BB e RS RAHE A

R = VA

BERT J& A 7 #3452 B FRRIZ AR K © 2K B Bk K
Bt SR 2 E 4T BFRA A 1]
Using BERT on Prediction Problems with Numeric Input Data: the
Case of Major League Baseball Home Run Prediction

oE KRB 109 & 6 A

DOI:10.6814/NCCU202000709

£ &

W FE LA EBATATEE AR A —RMEKRBET -

et 2BRZ AT BRIEHERTIATIR HELTE S 2% 14
RBERBTHRE » LBARRZZERATEERES > AILEOR
B2tk ARRBBIET A -

B KA > TARA EMOIEIEA RETOER R MI A AH
SRABRA DR K - EEAM LRI T LG AR S T B
BRI AR 0 R B BRI F O HMERL R AE AR REY
R= HEERAERDFHWHA = — B ELRABIRGER > FEFHR
2 RBRARAANE D BRBHKRT > RO FRERZTARY > B L THRES
R BRI RBHER S FERAHZYE TRWALLEE > FIRFL
ke Foafort B8 T Ray AL © BHtm 2 BRI LR
B BT FAEROEEAE —BIEE C LRERHARETORE £
BRI MBFEL-—RRE > ARRAE - ROIFRHLIETH TRAHRN
FFEBH—HF > CRBRRFGAREE S HHROFA > ERMT
FRBEREFMAIFER B LR ERRBREFEE EREA
NRBEEBIRHE -

AT A BEGAFY BLELFAREATAEY HERLFTHW

e

il

DOI:10.6814/NCCU202000709

TXHE

BERT £ B RB T REQWAART Z—EBEMA NG RELEHHRE > ¥
R EAREFCT AEME T RBEMMERNE T > ERBOIES FIER
WBEMEFRAMNSEH ERARABORE ERABEHXT » HMEET
BERT T A M B EHEHEBARMNER > R AFTHREMT —EH T
AU ABBEA TR R RAOTE £ B BE RB 23K 8 e SR 1E
A 0 {EF BERT AT WK E KRR 2 F4T R I TAR » 3 B H FAR
R LSTM R A BUATIK B AR FAR A& #4 ZiPS Btb & - &A1 A 2018
FeRREM T 0 28 BERT AR 69 E 58 & 33 50% * LSTM A 48.8% M
ZiPS R A 254% 5 4£ 2019 Sy R E R F - AR KR %L AH T iF > {2 BERT
B9 44.4% B wE T4 FH7N LSTM #) 42.8% AR ZiPS 89 30.1% ° 4888 35 -
BERT (e W HBER EW BN AREN TH > EFC R AR KT
KRR E Ao EAoAG7E » BB RATLIE] T 3K B R RFAR 09— M 0% -

MéeEF - BERT - %3k~ RE2E ~ ke BER - WEMEK - KA
£ ITA8 ~ FAR] A % ~ Transformer

il

DOI:10.6814/NCCU202000709

Abstract

BERT is a powerful deep learning model in nature language processing. It
performs well in various language tasks such as machine translation and question
answering since it has great ability to analyze word sequence. In this paper, we show
that BERT is able to make prediction with numerical data input instead of text. We
want to predict output with numerical data and verify its performance. In particular,
we choose the home run performance prediction task which input the stats of players
in Major League Baseball. We also compare result of BERT-based approach with
the performance of LSTM-based model and the popular projection system ZiPS.
In testing data of year 2018, Bert-based approach reaches 50.6% accuracy while
LSTM-based model has 48.8% and ZiPS gets only 25.4% accuracy rate. In 2019,
BERT achieves 44.4% accuracy but 42.8% of LSTM-based and 30.1% of ZiPS.
BERT is not only able to handle the numerical input with time series, but also
performs stably and better than those traditional methods. Moreover, we found
a new effective way in player performance prediction.

Keywords— BERT, baseball, deep learning, long short-term memory, neural network,

player performance prediction, projection system, Transformer

v

DOI:10.6814/NCCU202000709

Contents

L&) ii
X E iiii
Abstract iv
Contents \%
List of Tables vii
List of Figures viii
1 Introduction 1
2 Related Work 3
3 Deep Learning 4
3.1 Neuron and Neural Networks 5
3.2 Activation Function 6
33 LossFunction 9
3.4 Gradient Decent and Backpropagation 10
3.5 Opverfitting, Dropout and Batch Normalization 11
4 Recurrent Neural Networks 15
4.1 RNNCell s 15
4.2 Long Short-Term Memory 18
43 AMention e s 19

DOI:10.6814/NCCU202000709

5 Bidirectional Encoder Representations from Transformers 22

5. WordEmbedding 22
52 Transformer 23
5.3 Bidirectional Encoder Representations from Transformers 28
6 Experiments 31
6.1 Baseball Projection System oL 31
6.2 Baseball Dataset Preparation 32
6.3 PredictionModels 34
6.4 Model Performance 36
6.5 ClassResult 39
7 Conclusion 41
Bibliography 42

DOI:10.6814/NCCU202000709

List of Tables

6.1 Featuresused inthispaper 33
6.2 HRsclasses e 34
6.3 Architectures of LSTM models Lo 34
6.4 Prediction accuracy of 2018o 35
6.5 Prediction accuracy of 2019 36
6.6 Prediction accuracy of 2019 afterretrain 37
6.7 Number of correct predictions in 2018, 38
6.8 Number of correct predictions in2019 39
6.9 Number of correct predictions in 2019 after retrain 40
6.10 Number of correct predictions of ZiPS 40

DOI:10.6814/NCCU202000709

List of Figures

3.1 Aneuroninneuralnetwoks L oL 5
3.2 The structure of neural netwoks oL 6
3.3 Sigmoid functiono 7
3.4 Hyperbolic tangent(tanh)o Lo 7
3.5 Rectified Linear Units(ReLU) 8
3.6 Gradient decent with one parameter 10
3.7 Overfitting oo e e e e e e e e 12
4.1 ThestructureofanRNNeell o oL oL oL 16
4.2 Multiplecellsinonelayer 17
43 Unfolded RNNecell e 17
44 LSTMecellstructure Lo e 19
4.5 Encoder and decoderin seg2seqo e e 20
5.1 Encoderin Transformer Lo o 24
5.2 Decoderin Transformer 27
5.3 The architecture of pre-trained model in BERT 30

DOI:10.6814/NCCU202000709

Chapter 1

Introduction

In recent years, deep learning approaches achieve unprecedented performance on a broad
range of problems from various area. Sequential deep learning model such as Recurrent Neural
Networks (RNN) [31] and Long Short-Term Memory (LSTM) [13] have proven very powerful
for applications in the data with time series. In 2017, Google announced a whole new model
called “Transformer” [37] which based on attention and has impressive performance in Natural
Language Processing (NLP) tasks. Bidirectional Encoder Representations from Transformers
(BERT) [7] is a modified model from Transformer. It reached state-of-the-art in many tasks
such as neural machine translation and question answering problem. BERT has ability to get
information about sequence input with its good embedding. Since BERT is able to predict
language sequence data so well, we are curious about the input of numeric sequence data. We
want to use the ability about BERT dealing with language to solve the problem with number
sequence. It will be a new effective way in the prediction of numeric data with time series by
the structure of BERT. Therefore, we aim to investigate the performance of BERT when we input
the numerical data in this paper. In particular, we focus on the prediction of player performance
in Major League Baseball (MLB).

Baseball is one of the most popular sports around the world. People watch the ball game and
talk about players and teams they like after a busy day. There are several organized professional
baseball leagues such as MLB and Minor League Baseball in the United States and Canada and
Nippon Professional Baseball (NPB) in Japan. MLB is the most well-known baseball league
around the world. Since professional baseball players are increasingly guaranteed expensive

long-term contracts, team managers (such as team owner or coaches) tend to understand each

DOI:10.6814/NCCU202000709

player’s status beforehand. Therefore, it is important to predict players’ performance for the
coming year. Then, team managers could figure out who have the potential to be the rising star,
and who should be traded immediately. Therefore, performance prediction system is valuable in
practical since it provides additional information for team managers to make a better decision.
Most performance prediction systems are constructed based on historical data of each player. In
other words, most prediction systems are constructed based on regression analysis or seasonal
time series analysis. Hence, we also want to create a new prediction system by deep learning.

