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Abstract

Deep neural networks are modeled to extract higher-level information in a way
that is like the function of the human brain. From a mathematical perspective, neural
networks are function approximators, which can approximate any function on a
suitable domain.

In the first part of this dissertation, we consider two different tasks to
demonstrate the power of deep neural networks. One task is derived from a option
pricing model of financial derivatives while another task is to rewrite an affine
subspaces based manifold reconstruction algorithm to a learning process of a deep
residual network. Such reformulation offers a possibility for potential application
of deep neural networks to various geometrical related algorithms.

In the second part, we focus on the HodgeRank, a pairwise ranking method
based on the combinatorial Hodge theory. We first quick review the background of
combinatorial Hodge theory, then a real world application of HodgeRank to online
peer assessment is provided. Finally, by considering HodgeRank as a composition
of Moore-Penrose generalized inverse and matrix-vector product, we can study
the continuity of HodgeRank. In terms of graph, a theorem of continuity of the

HodgeRank is provided in the end.

Keywords: deep neural network, deep residual network, moving boundary
problem, manifold reconstruction, HodgeRank, combinatorial Hodge theory, graph

Laplacian, peer assessment
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Chapter 1

Introduction

1.1 Deep Learning

In recent years, artificial intelligence (AI) has been utilized in many applications such
as machine translation [1, 89], speech recognition [21, 39], autonomous driving [74], image
recognition [28, 54], and game playing [70]. In many cases, developing Al applications start
with training deep neural networks [3].

Deep neural network is a class of model of machine learning in Al, which allows the
computer to learn features of data with multiple levels of abstraction [38, 55]. Among most
used deep neural network architecture, feed-forward neural network, convolutional neural
network [56] and recurrent neural network (RNN) [15, 36, 45]. Since the training of a deep
neural network is time-consuming and prone to overfitting due to the presence of noise from
data, an alternative structure of neural network, called the deep residual network (ResNet) [43],
was considered to solve these issues. ResNet contains a structure, called skip-connection, which
skips one or more layers. Hence, information is allowed to pass to deeper layers so that the
vanishing gradient problem can be prevented [76]. Motivated by differential equations, the
structure of skip-connection can be seen as an Euler discretization of a continuous transformation
of a time evolving ordinary differential equations [41, 65, 79]. This perspective turns a deep
neural network model into a family of a continuous-depth models, which allows end-to-end
training of ordinary differential equations [13].

Recently, Transformer [89] plays an important role in the development of natural language

processing (NLP), which outperforms most RNN-based NLP models. Several Transformer-
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based models such as GPT-3 [8], BERT [25], ELMo [75], and ULMFiT [48] are widely used in
multiple NLP tasks. However, the Transformer family is beyond the scope of this dissertation.
For a comprehensive survey of Transformer, please refer [86].

Theoretically, the well-known universal approximation theorem [20] of neural networks
establish a mathematical foundation that neural network with single hidden layer can be applied
to approximate any continuous function in any precision. However, the approximation theorem
offers no information about the width of certain single hidden layer. Other than above depth-
bounded universal approximation theorem, the width-bounded version [66] provides a more
interesting result for deep neural networks. The universal approximation theorem for ResNet
proposed in [58] which provides a magnificent result for the capability of ResNet.

To demonstrate the power of depth-bounded universal approximation theorem, a neural
network approach is applied to solve a moving boundary problem arising in pricing formula

in chapter 3.

1.2 Manifold Reconstruction

In many science and engineering fields, high-dimensional data are assumed to be sampled
from a manifold of lower dimension embedded in a Euclidean space. This leads to the problem
of manifold learning, which aims approximate the underlying manifold of dataset of interest [6].
The goal of manifold learning is to extract the intrinsic information from high-dimensional data
using the structure of manifold. In other words, high-dimensional data can be explained by
latent variables of lower dimension

A practical technique is to fit data points with a line or a lower dimensional affine space [18,
33, 97]. However, one issue is that data points may not sampled from flat object but from a
nonlinear class such as curve or a smooth manifold. The presence of noise is another issue
which leads to unexpected results.

The former issue was initially addressed in [14] with a triangulation-based algorithm.
In [73], a method based on simplicial complexes was proposed under the presence of
noise, which solves both issues. In [4, 5], iterative methods were considered to reduce the
computational cost of triangulation of the dataset. Later in a series of works [29, 30, 31],

manifold was reconstructed by gluing by affine subspaces, which rely on the computation of
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affine projections. A parameterization-free projection method was proposed in [61] to avoid
the computation of local plane. In [84], a moving least-squares method [57] was applied for

manifold reconstruction given the intrinsic dimension of the underlying manifold.

1.3 Pairwise Ranking and Combinatorial Hodge Theory

According to [68], most people are unable rank more than 10 items at the same time. Also,
bias occurs when the number of ranked items is large. To prevent such situation, pairwise
comparison offers a solution to reduce bias and also provides a way to fill missing values.

Pairwise comparison is a ranking process that compares candidates in pairs to determine
which candidate is preferred. In other words, if candidates are assumed with some unknown
underlying ranking, one may want to recover such ranking from pair comparisons [27].
In ranking algorithm, each candidate is assigned a score according to their preference, or
importance. New candidates can also be sorted quickly once the certain ranking process is
built [64].

By measuring candidates in pairs for their relative preference or importance, pairwise
comparisons are represented using a pairwise comparison matrix. Under different scale
of measurements, comparison matrix could be represented either on the additive scale or
on the multiplicative scale [80]. To find a global ranking of all candidates from pairwise
comparison matrix, a score vector for candidates is generated to approximate the observed
pairwise comparison matrix. Score vector can be generated by various methods under different
assumption and conditions. Among all ranking methods, HodgeRank [51] and PerronRank [80]
are two of the most applied in real world applications. The connection between these ranking
algorithms is being discussed in [87].

HodgeRank has been widely applied in many fields [60, 83]. HodgeRank can be
obtained simply by computing the row geometric mean of the comparison matrix [19] on the
multiplicative scale. However, on the additive scale, HodgeRank can be viewed as a consistent
part of a flow on a finite graph, which is explained by combinatorial Hodge theory [51]. Thus,
nice properties of HodgeRank are guaranteed thanks to combinatorial Hodge theory.

Combinatorial Hodge theory is an algebraic topology based theory which decomposes a

edge flow on a graph into the direct sum of gradient, harmonic and curl flows. Accordingly, by
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treating a pairwise ranking as an edge flow on a graph, one can be recover the global ranking

from the gradient flow while ranking error can be quantified by other two flows.

1.4 Organization of this Dissertation

The dissertation is organized as follows.

In Part I, we focus on the deep neural networks. In the second part. We will focus on
the HodgeRank, a ranking method based on the combinatorial Hodge theory. In the end of
this dissertation, we present our conclusions and possibilities for future research including few
unsolved problems in this dissertation.

In Part I, the mathematical definition of a neural network is introduced in chapter 2.
Next, we recall the well-known universal approximation theorems for feed-forward neural
network and some similar results. Then, residual neural network, a neural net that consists
of residual blocks, is introduced Also, a “dual” version of universal approximation theorems for
residual neural network is stated here. Finally, graph neural network is introduced along with
various versions of attention mechanism. In chapter 3, we propose a neural network approach
to construct an approximate solution of a moving boundary problem arising from pricing of
American volatility options. In chapter 4, a manifold reconstruction algorithm proposed by [30]
is considered. Also, combined with manifold interpolation algorithm and the structure of the
residual network, we propose a neural network based manifold interpolation algorithm.

In Part II, we will recall some basic knowledge about the combinatorial Hodge theory
in chapter 5. In chapter 6, to study the continuity of HodgeRank, we recall the definition of
a generalized inverse of a matrix. By analyzing the continuity of the pseudoinverse operator
1 on graph Laplacian matrices, one condition about the continuity of HodgeRank is proved.
In chapter 7, an real world application of HodgeRank to online peer assessment is presented.

In the end, the conclusion of this dissertation is presented chapter 8. Also, two unsolved

problems which relate to our research are stated.
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Chapter 2

Deep Learning

In recent year, deep learning has been widely developed and applied in various fields
to handle real-world problems such as recommendation system, computer vision, autonomous
driving, game playing, etc.

Deep learning is derived from the field of machine learning. However, unlike most shallow-
structured algorithms in machine learning algorithm, deep-structured models are considered
in deep learning. This difference resulting from the fact that data can be easily accessed and
collected nowadays.

A central component of deep learning is the neural network. Neural network is a parametric
model originally inspired by neurobiology, which imitates the computing power and flexibility
of the brain. Parameters can be optimized through the learning process.

In this section, we first briefly introduce the model of neural network. Then we state and
prove the well-known universal approximation theorem for shallow networks. Note that there
are various universal approximation theorems under different conditions for different purposes.

We will cover some well-known versions of universal approximation theorem here.

2.1 Standard Structure of Neural Network

We first state the definition of a feed-forward neural network between Euclidean spaces.

This is a modified definition from the one given in the book [38].

Definition 2.1.1. A feed-forward neural network (or a neural network simply) of depth d is a

parametric function fy : R™ — R defined by a series of alternative compositions of affine and
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d
nonlinear functions with a set of parameters 6 = {(W;,b;) |0 <i < d} € © = || (RM+xhi x
i=0
Rhi+1), where || is the disjoint union. That is, fp of the form:

fe:LdoaququO“'UoOLo’

where L; : R" — RN+ s an affine transformation defined by Li(x) = Wiz + b; and o; :

R+t — RN+ called activation function of hidden layer i, is a nonlinear function that operates
: : T

on vectors component-wisely . That is, o;(z) = (0i(21), 04(x2), -+, 05(xx)) " for column vector

= (1, ,2)" € RN

The map o o Ly is called the input layer and o/, is called the output layer, and o; o L; 1s
called the i-th hidden layer for i = 1,2,--- ,d — 1. Each layer 0; o L; : R" — R"+1 can be

written of the form

0i(Wiw +b) = [0:(Wiz + bi); 1<j<hipi o3 (Wi + bij)]lﬁjéhm

where W;; is the j-th row of the h; 1 X h; matrix WW; and b;; is the j-th component of b; € Rl

Hence, to compute 0;0L; (), it suffices to compute o (W;;2+b;;) forall 1 < j < h;.;. Note
that v +— y = o(Wz + b), where W € R™" and b € R is a function from R” to R, which can
be represented as a diagram shown in Figure 2.1 below. This is called the mathematical model
of a single neuron. Here, x is called the input vector, and y = o(Wx + b) is called the output
vector defined by computing the inner product of = and a weight vector W = [w;]1<;<, € R¥*"

plus the bias b € R under o.

Tn

Figure 2.1: Mathematical model for a neuron: y = o ( > w;z; + b)
=1
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The following terms can be used to design and characterize a neural network:

d: depth of fy
o;: activation function of layer ¢
h;: width of the hidden layer ¢ of fy for 1 < <d

ho = n: dimension of the input layer

hqi1 = m: dimension of the output layer

For a fixed design of neural network, the corresponding parametric model is the collection

of all neural networks with the same design
Ho={fo:R" > R™ |6 € O}

d
which has an one-to-one correspondence to parameters € ©. Since © = | | (Rhiﬂ *hi Rh”l)
i=0
d
is isomorphic to R, where K = 5 [(1 + hi)hi+1}. That is, each fy is fully determined by its
i=0
design and K parameters.

We can classify a neural network fy by its depth d and all its width of each layers {hl}fiol
Definition 2.1.2. For N € N, fy is called a
1. shallow neural network if d < 2. i.e., fy contains at most two hidden layer.
2. deep neural network for d > 3. i.e., fy contains at least three layers.
3. width-N network if h; < N forall 1 <1 < d.

