(<pad>). Finally, each token will be embedded to dmodel dimension. Of course we have different

embedding way for different language. Transformer is also able to produce multiple words at the

same time. Suppose input of encoder with dimension N and input of decoder with dimension

M which from the first token to the one before last token. Combining all features above, the

output dimension of transformer equals toM which beginning from the second token to the last

one. Tokens can be decode to the wordpiece from the output.

Besides the word embedding, transformer add the information about position as well.

Positional embedding will be summed with the word embedding, and be the final input. Each

23
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value of positional embedding will be

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

)

PE(pos, 2i− 1) = cos(
pos

10000
2i−1
dmodel

)

for 1 ≤ i ≤ dmodel
2 and 1 ≤ pos ≤ dmodel. The combination of embedding not only make the

model pay attention to the word but also the order. Moreover, they believe this kind of linear

function help model know the relative position.

Figure 5.1: Encoder in Transformer

Next, we explain layer in the encoder. There are two sub-layers in it, first one is multi-head

self attention and another is a fully connected feed-forward neural network (FFN)FD. There is

also a residual connection [11] with layer normalization [1] following each sub-layers. The input

vectors will be separated into three parts: key, value and query by multiplying distinct parameter

matrices here. For example, let x1, x2 and x3 be three input word vectors of dimension dmodel.
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Then we get three query, key and value by:

qi = WQ · xi

ki = WK · xi

vi = W V · xi

for 1 ≤ i ≤ 3 where WQ and WK ∈ Rdk×dmodel and W V ∈ Rdv×dmodel denote the parameter

matrices for three items where dk and dv are the dimension of key and value. Fixed q1, we make

the scaled dot-product attention α1, i by

α1, i =
ki·q1√

dk
for 1 ≤ i ≤ 3

to get the alignment for each key. These alignments will be applied softmax function to be the

attention scores α̂1, i which are the coefficient corresponding to each vi for 1 ≤ i ≤ 3. Then we

obtain output b1 by the summation of these weighted values. Here are the equations:

α̂1, i =
exp(α1, i)
3∑

j=1
exp(α1, j)

b1 =
3∑

i=1

α̂1, i · vi

Since summation of softmax function is 1, the output b1 can be considered as a convex

combination of vi. The other outputs b2 and b3 are generated by the same process. The outputs

comes from the information of itself instead of the way in RNN case. This kind of operation

is called self attention. Clearly, we can complete the calculation of all input at the same time.

Let X ∈ Rdmodel×N denotes N word vector of dimension dmodel be the input. Hence, the matrix

computation which can be shown as follows:

Q = WQ ·X

K = WK ·X

V = W V ·X

Attention(Q, K, V ) = [softmax(
QTK√

dk
− 109 · P )]TV T

where WQ ∈ Rdk×dmodel , WK ∈ Rdk×dmodel , W V ∈ Rdv×dmodel are parameter metrices for query,
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key and value, respectively. Q, K, V are query, key and value which pack all qi, ki, vi together

∀ 1 ≤ i ≤ N . dk is the dimension of query and key. P ∈ RN×N is the padding mask matrix

corresponding to the token sequence. The i-th column of matrix is 1 if the i-th token is <pad>,

others are 0. We will multiply a huge negative number and add to QTK such that the attention

weights after softmax will be 0 to those padding position. The skill helps model skip those

padding things. The output will be a weighted values vector of dimension dv. The method is an

effective way to speed up the training progress by GPU.

Only one is not enough, Google found that it is useful to execute several attention functions

at the same time. Q, K, V are the same as above. They will be weighted differently in each

attention function. Each output is a head. Suppose we have h heads. We will concatenate all of

them and multiply a parameter matrix to reshape the matrix to dmodel dimension, which shows

below:

MultiHead(Q, K, V ) = WO · [concatenate(head1, head2, · · · , headh)]T

where headi = Attention(WQ
i ·Q, WK

i ·K, W V
i · V )

where the parameter matrices WQ
i ∈ Rdk×dk , WK

i ∈ Rdk×dk , W V
i ∈ Rdv×dv and WO ∈

Rdmodel×hdv for 1 ≤ i ≤ h. concatenate is the function which concatenate all the matrices

horizontally. The procedure helps model know sentence perfectly. Google concluded that each

head has its own contribution to different tasks. Some heads will notice the syntactic structure

and others learn the semantic construction.