In this paper, we only predict individual baseball players’ home runs (HR) in MLB because
it is one of the most critical index to understand the power and the talent of a baseball player. We
use BERT and propose several deep learning models based on the LSTM structure. To evaluate
the capacity of our models, we compare our prediction results to other prediction systems used
in practical.

Our codeisavailableathttps://github.com/hsuanchengsun/BERT-baseball.

DOI:10.6814/NCCU202000709

https://github.com/hsuanchengsun/BERT-baseball

Chapter 2

Related Work

In this chapter, we talk about related work in two parts: numerical data applied on BERT
and using neural network to predict baseball players’ stats. However, there is less case about
the first topic. We believe that there will be more and more research on this in the future.

On the other topic, Lyle (2007) had used artificial neural networks and other machine
learning methods to predict six of hitter’s stats [21]. He focused on ensemble learning and
compared the results with the other prediction systems. The performance of his methods
outperforms the prediction system in three items.

Koseler and Stephan (2017) mentioned that there is only 9% of baseball analysis research
that neural network is one of their method [17]. They believed that the situation will be changed

in the future since deep learning is an effective way in application.

DOI:10.6814/NCCU202000709

Chapter 3

Deep Learning

Artificial intelligence (AI) technology has been an important study since late of last century
which aim to make computer acting like a human. We started from some simple model [24].
We multiplied input with weights to fit the real output. However, it is not easy to modify the
weights in model with complex structure after we measured the difference between prediction
and real answer. Back propagation announced in 1986 [31] had solved this problem and be the
effective way to update parameters in a deep structure. Deep learning are not a robust method
until database and hardware update. It shows the ability to handle huge amount of data with
systematic model. In 2012, AlexNet [18], which based on convolution neural network (CNN)
[19], became the champion of the Large Scale Visual Recognition Challenge (ILSVRC) which is
the biggest competition of object detection and image classification in the world. AlphaGo [32]
also beat professional go player by the power of deep learning. Nowadays, deep learning is
used in variety of field, such as object detection [29], natural language processing (NLP) [28]
and image classification [11].

Generally, deep learning is a structure of artificial neural network (ANN) [15] with at least
one layer. Before taking a close look at deep learning structure and how does it work, we need
to know about the concept of neural network. The basic idea is to make computer be able to
simulate what human think. After seeing a picture or listening to people, we will judge these
thing and know the exact meaning of them. That process just like a function. Deep learning is
trying to simulate the pattern from our brain to the computer. We aim to develop a function f to

copy all the things, for example,

f(“Tloveyou.”)= “Ilove you, too.”

DOI:10.6814/NCCU202000709

No matter the input is a picture or a sentence, we can all have a suitable output. But
what is the system in our brain? Well, we got an answer from the researches in biology [20].
Neuroscientists found that there is a complex connection between different neurons in our
bodies. The huge neural network help human to think and life. Hence, we would like to copy
the structure on the computer and that is ANN. We hope deep learning is the function such that
computers have the same activities as human. By the good device like graphic processing unit

(GPU) and ability to build larger datasets, our result gets better day after day.

3.1 Neuron and Neural Networks

w3

Figure 3.1: A neuron in neural netwoks

As shown in Figure 3.1, suppose x1, x5 and x3 be the input of the neuron in R. Then we
will give three random independent weights w1, wo and w3 to each of them, respectively, which
would be adjusted while training the model. There is also a flexible bias b in the neuron, so we
have the operation wyx; + woxo + wsrs + b now. Finally, an activation function ¢ will make
the output A for the neuron i.e.

3
h = gp(g z;w; + b)
A full picture of an example of neural network structure is showed in Figure 3.2. It has

three parts for total: input layer, hidden layers and output layers in the left side, middle and

DOI:10.6814/NCCU202000709

Figure 3.2: The structure of neural netwoks

right side, respectively. It presents that the output is predicted by the neurons in hidden layers
after input data are given. We focus on how to use lots of neurons in hidden layers to get the
outputs corresponding to the inputs. The framework of hidden layer can be complex or simple.
Building such kind of deep learning model is not difficult. First, we have to decide the amount
of layers and neurons. Secondly, we use input data doing supervised learning. Finally, we set
a loss function to evaluate the prediction and update the parameters to get a better result. I will

explain all the detail step by step in the following chapter.

3.2 Activation Function

Activation function takes an important role in whole process which make the output being
nonlinear to simulate the neurons behavior of human. Moreover, it produces a better result to
the data in real world since most of situations are not able to be predicted linearly. Here we show

some common activations functions:
1. Sigmoid

Equation:

1
14 e®

sigmoid : R — (0, 1), sigmoid(z) =

DOI:10.6814/NCCU202000709

Graph:

10 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

T T T T T

100 -75 -50 -25 00 25 50 75 100

Figure 3.3: Sigmoid function

2. Hyperbolic tangent (tanh)

Equation:

Graph:

(¢ —e™)

tanh : R — (—1,1), tanh(x) = ﬁ
e$ 6_$

100 A
0.75
0.50 -
0.25 1
0.00 -
-0.25 1
—-0.50 A

-0.75 1

-1.00 -

T T T T T T

100 -75 -50 -25 00 25 50 75 100

Figure 3.4: Hyperbolic tangent(tanh)

DOI:10.6814/NCCU202000709

3. Rectified Linear Units (ReLU) [25]

Equation:
relu: R — [0, 00), relu(z) = 0 forw <0
xz forx >0
Graph:
10 A
8
6
4]
2
0
-100 -75 -50 -25 00 25 50 75 100
Figure 3.5: Rectified Linear Units(ReLU)
4. Softmax
Equation:

softmax : R"” — R", softmax(z); = =-—

fori =1,..,nwhere z = (z1,...,x,)

Of course, choosing linear function is fine. Generally, we choose the same activation
function for every neurons in hidden layers and one for the final neuron depend on our output.

Now each neuron has its own output from the inputs. This process from the input layer to
output layer through hidden layers is called feed-forward. Also, each output will be the input of
all neurons in next layer, which connect whole networks. Hence, the structure shown in Figure

3.2 is also called fully connected feed-forward neural network.

DOI:10.6814/NCCU202000709

3.3 Loss Function

What should we do next? Remember that keeping the computer fitting the truth is our
priority. After deciding the model structure, we have lots of parameters which equals to weights

and bias, denoted by
Hz{whbj}ﬂ 1§Z§m71§]§na maneN

Then we do the addition and multiplication on them and get output after activation function.
Denoted by fy, the final prediction of the neural network under the parameter set ¢ . Therefore,
finding the best set of parameters * to make the forecasting fy« as close as possible to truth is
our goal. But first of all, we need to define what is “close” to the answer y and our output §j. Here
we need loss function L being the judge to tell us the quantization of distance between them.
The exact number of L(6) : R™*™ — R mention the loss between the output under parameter
set 6 and the answer. Hence L(6*) will be our target which is the minimum number among all

sets. We show some common loss functions below:

1. Mean Square Error (MSE)

Equation:

k
MSE(0) = 1 ;Hyz — fol(z:)|?

where £ 1s the total number of data.

2. Mean Absolutely Error (MAE)

Equation:

MAE(§) = %f |yi — fo(s)]

=1

where £ is the total number of data.

3. Binary Cross Entropy (BCE)

Equation:

BCE(®) = } Y- lulog(fo(@)) + (1=)1 ~log(foa))

where £ is the total number of data and each y; = 0 or 1.

9

DOI:10.6814/NCCU202000709

4. Categorical Cross Entropy (CCE)

Equation:

>~ yjilog(fo(z;i)))

)

CCE(0) = 1
j=1

k
=1
where £ is the total number of data and c is the total categories of answers.

3.4 Gradient Decent and Backpropagation

After having L(#), we need to adapt whole parameters to lower the loss. The way we used

is called gradient decent. Here is an example for only one parameter in 6, see Figure 3.6.