In some literatures [2, 10, 49, 92], a neural network with one hidden layer (that is, d = 1)
is called a single hidden layer feed-forward neural network (SLFN) instead of a shallow neural
network. However, we will use the term shallow nets for the rest of this section. Sometimes,
we say fy is a narrow net if it is width- N network without indicating its width bound N.

In Table 2.1, some popular types of activation functions used in deep learning out of which

commonly used are listed.
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Table 2.1: Common choices of activation function

Name Formula Derivative
Sigmoid 0(r) = o= o'(x) =0(z)(1 —o(z))
Hyperbolic tangent o(z) = iijr::z o'(z) =1—0%(x)
Rectified linear unit o(x) = max{z, 0} o'(z) = L ifz >0
(ReLU) ’ 0 ifzr<0
z ifx>0 1 ifz>0
Leaky ReLU [67] | o(x) = o'(z) =
axr ifx <0 a ifz<0

2.1.1 Learning Process

Let D = {(z;)}}Y, be data points in R™. We often aim to extract information on D. Thus,

we propose one or multiple mathematical models to work on this dataset.

In supervised learning, we associate each data x; € R" with a label y; € R™. One common

application of neural network in a supervise manner is to interpolate all points in D with a sutable

designed neural network fy. i.e., find a f, so that

folz;) =y; foralll <i< N (2.1.1)

For a fixed design © of neural network, our goal is to find an optimal fy- € He = {fy :

R™ — R™ | € ©} (if exists) so that (2.1.1) holds.

For fy € Heo, we can evaluate how fy far from (2.1.1) by a cost function or a loss function.

To measure this gap, we first consider a nonnegative function L : R™ x R™ — [0, 00) so that

L(fo(7:),y:) =0 <= fo(x;) = y;foralll <i < N

Such L is called a loss function or a cost function of fy at a point (x;,y;), L(fo(2:),y:) is

called a loss of fy at (z;, y;) under criterion L. Further, the loss function £ : © — [0, co) assigns

each 6 a non-negative number by computing the mean of L( fy(-), -) on all data points of D, that

1 N

L) =— Z L(fo(@i),y:)
N

=1

Therefore, finding a optimal #* satisfying (2.1.1) is equivalent to solve the following
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minimization problem

lg‘éiélﬁ(e) = L(Wo,bo, Wi,b1,- -, Wy, ba) (2.1.2)

If L is chosen with nice properties such as convexity or Lipschitz continuity [72, 94]. Then
there are several standard optimization techniques can be applied to deal with (2.1.2). The
process to find the optimal 6* using loss function £ is called the learning process under criterion

L.

Some common used loss functions are listed in Table 2.2

Table 2.2: Common choices of loss function

Name Formula of L(z,y)
Binary loss Lizryy
Mean square error sz —vyl3=1 Zn:l(xz —yi)?
Mean absolute error lx =yl = Zn:l\:cl — ;]
Negative log likelihood | — zn:l[yz log(z;) + (11 y;) log(1 — ;)]

If the loss function L is chosen to be differentiable, then a common procedure of learning
process is to apply gradient descent method from elementary calculus. There are several
different flavors of stochastic gradient descent, which can be all seen throughout the literature.
There are various learning algorithm based on the gradient method such as Adam [52] or
Nesterov momentum [71].

In unsupervised learning, data points are untagged, that is, each x; associates with no label
yi, that 1s, D is the only set we have. Based on the result we intended to achieve, various
algorithms would be considered to deal with D. In some case, loss functions could be not
analytic or even differentiable. However, in some case, we can reformulate an unsupervised
learning problem into a supervised one. For instance, an Autoencoder is to reconstruct a data
by learning the identity function. That is, the label of each data x; is x; itself. This makes the

selection of loss function being reduced into supervised case.

10
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2.1.2 Universal Approximation Theorem for Shallow Net

A famous result for neural networks is that that any continuous function on a compact set of
R™ can be approximated by a neural network in any precision. Computationally, any continuous
function can be replaced by a neural network without losing precision. To state this theorem,
we need the following notations.

Let I,, = [0,1]™ be n-dimensional unit cube in R”. Denote the set of all signed Radon
measures defined on /,, by M (I,,). The set of all continuous functions defined on /,, is denoted

by C(I,). Each f € C(I,,) associates with a supremum norm

[[flloc = sup|f ()]

Ieln

Definition 2.1.3 ([20]). We say that o is discriminatory on 1, if up € M(I,,) on I, so that

/ oWz +b)du(x) =0

In
forany W € R, b € R, then u =0

We need the following geometric form of the Hahn-Banach Extension Theorem and the

Riesz Representation Theorem.

Theorem 2.1.4 (Hahn-Banach Extension Theorem [7, Corollary 1.8]). Let F' C E be a linear

subspace with F #+ E. Then there exists a nonzero linear functional L on E such that

Theorem 2.1.5 (Riesz Representation Theorem [34, Theorem 7.17]). Let X be a locally
compact Hausdorff space. For 1 € M(X) and f € Co(X), define L,(f) = [ fdu. Then

p— L, is an isometric isomorphism from M (X) to Co(X)*.

Note that the domain we talk about here is I,, = [0, 1]", hence, the set of continuous
functions vanish at infinity Cy([,,) coincides with C'(1,,).
The shallow net f, we consider below contains one hidden layer of width A, and is of the

form
h

fo(x) = So(Wz +0b) = Z sio(Wix + b;) (2.1.3)

=1

11
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where W is the i-th row of W.
Denote N, be the set of all shallow net fy of the form (2.1.3) of any width & € N with a

fixed activation function 0. Then we have the following theorem.

Theorem 2.1.6 (Universal Approximation Theorem [20]). If o is continuous and discriminatory,

then N, is dense in C(I,,) with respect to the uniform norm ||-|| .

Proof. Suppose not, then the closure of N, is not dense in C'(I,,). That is, N, is a proper
closed subspace of C'(I,,). By Hahn-Banach Extension Theorem, there exists a nonzero linear
functional L € C(I,,)* so that

Lin, =0 (2.1.4)

By Riesz Representation Theorem, there exists p € M ([,) so that the linear functional L

is of the form

L(f) = ; f(@)dp(x)

forany f € C(1,).
By (2.1.3), we have

h
L(fy) = / So(Wax +b)du(z) = Zsl/ o(Wiz + b;)dp(z)
i=1 In
forany fp = So(Wz +b) € N, C C(I,,)
By choosing suitable s;, since o is discriminatory, we can conclude that o = 0. This implies
that L = 0 is a trivial linear functional, which leads us to a contradiction. Hence, N, is dense

in C(1,). O

Another proof of Theorem 2.1.6 is to apply the Stone-Weierstrass theorem by considering
N, as the linear span of {o(Wx + b) | w € R",b € R}. However, both are existence proofs,
which provide no additional information about how to design width h.

In fact, combined with Lusin’s theorem [34, p. 64], one can prove that any finite Borel
measurable function on /,, can be well-approximated with a shallow net on a subset of /,, by
removing a subset of /,, with small measure.

The universal approximation theorem we state above is called a depth-bounded type. An
alternative type of the universal approximation theorem is width-bounded. That is, if we restrict

the width of each layer to be bounded, does the universal approximation property holds as the
12
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depth goes to infinity? There are various width-bounded universal approximation theorems for
deep neural network showing the denseness of particular deep narrow networks.

In [42], it has been shown that deep narrow networks with the ReL U activation function are
dense in C'( K, R™) for any compact set X' C R”, and require only width n+m. A similar result
have proved in [66] that deep narrow networks with the ReLU activation function are dense in
L'(R™), the set of all Lebesgue integrable functions on R", with width n + 4. Later in 2.2.2,
we will see an impressive universal approximation theorem for residual network, which will be

introduced soon.

2.2 Residual Network

In this section, we introduce a variant of neural network, called the residual network, which
is proposed in [43].
The major difference of residual network from standard feed-forward neural network is the

design of skip connection. To illustrate this structure, we introduce the residual block below.

2.2.1 Residual Network

Definition 2.2.1. An residual block (ResBlock) is a function Fyy g : R™ — R™ defined by
Fua(z) = Wa =+ folx) (2.2.1)

where W € R™ " and fy : R* — R™ is a parametric function. This structure is sometimes
called an additive skip-connection.

If fo is narrow, then we call Fyy g a narrow ResBlock.

TN

T fo(x) Fyp(z)

Figure 2.2: Functions of a ResBlcok

Intuitively speaking, Fyy not only extract information from x through fy, but also
preserves some information W x from z. This makes important information behind = being

left for the next layer.
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Remark 2.2.2. 1. Forthe case m = n, we can fix W = I, as the identity matrix and ignore
it from the subscript of Fyg. Otherwise, W will be considered as a trainable weight

during training process.

2. Initially, the parametric function fy is chosen as a shallow convolutional neural network
in [43]. Later in [99], authors consider fq as a sum of k shallow nets fp, : R™ — R" with
k
different design. That is, Figy (x) =z + 3 fo,()
= i=1

Definition 2.2.3. A4 residual network (ResNet) is a parametric function containing at least one

ResBlock.

The origin structure of ResNet proposed in [43] consists of ResBlocks only. Two
consecutive ResBlocks are connected by multiplying a weight on the output of the former
ResBlock, this makes each ResBlocks could handle vectors of different dimensions.

One advantage of ResNet is that we could construct a very deep neural network without
gradient vanishing during training process. An interpretation is that a ResNet could be seen
as a collection of many paths of various length due to the existence of skip-connections. In
other words, a ResNet could be viewed as an ensemble of relative smaller feedforward neural
networks which are easier to train. For more detail about the discussion, please refer [90].

There is also an universal approximation theorem for ResNet if we allow its depth goes
to infinity with width-bounded ResBlocks. We slightly modify notation and terminology
from [58].

2.2.2 Universal Approximation Theorem for Narrow ResNet

Lin and Jegelka [58] have shown that ResNet with ReLU activation and only one neuron is
a universal approximator of functions in L' (R"). To state such universal approximation theorem

for ResNet, we first consider the following type of ResNet.

Definition 2.2.4. 1. The function F : R"™ — R" is called a k-neuron shallow ResBlock with

activation o if F' is of the following form:

F(z) =2+ So(Wz + )
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where W € R¥*" b € R* and S € R™F. In other words, F is a ResBlock by choosing
W =1, and fo(x) = So(Wx +b) in (2.2.1).

2. The set of all k-neuron shallow ResBlocks on R™ with activation o is denoted by N

n,k,o*
3. Denote the set of all composition of d functions in N,El,za by Néfik),a

That is, for any | € N ko | 18 Of the form
f:FdOFd—1O"'OF1

where I, Fy,--- | Fy € Néllza

Then, we have the following universal approximation theorem for narrow ResNet using

only ReLU as activation function.

Theorem 2.2.5 (Universal Approximation Theorem for Narrow ResNet [58]). L U 1 ReLU
is dense in L*(R™) under the L'-norm, where LX = {Lo f| L :R" — R s lmear f € X}

Proof. See [58, Theorem 3.1] for the proof. ]
In fact, we can relax £ = 1 into arbitrary width.

Corollary 2.2.6. L U k ReLy I8 dense in L' (R™) under the L'-norm for any k € N.
d=

The central part of the proof of Theorem 2.2.5 is to approximate step function first, then
apply the denseness property of step functions in L'(IR™). One trick is that shifting is considered
to make sure the supports of all ResBlocks are non-overlapping.