Before moving forward to FFN, we firstly add the original input vector and output from

multi-head attention and perform layer normalization LayerNorm(X +MultiHead(Q, K, V ))

which can be show:

µj =
1

dmodel

dmodel∑

i=1

xij

σj =

√√√√ 1

dmodel

dmodel∑

i=1

(xij − µj)2

x̂ij = gij
xij − µj

σj
+ ij ∀1 ≤ i ≤ N, 1 ≤ j ≤ dmodel

where xij is the element inX+MultiHead(Q, K, V )matrix, x̂ij is the element in thematrix after
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performing layer normalization, gij and bij are parameters which was learned during training.

Next sub-layer is a position-wise fully connected feed-forward neural network with input

and output dimension = dmodel. There is only a hidden layer of dimension dff with ReLU in the

middle. Each column vector x̂1, x̂2, · · · , x̂N is the input and each position in vector shares the

same parameters. Then FD(x̂i) can be write as following:

FD(x̂i) = W
′ · ReLU(W · xi +B) + B

′

where ReLU(W · xi +B) = max(0,
dmodel∑

j=1

xnjwnj + bn)

∀ 1 ≤ i ≤ N, 1 ≤ j ≤ dmodel, 1 ≤ n ≤ dff where W ∈ Rdff×dmodel , B ∈ Rdff×1, W
′ ∈

Rdmodel×dff , B
′ ∈ Rdmodel×1 are parameters. xnj, wnj and bn are denoted as the n-th element in

xj, W and B, respectively. Again, residual connection and layer normalization are performed

after the fully connected neural network. Finally, we get output of the layer and will be input to

next one. We have a stack of Ne layers in encoder. In original paper, Ne = 6, dmodel = 512, h =

8, dv = dk = 64 and dff = 2048. The structure is shown in Figure 5.1.

Figure 5.2: Decoder in Transformer
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When encoder has done, it’s time for the decoder. Figure 5.2 is the picture of decoder. There

are three sub-layers of a layer in decoder. The bottom one ismaskedmulti-head self attention, the

upper two are multi-head attention and FFN which are similar to encoder. Residual connection

followed by layer normalization will be performed after each sub-layer. Multi-head attention

in the middle acts attention as in seq2seq model. Keys and values come from the output of

encoder and query is from previous attention. This pattern allows the output of decoder based

on the knowledge from encoder. Finally, we make some adjustment about masked skills in the

self attention of each first sub-layers to prevent model knows the answer. Here, we need to

make sure that the the i-th token can only attend to the token before i. Otherwise, the model can

easily get the answer of i + 1-th word by the input. Hence, we use a look-ahead mask to hide

the information. The mask L ∈ RM×M is an lower triangular matrix with those elements equal

to 1 included diagonal elements. Then L will combine with the padding mask P ∈ RM×M .

Masked multi-head self attention is just a multi-head self attention sub-layer with combination

mask. The stack of Nd = 6 layers of decoder in the original paper.

The output of final layer in the decoder will be input to a linear layer which switch it to

the shape in Rddict×M where ddict is the total sub-words in the dictionary of our embedding way.

After operating the softmax, we choose the corresponding index of the maximum values in

the distribution. We sum up the total cross entropy of each position between the real answer

and output, then update the model with Adam optimizer [16]. Transformer has three important

contribution: First, it use neither CNN nor RNN to finish a NLP task. Second, self attention

structure performs well. Finally, the model can be trained in a short time by the parallelizable

computation.