31 —— tangent line of A
tangent line of B
loss

B

loss

_5 1 T T T ; a T T T b: T
0 1 2 3 - 5 6 7 8
weight

Figure 3.6: Gradient decent with one parameter

Suppose loss function L is the green line. X axis is the weight § and Y axis denote the
L(#). Our goal is to get the minimum value of L(6). Obviously, there are two points A(a, L(a))
and B(b, L(b)) located at the right and left side of the minimum location of L, respectively. We
hope to move a and b to the minimal spot on loss function. Since the slope L’(a) > 0 at A,
a — L’(a) will be left of A which has a chance to get a smaller loss. Similarly, we can shift B
right to reduce the loss by b — L’(b) because L’(b) < 0. Hence, we obtain a conclusion quickly
that we can have § with lower loss by deducting the derivative for the parameter. This is the
core concept of gradient decent. If we have several parameters, we can calculate the gradient

1.e. partial derivatives of each weight and bias. The following shows the process:

10

DOI:10.6814/NCCU202000709

Suppose we have parameters set § = {wy, ws, ..., Wy, by, ba, ..., b, } and a loss function L.
We also give learning rate 7 € R to control the speed of gradient decent. If the learning rate is
too big, then we may not able to reach the minimum loss. On the other side, we will waste a
lot of time if learning rate is too small. Hence, deciding a suitable learning for deep learning is
important. For general siuation, we start the learning rate from a small value. The gradient VL

and the new # will be as following:

oL new _ 0L
ow1 wy wy wy n8w1
L new ., 0L
dwsy Wy W2 W2 = Nguy,
oL new oL
Owm W, W, W, — nawm
VI = L grew — - VL=
oL neib _ oL
by by by b1 — g,
oL new _ noL
by b3 b by = N5,
IL oL
% bzew bn bn | 77%

We usually use optimizer to adjust learning rate to help gradient descent finding the minimum
value faster. There are two kind of method, one is changing through time, the other changes
learning rate depend on the gradient [30]. Moreover, that is an efficient way to start the gradient
decent from the final layer to the beginning. We can use chain rule to calculate the gradient of
former layers easily. This procedure is called backpropagation [9] [31], which make the whole

parameters be well adjusted.

3.5 Opverfitting, Dropout and Batch Normalization

Training model is like teaching a student. We want this student have ability to solve the
future problem by learning from training input. However, the student might be too smart. Our
model can know everything about training data but it has no idea about how to predict testing

stats. Overfitting is called to describe the phenomenon. It can be observed by performing

11

DOI:10.6814/NCCU202000709

perfectly during training with high accuracy and low loss but the prediction of testing data
reflects low accuracy and high loss. Figure 3.7 shows the case of overfitting. Suppose orange
line is the true function. We can have a great result to classify all the data with this line and it
is the target of our model. However, our model learned the function as blue line which pass all
the training data points. Clearly, it cannot predict testing data point very well. Overfitting is
caused by a lot of situations. For example, lack of training data lead models to memorize them
all. The complicated architecture of model may generate this problem [40]. Hence, we have to

find some way to deal with it. These methods are called regularization.

Overfitting

AV

—— Model

True function
e Training
e Testing

X

Figure 3.7: Overfitting

Traditionally, we add 1-norm(L1) and 2-norm(L2) of parameters to loss function as the
penalty to let them being small [26]. L1-regularlizaion and L2-regularlizaion force the model
not to weight too much on some features in training data which prevent overfitting. Dropout [12]
is another simple way to avoid overfitting. It is similar to L1- and L2-regularlizaion which make
model not to rely on some special features and it has less calculation then them. We are used to
send a batch of data once a time instead of one data when we train the model. During each batch,
we will randomly choose some outputs in hidden layer to be the input of next layer instead of all.

Parameters in this thinned sub-network will be update by back-propagation while other masked

12

DOI:10.6814/NCCU202000709

ones stay the same. The process will be applied repeatedly which can be write as following:

Té» ~ Bernoulli(p)

h! = r«h'

ht = w(i Bt +b)
k=1

where ré- denote the j-th random variable produced by Bernoulli distribution in the /-th hidden
layer with probability p, 1 < [< Land1 < j < N. h! is the output of /-th hidden layer
and the k-th element denotes as hl. is the element-wise product. wit and bg”l) denotes the
weights and bias in the i-th neuron in ({ 4 1)-th hidden layer. ¢ denotes the activation function.
When predicting with the model, the masked information is not feasible. Hence, we use dropout
by multiplying each output of neuron in hidden layers by p to get the same expected value in
training [34].

Batch normalization (BN) is the other regularization way though it is designed to solve the
convergence of deep learning model [14]. For a simple way, we take the hidden layer as matrix
computation. Suppose we have n input batch {xq,--- , X, } with dimension d during training.
Let X be the iuput matrix with i-th column vector be z;, W be the weights matrix and B be the

bias matrix, 1 < ¢ < n. Then the BN will be:

Z=W-X+B
1 n
S
1 n
2+ N2
o= (z; — p)
=1
A~ Ly — [
Vo2 +e
Zi=vyx2;+p

where z; is the i-th column of Z, € > 0 to avoid ¢ = 0, v and [are the parameter to be learned,
and x denotes the element-wise product. The final normalized output Z; can be applied activation
function to be the input of next layer. While testing, we do not have mean and variance. We use

global mean and variance from the whole data or use moving average and variance in training

13

DOI:10.6814/NCCU202000709

process. Our model can be more stable, converge faster if we operate BN. Also, the demand of

regularization reduces.

14

DOI:10.6814/NCCU202000709

Chapter 4

Recurrent Neural Networks

An old school pun says that “Why shouldn’t we believe a man in bed?” The answer is
that “Because he is lying.” For people know English, this is a common joke which the word has
two meaning. However, it is a tough problem for computer to understand such complex thing
with order. As mention in last chapter, deep learning is just like a function. Our input can be
numbers, pictures and also sentence. How can neural network have ability to deal with text or
data with time series? Well, recurrent neural network (RNN) [31] is an useful method to handle
the problem. A RNN model get information from every past time input and has a strong ability
to obtain the knowledge behind the squence. Hence RNN can make a good prediction about
sequential data. It has a wide variety of application, such as knowing tomorrow’s weather by
information of past n days, output a sentence from the previous one and generating a paragraph

from a topic input. I will show all the detail in the following sections.

4.1 RNN Cell

Different form the neuron in normal neural networks, we call ita “RNN cell” as a basic
element in RNN, see Figure 4.1. It still contains inputs, weights, output and activation function.
But we have to take data series into account now. Suppose x = {x'}]_; be a sequential data,
x' € R"foralll <t <T,n € N. Leth’ be the hidden state at time t, h! € R™forall0 <t < T,
m € N, and h® = 0. At each time ¢, we input the corresponding data x’ and the hidden state
h'~! which produced by the cell at time ¢ — 1. Hidden state will store the knowledge of input

before time ¢ and keep updating itself for each input after t. Weights for the data input and state

15

DOI:10.6814/NCCU202000709

hi~ 1
Figure 4.1: The structure of an RNN cell

and bias would be the same through time. General equation for the &-th cell status at time ¢ can

be written as:
ht = op(xt, R = o (W - xt + WE - hi ™! + by).

where n is the dimension of data and m is the dimension of hidden state. W, € R™*! is the data
input weights metric and W), € R™*! is the weights metric of hidden state input. b;, denotes the
bias in .

Hidden state has not only the result of the cell, but also the information from the other cells
in the same layer. Here is an easy example in Figure 4.2. For simply, weights and bias are not
shown in the picture.

Suppose we have two cell ; and o, in a layer. x = {x'}_| is a sequential data in R3,
At each time ¢, both cells will get input from the original data x}, %, 2% and the hidden state
Rt RE 1 <t < T. The output A% from ¢, will be:

hi = 901('311%@' - xf + f:lwm‘ T 4 by)
Similarly, the output h% from o will be:
3 Wy - Tt + i Wi - LY+ by)
- =

=1 7

htz = 902(

16

DOI:10.6814/NCCU202000709

—1
h2

Figure 4.2: Multiple cells in one layer

Actually, hidden state can be the input for activation functions to generate output depend
on our tasks. In the language model, we can see every word it produced. Or we just need the

final result for weather prediction.

o A 1 A T

y y Y
Unfold

X x! xT

Figure 4.3: Unfolded RNN cell

As the structure on the left side in Figure 4.3, we use one RNN cell in the model. y € R”
and x € RT are the prediction and input vector, respectively. We can also unfold the operation
in RNN cell as the right side in Figure 4.3. It is similar to the normal NN but all the process

from time 1 to time 7" take place in one cell.