However, the proof of Theorem 2.2.5 is given by combining a constructive proof and an
existence proof, which provides merely benefits of constructing and training a deep narrow
ResNet.

The key advantage of the ResNet is that it contains different paths to pass some of its
ResBlocks. Hence, we can consider the local behavior of ResNet other than global. Later
in chapter 4, we will see how this property can be applied to solve a manifold interpolation

problem.
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2.3 Graph Neural Network

In various fields, the connection between different objects are recorded and represented as
a graph, which consists of nodes and edges to indicate each object and the relationship between
them. To extend the capacity of neural network from Euclidean data into non-Euclidean one,
graph neural network was proposed in [82] which extends classical neural network models.

Here, we briefly introduce what is the graph neural network and how a graph can be viewed

as an input of a graph neural network.

2.3.1 Graph

In this subsection, we recall some basic definitions from graph theory. Some of definitions
below will be used in chapter 5. Through this subsection, V' will denote a nonempty finite set.
The notation (Z) denotes by the set of k-elements of subsets of V, and V¥ denotes the set of

k-tuples of elements of V.

Definition 2.3.1. A4 (simple) graph is an ordered pair G = (V, E), where V is called the vertex
setand E C (3) £ {(i,j) € V2| i # j} is called the edge set.

* If element in E is not ordered, then we say G is an undirected graph. Otherwise, G is

called a directed graph.

» If V is a finite set, then G is called a finite graph on n vertices. In this case, we write

V={1,2,---,n} = n].
* A finite undirected graph G of vertex n, denoted by G = K,,, is called a complete graph

ifE=(5)

Let G be a graph. Sometimes we use V' (G) and E(G) to represent the vertex and the edge
set of graph GG. These notations are useful when we discuss more than one graph. Now, we see

how a graph is associated with a matrix.

Definition 2.3.2. Let G be a finite graph on n vertices, and i € V (G).
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1. Let A = Ag be an n x n matrix defined by matrix of G, which is defined by

1 if(i,j) e E
Aij -
0 if(i,j) ¢ E
Ag is called the adjacent of the graph G.

2. The set of all neighborhoods of vertex 1 is denoted by
Ni={jeVI[(ij) e E}.

3. The degree of vertex i, denoted by deg(i), is defined by deg(i) = |N;|.
Remark 2.3.3. Let G be a finite graph on n vertices, and i € V(G).
1. If G is undirected, then its adjacent matrix A is symmetric.
2. Ajj=1forallj € N,
3. The degree of i can be computed by deg(i) = 2”:1 - s Zj;/ A
j= JEN;

Figure 2.3 shows an example of a finite undirected graph G = (V, E) of 5 vertices, where

V =4{1,2,3,4,5}, E = {(1,2),(2,1),(2,3),(3,2),(2,4), (4,2),(4,5), (5,4)} and

Figure 2.4 shows an example of a finite directed graph G = (V| E') of 5 vertices, where

17
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)
I

® ®
Figure 2.3: Example of an undirected graph

V =1{1,2,3,4,5}, E = {(1,2),(2,3), (4,2), (4,5), (5,4) }and

-
»

Figure 2.4: Example of a directed graph

Definition 2.3.4. Let G = (V, E) be a graph with adjacent matrix Ag. If each vertex i € V
is associated with a vector h; € RY. Then we called ({h;}icpn), Ac) a graph-structured data

based on the graph G.

Later, we can see how a graph-structured data be viewed and manipulated as a input data
of a neural network.

A natural way to construct a graph-structured data from a graph G is to assign each vertex
1 € V with the i-th row (or column) of the adjacent matrix A. Hence, even for a graph with no

extrinsic information about each vertex, we can still find a graph-structured data tautologically.
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2.3.2 Graph Attention Network

Here, we only introduce one type of graph neural network. We first define the traditional

attention mechanism in deep learning.

Definition 2.3.5 (Softmax). The function softmax : R™ — R" is defined by

softmax(xy, x2, -+, &n) = (Y1,Y2, * +Yn)

where

Ty

(&

= n
> e
k=1

y; = softmax(zy,xq, -+, x,);

for 1 <11 < n. is called the softmax function.

n
Note that y; € [0,1} and > y; = 1. In other words, softmax transforms a vector in R” into
i=1
a probability vector in R”.

Definition 2.3.6 (Attention mechanism). Let X = {x;}i, and Y = {y;}7", be two sets in R

and RM, respectively. The attention mechanism is to apply to update each x; to x; by considering

the importance of each y; to x;. Usually, @ is given by Y a;;y;, a linear combination of {y,},
j=1

where coefficient o is called the attention score of i from j, is defined by two steps below.

For fixed i, to compute «;j, we need to consider all importance between x; and all y;.

1. An alignment model { A;; } on X andY is a function that assigns each x; € X andy; € Y
ascalar A;j; € Rfor 1 < i <nandl1 < j < m. Sometimes, A;; is called the attention
coefficient of x; and y;.

2. Based on an alignment model { A;; }, an attention score a;; from x; to x; is defined by

e

aij = softmax(Ail, AiQ, s 7Aim>j = ;
5 e
k=1

(2.3.1)

for1 <i<nandl1 <j<m.

3. With a;j, we can update each x; by

=) iy
j=1
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forl1 <1< n.

Note that the alignment model A;; between z; and y; can be implemented in various way.

Let ({hi}ie[n] , Ag) be a graph-structured data, our goal is to identify a pattern of each vertex
1 by studying their feature vector under the structure of graph. This pattern consists of not only
hidden information from vertex 7, but also from some or all neighborhoods N; of vertex i.

In a feed-forward neural network, we compute the linear combination of vectors from the
output of one hidden layer as an input of next hidden layer. In a graph neural network, we
transform each h; with a similar computation process to get another feature vector A of vertex
1. However, we consider their convex combination instead, and the coefficients are attention
scores defined below. This is called the graph attention mechanism, which is slightly different

from the traditional one.

Definition 2.3.7 (Graph attention mechanism). Let ({h; }icin); Ac) be a graph-structured data.

Denote E(G) = E(G) U {(i,i) | i € V(G)} and N; = N; U {i} fori € V(G).
1. An alignment model { A;;} between i and h; is defined only if (i, j) € E(G) ori = j.

2. Based on an alignment model { A;; }( B(G) an attention score a;; Jfrom h; to h; is defined

by
s = —
K Z eAik 2 eAik
(i,k)eE(G) keN;

for1 <i<nandl <j<m.

3. With «;j, we can update each x; by

/_
Ty = E QY5

(1,)€E(G)
forl1 <i<n.

To compute the attention score, one need to have an alignment model beforehand. There
are various ways to define such alignment model. We introduce two famous examples below.

In [89], a different data structure is considered. Assume that the dataset is of the form
{Q, K,V}, where Q, K € R"*% and V € R"*?, then each data x; = (g;, k;, v;) is a 3-tuple of
i-th row of ), K and V, respectively.
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For such data format, the scaled dot-product attention A = [A;;],,x,, is defined
Ay = [Q"K];;

where 1 <4, j < n. In this case, the attention score «;; is defined by (2.3.1). Then the attention

mechanism is this case is to update v; by

n
E ozl-jvj
Jj=1

forl <i¢<n.
In [91], the alignment model of a shared attentional mechanism is defined by a shallow

neural network fy : R™ — R™ using Leaky ReLU so that
Ayj = fo(hi, hj) = Leaky(a” [Wh;||Wh;]) (2.3.2)

where W € R’*’ is a shared weight, a € R?"" is a weight vector and [Wh;||IWh,] € R*" be
the concatenation operation between two vectors Wh; and Wh; of RY",
Hence, the process of graph attention network between two attention layers can be divided

into serval steps:

1. Update all feature vector {h;} in R¥ by multiplying by a common weight matrix W of
shape F' x . In other words, we have {Wh,} in RY".

2. Compute the alignment or attention coefficient A;; between ¢ and j. One can consider A

as a shallow net defined as in (2.3.2).

3. Compute the attention coefficient a;; between ¢ and j by normalizing A;; across all

choices of j using softmax function:

/i

keN;
Then o;; € [0,1] and > «;; = 1 for each .
JEN

4. Update W h; to h/ by consider a convex combination of all its neighborhoods and h; itself
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with coefficients «;; for all j € N; U {i}. That is,

o

Z OzijWhj

JEN;U{i}

(2.3.4)

where o is an activation function. Note that this step is to update W h; by average of all
its neighborhoods.

With {h,

-, h,} as input, a graph attention network geneates {h/,

matrix W and the graph structure of GG in each graph attention layer.

-+ h!'} by weight

Therefore, a graph neural network generates a series of feature vectors for each vertex .
See Figure 2.5 for an example.

hy h,
GAT GAT
L N
h2 h4 h’2 - Zl ..
hs  hs| R, K

GAT

n

Yo

Ys

Ya

Ys

Figure 2.5: Diagram of graph attention neural network

We give an example that illustrates how an attention layer of a graph attention network
works in Figure 2.6.

hi
ho hy
hs hs

W Wh,

Why

Whs

Why

Whs

Q11

Why
alleam Qa4
, o2 )
attention e
Seore 02 (Why = Why

Q24
QQST\LCQQ a54Tla45

Wh
)

as33

Whs
)

as5

Figure 2.6: Mechanism of graph attention

M
—— bty —— 1
1 N

There are various datasets which could be identified with a graph structure. For example,

a citation graph is a directed graph in which each vertex represents a scientific paper and each
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edge represents a citation from a peer to another. The feature vector of each vertex is formed by
a bag-of-words representation of certain paper. For more detail and survey about graph neural
networks, please refer [100, 98].

Later in chapter 7, we will see a natural dataset which consist of graph Laplacian matrices

of all edge-weighted connected graphs.
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Chapter 3

Neural Network Approach for Pricing
American Volatility Options

In this chapter, we will see how a pricing formula of American power volatility option
is derived by solving a moving boundary problem. However, such pricing formula contains
a moving boundary term which can only be solved by solving a nonlinear algebraic equation.
Therefore, a neural network approach is considered in the end of this chapter. The comparison
results demonstrates that the neural network provides an accurate approach to approximate
solution for the free boundary problem.

This chapter is partially based on the joint work [63] with my advisors.

3.1 Introduction

In this chapter, we study the properties of the parabolic free-boundary problem arising
from pricing of American volatility options in mean-reverting volatility processes. When the
volatility index follows the mean-reverting square root process (MRSRP), a closed-form pricing
formula for the perpetual American power volatility option can be derived. Moreover, a neural
network approach is extended to find an approximate solution of the free boundary problem

arising from pricing the perpetual American option.
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3.2 Problem Definition

3.2.1 The Probability Density Function and Expectation

In the case of mean-reverting square root process (MRSRP), the index process under the

Martingale measure () is presented as

dxy = B(m — x)dt + o+/zdwy

with 3, m and o representing the speed of mean-reversion, the long-run mean, and the volatility
of the volatility index, respectively [23, 40].