5.3 Bidirectional EncoderRepresentations fromTransformers

Bidirectional Encoder Representations from Transformers (BERT) is a new embedding

model based on encoder of transformer [7]. Instead of the original embedding way, the

contextual word representation creates the unique embedding for the tokens which depend on

the context. BERT is also the fine-tuning model which all parameters in pretraind model can be

change depend on the NLP tasks. These features make BERT reach the state-of-the-art in lots

of tasks. In the following paragraph, we show more detain about BERT.
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There are two common methods of unsupervised NLP model: feature-based and fine-

tuning. They both has a pre-train model which trained on a huge amount of unlabeled language

data. It gets lots of knowledge of language. For feature-based model, we will fix all the

parameters and add an output layer depend on our task. The task-specific model will be final

model to solve the task. On the other hand, all the parameters will be adjusted to match the best

result of our task in fine-tuning model. We have to modify input and output as well. Hence,

BERT can be applied to many kinds of tasks. If we can train a powerful pre-trained model,

we will get better performance easily. BERT teaches the model about language by two tasks:

masked language model (MLM) and next sentence prediction (NSP). The input of pre-trained

model will be a pair of sentences (A, B). We will randomly mask a token in each sequence.

Model has to figures out the best choices of these two positions. Since the tokens have been

hided, the attention are able to come from both directions (right-to-left and left-to-right) which

lead to better result. At the meantime, the model has to judge whether sentence B is the next

sentence of A. It can help the model get information about the relation between two sentences.

The input embedding of BERT is designed to fit these two tasks. First, we will divide

our sentences to sub-words units as in Transformer. Second, we put some special token in the

token pairs: <CLS> will be placed at each input pair, <SEP> locate in the end of sentence

A and B, and <MASK> will be put to those hided tokens. Third, every token will have two

kinds of embedding: the input embeddings are the corresponding index of each wordpieces,

and segment embeddings which is the index for the sentence it belongs to. We set the maximum

length of representation and finish padding here. Then each element in these two embeddings

will be embedded to Rdmodel dimension. Finally, the summation of these two embeddings will

add position embeddings which are same as in Transformer and be the final input. The layer of

BERT is the encoder in Transformer actually.

We call the i-th final output vector of BERT as the embedding of i-th input token. This

representation is the contextual word representation which is different from the traditional

embedding. The representation is based on context which is different from the one-to-one word

embedding. We will also add a linearly classifier on each corresponding position of <CLS>

and <MASK>. The linear classifier with sigmoid function will compute the relation of these

two sentences. Others for <MASK> are just like the final output in Transformer: we get a

distribution of all words in dictionary we use to split sub-words and pick the index of highest
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Figure 5.3: The architecture of pre-trained model in BERT

values as our output. We can compute loss and optimize our model. The pre-trained model is

shown in Figure 5.3. Then we are able to use this pre-trained model by fine-tuning. We set up

input and output type depend on our task and adjust all the parameters. Bert saves lots of cost to

train a huge model. We can only use fine-tuning to obtain wonderful result. Bert also develops

a strong method about word embedding.
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Chapter 6

Experiments

In this chapter, we will make prediction of numerical baseball data with LSTM and BERT.

We also want to verify the difference of result between our models and baseball prediction

systems which is called projection system as well. Here we introduce some famous projection

system in MLB and their method.

6.1 Baseball Projection System

Projection system predicts all items of data about hitters and pitchers. There are two basic

types of projection system in Major Leagur Baseball (MLB). Using previous data of the player

to predict his future performance is one type. This method is very reasonable because we are

used to judge a player by the performance in our mind. The Marcel the Monkey Forecasting

System (Marcel) [36] is a basic system developed by Tom Tango. For each item, it sums up past

three years performance with heavier weights for recent season and adjust the number about

player’s age and league average. The other type finds similar players to build the prediction.

Player Empirical Comparison and Optimization Test Algorithm (PECOTA) [33] developed by

Nate Silver uses historical data similar to the player and predict his performance by that trend.