17

DOI:10.6814/NCCU202000709

Then we can define the layer ¢ : R” x R™ — R™ by
o(x!,hi=1) = o(WTI - x* + WT-h~t +0)

where n is the dimension of data and m is the dimension of hidden state, n, m € N. x’ and h'~!
are same as above. W, € R™"*"™ is the data input weights metric and W}, € R™*™ is the weights
metric of cell status input. b € R™ denotes the bias. Moreover, let f be whole model which
have multiple layers. If we collect all the hidden state at time ¢, we can write the prediction at

time by

yi = f(x',hi™?)
The architecture of RNN is similar to NN, only the calculation of cell is differ from neuron.
However, the structure of RNN in Figure 4.3 would make the model going too deep. This led

to gradient vanishing [10] which is the reason of overfitting while training the model. To solve

the unstable problem, we need a powerful model.

4.2 Long Short-Term Memory

The architecture of Long Short-Term Memory (LSTM) [13] which enhance the performance
as well as deal with the unstable problem of original RNN [10]. Besides the initial cell unit,
there are three more ”gate” in a LSTM cell which be coefficients in (0,1) to adjust the input.
Moreover, it outputs not only a cell status but also a memory from this cell. These improvements
help LSTM know the information have to be forgotten, others need to be remembered.

At first we introduce gate in LSTM, as shown in Figure 4.4. Similarly to RNN cell, LSTM

cell follows the recursive way. At time ¢, we have:

ft = O’(fo . Xt + th . ht_l + bf)

it O'(Wm : Xt + Whi . ht_1 + bz)

0" = (W - X'+ Wio -h'™ 1 + b))

where f*, i, o' are called forget gate, input gate and output gate, respectively. x’ is the data
input at time ¢, and h'~! is the hidden state at time ¢ — 1. They are all independent neuron, so
they have different weight metrics and bias. o denotes sigmoid function. Finally, let f be all the

layers in RNN, we can collect all input at time ¢. The ¢-th prediction §* will be §* = f(x!, h™1)
18

DOI:10.6814/NCCU202000709

ht—l .

Xt

Figure 4.4: LSTM cell structure

Then these values will be used in the next step to produce cell state and hidden state:

Ct = tanh(W,, - X' + W, -h'™' +b,)
Ct:ft.cvtfl_i_l-t.ét

h' = o' - tanh(C")

where C' is another neuron in the cell. C is the cell state which stores information to build
hidden state h’. It will not be input to other cells. Hidden state will share with other cells as
usual. Generally, LSTM uses cell state to decide hidden state. It has three gates which are the
best coefficients to adjust different part in LSTM. Teaching machine to know the importance of

knowledge in different time is the purpose of LSTM.

4.3 Attention

Machine translation is one of the most important application in Natural Language
Processing (NLP) projects. We need a sentence output after previous sentence has done. This
kind of task called sequence to sequence(seq2seq) which is a classic problem in translation

model. The unequal length of input and output sentence is the main difficulty. For example,

19

DOI:10.6814/NCCU202000709

I3 & — A Z jin Chinese means This is a book” in English. Different length input makes RNN
and LSTM cell had a hard time. In 2014, a research team from Google announced an encoder-
decoder liked neural network which solved sequence to sequence problem perfectly [35]. They
use two LSTM structure which modified the progress from RNN Encoder-Decoder [4] and had

a better performance.

oY ~

Cy1 »2)"3 yf EOS
LA HHH‘H‘H

K jk Decodey

Figure 4.5: Encoder and decoder in seg2seq

Figure 4.5 is the structure of model. The words are the input. Squares in the middle is the
LSTM cell in different time. “EOS” is a token represents “end of sequenc” which mentions
model the sentence ends here. (' is the final output from encoder. Each part has its own
RNN framework with different input. Encoder is the first part of model which started from the
beginning to the word before EOS in input. Containing as many as possible useful information
about the input is the role of it. In encoder, the variable-length sequence will be encoded to a
fixed-length vector. Words will be input one by one at each time . We just need final hidden
C = h'of time T'. We consider it as the summary about the input sequence and is helpful for

decoder generates output. Hence, let f. denotes the LSTM in encoder, we have

h' = fe(ht_la xt)

C= hT = fe(hT_17XT)

which are same as the process we know in last section.
In the next step, decoder use different RNN model to generate variable-length sequence

from fixed-length vector. It begins from the EOS token in input sentence and stops while
20

DOI:10.6814/NCCU202000709

predicting EOS in the output. To distinct different LSTM in encoder and decoder, we set f,
be the LSTM in decoder, s’ be the cell status and y* be the input at time ¢. For the hidden state s*
at time ¢, the input for RNN not only include the previous word and cell status but also contain
the summary ¢ we got from encoder. Then the word is predicted by the previous words and C

with softmax. Therefore, we have the equation of hidden state in decoder:
s = fo(s" Y, CO)

This kind of encoder-decoder model helps advancing the performance in machine translation.
However, it is not efficient to use a static summary ¢ from whole input sentence to predict
one word. As our example, " Z A& | in Chinese means “book” in English, so they should have
strong connection. But other words may not be helpful to predict ”"book™. Therefore, it is useful
if we can take different weights of every words in input sequence. This skills is called attention,
which the decoder will pay attention to those parts in sentence input for they need [2]. First,
we consider bidirectional RNN as the encoder. The original direction of RNN is from time 1 to
time 7', so we obtain hidden state from h! to hl. In some case we need to finish it one more
time on the reverse side, which we get hidden state from h? to h!. That’s all for bidirectional
RNN. Here we combine h’ and h’. together to be h* as the hidden state in encoder. Second, we

calculate the score e? for each hidden state in encoder at time ¢ by

where a is called aligned model, which is a number represents how close of your j-th input and
t-th output. The score depends on the relationship of them. Then we find weights 04; of each h},

by

exp(et .
at = 29 <<
vglea:p(e’;)

which is softmax. Last, we obtain attention ¢’ and hidden state s’ in decoder at time ¢ by

T
t__ thi
¢ = Zajh
j=1
St — fd(st_l,yt, ct)

This way improves the performance of model in NLP tasks. But there is a question: Can we use

attention without RNN structure? We will talk about this topic in next chapter.
21

DOI:10.6814/NCCU202000709

Chapter 5

Bidirectional Encoder Representations

from Transformers

5.1 Word Embedding

In NLP model, our input are usually words, but computers can only accept numbers. How
can we switch words into numerical data for neural networks? This is a tough problem in NLP
field which is called word embedding. We try to develop strong methods transferring words to
numbers which are able to represent our complicated language by numbers. Intuitively, we
use one-hot encoding, which is a n-dimensional vector, to embed the word. For example,
we can count appearance of each word in the data we use. Then we sort the number and let
[1, 0, 0, ---, 0] to be the embedding for the word which shows the most. [0, 1, 0, --- , 0]
for the second most and so on. They are all n-dimensional vector which depend on totally n
independent words. In an easy way, we can just done word embedding for n-dimensional one-
hot encoding randomly to every words. However, this kind of embedding is not useful. Imaging
that we have 10 thousand of words in a text with millions of words. Our input will be too large
and the embedding result may not efficient for other texts. Hence, there are lots of research to
lower the dimension of word vector and try to embed by the relation between words, such as

word2vec [22] [23], GloVe [27] and ELMO [28].

22

DOI:10.6814/NCCU202000709

5.2 Transformer

In 2017, research team from Google announced a whole new model in deep learning called
“Transformer” [37]. It made a huge difference by using nothing about the structure of RNN or
CNN. Transformer only include self attention skill in its encoder and decoder architecture. It
reached the state of the art in machine translation task at that time and became a popular structure
in NLP. Here we introduce the framework.

In the beginning, we talk about the input and output of transformer. Same as other machine
translation task, the original sentence will be input of encoder and the translation will be input
of decoder. While predicting, the output word at time ¢ will be the input at time ¢ + 1 to just like
we mention in seg2seqg model. This property is called auto-regressive. However, that would
lead to inefficiency during training because a wrong prediction will make the next incorrect one.
The model will take a long time to learn. Hence, we train the model with teacher forcing [38].
In other words, we always input the correct answer no matter what is the output of model to
reduce training time.