Here, x denotes the index of volatility, ¢ denotes the time-to-maturity and dw; denotes an
increment in the Wiener process under the Martingale probability measure (). The probability

density function of x at the future time 7" under the current time ¢ is given as (see Cox et al. [17])

pler;ailB,m, o) = ce=" ()41, (2v/av), (3.2.1)
where ¢ = ﬁ%%)), u = cxe PT Y v=crp,q= 25;” — 1 and [, is the modified Bessel

function of the first kind of order q.
In the case of mean-reverting 3/2 volatility process, the index process under the Martingale

measure () is given as follows:
3
dz; = (axy — Ba?)dt + kxl dwy, (3.2.2)

where o > 0, § > 0 and k # 0 are constants. This model has a nonlinear drift so that it exhibits
substantial nonlinear mean-reverting behavior when the volatility is above its long-run mean.
Hence, after a large volatility spike, the volatility can potentially quickly decrease, while after
a low volatility period it can be slow to increase. Applying change of variables v, = 1/x;, y

follows the following MRSRP

dy; = ((K* + B) — ayy)dt — k/yidw;.
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Based on (3.2.1), the probability density function of y is then presented as follows:

k2 + 8

AN
p(yr, yile, ,—k) = ce_“_z(a)glq(%/uz), (3.2.3)
where ¢ = W, uw=cye T 2 =cyrandqg = 1+ i—'f (see Goard and Mazur [37]).

Since the probability density function of the MRSRP and the mean-reverting 3/2 processes

are given in (3.2.1) and (3.2.3), respectively, the value of a European option can be obtained as
V(z,t) = e "TIECW (ar) |z, = 2],

where 1)(z) is the payoff function of the European volatility option and E® denotes the

expectation under the martingale measure ().

3.2.2 The Solution of Partial Differential Equations

Except considering the probability density function to find the expectation for the price,
the pricing formula of the European volatility option is also the solution of partial differential
equations. When the volatility index follows the MRSRP, the pricing equation of the volatility

option V' (x,t) is presented as

3}

(ﬁy—E)V:0,0§x<oo,O<t<oo, (3.2.4)
where £} is defined as
1 2 0
M = = 2 R —— —_—
Ly = 57 T3 + B(m x)ax r.

The fundamental solution of (3.2.4) is given by Feller [32]. When the volatility index follows
the mean-reverting 3/2 volatility model, the value V' (z,t) of the volatility option can also be

obtained by solving the following parabolic equation

(C?—%)V:0,0§x<oo, 0<t<oo,
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where the operator L is given in the form

0? o O
pye + (ax — Bz )8_x — . (3.2.5)

k23

Ly %
The coefficients are all continuously differentiable and %k2x3 >0, for0 <z < oo, k # 0and
r > 0. By setting z = 1/y, LIV (x) can be changed to LV (y).

The closed-form expression for the value of a European volatility call option was proposed
by Grunbichler and Longstaff [40], who found that the price of a volatility call option can be
below its intrinsic value and that the traditional put-call parity relation does not hold for these
options. This is because the volatility is not the price of a traded asset. However, the value of the
American style volatility call option, unlike the European option, is bounded below by its early
exercise payoff. Evidently, the lower bound is a consequence of the possibility of immediate
exercise. Moreover, the European option still has value as the volatility decreases to zero in
the MRSRP case. Detemple and Osakwe [23] said that the reason for this difference is the
multiplicative impact of the uncertainty of future volatility. They also showed that the price
of the American style volatility call (¢)(x) = max{zx — K, 0}) is an increasing function of the

time-to-maturity.

3.2.3 The Free Boundary Problem for Pricing an American Volatility
Option

For the American-style option, an entirely satisfactory analytic solution has not been
found for the MRSRP model and the mean-reverting 3/2-volatility model, even though several
researchers have concentrated on finding the properties of the value as well as the early exercise
boundary for American options. Liu [62] proposed the properties of the price and the early
exercise boundary for the American volatility put option (¢)(x) = max{K — xz,0}) when the
volatility index satisfies the mean-reverting 3/2 volatility process.

In this chapter, we consider the pricing problem for the American volatility call with the
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payoff function ¢(x) = max{z" — K, 0}, n € Z. Apply £} to 1 (z) yields that

—(Bn+r)z" + (30%(n — 1) + fm)na™ "t + rK, ifa" > K,
Ly'(w) =
0, ifzn < K.

Since r K > 0 and £} (€) — —ooas & — oo if fn+r > 0. This implies that there exists

d > 0 such that

>0 forO<x<d,
L (x) (3.2.6)

<0 ford <z < o0,

Precisely, this chapter examines the following one-dimensional free boundary problem
for linear parabolic equations arising from the problem of valuing an American-style volatility
option in the models of MRSRP. Define £ = £} — %.

Let u(x,t) and s(t) be the price and the early exercise price of the American volatility
power call. For the case of n > 0, we consider the following free boundary problem.

Problem (P)

Lu =0, 0<z<s(t), 0<t< oo, (3.2.7)
u(z, t) > 2" — K, 0<z<s(t),0<t<oo,, (3.2.8)
w(z,0) = 2" — K, 0 <z < s(0), (3.2.9)
u(s(t),t) = s"(t) — K, 0<t< oo, (3.2.10)
g—Z(s(t),t) = ' (s(t)), 0<t< oo, (3.2.11)

Since u(x, t) denotes the price of an American volatility power call, the condition (0, t) <
oo 1s added in the model. These additional condition will be used in finding the pricing formula
of the corresponding perpetual American option.

For the case of n < 0, we have 2" > K ifz < Q/L? Hence, the value of the American

volatility option satisfies the following free boundary problem.
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Problem (Q)

Lu =0, s(t) <z < o0, 0<t< o0, (3.2.12)
u(z,t) > a" — K, s(t) <z < oo, 0<t<o0,, (3.2.13)
u(z,0) = 2" — K, s(0) < z < oo, (3.2.14)
u(s(t),t) = s"(t) — K, 0<t< oo, (3.2.15)
%(s(t),t) = ' (s(t)), 0<t< oo, (3.2.16)

In the mean reverting 3/2 volatility process, the pricing problem for the American volatility
option can be considered by changing the variable = 1/y. It would be interesting to consider
the properties of the value as well as the early exercise boundary of American volatility power
options while the properties have not been mentioned in the case of the MRSRP and the mean-
reverting 3/2 volatility process.

In the cases of the MRSRP and the mean-reverting 3/2 volatility process, we derive a
closed-pricing formula for the perpetual American volatility power option, where the early
exercise price can be obtained iteratively. Moreover, we consider neural network (NN) approach
to the solution of the free boundary differential equation arising from pricing a perpetual
American volatility option under the MRSRP. The numerical results show that the ANN
approach is an accurate approach for pricing the American volatility option in the case of
MRSRP. This NN approach can also be applied to approximate the pricing formula of the
perpetual American option under the different process. In future studies, our results can be
applied to consider the properties of other American-style derivatives with the payoff function

satisfying (3.2.6) in the cases of the MRSRP and the mean-reverting 3/2 volatility process.

3.3 Properties of the Solution

Let 7 denote the set of all stopping time 7 for the process. The value of an American-style

option is obtained by evaluating the following optimization problem

a(z,t) = SggEQ[¢($T)|x(t) = x]. (3.3.1)
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Kotlow [53] showed that the solution (s,u) to Problem (P) resolves the optimization

problem (3.3.1) by setting

u(z,t) if (z,t) € C,

() if (z,1) € Q@ = C,

where Q = (0,00) x (0,00) and C' = {(z,)|0 < x < s5(t),0 < t < oo}.
Let {s,u} be the solution to Problem (P) and denote C', namely the continuation region, as
C={(x,t)|0 <z <s(t), 0 <t< o0} (3.3.2)
Applying results of Kotlow [53] directly to (P), we obtained the following theorems.
Theorem 3.3.1. Let {s, u} be a solution of (P). They have the following properties:
(@) uy > 0inC.
(b) s(0) =dand s(t) > dfor0 <t < oc.
(c) s(t) is a non-decreasing function.
(d) There exists a s € (d,o0) such that s(t) — s uniformly as t — oo if

lim sup[£))(€)] < 0 and Bn +r > 0.

£—00

In the case of the American put option, Liu [62] provided the properties for the price as
well as the early exercise boundary under the mean-reverting 3/2 volatility model. When the
payoff function satisfies (3.2.6), we obtained the following theorem by modifying the proof of
Theorem 2.3 in [62]. The following theorem includes the call option and the power call option

in the MRSRP or the mean-reverting 3/2 volatility models.
Theorem 3.3.2. Let {s, u} be a solution of (P). Then

(a) s(t) is a strictly increasing function.

(b) uy(z,t) > 0for (x,t) € C.

(c) When B > 0, uy(z,t) < ¢'(x) for (z,t) € Cy, where Cy = {(x,t) € Clz > d)}.
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According to Theorem 3.3.1 and Theorem 3.3.2, we propose properties for the value and the
early exercise boundary of an American volatility power option in the MRSRP (Theorem 3.3.3)
and the mean-reverting 3/2 volatility process (Theorem 3.3.5). The similar results for the

American volatility call can also be founded in Detemple and Kitapbayev [22].

Theorem 3.3.3. Let u(x,t) and s(t) be the value and the early exercise boundary of an American

volatility power option in the MRSRP. When 3n + r > 0, we have the following properties.
(a) The value u(x,t) increases with an increase in both the time-to-maturity.

(b) The value u(x,t) increases (decreases, respectively) with an increase in the volatility

index x for n > 0 (for n < 0, respectively).

(c) The early exercise boundary s(t) strictly increases (decreases, respectively) with an

increase in the time-to-maturity for n.> 0 (for n < 0, respectively).

(d) The early exercise boundary s(t) is bounded by d and s>, where s is the exercise

boundary of its corresponding perpetual American option.
(e) The early exercise boundary starts at d, that is s(0) = d.

Proof. The coefficients of (3.2.4) are all continuously differentiable and %a% >0for0<z<
oo and r > 0. To show that the value and the early exercise boundary of an American volatility
power option satisfy Theorem 3.3.1 and Theorem 3.3.2, it suffices to show that there exists a d

in R such that £3+)(z) satisfies

>0 forO<x<d,
L' (x)
<0 ford < x < o0,

for some d > 0.

Applying £} to 1)(z) = max{z" — K,0} for a volatility power option yields that

—(Bn+r)z" + (30%(n — 1) + Bm)na™ ' + 1K, ifa" > K,
Ly"y(x) =
0, ifz" < K.
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Let f(z) = —(Bn+r)z" + (30%(n — 1) + fm)na™' + rK. We have f(0) = rK > 0 and
lim, ., f(z) = —oo since —(fn + r) < 0. Since f is a continuous function on R, f has at

least one positive root. Moreover, we have f'(z) = 2" %[ — n(fn + )z + (30%(n — 1) +

(30%(n=1)+Bm)(n—1)

By ) and decreases as

Bm)n(n — 1)]. This implies that f(z) increases as z <

$0%(n—1)4Bm)(n—1))
r > -2 Bt

root, say d’. Then we can define d = max{K'/" d'} forn > 0 and d = min{ K/ d'} for
n < 0. []

. By the continuity of f, we obtained that f has exactly one positive

Remark 3.3.4. For the American volatility call option with 1(x) = max{zx — K, d}, we have

d = max{K, 15K} = K in the case of the MRSRP. This is because 3 > 0 and Lp(x) =

—(B+r)r+1rK forx > K.

Now, we consider properties of an American volatility power option in the mean-reverting

3/2 volatility process.

Theorem 3.3.5. When tk*(n — 1) < [ and u > 0, the value u(x,t) and the early
exercise boundary s(t) of an American power option have the same properties of (a) to (d)

in Theorem 3.3.3 with the volatility following the mean-reverting 3/2 volatility process.

Proof. Applying L& to 1(z) = max{z" — K, 0} for a volatility power option yields that

(3k*n(n — 1) = Bn)z"* + (an— r)nz" + K, ifr > K,
L3 (x) =
0, ifz < K.