However, the definition about finding comparable players remains a secret. By the device

updating, we have more and more detailed of baseball information. Steamer [6], which build by

Jared Cross, Dash Davidson and Peter Rosenbloom, uses different way corresponding to each

item to create projection by historical data. Moreover, it uses pitch-tracking data to help pitcher

prediction. sZymborski Projection System (ZiPS) created by Dan Szymborski weights heavily
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for recent years which included velocity and pitch data for multiple years. Both are similar

to Marcel. Furthermore, ZiPS also use comparable players to adjust the prediction which like

PECOTA. THE BAT, developed by Derek Carty, some special information such as umpire and

ball park factors are included in the stats while predicting [3]. In recent years, some popular

projection system is based on the others projection system. One of the largest statistical analysis

websites of baseball, FanGraphs, has published a new projection system called Depth Charts [8].

It combines the projection from ZiPS and Steamer and modify the result by the likely playing

time. Average Total Cost Projection System (ATC) [5] which developed by Ariel Cohen uses

a blend of projection system to predict the result. Each item takes unique combination of other

projection. In this paper, we set ZiPS as the main comparison because its prediction data is

easily accessible and precise.

6.2 Baseball Dataset Preparation

We collect players recorded in MLB with 20 features for every year during the period from

1998 to 2019. Since the final two teams Arizona Diamondbacks and the American Tampa Bay

Devil Rays added in 1998, we started to collect data from that year. All players have at least

6 continuous years’experience in MLB which means they have at least 1 Plate Appearances

(PA) for 6 continued seasons. These features include 17 annual accumulated performance and

3 player’s status which are shown in Table 6.1.

Since home runs (HR) is the most effective way to score in the ball game, we set it as the

main goal to predict in this paper. However, it is not only practically impossible but inefficient

to predict the precision number of HRs. Therefore, we spilt HRs into disjoint subsets with every

5 HRs and each of them will be a class which is shown in Table 6.2. We choose these classes to

be our outputs. For our data, we have 12 classes.

On the other side, we think 5-years-long data is stable enough to be input for model to know

the player well. In conclusion, we use 5 continued years stat with 20 features for each year of a

player to predict his HRs class in sixth year. Therefore, each data point will be

({xt}5t=1, y)

where xt ∈ N20 ∀ t ∈ {1, · · · , 5} denotes the t-th year stat of the player and y ∈ Ci for some

1 ≤ i ≤ 12 denotes the HR class of x6. We use 892 data points from 1998 to 2017 as training
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Code Description

Age Player’s age

CM Player’s Height

KG Player’s Weight

G Games Played

PA Plate Appearances

R Runs Scored

H Hits

2B Double Hits

3B Triple Hits

HR Home Runs

RBI Runs Battle In

SB Stolen Bases

CS Caught Stealing

BB Bases on Balls

SO StrikeOuts

GDP Grouned into Double Plays

HBP Hit By a Pitch

SH Sacrifice Hits

SF Sacrifice Flies

IBB Intended Bases on Balls

Table 6.1: Features used in this paper

data and 265 data points in 2018 and 268 datas in 2019 for testing which verify our model

performance. The input of testing data points in 2018 is in the period of year 2013 to 2017 and

output HR class is belonging to year 2018. Testing data points in 2019 are similar. ZiPS has

209 predictions in 2018 and 215 in 2019.
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Class Numbers Class Numbers

C1 0-4 C7 30-34

C2 5-9 C8 35-39

C3 10-14 C9 40-44

C4 15-19 C10 45-49

C5 20-24 C11 50-54

C6 25-29 C12 55-59

Table 6.2: HRs classes

LSTM D/BN TD FC D/BN FC

A 128∗2 0.25 10 1024 0.25 128

B 128∗2 0.25 1024 0.25 128

C 128 0.25 10 1024 0.25 128

D 128∗2 0.25 1024 0.25

E 128∗2
√

10 1024
√

128

F 32 1024

G 64∗2 0.25 1024 0.25 128

H 128∗2 0.25 512 0.25 64

I 128

J 128 1024
√

Table 6.3: Architectures of LSTM models

6.3 Prediction Models

In this paper aim to use BERT to do the classification task by numerical data with time

series. We compare its result to the prediction of LSTM and ZiPS. There are two kinds of pre-

trained models of BERT we use: BERT-base and BERT-base-multilingual. Each of them has

the version of cased and uncased which the wordpiece has the capital sub-words or not. We

will fine-tune these pre-trained models by our task for 10 epochs. BERT-base has 12 layers,