Transformer divides every words to sub-word units [39] which is called wordpiece
embedding and switch them to index sequence. For example, “transformer” will be split to
“trans” and “former” and the sequence will be [1, 2]. By this way, we can easily compose any
word in the world. Then we will give them an index in the beginning and the other one in the
end which represent “start of sequence” (<SOS>) and “end of sequence” (KEOS>). We will set a
maximum number of sequence length and eliminate all the sequence which is longer than that in
the next step. We also fill up every sequence to the maximum length with the index of “padding”
(<pad>). Finally, each token will be embedded to d,o4.; dimension. Of course we have different
embedding way for different language. Transformer is also able to produce multiple words at the
same time. Suppose input of encoder with dimension N and input of decoder with dimension
M which from the first token to the one before last token. Combining all features above, the
output dimension of transformer equals to M which beginning from the second token to the last
one. Tokens can be decode to the wordpiece from the output.

Besides the word embedding, transformer add the information about position as well.

Positional embedding will be summed with the word embedding, and be the final input. Each

23

DOI:10.6814/NCCU202000709

value of positional embedding will be

PE(pos, 2i) = sin(pos 5—)
10000 Fmode

PE(pos,2i — 1) = COS(LM)
10000 #mode

forl <: < % and 1 < pos < dmogel- The combination of embedding not only make the
model pay attention to the word but also the order. Moreover, they believe this kind of linear

function help model know the relative position.

Feed-Forward
Neural Network

’

N X C Layer Norlmalization)

e 'y

>
>

Multi-Head

Self Attention
Ny
6“91—(Positional Embedding)

C Input Embedding)

N Inputs

Figure 5.1: Encoder in Transformer

Next, we explain layer in the encoder. There are two sub-layers in it, first one is multi-head
self attention and another is a fully connected feed-forward neural network (FFN) .% . There is
also aresidual connection [11] with layer normalization [1] following each sub-layers. The input
vectors will be separated into three parts: key, value and query by multiplying distinct parameter

matrices here. For example, let 1, x5 and x5 be three input word vectors of dimension dy;odel-

24

DOI:10.6814/NCCU202000709

Then we get three query, key and value by:

g =Wz
]i]l:WKSL’z

UZ':WV'.CEZ‘

for 1 < i < 3 where W® and WX € Ré%*dmel and WV € Rév*dmeel denote the parameter
matrices for three items where dj, and d,, are the dimension of key and value. Fixed ¢;, we make

the scaled dot-product attention o ; by
alvi:%forlgig?)
to get the alignment for each key. These alignments will be applied softmax function to be the

attention scores &, ; which are the coefficient corresponding to each v; for 1 < < 3. Then we

obtain output b; by the summation of these weighted values. Here are the equations:

Ny - exp(oy, i)

i exp(ay, ;)

Jj=1
3

by = E Q1,4 U
i=1

Since summation of softmax function is 1, the output b; can be considered as a convex
combination of v;. The other outputs b, and b3 are generated by the same process. The outputs
comes from the information of itself instead of the way in RNN case. This kind of operation
is called self attention. Clearly, we can complete the calculation of all input at the same time.
Let X € RN denotes N word vector of dimension dpmegel be the input. Hence, the matrix

computation which can be shown as follows:

Q=W X
K=wK.X
V=w".X

T

. QK 9 Ty T
Attention(Q), K, V) = [softmax —107- P)|'V
(Q. K, V) = [softmax(* =)

where W@ € R&Xdmose /K ¢ RdkXdmotet JJ/V ¢ Rv*dmodel gre parameter metrices for query,
25

DOI:10.6814/NCCU202000709

key and value, respectively. (), K, V are query, key and value which pack all ¢;, k;, v; together
V1 < i < N. dj is the dimension of query and key. P € RY*¥ is the padding mask matrix
corresponding to the token sequence. The i-th column of matrix is 1 if the ¢-th token is <pad>,
others are 0. We will multiply a huge negative number and add to Q7 K such that the attention
weights after softmax will be 0 to those padding position. The skill helps model skip those
padding things. The output will be a weighted values vector of dimension d,,. The method is an
effective way to speed up the training progress by GPU.

Only one is not enough, Google found that it is useful to execute several attention functions
at the same time. (), K, V are the same as above. They will be weighted differently in each
attention function. Each output is a head. Suppose we have h heads. We will concatenate all of
them and multiply a parameter matrix to reshape the matrix to d;,04e1 dimension, which shows

below:

MultiHead(Q, K, V) = W7 - [concatenate(head;, head,, - - - , head,,)]”

where head; = Attention(W¢ - Q, WX . K, WY - V)

where the parameter matrices WiQ € RI>d WK ¢ RIxd WV ¢ RIb*dv and WO €
Rmoserxhdv for 1 < 4 < h. concatenate is the function which concatenate all the matrices
horizontally. The procedure helps model know sentence perfectly. Google concluded that each
head has its own contribution to different tasks. Some heads will notice the syntactic structure
and others learn the semantic construction.

Before moving forward to FFN, we firstly add the original input vector and output from
multi-head attention and perform layer normalization LayerNorm(X + MultiHead(Q, K, V))

which can be show:

1 dmodel
! dmodel —1 Y
1 dmodcl
! dmodel ; Y !
Gy =gyt L iy <i< N 1<j<d
ij — Yij o () ST) > J = OGmodel

J

where x;; is the element in X +MultiHead(Q, K, V') matrix, Z;; is the element in the matrix after

26

DOI:10.6814/NCCU202000709

performing layer normalization, g;; and b;; are parameters which was learned during training.
Next sub-layer is a position-wise fully connected feed-forward neural network with input

and output dimension = dy,04.;. There is only a hidden layer of dimension dg with ReLU in the

middle. Each column vector X, X, - - - , X,y is the input and each position in vector shares the

same parameters. Then .%#(X;) can be write as following:

Fp(x;)) =W -ReLUW -x; + B)+ B’
diodel
where ReLU(W - x; + B) = max(0, Z TpjWnj + by)

j=1
V1<i<N 1<j<dud 1 <n < dgwhere W € Rlxdmaa B e RI<L /" €
Rémocedir 3" ¢ Rmoas*1 are parameters. ,,j, wy,; and b, are denoted as the n-th element in
x;, W and B, respectively. Again, residual connection and layer normalization are performed
after the fully connected neural network. Finally, we get output of the layer and will be input to
next one. We have a stack of N, layers in encoder. In original paper, N, = 6, dmogel = 512, h =

8, d, = dp = 64 and dg = 2048. The structure is shown in Figure 5.1.

Output Distribution

(Lincar and Softmax

/

£3

r(Layer Normalization \

(Feed-Forward Neural Network)

L —

(Layer Normalization

—/

Nd X (Multi-Head Self Attention

<]

Encoder

Layer Normalization)
Masked Multi-Head
Self Attention

Q K

e Positional Embedding)
(Input Embedding)

f

M Inputs

Figure 5.2: Decoder in Transformer

27

DOI:10.6814/NCCU202000709

When encoder has done, it’s time for the decoder. Figure 5.2 is the picture of decoder. There
are three sub-layers of a layer in decoder. The bottom one is masked multi-head self attention, the
upper two are multi-head attention and FFN which are similar to encoder. Residual connection
followed by layer normalization will be performed after each sub-layer. Multi-head attention
in the middle acts attention as in seg2seq model. Keys and values come from the output of
encoder and query is from previous attention. This pattern allows the output of decoder based
on the knowledge from encoder. Finally, we make some adjustment about masked skills in the
self attention of each first sub-layers to prevent model knows the answer. Here, we need to
make sure that the the i-th token can only attend to the token before i. Otherwise, the model can
easily get the answer of ¢ + 1-th word by the input. Hence, we use a look-ahead mask to hide

R]V[XM

the information. The mask L € 1s an lower triangular matrix with those elements equal

to 1 included diagonal elements. Then L will combine with the padding mask P € RM*M,
Masked multi-head self attention is just a multi-head self attention sub-layer with combination
mask. The stack of N; = 6 layers of decoder in the original paper.

