國立政治大學 108 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共1頁

考試科目

微積分

系所別

應用數學系

考試時間

2月17日(日)第一節

1. (12%) Evaluate the limits.

(a)
$$(6\%) \lim_{t\to 0} \frac{t^3}{\tan^2(2t)}$$

(b)
$$(6\%) \lim_{x\to 1} (2-x)^{\tan(\pi x/2)}$$

2. (40 %) Evaluate the integrals.

(a)
$$(8\%) \int_0^{\pi/4} (1+\tan t)^3 \sec^2 t dt$$

(b) (8 %)
$$\int_0^{\pi/3} \sin x \ln(\cos x) dx$$

(c) (8 %)
$$\int_{0}^{\infty} e^{-\sqrt{y}} dy$$

(d) (8 %)
$$\int_0^\infty x^2 e^{-x} dx$$

(e)
$$(8\%)'\int_0^1 \int_y^1 x^2 e^{xy} dx dy$$

3. (8 %) If
$$f(x) = \int_0^{g(x)} \frac{1}{\sqrt{1+t^3}} dt$$
, where $g(x) = \int_0^{\cos x} [1+\sin(t^2)] dt$, find $f'(\pi/2)$.

4. (10%) Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Evaluate $f_{xy}(0,0)$.

5. (10 %) Evaluate the line integral

$$\int_{C} (yze^{xyz} + x)dx + xze^{xyz}dy + xye^{xyz}dz$$

where C is the curve $\mathbf{r}(t) = \langle t, \cos(\pi t), \tan^{-1}(t) \rangle$, $0 \le t \le 1$.

- 6. (10%) Suppose f is a function with the property that $|f(x)| \le x^2$ for all x. Show that f(0) = 0. Then show that f'(0) = 0.
- 7. (10%) Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. Prove that if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, $\sum a_n$ also converges.

國立政治大學 108 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共1頁

考試科目

微積分

系所別

應用數學系

考試時間

2月17日(日)第一節

1. (12%) Evaluate the limits.

(a)
$$(6\%) \lim_{t\to 0} \frac{t^3}{\tan^2(2t)}$$

(b)
$$(6\%) \lim_{x\to 1} (2-x)^{\tan(\pi x/2)}$$

2. (40 %) Evaluate the integrals.

(a)
$$(8\%) \int_0^{\pi/4} (1+\tan t)^3 \sec^2 t dt$$

(b) (8 %)
$$\int_0^{\pi/3} \sin x \ln(\cos x) dx$$

(c)
$$(8\%) \int_0^\infty e^{-\sqrt{y}} dy$$

(d) (8 %)
$$\int_0^\infty x^2 e^{-x} dx$$

(e)
$$(8\%)'\int_0^1 \int_y^1 x^2 e^{xy} dx dy$$

3. (8 %) If
$$f(x) = \int_0^{g(x)} \frac{1}{\sqrt{1+t^3}} dt$$
, where $g(x) = \int_0^{\cos x} [1+\sin(t^2)] dt$, find $f'(\pi/2)$.

4. (10%) Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Evaluate $f_{xy}(0,0)$.

5. (10%) Evaluate the line integral

$$\int_C (yze^{xyz} + x)dx + xze^{xyz}dy + xye^{xyz}dz$$

where C is the curve $\mathbf{r}(t) = \langle t, \cos(\pi t), \tan^{-1}(t) \rangle$, $0 \le t \le 1$.

- 6. (10%) Suppose f is a function with the property that $|f(x)| \le x^2$ for all x. Show that f(0) = 0. Then show that f'(0) = 0.
- 7. (10%) Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. Prove that if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, $\sum a_n$ also converges.

國立政治大學 108 學年度 碩士班招生考試試題

第1頁,共1頁

考試科目

線性代數

系所别

應用數學系

考試時間

2月17日(日)第二節

Please show all your work.