Let f(z) = nAz"*! + (an — r)na™ + rK, where A = $k*(n — 1) — 8. Then f'(z) =
nz™[(n + 1)Az 4+ (an —r)] and f(0) = rK > 0. Since A < 0, we have lim,_,, f(z) = —o0

and f'(z) > 0ifz < 77555 and f'(z) < 0ifz > =575 Hence f(z) increases witha < =91

and deceases with = > =47 Therefore, we obtained that f (x) has exactly one positive root,

say d’. Then we can define d = max{K'/" d'} forn > 0andd = min{ K/, d'} forn < 0. [

Remark 3.3.6. According to Theorem 3.3.5, the value of s(0) = d for the American call option

with(x) = max{x — K, 0} is obtained as d = max{ K, d'}, where d' = ks (gﬁ_r)%ﬂﬂ(ﬁ >
0.
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3.4 Asymptotic Behavior of Exercise Boundary Infinitely Far
from Expiry

Since s(t) is a strictly increasing function of the time-to-maturity for the American volatility
power option, the lower boundary for the optimal exercise boundary s(t) for ¢ > 0 is obtained
by lim; o+ s(t) = d in the MRSRP and the mean-reverting 3/2 volatility process. It would be
interesting to explore whether s(¢) is bounded or not as ¢ — co. At the same time, the pricing
formula for the perpetual American volatility power option is obtained in the MRSRP and the
mean-reverting 3/2 volatility process.

Before solving the ordinary differential equation arising from pricing the perpetual
American volatility option, we first introduce the confluent hypergeometric functions of which

the integral representations are given as

F<b) \ xtya—1 _ f\b—a-1
= /0 ePta1(1 — )b,

In the following theorem, we will provide a pricing formula for the perpetual American

d(a,b,z) =

volatility power option.

Theorem 3.4.1. Let (v, s) be the value and the early exercise boundary of a perpetual American

volatility power option in MRSRP. Assume 25—;” > 1 for the Feller condition. Ifn > 0, then (v, s)

solves the following free boundary problem

L¥v(z) =0, 0<zx<s,
(3.4.1)
v(s) = s" — K, V'(s) = ns",
where L) is defined in (3.2.4). The solution is obtained in the form.
2 2
v(x) = Clq)(%, %; U—fx), 0<z<s, (34.2)
where Oy = —— and s is a root of the following equation
q’(gvjf;dﬁs)
(I)(%7 2531; (27—55) s"— K
o2r r 28m 25 - n—1 " (343)
262m@(5+1,7+1,0—8) ns
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which can be solved iteratively for s.

Ifn <0, then (v, s) solves the following free boundary problem

LMv(z) =0, s < x < 00,
(3.4.4)
v(s) = s" — K, v'(s) = ns", lim, o, v(z) = 0,
where L} is defined in (3.2.4). The solution is obtained in the form.
O(L 41— 2Bm o 26m. 20,
n T 1_28m B o2 o2 1 g2
vix) =(s" — K)(— o2 , Ss<zx<oo. 34.5
&)= (" = KN G (3.4.5)
Here s is a root of the following equation
SUER(L+1- B a2 Byl g 546
_2Bm - Y — en—1 - o
$loPoG 14802 By,
which can be solved iteratively for s.
Proof. By letting y = i—g:r, LMv(z) = 0 is changed to
d*v 208m dv r 2
) —y)———-v=0 O<y<— 3.4.7
ydy2+(02 y)dy 5" =0 y<—35 (3.4.7)

which is regarded as a Kummer’s equation.
The solutions of Kummer’s equation (3.4.7) are expressed through the confluent hypergeometric

function ®(a, v, x). Precisely, the general solutions are written in the form

r 28m
57779

" 2 2
) Coy (L 41 = 2O 2O,

v(y) = C19( 3 o7 F’y)

where ('] and C are arbitrary constants.
Displaying the solution in terms of x, the equation is rewritten in the form

r 2Bm 23
B g2 g2

2p3

x) + C’g(gx)lfm L 2pm

2 P(=+4+1-—

v(x) = Cr1P(

We first consider the case of n > 0. The value v(x) of an American volatility power option

is finite in [0, s], that is v(s) < oo for all z € [0,s]. Since fm > 10? and ®(wv, B;2) # 0
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as z — 0, we have (23 2x) =58 5 ooasz — 0and Cy = 0. Consequently, the value of the

perpetual American volatility option equals to

v(z) = C1® (2,255335:}:) (3.4.8)

To determine the free boundary s and the coefficient C, we substitute v(s) = s™ — K and

v'(s) = ns" ! into (3.4.8) and obtain that

r 25m 20
3 g2 ' 2

C1®( —s5)=s"-K

and

r 26m 20 1

Ci— - — pms = NS,
leE [®(67 0_2 Jo_gx):| | ns

Moreover, we have % [cp(g7 25;717 i_[; )} Pr— 2%27" (I)( +1, 2,8m +1; 2s)

Hence, we find that the free boundary satisfies the following nonlinear algebraic equation

CI)(%? 25;71; i—gS) . s"— K
2 2 2 — — .
(5 + LE5F +155s)  nsm

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient C is expressed as

s"— K
Cl = P(r 28m ., 28
(/37 o2 70-_23)

) . . 26m
We then consider the case of n < 0. Since lim,_,, v(z) = 0, we have 25 =% 5 0as

x — oo and
ﬂm
/87 0_2 )

which means C'; = 0. Consequently, we have

@ ( :0) > 0asz — oo

26 r 268m

( ) 02(—13) - ¢(6+1_?7 w_mQﬁ

i ). (3.4.9)

o2

2 —

To determine the free boundary s and the coefficient Cy, we substitute v(s) = s™ — K and
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v'(s) = ns"!into (3.4.9) and obtain that

1_26m _ T 28m N
C’g(ﬁs) 2 O(—=+1-— g 2 — 2 ’ES):S - K
and
d | 26 4 _2m _r 26m 26m 20 e
CQ% [(; N (B_l_l_ 2 ,2— O 5) | |e=s = ns !

Hence, we find that the free boundary satisfies the following nonlinear algebra equation

_2Bm
(s Fepr1-Tr2-2mYs) oK
_28m -1 °
|G F e 122 - 2 ||,

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient (5 is expressed as

c s"— K
2 = .
(Zs)l=Pme(f + 1~ 22,2 ~ 0, )

]

Remark 3.4.2. When (v, s) are the value and the early exercise boundary of a perpetual
American volatility option in mean reverting 3/2 volatility process, (v, s) is the solution of the

following free boundary problem

LEv(z) =0, 0<w<s,
(3.4.10)

v(s) =s— K, v'(s) =ns""1, v(0) =0

where ,ng is defined in (3.2.5). When taking x = 1/, this problem becomes to price a perpetual
American volatility option in the MRSRP with ¢(x) = (1/x — K,0)". Hence, the price of a

perpetual American option becomes to satisfy the following free boundary problem

LM u(y) =0, 1/s <y < oo,
u(s) =1/s — K, ' (s) = —1/s%, u(y) — 0 asy — oo.
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The solution of this equation can be obtained by changing it to a Kummer s equation. In the
mean-reverting 3/2 volatility process, a closed pricing formula for the perpetual American

volatility put option is proposed by Liu [62].

This chapter provides a formula for the perpetual American volatility power call in the
MRSRP model. Liu [62] provided a formula for the perpetual American volatility put in the
mean-reverting 3/2 volatility model. These two papers considered distinct options (call and put)
in the different processes (the MRSRP and the mean-reverting 3/2 volatility process). Using
the change of variables, the differential equations in both two papers are changed to the same
Kummer’s differential equation with the different boundary conditions. The general solution is
expresses by the combination of the confluent hypergeometric function of the first and second
kinds.

For the volatility call, we have a finite initial condition and an upper free boundary; For
the volatility put, we have a lower free boundary and assume that the put value tends to zero as
the volatility tends to infinite. The different conditions for both put and call induces different
pricing formulas. For the volatility call, we eliminate the second independent solution by the
finite initial condition. For the volatility put, we eliminate the first independent solution since
the put value tends to zero as the volatility tends to infinite. Moreover, the advantage of this
chapter is that we add a power to the payoff function, ¢)(z) = max{z" — K,0}. When setting
the volatility « to 1/y (i.e., choosing n = —1), the MRSRP model can be changed to the mean-
reverting 3/2 volatility model. In this case, the boundary conditions are changed to a lower free

boundary and zero value at the infinite.

3.5 Neural Network Approach

In this section, we consider neural network (NN) approach to the solution of the free
boundary differential equation arising from pricing a perpetual American volatility option under
the MRSRP.

Alternatively, this NN approach can also be applied to approximate the pricing formula of
the perpetual American option under the different process. The definition of a neural network

can be recall from Definition 2.1.1.

28m
02

Now, we go back to the NN approach to our MRSRP problem. Suppose that > 1.
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Let {u, s} be a solution the free boundary problem (3.4.4). Transferring y = % and defining
w(y) = u(x), the free boundary problem can be reformulated as the following boundary value
problem

1
502yw" + B(m —sy)w' —rsw=0, 0 <y<1, (3.5.1)

with w(1) = s" — K and w’(1) = ns""L. Substituting s = (w(1) — K)= into (3.5.1) yields

1 1 1
§U2yw” + B(m — (w(1) + K)ry)w —r(w(l) + K)nw =0, 0 <y<1,

with w'(1) = n(w(1) + K)"+ . We consider the following the trial solution

wa(y) = foly),

where fy : R2 — R is a shallow net defined by 6. Then, we obtain s = (fs(y) + &)= and

w' (1) = n(fs(1) + K)"+" . Therefore, we turn into solve the following equation

%UQywiﬁ(y) +Bm — (fa(1) + 1+ K)ng)wly(y) — r(fa(1) + 1+ K)rwaly) = 0

—1

with w/y (1) = n(fo(1) + K)™

To find an optimal fy to solve the above equations, we consider the following minimization

problem.

mgin L(6),

2

10 = [ [3emi + o - s rowat)] + w0y —ns]

is the L2-loss between neural network fy and the solution of equation and the boundary
condition, and s = (fy(1) + K)n.
In addition, consider a neural network of the form:
ha

foly) = Z wl(g(fz)U(Sd,k)'

k=1
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Here, the output neuron 7 in layer j s;, is defined by

S1i = w%‘,?y + b,
hj71 . .

Sji = wi Vo(sio) +00, j=1,2,-+ .d,
k=1

where w,i] l) is the weight from neuron % in layer j — 1 to neuron i in layer j for the network fy(y),

and h; is the number of neurons in layer j and bl(j ) is the bias of neuron 7 in layer 7.

3.5.1 Comparisons

From Theorem 3.4.1, an analytical solution of the free boundary problem (P), where s =
s(t) can be only solved numerically. In previous section, we developed a new numerical method
to approximate the differential equation with moving boundary by extending the neural network
approach. In this section, we will demonstrate the comparison results between the analytical
solution and the numerical solution using the neural network approach.

Goard and Mazur [37] used the data of the VIX index value between years of 1990 and 2009
to estimate the parameters the continuous-time model. In the empirical results, the parameters
are estimated as 5 = 3.1637 and fm = 0.6154 (see Table 5.1 in [37]) for the MRSRP model.

Moreover, the risk-free interest rate and strike are given as » = 0.05 and K = 0.5, respectively.

2Bm
o2

To satisfy > 1, we assume 02 = 1.