The output of final layer in the decoder will be input to a linear layer which switch it to
the shape in R%«*M where dg is the total sub-words in the dictionary of our embedding way.
After operating the softmax, we choose the corresponding index of the maximum values in
the distribution. We sum up the total cross entropy of each position between the real answer
and output, then update the model with Adam optimizer [16]. Transformer has three important
contribution: First, it use neither CNN nor RNN to finish a NLP task. Second, self attention

structure performs well. Finally, the model can be trained in a short time by the parallelizable

computation.

5.3 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a new embedding
model based on encoder of transformer [7]. Instead of the original embedding way, the
contextual word representation creates the unique embedding for the tokens which depend on
the context. BERT is also the fine-tuning model which all parameters in pretraind model can be
change depend on the NLP tasks. These features make BERT reach the state-of-the-art in lots

of tasks. In the following paragraph, we show more detain about BERT.

28

DOI:10.6814/NCCU202000709

There are two common methods of unsupervised NLP model: feature-based and fine-
tuning. They both has a pre-train model which trained on a huge amount of unlabeled language
data. It gets lots of knowledge of language. For feature-based model, we will fix all the
parameters and add an output layer depend on our task. The task-specific model will be final
model to solve the task. On the other hand, all the parameters will be adjusted to match the best
result of our task in fine-tuning model. We have to modify input and output as well. Hence,
BERT can be applied to many kinds of tasks. If we can train a powerful pre-trained model,
we will get better performance easily. BERT teaches the model about language by two tasks:
masked language model (MLM) and next sentence prediction (NSP). The input of pre-trained
model will be a pair of sentences (A, B). We will randomly mask a token in each sequence.
Model has to figures out the best choices of these two positions. Since the tokens have been
hided, the attention are able to come from both directions (right-to-left and left-to-right) which
lead to better result. At the meantime, the model has to judge whether sentence B is the next
sentence of A. It can help the model get information about the relation between two sentences.

The input embedding of BERT is designed to fit these two tasks. First, we will divide
our sentences to sub-words units as in Transformer. Second, we put some special token in the
token pairs: <CLS> will be placed at each input pair, <SEP> locate in the end of sentence
A and B, and <MASK> will be put to those hided tokens. Third, every token will have two
kinds of embedding: the input embeddings are the corresponding index of each wordpieces,
and segment embeddings which is the index for the sentence it belongs to. We set the maximum
length of representation and finish padding here. Then each element in these two embeddings
will be embedded to R dimension. Finally, the summation of these two embeddings will
add position embeddings which are same as in Transformer and be the final input. The layer of
BERT is the encoder in Transformer actually.

We call the i-th final output vector of BERT as the embedding of ¢-th input token. This
representation is the contextual word representation which is different from the traditional
embedding. The representation is based on context which is different from the one-to-one word
embedding. We will also add a linearly classifier on each corresponding position of <CLS>
and <MASK>. The linear classifier with sigmoid function will compute the relation of these
two sentences. Others for <MASK> are just like the final output in Transformer: we get a

distribution of all words in dictionary we use to split sub-words and pick the index of highest

29

DOI:10.6814/NCCU202000709

Output Output
YES or NO Distribution Distribution

Linear Linear Linear
Classifier Classifier Classifier
T

BERT Layer

GB'—C Position Embedding)
C Token Embedding D—‘GB‘—C Segment Embedding)
f

f
<CLS> Sub-Words of A <SEP> Sub-Words of B <SEP>
t t
Masked Sentence A Masked Sentence B
t t
Sentence A Sentence B

Figure 5.3: The architecture of pre-trained model in BERT

values as our output. We can compute loss and optimize our model. The pre-trained model is
shown in Figure 5.3. Then we are able to use this pre-trained model by fine-tuning. We set up
input and output type depend on our task and adjust all the parameters. Bert saves lots of cost to
train a huge model. We can only use fine-tuning to obtain wonderful result. Bert also develops

a strong method about word embedding.

30

DOI:10.6814/NCCU202000709

Chapter 6

Experiments

In this chapter, we will make prediction of numerical baseball data with LSTM and BERT.
We also want to verify the difference of result between our models and baseball prediction
systems which is called projection system as well. Here we introduce some famous projection

system in MLB and their method.

6.1 Baseball Projection System

Projection system predicts all items of data about hitters and pitchers. There are two basic
types of projection system in Major Leagur Baseball (MLB). Using previous data of the player
to predict his future performance is one type. This method is very reasonable because we are
used to judge a player by the performance in our mind. The Marcel the Monkey Forecasting
System (Marcel) [36] is a basic system developed by Tom Tango. For each item, it sums up past
three years performance with heavier weights for recent season and adjust the number about
player’s age and league average. The other type finds similar players to build the prediction.
Player Empirical Comparison and Optimization Test Algorithm (PECOTA) [33] developed by
Nate Silver uses historical data similar to the player and predict his performance by that trend.
However, the definition about finding comparable players remains a secret. By the device
updating, we have more and more detailed of baseball information. Steamer [6], which build by
Jared Cross, Dash Davidson and Peter Rosenbloom, uses different way corresponding to each
item to create projection by historical data. Moreover, it uses pitch-tracking data to help pitcher

prediction. sZymborski Projection System (ZiPS) created by Dan Szymborski weights heavily

31

DOI:10.6814/NCCU202000709

for recent years which included velocity and pitch data for multiple years. Both are similar
to Marcel. Furthermore, ZiPS also use comparable players to adjust the prediction which like
PECOTA. THE BAT, developed by Derek Carty, some special information such as umpire and
ball park factors are included in the stats while predicting [3]. In recent years, some popular
projection system is based on the others projection system. One of the largest statistical analysis
websites of baseball, FanGraphs, has published a new projection system called Depth Charts [8].
It combines the projection from ZiPS and Steamer and modify the result by the likely playing
time. Average Total Cost Projection System (ATC) [5] which developed by Ariel Cohen uses
a blend of projection system to predict the result. Each item takes unique combination of other
projection. In this paper, we set ZiPS as the main comparison because its prediction data is

easily accessible and precise.

6.2 Baseball Dataset Preparation

We collect players recorded in MLB with 20 features for every year during the period from
1998 to 2019. Since the final two teams Arizona Diamondbacks and the American Tampa Bay
Devil Rays added in 1998, we started to collect data from that year. All players have at least
6 continuous years experience in MLB which means they have at least 1 Plate Appearances
(PA) for 6 continued seasons. These features include 17 annual accumulated performance and
3 player’s status which are shown in Table 6.1.

Since home runs (HR) is the most effective way to score in the ball game, we set it as the
main goal to predict in this paper. However, it is not only practically impossible but inefficient
to predict the precision number of HRs. Therefore, we spilt HRs into disjoint subsets with every
5 HRs and each of them will be a class which is shown in Table 6.2. We choose these classes to
be our outputs. For our data, we have 12 classes.

On the other side, we think 5-years-long data is stable enough to be input for model to know
the player well. In conclusion, we use 5 continued years stat with 20 features for each year of a

player to predict his HRs class in sixth year. Therefore, each data point will be

({x:}ien v)

where x; € N2V ¢ € {1,---, 5} denotes the ¢-th year stat of the player and y € C; for some
1 <7 < 12 denotes the HR class of x5. We use 892 data points from 1998 to 2017 as training

32

DOI:10.6814/NCCU202000709

Code Description
Age Player’s age
CM Player’s Height
KG Player’s Weight
G Games Played
PA Plate Appearances
R Runs Scored
H Hits
2B Double Hits
3B Triple Hits
HR Home Runs
RBI Runs Battle In
SB Stolen Bases
CS Caught Stealing
BB Bases on Balls
SO StrikeOuts
GDP | Grouned into Double Plays
HBP Hit By a Pitch
SH Sacrifice Hits
SF Sacrifice Flies
IBB Intended Bases on Balls

Table 6.1: Features used in this paper

data and 265 data points in 2018 and 268 datas in 2019 for testing which verify our model
performance. The input of testing data points in 2018 is in the period of year 2013 to 2017 and

output HR class is belonging to year 2018. Testing data points in 2019 are similar. ZiPS has
209 predictions in 2018 and 215 in 2019.