768 hidden neurons and 12 attention heads for total 110 millions of parameters. It trained on

English texts. BERT-base-multilingual-cased (BERT-mc) was trained on 104 languages based

on Bert-cased and BERT-base-multilingual-uncased (BERT-mu) was trained on 102 languages
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based on Bert-cased. We set batch size for 14 with learning rate for 10−5.

MPA(%) H1C(%) L1C(%) TPA(%)

LSTM A 43.8 14.3 14.0 72.1

LSTM B 45.7 12.8 12.5 71.0

LSTM C 43.0 14.0 15.0 72.0

LSTM D 45.3 11.3 13.2 69.8

LSTM E 40.0 9.8 6.8 56.6

LSTM F 48.7 13.6 12.5 74.8

LSTM G 44.9 13.2 13.6 71.7

LSTM H 41.5 14.7 15.1 71.3

LSTM I 45.3 12.8 13.2 71.3

LSTM J 42.6 9.4 9.4 61.4

ZiPS 25.4 11.0 37.3 73.7

BERT-c 46.8 12.8 13.6 73.2

BERT-u 49.1 9.4 13.6 72.1

BERT-mc 50.6 16.2 12.5 79.3

BERT-mu 47.6 16.6 12.1 76.3

Table 6.4: Prediction accuracy of 2018

On the other side, we build 10 kinds of model based on LSTM which shown in Table

6.3. Each model contains the LSTM layer and fully connected neural networks with BN or

dropout(D). In LSTM column, n ∗ k means k layers with n neurons. In D/BN columns, number

represents dropout rate and
√

means BN is used instead of dropout. In model A, C and E,

there is a timestep-wise dimension reduction (TD) in the middle which reduced the dimension.

Finally, a standard fully connected layer with softmax will be our output. In all fully connected

layers we use ReLU as the activation function to boost the training speed. The loss is counted

by cross-entropy and optimizer is Adam with learning rate 10−8. We set the batch size for 14

and trained for 20000 epochs. We use ({xt}5t=1, y) be the input and output pair for LSTM. For

BERT, we will combine all the data of {xt}5t=1 with space to be the string as the input. For

example, {xt}5t=1 will be “22 23 14 · · · 0 162 89” and output y is the class.

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202000709

MPA(%) H1C(%) L1C(%) TPA(%)

LSTM A 41.8 11.9 13.4 67.1

LSTM B 38.4 12.3 14.2 64.9

LSTM C 36.9 14.6 15.7 67.2

LSTM D 38.1 14.2 14.6 66.9

LSTM E 36.9 10.5 9.3 56.7

LSTM F 40.3 13.8 13.8 67.9

LSTM G 37.7 13.8 14.9 66.4

LSTM H 34.7 16.4 15.3 66.4

LSTM I 38.8 11.6 13.4 63.8

LSTM J 39.6 6.3 10.0 55.9

ZiPS 30.1 16.0 19.7 65.8

BERT-c 39.2 12.3 14.9 66.4

BERT-u 37.7 9.3 17.9 64.9

BERT-mc 39.9 10.8 17.1 67.8

BERT-mu 40.3 13.4 14.2 67.9

Table 6.5: Prediction accuracy of 2019

6.4 Model Performance

Table 6.4 shows the maximum prediction accuracy (MPA) of data points in 2018. Higher

for 1 class (H1C) means the prediction is the classCi+1 instead of the ground truthCi. Lower for

1 class (L1C) is the opposite situation. These two values are valuable for themodel performance.