To compare the analytical solution and the numerical solution, programs are coded by
Python [88] on Google Colab environment. The s of solution {u, s} is solved by using the
“fsolve” instruction, where the starting estimate for the roots is given as K + 1. The network fj

is constructed by 1 input layer, 1 output layer and 1 hidden layer with 10 neurons in the hidden

layer. That is,
10 10
foy) =Y wMo (Y w”y +b)
k=1 =1

The structure of such neural network is shown in Figure 3.1, note that bias b; are ignored from

the figure.
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Input Hidden Output
layer layer layer

> — fo(y)

Figure 3.1: Structure of neural network for finding a solution of (3.5.1)

N

For the neural network approach, the deep learning algorithm, Adam [?], is used to
minimize the unconstrained optimization problem.

The L2-losses between the neural network solution and the solution of equation and the
boundary condition are 2.31 x 10—4, 5.19 x 1075 and 2.34 x 10~° for 10,000 iterations, 20,000
iterations and 30000 iterations. The L2-losses for 20,000 iterations and 30,000 iterations are
same as ¢ — 5 and do not reduce so much from 20,000 iterations to 30,000 iterations. The
comparison results between the analytical solution and the numerical soltion (20,000 iterations)
are demonstrated in Figure 3.2 and Figure 3.3 for 10,000 iterations and 20,000 iterations,

respectively.
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Figure 3.2: Comparison results between analytic solution and the numerical solution (10,000
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Chapter 4

Reconstruction and Interpolation of

Manifolds

In this chapter, an algorithmic method of interpolation and reconstruction of Riemannian
manifold in Euclidean space will be introduced. These methods are based on a series of works

in [29, 30, 31].

4.1 Introduction

High-dimensional data is increasingly available in various fields. To deal with the
curse of dimensionality, one approach is to use dimensionality reduction [18, 33, 97] while
another approach is to consider the manifold learning in high-dimensional space. When
applying methods of dimensionality reduction, some meaningful information might lose since
the structure of raw data is largely changed in terms of vector. Another issue is that assumptions
of dimensionality reduction are given without considering the geometry of the data. Please
refer [50, 59, 78] for comprehensive surveys of manifold learning.

In [30], two methods were proposed to deal with manifold reconstruction problem. The
first one is to interpolate a data cloud X in R" by a Riemannian submanifold M in R" so that X
is closed to M in some sense. Second, based on the Whitney embedding theorem [96], a metric
space can be “almost” embedded as a Riemannian submanifold of some Euclidean space with
minimum distance distortion. Under the existence of noisy data, methods in [30] are guaranteed

to generate a similar manifold with high probability.
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In section 4.2, we will briefly introduce the Hausdorff Distance, which provides a
measurement of distance between subsets of a metric space. Two theorems about reconstruction
and interpolation of manifolds proved in [30] are stated in section 4.3. Some basic knowledge
on Riemannian geometry will also be stated in this section. In section 4.4, we will summarize

algorithms needed to implement above theorems in practice.

4.2 Hausdorff Distance and )-closeness

We first introduce the following notations.
Definition 4.2.1. Let (X, d) be a metric space and A, B C X and r > 0.
1. The r-neighborhood of A is defined by
U.(A) ={x € X |d(z,a) < rforsomea € A} = U Bx(a,r)
acA
where Bx(a,r) is the open ball of radius r and center a in X.

2. Ais called a r-netin X ifU,(A) = X.

3. Ais called a maximal r-separated subset of X if Ais a r-net of X and

dx(x,y) >r1 forallz #y € A.

Definition 4.2.2. Let (X, d) be a metric space and A, B C X The Hausdorff distance between
sets A and B of X is defined by

dy(A,B) = inf{r > 0| A CU.(B) and B C U,(A)}

= max (sup inf d(a, b), sup inf d(a, b))

acA beB beB a€A

Note that Hausdorff distance dy is only a pseudo-metric since dy (A, B) = 0 does not
imply A = B in general. For instance, consider A = [0, 1] and B = (0, 1) in R'. But this does
not affect how dg measure the difference between different sets.

The concept of Hausdorff distance can be extended to measure the difference between sets

from different metric spaces by first putting them isometrically into one common metric space.
43

DOI:10.6814/NCCU202100296



Definition 4.2.3. The Gromov-Hausdorff distance between metric spaces X and Y is defined

by

dea(X,Y)=inf{dy(f(X),gY) | f: X = Z9:Y = Z

are isometries for some metric space 7}

where dy is the Hausdorff distance induced by metric space Z.
Definition 4.2.4. Letr,6 > 0 and n € N.

1. Let X be a metric space. Forr > § > 0, we say that X is d-close to R™ at scale r if

dgu(Bx(x,r), B,(r)) < ¢

2. Let X be a subset of a Hilbert space E. We say that X is 6-close to n-flats at scale r if

for any x € X, there exists an n-dimensional affine space A, C E through x such that

dy(X N Bg(z,r), A N Be(x,r)) <4

For the following definitions, we assume that X, Y are metric spaces unless specified.
Definition 4.2.5. Let § > 0, and {x;}Y | be a finite sequence of X.
1. {z}N, is a 0-chain if d(x;, x;1) < 0 forall1 <i < N — 1.
2. {x;i}Y is O-straight if d(x;, x;) + d(zj, x1) < d(wi,x) +dforall 1 <i< j<k<N.

3. X is S-intrinsic if for v,y € X, there is a d-straight 5-chain {x;}}., with ¥1 = z and
IN =Y.

Intuitively speaking, a )-intrinsic space X means any two points in X can be connected by

an “almost” straight polygon with length of each side smaller than 9.

Definition 4.2.6. For \ > lande > 0. Amap f : X — Y issaid to be a (\, €)-quasi-isometry
if f(X)isan e-netinY and

1

Tx(ay) — & < dy(f(2). £(9) < Mx(oy) + ¢
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forall x,y € X. In particular, a (1,0)-quasi-isometry is an isometry.

Remark 4.2.7. Note that if amap [ : X — Y is (\ e)-quasi-isometry, then there exists a
(A, 3X\e)-quasi-isometry map g : Y — X. We say that two metric spaces X and Y are (), €)-

quasi-isometric if there are (\, €)-quasi-isometries in both directions.

Definition 4.2.8. Let XY be metric spaces and f : X — Y be a map. The distortion of f,
denoted by dis f, is defined by

dis f = sup |dy(f(z), f(y)) — dx(z,y)|

z,yeX
Fore >0, we say that f is c-isometry if dis f < cand f(X)isac-netinY.

Two metric spaces with small Gromov-Hausdorff distance are e-isometry, moreover, this

is true conversely.
Theorem 4.2.9. Let X,Y be metric spaces.
1. Ifdeu(X,Y) < ¢, then there exists a 2e-isometry from X to'Y.

2. Conversely, if there is an e-isometry from X to Y, then doy(X,Y) < e. Moreover,

dan(X, (X)) < 5 dis f

If, in addition, f(X) is a e-net, then
1 .
don(X,Y) < S dis f+: 4.2.1)

Proof. See [9, Theorem 7.3.25 and Corollary 7.3.28] for proofs of these facts.

O
Corollary 4.2.10. If f : X — Y is a (A, )-quasi-isometry, then we have
1 . 3
dGH(X, Y) S 5()\ — 1) dlam(X) + 58.
Proof. Let f: X — Y be a (\, ¢)-quasi-isometry. Then we have f(X) is a e-net of Y, and,
dy (f(2), f(y)) < Mdx(z,y) + e (42.2)
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forany z,y € X.
Subtracting dx (x, y) from both sides of (4.2.2), we have

dy (f(2), [(y)) = dx(z,y) < (A = Ddx(z,y) + & < (A — 1) diam(X) + ¢

Hence, dis f < (A — 1) diam(X) 4 . Combined with (4.2.1), the desired resul follows.  [J

4.3 Reconstruction and Interpolation of Manifolds

Below, we borrow some definitions about manifolds from the book [12].

Definition 4.3.1. A4 differentiable (C*, smooth, respectively) manifold of dimension n is a set
M and a family of maps z, : U, C R" — M of open sets U, of R" into M so that

1. Ugzo(Uy) = N.

2. for any pair o, B with W = x,(U,) N x5(Us) # ¢, the sets z;*(W) and azgl(W) are

open sets in R™ and the map :L’gl o x are differentiable (C*, smooth, respectively).
3. The family {(U,, x,)} is maximal relative to the above two conditions.
Below, we informally state definitions of tangent space and the Riemannian metric.
Definition 4.3.2. Let M be a differentiable manifold.
1. A differentiable function o : (—¢,¢) — M is called a curve in M.

2. Suppose that a(0) = p € M, and let D be the set of functions on M that are differentiable

at p. The tangent vector to the curve « at t = 0 is a function o/(0) : D — R given by

3. A tangent vector at p is the tangent vector at t = 0 of some curve o : (—¢,€) — M with

a(0) = p.

4. The set of all tangent vectors to M at p is denoted by T\, M, called the tangent space at p.
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5. A Riemannian metric g on M is a family of smoothly varying inner products g, on the

tangent spaces T, M of M.

6. A Riemannian manifold (M, q) is a differentiable manifold M equipped with a

Riemannian metric g.

We first formally state the problems of manifold interpolation and manifold reconstruction

of data cloud.

1. Let (X, d) be a metric space. The goal of manifold reconstruction problem is to find a
Riemannian submanifold (M, g) so that X and M are quasi-isometry. That is, d(x,y) ~

(T, Yam), Where x4 is the image of = under the quasi-isometry.

2. Let X C R™ be a data cloud. The goal of the manifold interpolation problem is to find a

n-dimensional submanifold M so that

dH<X,M) <€

Two main theorems in [30] provide an initial work about how to construct the desired

manifolds algorithmically with sufficient theoretical guarantees.

Theorem 4.3.3 ([30]). For every n € N, there exists a1(n),C1(n),Cs(n) > 0 so that the
following holds:
Letr > 0 and X be a metric space with diam(X) > r and 0 < § < oyr. Suppose that X is

d-intrinsic and 6-close to R™ at scale r. Then there exists a complete n-dimensional Riemannian

manifold M such that
1. X and M is (1 + C16r~t, C16)-quasi-isometric. Moreover; if diam(X) < oo, then we
have
dar(X, M) < 2C,0r~* diam(X)
2. The modulus of sectional curvature of M is bounded by Co6r~3.
3. The injective radius of M is bounded below by g where the injective radius of a
Riemannian manifold (M, g) is the largest R > 0 so that
exXp,, : BTpM<O7 R) - TpM - M
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is a diffeomorphism for all p € M.

Theorem 4.3.4 ([30]). For every n,k € N, there exists o2(n),Cs(n),Cy(n),Cs(n, k) > 0 so
that the following holds:

Let X be a subset of a separable Hilbert space F, r > 0 and 0 < § < g90. Suppose that
X is d-close to n-flats at scale r. Then there exists a closed n-dimensional smooth submanifold

M C E such that
1. dg(X, M) < 54.
2. The second fundamental form of M at every point is bounded by C30r >

3. The reach of M is bounded below by g where

Reach(M) = sup{r > 0 | normal projectionPy, : U,(M) — M is well-defined}.

4. The normal projection Py : Uy j5(M) — M is smooth and satisfies for all x € U, 5(M),
I Paell < Cs(n, k)or=", k > 2

and

|\ dzPr — Prymll < Cs(n, k)or=*
where y = Py(z) and Pr,a is the orthogonal projection onto T,M

5. Ifx € X andy = Pp(x), then the angle between A, and the tangent space T, M satisfies

Z(Ay, T,M) < Cyor™"

Note that the angle Z( A, B) between n-dimensional linear subspaces of an inner product

space (E, (-, -)) is defined by

Z(A, B) = max { min{Z(a,b) | a,b # O}}

acA beB

{a,0,)
where Z(a,b) = arccos ————— and (-, -).
lall - [lo]
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In fact, there are serval definitions of the angle between pair of subspaces of a Hilbert space.
These definitions are expressed in terms of the orthogonal projection onto these subspaces. For

more detail about the angle between subspaces of a Hilbert space, please refer [24].