33

DOI:10.6814/NCCU202000709

Class | Numbers | Class | Numbers
Ch 0-4 Cr 30-34
Cy 5-9 Cs 35-39
Cs 10-14 Coy 40-44
Cy 15-19 Cho 45-49
Cs 20-24 | Cn 50-54
Cs 25-29 Cia 55-59

Table 6.2: HRs classes

LSTM D/BN TD FC D/BN FC
A 128«2 025 10 1024 0.25 128
B | 1282 0.25 1024 0.25 128
C | 128 025 10 1024 025 128
D | 128+2 0.25 1024 0.25
E | 128%2 v 10 1024 vV 128
F 32 1024
G| 64x2 0.25 1024 0.25 128
H | 1282 0.25 512 025 64
I 128
J 128 1024 v

Table 6.3: Architectures of LSTM models

6.3 Prediction Models

In this paper aim to use BERT to do the classification task by numerical data with time

series. We compare its result to the prediction of LSTM and ZiPS. There are two kinds of pre-

trained models of BERT we use: BERT-base and BERT-base-multilingual. Each of them has

the version of cased and uncased which the wordpiece has the capital sub-words or not. We

will fine-tune these pre-trained models by our task for 10 epochs. BERT-base has 12 layers,

768 hidden neurons and 12 attention heads for total 110 millions of parameters. It trained on

English texts. BERT-base-multilingual-cased (BERT-mc) was trained on 104 languages based

on Bert-cased and BERT-base-multilingual-uncased (BERT-mu) was trained on 102 languages

34

DOI:10.6814/NCCU202000709

based on Bert-cased. We set batch size for 14 with learning rate for 107>,

MPA(%) HI1C(%) LI1C(%) | TPA(%)

LSTMA 43.8 14.3 14.0 72.1
LSTMB 457 12.8 12.5 71.0
LSTMC 43.0 14.0 15.0 72.0
LSTMD 453 11.3 13.2 69.8
LSTME 40.0 9.8 6.8 56.6
LSTMF 48.7 13.6 12.5 74.8
LSTMG 449 13.2 13.6 71.7
LSTMH 415 14.7 15.1 71.3
LSTMI1 ~ 453 12.8 13.2 71.3
LSTMJ 426 9.4 9.4 61.4
ZiPS 25.4 11.0 373 73.7
BERT-c ~ 46.8 12.8 13.6 73.2
BERT-u 49.1 9.4 13.6 72.1
BERT-mc¢ 50.6 16.2 12.5 79.3
BERT-mu ~ 47.6 16.6 12.1 76.3

Table 6.4: Prediction accuracy of 2018

On the other side, we build 10 kinds of model based on LSTM which shown in Table

6.3. Each model contains the LSTM layer and fully connected neural networks with BN or

dropout(D). In LSTM column, n % k means k layers with n neurons. In D/BN columns, number

represents dropout rate and / means BN is used instead of dropout. In model A, C and E,

there is a timestep-wise dimension reduction (TD) in the middle which reduced the dimension.

Finally, a standard fully connected layer with softmax will be our output. In all fully connected

layers we use ReLLU as the activation function to boost the training speed. The loss is counted

by cross-entropy and optimizer is Adam with learning rate 10~%. We set the batch size for 14

and trained for 20000 epochs. We use ({x;}?_;, y) be the input and output pair for LSTM. For

BERT, we will combine all the data of {x;}?_, with space to be the string as the input. For

example, {x;}?_, will be “2223 14 --- 0 162 89” and output y is the class.

35

DOI:10.6814/NCCU202000709

MPA(%) HIC(%) LI1C(%) | TPA(%)

LSTMA 418 11.9 13.4 67.1
LSTMB 384 12.3 14.2 64.9
LSTMC 36.9 14.6 15.7 67.2
LSTMD 38.1 14.2 14.6 66.9
LSTME 369 10.5 9.3 56.7
LSTMF 403 13.8 13.8 67.9
LSTMG 37.7 13.8 14.9 66.4
LSTMH 347 16.4 15.3 66.4
LSTMI 388 11.6 13.4 63.8
LSTMJ 396 6.3 10.0 55.9
ZiPS 30.1 16.0 19.7 65.8
BERT-c ~ 39.2 12.3 14.9 66.4
BERT-u 377 9.3 17.9 64.9
BERT-mc 399 10.8 17.1 67.8
BERT-mu 403 13.4 14.2 67.9

Table 6.5: Prediction accuracy of 2019

6.4 Model Performance

Table 6.4 shows the maximum prediction accuracy (MPA) of data points in 2018. Higher
for 1 class (H1C) means the prediction is the class C; 1 instead of the ground truth C;. Lower for
1 class (L1C) is the opposite situation. These two values are valuable for the model performance.
Finally, we sum up MPA, H1C and L1C to calculate the total prediction accuracy (TPA) of the

model. The computation can be write as follow:

MPA — Right Predicti.0n
Total Data Points
HIC — Higher Prediction For 1 Class
N Total Data Points
LIC = Lower Prediction For 1 Class
N Total Data Points

TPA = MPA + HIC + L1C

36

DOI:10.6814/NCCU202000709

The model performance of 2019 is presented in Table 6.5.

MPA(%) HIC(%) L1C(%) | TPA(%)
LSTMA 422 7.5 17.2 66.9
LSTMB 414 9.0 13.8 64.2
LSTMC 39.6 11.9 14.2 65.7
LSTMD 42.8 7.8 13.8 63.4
LSTME 369 8.2 13.4 58.5
LSTMF 403 10.1 15.7 66.1
LSTMG 396 7.1 16.0 62.7
LSTMH 403 8.6 14.6 63.5
LSTMI ~ 40.0 12.3 14.6 66.9
LSTMJ 367 10.8 10.8 58.3
ZiPS 30.1 16.0 19.7 65.8
BERT-c 39.6 12.3 15.7 67.6
BERT-u 392 13.4 17.9 70.5
BERT-mc 44.4 9.7 15.3 69.4
BERT-mu 425 10.1 15.3 67.9

Table 6.6: Prediction accuracy of 2019 after retrain

We can find that BERT models have marvelous performance on MPA in 2018. BERT-
base-multilingual-cased can even reach 50 percent accuracy. Around 80% of player can be
predicted in the list by the model. They show the ability that BERT can read about numerical
data and performs well. LSTM models have more than 40% MPA, but TPA lies in a wide
range. All models are able to predict more precisely than the predictions by ZiPS. However,
Z1PS underestimates 37.3% of players by 1 class, its TPA still remain high. Only the model F
of LSTM and BERT-base-multilingual models perform better than ZiPS in TPA. In conclusion,
BERT-base-multilingual-cased is the best model in 2018. Although they performs well in 2018,
the performance has dropped 5% to 10% while predicting the data points in 2019. Model
A of LSTM gets highest MPA among all other models while both model F and BERT-base-
multilingual-uncased have the greatest TPA. All models still outperform ZiPS in MPA with

more models exceed the TPA of ZiPS. We think the reason about decreasing accuracy is that

37

DOI:10.6814/NCCU202000709

models may need more information about year 2018. Therefore, we add data points in 2018

into the original training data as the new one to retrain models and predict 2019 data points.

The result is shown in Table 6.6. Almost every model has some growth in accuracy rate.

BERT-base-multilingual-cased makes the leading position in MPA and BERT-base-uncased has

the maximum percentage in TPA. BERT-base-multilingual always performs better than BERT-

base. Using cased or uncased wordpiece embedding has no clear influence in the task. On

the other hand, there is little difference between the simple struture of LSTM such as model F

and complicated model like model A. Dropout is also better than BN here. Overall, BERT is a

feasible and stable solution to predict numerical data. On the baseball prediction task, BERT is

a new excellent projection system. It has the ability to know numbers and performs better than

LSTM with less training time. Next, we analyze the prediction further.