- 1. (10 points) Let V be the vector space of n-square matrices over a filed \mathbb{R} . Let U and W be the subspace of symmetric and antisymmetric matrices, respectively. Show that $V = U \oplus W$. (The matrix M is symmetric iff $M = M^t$, and antisymmetric iff $-M = M^t$.)
- 2. Let U and W be the subspaces of \mathbb{R}^4 generated by

$$\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}$$
 and $\{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}$

respectively. Find each of the following:

- (a) (10 points) dim(U+W)
- (b) (10 points) $dim(U \cap W)$.
- 3. (10 points) Prove that a linear mapping $F: V \to U$ is nonsingular if and only if the image of a linearly independent set is linearly independent.
- 4. (10 points) Let $F:V\to U$ and $G:U\to W$ be linear. Show that $rank(G\circ F)\leq \min\{rank(F),rank(G)\}$
- 5. Let E be a linear operator on V for which $E^2 = E$. Let U be the image of E and W the kernel of E. Show that
 - (a) (5 points) if $u \in U$, then E(u) = u
 - (b) (5 points) if E is not the identity I on V, then E is singular.
 - (c) (5 points) $V = U \oplus W$
- 6. (10 points) Let D be the differential operator on a vector space V of functions $f: \mathbb{R} \to \mathbb{R}$, that is, D(f) = df/dt. Find the matrix representation of D in the basis $\{e^{3t}, te^{3t}, t^2e^{3t}\}$ of V.
- 7. (10 points) Let $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ where A and B are square matrices. Show that the minimum polynomial m(t) of M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B, respectively.
- 8. Let $T:V\to V$ be linear. Suppose, for $v\in V$, $T^k(v)=0$ but $T^{k-1}(v)\neq 0$, that is, T is nilpotent of index k. Prove
 - (a) (5 points) the set $S = \{v, T(v), \dots, T^{k-1}(v)\}$ is linearly independent.
 - (b) (5 points) the subspace W generated by S is T-invariant.
 - (c) (5 points) the restriction \hat{T} of T to W is nilpotent of index k.

國立政治大學 108 學年度 碩士班招生考試試題

第1頁,共1頁

考試科目 線性代數 系所別 應用數學系 考試時間 2月17日(日)第二節

Please show all your work.

- 1. (10 points) Let V be the vector space of n-square matrices over a filed \mathbb{R} . Let U and W be the subspace of symmetric and antisymmetric matrices, respectively. Show that $V = U \oplus W$. (The matrix M is symmetric iff $M = M^t$, and antisymmetric iff $-M = M^t$.)
- 2. Let U and W be the subspaces of \mathbb{R}^4 generated by

$$\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}$$
 and $\{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}$

respectively. Find each of the following:

- (a) (10 points) dim(U+W)
- (b) (10 points) $dim(U \cap W)$.
- 3. (10 points) Prove that a linear mapping $F: V \to U$ is nonsingular if and only if the image of a linearly independent set is linearly independent.
- 4. (10 points) Let $F:V\to U$ and $G:U\to W$ be linear. Show that $rank(G\circ F)\leq \min\{rank(F),rank(G)\}$
- 5. Let E be a linear operator on V for which $E^2 = E$. Let U be the image of E and W the kernel of E. Show that
 - (a) (5 points) if $u \in U$, then E(u) = u
 - (b) (5 points) if E is not the identity I on V, then E is singular.
 - (c) (5 points) $V = U \oplus W$
- 6. (10 points) Let D be the differential operator on a vector space V of functions $f: \mathbb{R} \to \mathbb{R}$, that is, D(f) = df/dt. Find the matrix representation of D in the basis $\{e^{3t}, te^{3t}, t^2e^{3t}\}$ of V.
- 7. (10 points) Let $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ where A and B are square matrices. Show that the minimum polynomial m(t) of M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B, respectively.
- 8. Let $T:V\to V$ be linear. Suppose, for $v\in V$, $T^k(v)=0$ but $T^{k-1}(v)\neq 0$, that is, T is nilpotent of index k. Prove
 - (a) (5 points) the set $S = \{v, T(v), \cdots, T^{k-1}(v)\}$ is linearly independent.
 - (b) (5 points) the subspace W generated by S is T-invariant.
 - (c) (5 points) the restriction \hat{T} of T to W is nilpotent of index k.