4.4 Algorithms for Manifold Interpolation

In this section, we describe three algorithms to implement the algorithm of manifold
interpolation based on Theorem 4.3.4.

Let X be a finite set of R™. If X is d-close to n-flasts at scale 1 (by rescaling factor
1/r). Then we consider the following steps to generate a Riemannian manifold M according to

theorem :
1. Find a maximal —*~-separated subset X, = {¢;}¥, of X.

100

2. For each ¢; € Xy, find an affine subspace A; of R passing through ¢; so that

dH(BX(qi, 1), BR'rn(qu'? 1) N Al) <

3. For each ¢; € X, define the affine projection P, : R™ — A; and

6i(x) = ) Pa) - (1 — ()
the convex combination of P;(x) and x, where y;(z) = u(||x — ¢:||) for a fixed smooth
function 1 : (0,00) — [0,1] satisfying 1 = 1 on [0, $] and . = 0 on [3, 1]
4. Define f = ¢y opy_10++-0 1.
5. Compute M = f(Us(X)) by sampling method.

In third step, u;(z) € [0, 1] is used as a coefficient of convex combination of the identity
function and P;(z) to control how ¢;(x) far from P;(x) by using the distance between x and g;.
In fact, ¢;(z) — P;(z) as x — ¢;. In other words, identity function is homotopic to P;(z) as
T = q;.

In [30], authors consider a bump function i : R — R as follows:
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p(t—=1/3)71
(1/2=t)=1 4 o(t=1/3)1
(0, %) to [0, 1]. One advantage of such y is that it can be easily implemented as a shallow neural

11
372

First, define u(z) = on (z,5). Then extend u(z) trivially from
e

net. In fact, we can replace 11 : (0,00) — [0, 1] with any function which satisfies 1 = 1 on [0, 3]
and = Oon 3, 1].

Informally speaking, some affine subspaces are constructed as tangent spaces of the desired
manifold, and then we glue these tangent space by composing ¢;. Then fy is a map which
projects point around X onto the manifold M.

The algorithm of the first step is not provided in [30]. Therefore, we propose an intuitive
algorithm to implement as shown in algorithm 1. In the second step, the affine subspace

is constructed by a finding an “almost” orthonormal frame. This algorithm is described

in algorithm 2. The algorithm 3 consists of rest steps to generate the desired submanifold M.

Algorithm 1: FindMaxSepDet
Input: 6 > 0, X C R™ is a finite set.

Output: the set of indices of a maximal d-separated set of X

Set I ={1,2,---,|X]|}.
Set J = ¢.
Seti = 1.

foreach 1 < < |X|do
‘ Set[l:{jelldw<5}

end

while / # ¢ do
Set 7o = min [. // Choose the least feasible index
Set qi = Zjg,-

Set =1\ 1. // Remove all points within a distance ¢ of g;
Seti =1+ 1.

end

return J

Note that the choice of X depends on the order of elements of X. This might cause a
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potential issue to generate different manifolds.

Algorithm 2: FindDisc
Input: ne N,z € X

Output: an affine n-space A, passing through x
Define X; = X N By(x).
Define Y = X; — . // shift all points by x so x is moved to the original

Define y; = argmin|1 — ||y]||.
yey

forl<m<n-—1do

Ym+1 = argmin max{}l— Hy|H7<HZ_1||7y>7 7<||Z::H7y>}
yeY\{y1, ym}

end
Define A = span{y1, - ,yn}-

Set A, = x + A return A,
Let X C E = R™ be a d-close to n-flats at scale r. By rescaling X with the factor 1/r, we

can assume that r = 1.
Algorithm 3: SubmanifoldInterpolation
Input: n,m € N;r > 0,6 € (0,1), X € R™ is jr-close to n-flats at scale 1.

Output: a n-dimensional submanifold M of R™.

Find a maximal 3;-separated set Xo = {¢;}*; of X.

foreach ¢; do
Define A; =FindDisc(n, g;), the affine n-space of R™ passing through g;.

Define P; : R™ — R™, the orthogonal projection onto A;.
Define p; : R™ — R, a bump function around g;.

Define ¢;(z) = = + pi(x)(P;(x) — ).

end

Define f = ¢y o py_10---0 ¢1,and M = f(Us(X)). return M
In next section, we will see that the algorithm of manifold interpolation can be reformulated

a training process of various independent ResBlocks.
In this chapter, we consider a deep neural network version of the manifold interpolation

problem as introduced in chapter 4.
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4.5 Affine Space and Affine Projection

Recall that, given a data cloud X C R™ which is d-close to n-flats at scale 1. The goal of

the manifold interpolation problem is to construct a n-dimensional submanifold M C R™ so

that

dp(X, M) < C5

where C is a known constant.

The procedure of finding such M can be decomposed into four steps:
1. Find a maximal ;-separated subset X, = {g} % c X
2. For each ¢;, find an affine n-space A; at ¢; and the affine projection P, on A;.
3. Gluing each A; smoothly and denote such gluing map by f.

4. Define M = f(Us(X)) for some d > 0.

Note that is step 2, an affine projection is constructed on the affine subspace A,. This

motivates us to the study of affine projection on an affine subspace. We first state some basic

definitions.
Definition 4.5.1. Let (V, (-, )) be a inner product space, P : V' — V is a linear operator on V.
1. Pis a projection if P> = P. Thatis, P is idempotent.

2. A projection P is called an orthogonal projection if P is self-adjoint. That is, (Px,y) =
(x, Py) forany x,y € V.

3. We say P is a projection onto a subspace W of V if P(V) = W. Moreover, V can be

represented as an direct sum

V =W EPker(P)
Theorem 4.5.2. Let (V, (-, -)) be a inner product space and W is a subspace.

1. P is an orthogonal projection <=> I — P is an orthogonal projection onto W=, where

Wt ={zeV|(x,w)y=0forallw e W}, is the orthogonal complement of W in'V .
2. If P be an orthogonal projection onto W, then V. =W @ W+,
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To study affine projection other than orthogonal projection, we need to know the translation

operation of a set in a vector space.

Definition 4.5.3. Let S be subset of a vector space V and a € S. The translation of S by is
defined by
a+S={a+blbeS}=S+a

Definition 4.5.4. Let S be subset of a vector space V. We say that S is an affine subspace of V/

is S is a translation of a vector subspace of V. That is, there exists a subspace W C 'V so that
S=a+W
forany a € S. We can also define the dimension of S by the vector dimension of W. That is,

forany x € S, we havex —a € W.

Note that forany a,b € V,a+ W =b+ W <= a — b € W. Hence, the definition of
affine subspace is well-defined.
With the relationship between linear subspace and affine subspace, we can define the affine

projection as follows:

Definition 4.5.5. Let S be an affine subspace of Vand S = W + a for some linear subspace
W of V. The affine projection llg is a operator llg : V' — V defined by

lIg(x) =a+ Pw(x —a) = Py (z) + Py.(a)

where Py is the orthogonal projection onto W.

Theorem 4.5.6. Let 11 be an affine projection onto an affine subspace S = a + W.
(a) 112 = I1. That is, 11 is idempotent.
(b) Foranyx € V, 11, wi(z) =a+ (I —1I)(x).
(c) Fork eN, (I —II)"' + kPy.(a) =1 —1L

, where S =a+W.

(d) Forx,y €V, |ls(x) —s(y)| = [[Pw(z) — Pw(y)
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Proof.  (a) Forany x € V, we have

I1(z) = I(Pw (z) + Py (a))
= Py (Pw(x) + Py(a)) + Py (a)
= P2, (2) + PwPy(a)Pyo(a)
= Py (x) + Py (a) since P3, = Py and Py Py = 0

= Hs(l’)

(b) Forany z € V, we have

(I —1)(z) =2 — Pw(x) = Py(a)
= —Py)(x—a)

= Pyi(x —a)

(c) Note that for any scalar &, we have

(P (z —a) — kPy.(a)) = Pw (Pye(z —a) — kPy.(a)) + Py (a)

= PwJ_ (a)

Also, by (b), we have

(I =I)*(z) = (I - I) (P (z — a))
= Pyi(x —a) — Pyi(a)

= (I = )(x) = Py (a)
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By induction, we have

(I =) (2) = (I =) (P (z = a) = (k = 1) Py (a))
= Pyi(z —a) — (k= 1)Pys(a) — (Pyr(z — a) — (k — 1) Py (a))
=Pyi(z—a)— (k—1)Pyi(a) — Pyi(a)

= —1)(z) — kPy.(a)

The desired result follows.

(d) Follow from the definition of affine projection.

]

Unlike in the case of orthogonal projections, from Theorem 4.5.6(b) and (c), we can see that
(I — TI) is neither an affine projection, nor idempotent. These results are derived from the fact
that IT is not a linear operator since II(—x) # —II(z). For more detail about affine projection,
please refer [77].

Note that IT — [ is also not idempotent, however, the square of I — I is idempotent.
Theorem 4.5.7. Let 11 be an affine projection. Then (I1 — I)? is idempotent.

Proof. Forany x € V, we have

(11— 12(z) = (11 = D)(1l(x) — )
= (I~ I)(a+ Pz —a) —x)
=Il(a+ Pz —a)—2) — (a+ P(x —a) — )
=a+Pla+Plr—a)—z—a)—a—Plz—a)+=x
=P¥r—a)— P(x)—Plr—a)+x

=z — P(z) = PL(x)

Hence, (IT — I)? is idempotent.
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This property would be the central idea to rewrite the algorithm of manifold interpolation

into a deep neural network model.

4.6 Manifold Interpolation as Residual Network

|Xol

Let Xy = {ql}g({l be a maximal ;-separated subset of X. Write X = (J X;, where
i=1
1

100
Recall in step 2 of the manifold interpolation, for each ¢;, we find an affine subspace A;

passing throung g¢;, this induces an affine projection P; on A;. Then, with p;, we define
i(x) = (1 = pi(@))w + pa(2) Pi(x) = 2 + i) (Pi(x) — x)
Define F;(x) = mu;(z)(P;(z) — ), then
¢i(x) =z + Fi(x) (4.6.1)
Note that F;(z) = P;(x) — « when ||z — ¢;|| < 3, by Theorem 4.5.7, we have

FMx) = F(z) (4.6.2)

2

if ||z — g < 3.
On the other hand,
Fi(x)=0 (4.6.3)

if |z — g > 3.
Compared with (2.2.1), if we replace F; in (4.6.1) by a neural network fy,, then (4.6.1)
becoms ¢;(x) = x + fy,(x)

This reformulation turns ¢; into a ResBlock (see (2.2.1)). In particular,

f=0¢nopN_10---0¢

becomes a ResNet under such replacement.
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Combined with (4.6.2) and (4.6.3), the objective function for f,, is then given by

0;) Zer ) = fi (@) |” + ane ui)lI? (4.6.4)

jk, Jk,

The remaining part is to show that

Si = f(Us(X5))

is a smooth n-dimensional submanifold for some n € N and § > 0. However, the choice of § is
another issue remain to be solved.

One advantage of this formulation is that each #; can be trained independently. The cost of
training process can be largely reduced and potentially it can be parallelized. This is our ongoing

work.