0-4 5-9 10-14 15-19 20-24 25-29 30+
LSTM A 79 14 19 0 3 1 0
LSTM B 79 18 15 0 9 0 0
LSTM C 74 17 19 0 3 1 0
LSTM D 79 21 15 0 4 1 0
LSTME 83 6 4 4 4 4 1
LSTM F 79 22 16 0 11 1 0
LSTM G 77 21 17 0 3 1 0
LSTM H 71 20 18 0 0 1 0
LSTM I 80 17 17 0 6 0 0
LSTM J 88 2 7 3 11 2 0
BERT-¢c 83 22 8 0 11 0 0
BERT-u 8 17 14 1 8 1 0
BERT-mc 84 17 23 0 9 1 0
BERT-mu 81 17 11 0 17 0 0
Ground Truth 107 43 41 25 27 8 14

Table 6.7: Number of correct predictions in 2018

38

DOI:10.6814/NCCU202000709

0-4 5-9 10-14 15-19 20-24 25-29 30+
LSTM A 72 14 18 0 7 1 0
LSTM B 72 13 7 0 11 0 0
LSTM C 68 14 15 0 1 1 0
LSTM D 72 15 11 0 3 1 0
LSTM E 77 7 7 0 4 2 2
LSTM F 72 13 13 0 9 1 0
LSTM G 70 18 10 0 1 2 0
LSTM H 64 17 10 0 0 2 0
LSTM I 72 11 14 0 7 0 0
LSTMJ 81 1 12 1 10 0 1
BERT-c 74 17 4 0 10 0 0
BERT-u 77 10 8 1 4 1 0
BERT-mc 76 12 12 0 6 1 0
BERT-mu 68 15 10 0 15 0 0
Ground Truth 102 35 39 24 28 13 27

Table 6.8: Number of correct predictions in 2019

6.5 Class Result

In this part, we show more detail of the prediction. In Table 6.7, we can see the distribution

of prediction for each class in 2018. The head of columns represents the number of HRs in each

class. Obviously, we are able to observe that the first three class, which under 15 HRs, and

C5 class are easily predictable. However, C, and those classes more than 25 HRs are hard to

predict. The result of 2019 and retrain model which shown in Table 6.8 and Table 6.9 represent

similar pattern. We think that for C; class, the data of player is similar to C'3 and C5 which lead

model to ignore this class. For the class which more than 25 HRs, the data points for training

is less and varies a lot. Hence, we will try other ways to predict these classes to enhance the

accuracy. ZiPS result in Table 6.10 shows that its prediction is cross every class but the accuracy

of each of them are low.

39

DOI:10.6814/NCCU202000709

0-4 5-9 10-14 15-19 20-24 25-29 30+

LSTM A 81 18 4 0 9 1 0
LSTM B 77 16 10 0 8 0 0
LSTM C 74 11 12 0 9 0 0
LSTM D 80 14 11 0 7 0 0
LSTM E 79 11 7 1 1 0 0
LSTMF 76 13 12 0 7 0 0
LSTM G 78 11 9 0 8 0 0
LSTM H 79 13 7 0 9 0 0
LSTM I 75 8 14 0 9 1 0
LSTM J 81 2 4 5 3 1 2
BERT-c 74 19 8 1 3 1 0
BERT-u o 4 0 7 1 0
BERT-mc 75 18 12 0 13 1 0
BERT-mu 73 22 12 0 6 1 0
Ground Truth 102 35 39 24 28 13 27

Table 6.9: Number of correct predictions in 2019 after retrain

0-4 5-9 10-14 15-19 20-24 25-29 30+
ZiPS 2018 14 7 12 7 6 2 5
Ground Truth 2018 107 43 41 25 27 8 14
ZiPS 2019 15 17 14 6 7 2 3
Ground Truth 2019 102 35 39 24 28 13 27

Table 6.10: Number of correct predictions of ZiPS

40

DOI:10.6814/NCCU202000709

Chapter 7

Conclusion

In this paper, we research the possibility of using numerical data with order to be the input
of the powerful NLP model BERT. We predict the class of HRs number of MLB players by their
past performance. Since there is no clear track of this data to be forecast, classification task
will be a big challenge for BERT. We also compare the result for the traditional recurrent deep
learning model LSTM and the well-known baseball projection system ZiPS. Performance of
BERT and LSTM are amazing. All models have outperformed ZiPS in the maximum prediction
accuracy. Moreover, models based on BERT are usually have better performance than those
based on LSTM. Although it performs well, there are two phenomenon we should notice. BERT
is still easily focus on the majority of the training class. Meanwhile, data have to keep updating
or BERT will have less information to predict. In conclusion, BERT is a feasible and effective
way to predict output by numerical input. Self attention skill helps model make more knowledge
about data sequence. We can actually use this NLP model in more field such as finance and

natural science. There are several potential research direction in this classification problem:
1. The structure of BERT can be adjusted due to numerical data input to increase accuracy.

2. Other new stats can be added such as batting average on balls in play (BABIP) or average
ball exit velocity (EV).

3. Creating an embedding for baseball player to know more information about them.

4. Solving the prediction result of imbalanced data.

41

DOI:10.6814/NCCU202000709

Bibliography

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate, 2014.
[3] Derek Carty. The bat. www.RotoGrinders.com.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn
encoder—decoder for statistical machine translation. Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), 2014.
[5] Ariel Cohen. Atc. www.fangraphs.com.

[6] Jared Cross, Dash Davidson, and Peter Rosenbloom. Steamer projections.

steamerprojections.com/.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training

of deep bidirectional transformers for language understanding, 2018.
[8] FanGraphs. Depth charts. www.fangraphs.com.

[9] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016.

[10] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Studies in

Computational Intelligence. Springer, Berlin, 2012.

42

DOI:10.6814/NCCU202000709

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Jun 2016.

[12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors, 2012.

[13] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735-1780, November 1997.

[14] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift, 2015.

[15] Anil K. Jain, Jianchang Mao, and K. Mohiuddin. Artificial neural networks: A tutorial.
IEEE Computer, 29:31-44, 1996.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[17] Kaan Koseler and Matthew Stephan. Machine learning applications in baseball: A
systematic literature review. Applied Artificial Intelligence, 31(9-10):745-763, 2017.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097—

1105. Curran Associates, Inc., 2012.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278—
2324, 1998.

[20] J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog’s eye tells
the frog’s brain. Proceedings of the IRE, 47(11):1940-1951, 1959.

[21] Arlo Lyle. Baseball prediction using ensemble learning. PhD thesis, University of Georgia,
2007.

43

DOI:10.6814/NCCU202000709

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space, 2013.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111-3119, 2013.
[24] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[25] Vinod Nair and Geoftrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Johannes Filirnkranz and Thorsten Joachims, editors, /CML, pages 807—-814.

Omnipress, 2010.

[26] Andrew Y. Ng. Feature selection, 11 vs. 12 regularization, and rotational invariance. In
Proceedings of the Twenty-First International Conference on Machine Learning, ICML’
04, page 78, New York, NY, USA, 2004. Association for Computing Machinery.

[27] Jeftrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532-1543, 2014.

[28] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume I (Long Papers), 2018.

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2016.

[30] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

[31] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Representations by Back-propagating Errors. Nature, 323(6088):533-536, 1986.

[32] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam,

44

DOI:10.6814/NCCU202000709

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of go with deep neural networks and tree search.

Nature, 529:484-503, 2016.
[33] Nate Silver. Introducing pecota. Baseball Prospectus, 2003:507-514, 2003.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(56):1929-1958, 2014.

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104-3112, 2014.
[36] Tom Tango. Marcel. www.tangotiger.net.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998-6008, 2017.

[38] R.J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent

neural networks. Neural Computation, 1(2):270-280, 1989.

[39] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeft Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation, 2016.

[40] Xue Ying. An overview of overfitting and its solutions. Journal of Physics: Conference

Series, 1168:022022, feb 2019.

45

DOI:10.6814/NCCU202000709

	致謝
	中文摘要
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Deep Learning
	Neuron and Neural Networks
	Activation Function
	Loss Function
	Gradient Decent and Backpropagation
	Overfitting, Dropout and Batch Normalization

	Recurrent Neural Networks
	RNN Cell
	Long Short-Term Memory
	Attention

	Bidirectional Encoder Representations from Transformers
	Word Embedding
	Transformer
	Bidirectional Encoder Representations from Transformers

	Experiments
	Baseball Projection System
	Baseball Dataset Preparation
	Prediction Models
	Model Performance
	Class Result

	Conclusion
	Bibliography