Finally, we sum up MPA, H1C and L1C to calculate the total prediction accuracy (TPA) of the

model. The computation can be write as follow:

MPA =
Right Prediction
Total Data Points

H1C =
Higher Prediction For 1 Class

Total Data Points

L1C =
Lower Prediction For 1 Class

Total Data Points
TPA = MPA+ H1C+ L1C
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The model performance of 2019 is presented in Table 6.5.

MPA(%) H1C(%) L1C(%) TPA(%)

LSTM A 42.2 7.5 17.2 66.9

LSTM B 41.4 9.0 13.8 64.2

LSTM C 39.6 11.9 14.2 65.7

LSTM D 42.8 7.8 13.8 63.4

LSTM E 36.9 8.2 13.4 58.5

LSTM F 40.3 10.1 15.7 66.1

LSTM G 39.6 7.1 16.0 62.7

LSTM H 40.3 8.6 14.6 63.5

LSTM I 40.0 12.3 14.6 66.9

LSTM J 36.7 10.8 10.8 58.3

ZiPS 30.1 16.0 19.7 65.8

BERT-c 39.6 12.3 15.7 67.6

BERT-u 39.2 13.4 17.9 70.5

BERT-mc 44.4 9.7 15.3 69.4

BERT-mu 42.5 10.1 15.3 67.9

Table 6.6: Prediction accuracy of 2019 after retrain

We can find that BERT models have marvelous performance on MPA in 2018. BERT-

base-multilingual-cased can even reach 50 percent accuracy. Around 80% of player can be

predicted in the list by the model. They show the ability that BERT can read about numerical

data and performs well. LSTM models have more than 40% MPA, but TPA lies in a wide

range. All models are able to predict more precisely than the predictions by ZiPS. However,

ZiPS underestimates 37.3% of players by 1 class, its TPA still remain high. Only the model F

of LSTM and BERT-base-multilingual models perform better than ZiPS in TPA. In conclusion,

BERT-base-multilingual-cased is the best model in 2018. Although they performs well in 2018,

the performance has dropped 5% to 10% while predicting the data points in 2019. Model

A of LSTM gets highest MPA among all other models while both model F and BERT-base-

multilingual-uncased have the greatest TPA. All models still outperform ZiPS in MPA with

more models exceed the TPA of ZiPS. We think the reason about decreasing accuracy is that
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models may need more information about year 2018. Therefore, we add data points in 2018

into the original training data as the new one to retrain models and predict 2019 data points.

The result is shown in Table 6.6. Almost every model has some growth in accuracy rate.

BERT-base-multilingual-cased makes the leading position in MPA and BERT-base-uncased has

the maximum percentage in TPA. BERT-base-multilingual always performs better than BERT-

base. Using cased or uncased wordpiece embedding has no clear influence in the task. On

the other hand, there is little difference between the simple struture of LSTM such as model F

and complicated model like model A. Dropout is also better than BN here. Overall, BERT is a

feasible and stable solution to predict numerical data. On the baseball prediction task, BERT is

a new excellent projection system. It has the ability to know numbers and performs better than

LSTM with less training time. Next, we analyze the prediction further.

0-4 5-9 10-14 15-19 20-24 25-29 30+

LSTM A 79 14 19 0 3 1 0

LSTM B 79 18 15 0 9 0 0

LSTM C 74 17 19 0 3 1 0

LSTM D 79 21 15 0 4 1 0

LSTM E 83 6 4 4 4 4 1

LSTM F 79 22 16 0 11 1 0

LSTM G 77 21 17 0 3 1 0

LSTM H 71 20 18 0 0 1 0

LSTM I 80 17 17 0 6 0 0

LSTM J 88 2 7 3 11 2 0

BERT-c 83 22 8 0 11 0 0

BERT-u 89 17 14 1 8 1 0

BERT-mc 84 17 23 0 9 1 0

BERT-mu 81 17 11 0 17 0 0

Ground Truth 107 43 41 25 27 8 14

Table 6.7: Number of correct predictions in 2018
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0-4 5-9 10-14 15-19 20-24 25-29 30+

LSTM A 72 14 18 0 7 1 0

LSTM B 72 13 7 0 11 0 0

LSTM C 68 14 15 0 1 1 0

LSTM D 72 15 11 0 3 1 0

LSTM E 77 7 7 0 4 2 2

LSTM F 72 13 13 0 9 1 0

LSTM G 70 18 10 0 1 2 0

LSTM H 64 17 10 0 0 2 0

LSTM I 72 11 14 0 7 0 0

LSTM J 81 1 12 1 10 0 1

BERT-c 74 17 4 0 10 0 0

BERT-u 77 10 8 1 4 1 0

BERT-mc 76 12 12 0 6 1 0

BERT-mu 68 15 10 0 15 0 0

Ground Truth 102 35 39 24 28 13 27

Table 6.8: Number of correct predictions in 2019

6.5 Class Result

In this part, we show more detail of the prediction. In Table 6.7, we can see the distribution

of prediction for each class in 2018. The head of columns represents the number of HRs in each

class. Obviously, we are able to observe that the first three class, which under 15 HRs, and

C5 class are easily predictable. However, C4 and those classes more than 25 HRs are hard to

predict. The result of 2019 and retrain model which shown in Table 6.8 and Table 6.9 represent

similar pattern. We think that for C4 class, the data of player is similar to C3 and C5 which lead

model to ignore this class. For the class which more than 25 HRs, the data points for training

is less and varies a lot. Hence, we will try other ways to predict these classes to enhance the

accuracy. ZiPS result in Table 6.10 shows that its prediction is cross every class but the accuracy

of each of them are low.
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0-4 5-9 10-14 15-19 20-24 25-29 30+

LSTM A 81 18 4 0 9 1 0

LSTM B 77 16 10 0 8 0 0

LSTM C 74 11 12 0 9 0 0

LSTM D 80 14 11 0 7 0 0

LSTM E 79 11 7 1 1 0 0

LSTM F 76 13 12 0 7 0 0

LSTM G 78 11 9 0 8 0 0

LSTM H 79 13 7 0 9 0 0

LSTM I 75 8 14 0 9 1 0

LSTM J 81 2 4 5 3 1 2

BERT-c 74 19 8 1 3 1 0

BERT-u 71 22 4 0 7 1 0

BERT-mc 75 18 12 0 13 1 0

BERT-mu 73 22 12 0 6 1 0

Ground Truth 102 35 39 24 28 13 27

Table 6.9: Number of correct predictions in 2019 after retrain

0-4 5-9 10-14 15-19 20-24 25-29 30+

ZiPS 2018 14 7 12 7 6 2 5

Ground Truth 2018 107 43 41 25 27 8 14

ZiPS 2019 15 17 14 6 7 2 3

Ground Truth 2019 102 35 39 24 28 13 27

Table 6.10: Number of correct predictions of ZiPS
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Chapter 7

Conclusion

In this paper, we research the possibility of using numerical data with order to be the input

of the powerful NLP model BERT. We predict the class of HRs number of MLB players by their

past performance. Since there is no clear track of this data to be forecast, classification task

will be a big challenge for BERT. We also compare the result for the traditional recurrent deep

learning model LSTM and the well-known baseball projection system ZiPS. Performance of

BERT and LSTM are amazing. All models have outperformed ZiPS in the maximum prediction

accuracy. Moreover, models based on BERT are usually have better performance than those

based on LSTM. Although it performs well, there are two phenomenon we should notice. BERT

is still easily focus on the majority of the training class. Meanwhile, data have to keep updating

or BERT will have less information to predict. In conclusion, BERT is a feasible and effective

way to predict output by numerical input. Self attention skill helps model make more knowledge

about data sequence. We can actually use this NLP model in more field such as finance and

natural science. There are several potential research direction in this classification problem:

1. The structure of BERT can be adjusted due to numerical data input to increase accuracy.

2. Other new stats can be added such as batting average on balls in play (BABIP) or average

ball exit velocity (EV).

3. Creating an embedding for baseball player to know more information about them.

4. Solving the prediction result of imbalanced data.
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