4.6.1 Further Relaxation

Note that the first step of the manifold interpolation is to find a maximal separated subset
{¢;} and the rest step relies on the existence of {¢;}. In fact, this process can be replaced by

singular value decomposition (SVD) if X can be decomposed to X = | J X so that diam(X;) <

100 for all 7 and dgm (X;, X; ) > 100 for any i # j, where X; =
OfXZ

! is the mean position
| Xi| vex,

One simple way is setting z; = X, and apply SVD to X — z; to get the best low-dimensional
representation of matrix formed by x — z; for x € X;. Therefore, we can find a linear n-space
W; which fits X; — z; the most. Hence, A; = z; + W, fits X in the same manner. In this case,
z; lies in A; but z; may not lie in X in general.

We can replace the original z; with the mean of X; and process the same composition of ¢;
as before to reconstruct manifold. However, we still do not have any theoretical analysis yet.

In this case, we can consider an objective function similar to (4.6.4)

b:) 2|X| Y@+ F@| + > IFi (4.6.5)

TeX; ¢ X;
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4.7 Conclusion

We have already shown that the manifold interpolation algorithm proposed in [30] can be
reformulated as serval ResBlocks. However, before we dig deeper into the theoretical analysis
of this ResNet based interpolation method.

We are now working on some dataset to validate our concept. Part of this work has been

summited into the SIAM Conference on Mathematics of Data Science (MDS20).
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Part 11

HodgeRank and its Continuity
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Chapter 5

Pairwise Comparison and Combinatorial

Hodge Theory

In this chapter, we introduce the ranking problem based on the pairwise ranking data and

the combinatorial Hodge theory with its relevance in pairwise ranking problem.

5.1 Introductions

Ranking is an essential part in recommendation system. A recommendation system is a
system which provides a personalized list of items ranked by ranking algorithms.

However, humans are unable to make a precise preference decision on a set, which contains
more than 10 distinct items at the same time [68]. However, people can easily compare two items

Forn € N, we denote [n] = {1,2,--- ,n} be the number of items to be ranked by a voter.
A ranking to these n items may not be given directly. Instead, we may assume that, for any two

alternative items ¢ # j in [n], a voter either
* prefer i to j
 prefer j to ¢
* is indifferent to 7 and ;.

To quantify preferences between different items, we define a real number a;; to indicate
the preference between ¢ and j. Pairwise comparison can be represented either on the additive

scale or on the multiplicative scale.
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Definition 5.1.1. Let E = {(i,j) | i and j are compared}. We say that Ap = {a;; | (i,j) € E'}

is a pairwise comparison of [n] on the

* additive scale if a;; € R and a;; + aj; = 0 for all (i,j) € E.
Also,

> 0 ifiis preferred to j
@4ij § <0 ifjispreferredtoi

=0 ifiand j are equally preferred

\

In this case, a;; is the difference of measurement of preference between i and j.

* multiplicative additive scale if a;; € (0,00) and a;j - aj; = 1 for all (i,j) € E.
Also,

> 1 ifi is preferred to j

@iy <1 1ifyispreferredtoi

=1 ifiand j are equally preferred
\
That is, a;; measures the multiplicative preference of i over j.

Note that a;; € Ag is defined for (i, j) € E. However, if we treat ¢ and j are indifferent if
they are not compared. Then we can fill Ax with undefined a;; to form a matrix A.

More precisely, we cane define an n X n matrix A by

a;; if 7 and j are compared.
Aij -

0  if¢ and j are not compared.

That is, Ag induces a skew-symmetric matrix A.

If A is an additive comparison matrix, we can define an n x n matrix A by

a;; 1f 7 and j are compared.

1 ifiand j are not compared.
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That is, Ag induces a symmetrically reciprocal matrix A.

In either scale, the induced matrix is called a pairwise comparison matrix on the certain
scale. Note that pairwise comparison matrix was initially used in a multi-criteria decision
making method, called analytic hierarchy process. Due to the development of the analytic
hierarchy process, pairwise comparison matrix was proposed and studied deeply on the
multiplicative scale more than on an additive scale. However, latter one provides more insight

from the theory of matrix algebra.

Remark 5.1.2. 4 multiplicative pairwise comparison matrix has an one-to-one correspondence
to an additive pairwise comparison matrix. This can be easily proved by elementary properties

of logarithmic functions.

Proof. Let B = [b;;| be a multiplicative pairwise comparison matrix, define a;; = log b;;. Then
we have

Qg5 + Aj; = lOg bij -+ IOg bjl' = log (bU . bﬂ) = IOg 1=0

and

a;; = log by; = —log bj;' = log bj; = a;

Coversely, let A = [a;;] be an additive pairwise comparison matrix, define b;; = e*4. Then

we have
bij . bji = €aij . e“ﬁ' = eaijJraﬂ = 60 =1
and
1
bi; = €%l = e i = — =} !
) eaji 7%

]

The core concept of the pairwise ranking problem is that, given an additive pairwise

comparison matrix A € R™*", could we assign each i € [n] a score s; € R so that

Aij =S5 — 55 (511)
foralli,j € [n].
In other words, could we find a function s : [n] — R so that > [A;; — (s(i) — s(j))| =

1,7=1

0. Unfortunately, the equation (5.1.1) does not hold for some pairwise comparison matrix A.
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Consider the following example,

0 1 ~1
A=1_ 0 —1
1 1 0

If there exists s : [n] — R such that (5.1.1) hold. Then
l=Ap=38y—5 = (s2—53)+ (83— 51) = Ao + A13 =0

which leads to a contradiction. That is, (5.1.1) is impossible to be satisfied for any skew-
symmetric matrix X . Therefore, we should consider the least square solution of (5.1.1) instead.

That is,
min Z |Aij — (s(1) — 5(7))|? (5.12)

Remark 5.1.3. Note that the solution of (5.1.2) is unique up to an additive constant. That is,

let s be a function that minimizes Y, |Ay; — (s(i) = s(j))[% Since s(i) — s(j) = (s(i) + C) —
ig=1

(s(4)+C), the shift of s by any C' € is also a solution that minimizes Y, |Ay; — (s(i) — s(j))|*
ig=1

Hence, we need to consider the minimum norm solution of (5.1.2) instead. Since this
problem is a least-squares problem, the minimum norm solution can be obtained in a standard
way.

Now, we consider another point of view of pairwise comparison.

Let Ag be a pairwise comparison on [n], where £ is the set of all 2-tuples (4, j) so that i
and j are compared.

If we consider [n] and F as vertex set and edge set, respectively. Then ([n], E) is a finite
directed graph. Moreover, Ag induces a weight on E, that is, w(i, j) = |[Ag];;| for (4, ) €
E. Therefore, there is an edge-weighted graph ([n], F, w) induced associated with comparison
matrix Ag.

Later, we will see how to solve problem (5.1.2) using an algebraic topology based approach

derived from the point of graph ([n], £, w).
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5.2 Combinatorial Hodge Theory and HodgeRank

Continuing from subsection 2.3.1, we introduce some more basic terminologies of graph.
Definition 5.2.1. Let G be a graph. Denote () = {(i,j, k) € V? | i, j, k are all distinct}.
* A graph H is called a subgraph G if V(H) C V(G) and E(H) C E(G).
* A nonempty subgraph K,, of a undirected graph G is called a m-clique of G.

* The set of all 3-cliques of G = (V, E) is denoted by
1(8) = (i) € () 16.3), G ). (ki) € )

For more detail about other types of graph and the graph theory, please refer [95].
Given a pairwise comparison matrix A on [n], we can associate it with a graph. Assume
that A is on the additive scale, let V = [n] and E = {(4, ) € (}) | a;; # 0}, then G = (V, E)

is a graph, we call it a comparison graph.

Definition 5.2.2 (Edge Flow). Let G be a graph (not necessary undirected). An edge flow on G
is a function X : V x V.— R so that

0 otherwise

An example of an edge flow on a graph of 5 vertices is shown in Figure 5.1.

3

—>5
/
4

\{%

Figure 5.1: An example of edge flow
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Remark 5.2.3. Let G be a graph on n vertices, and 'Y be an n X n skew-symmetric matrix. Then
we can define a edge flow X on G by assigning X (i,j) = Y;;. Therefore, the set of edge flows

on G has an one-to-one correspondence to the set of n x n skew-symmetric matrices satisfying
{(X eR™ | X" = -X and X;; = 0if (i,7) ¢ E(G)}

Note that, the edge flow shown in Figure 5.1 can be induced from the following skew-

symmetric matrix.

— 0 0 1 0 0 _
0 0 -5 0 3
-1 5 0 9 0
0 0 =0 0 .

I 0 -3 0 1 0 |

We start from the definition of abstract simplicial complex.

Definition 5.2.4. A4 collection of K of finite sets is called an (abstract) simplicial complex if

o € K implies that T € K forall T C o.

* A element o € K is called a simplex.

The dimension of o € K is defined as |K| — 1. A o of dimension k is called a k-simplex.

* The dimension of K is the highest dimension among all simplex contained in K.

The set of all k-simplex is denoted by Y.

Example 5.2.5. Let G = (V, E) be a finite graph on n vertices.
 V is a O-simplex if we identify each element i € V with {i}.
* Eis a 1-simplex.

* Hence, V' U E is a simplicial complex of dimension 1.
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Definition 5.2.6. A function f : V**! — R is called a k-dimensional cochain (or a k-cochain)

on K ifit satisfies

1. f is alternating on Y. That is,

f(io0)sio(1)s*+ +iory) = sign(o) - f(io, i1, -+ ,ik)

Sorall (i, i1, ,ix) € Xy and for all permutation o € Sym(k+1), the symmetric group.
2. flio,in, -+ yin) = 0if (o, 1, -+ 5 i) & B
The set of all k-cochains on K is denoted by C*(K,R) or C* for simplicity.

Now, we define a map between C* and C*+1.

Definition 5.2.7. The k-th coboundary operator §;, : C* — C**! is a linear map that maps a

k-cochin f into a (k + 1)-cochain 6y f defined as follows:

k+1

(5kf)(7’0a 7:17 B | aik—i—l) — Z(—I)Jf(l[b - aij—la Z.j+17 e aik-‘rl)

=0

Sor (g, i1, ,ikg1) € K.

For example, if f € C° and g € C, then (60f)(4,7) = f(j) — f(i) and (019)(i,7,7) =

For f,g € C*, we can define an inner product on C* by summing over all values f(-)g(-)
on ;. That is,

(Fogx = S flior - in)glio,--- i)

(10, »ix)EXg

Let w : ¥, — [0,00) be a weight function on X, we can consider the weighted inner
product

<fag>C’“,w = Z W(iOa"' aik)f(i(b"' 7ik)g(i07"' 7ik)

(10, ix)EXk

Under the existence of weight w, we need to modify >, by

¢ ={(ig, -+ ,ix) € g | wlio, -+ ,ix) # 0}
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flios -+ k) if (o, -+ i) € Xf
and f*(ig, -+ i) = for any f € C*.

0 if (io, -+ i) & f

so that (-, ), is an inner product on C*« = {f“ | f € C*}.
From elementary linear algebra, we can define the adjoint of a linear map between inner
product spaces. Hence, for each &, : C¥ — C**1) we denote its adjoint map §; : C**1 — C*k

by dj. Then dj, satisfies
(Onf, g)orrr = (f, drg)on
forany f € C* and g € C**1,
Definition 5.2.8. d, is called the k-th boundary operator from C**1 to C*.
Theorem 5.2.9. d;_1 o dy =0 and ;.11 0 o, = 0.
Proof. This can be proved by direct computation. [

Definition 5.2.10. Let K be a simplicial complex. The k-dimensional combinatorial Laplacian

is the operator Ay, : C* — C* defined by
Ap =di 00 + 0p—10dp_1

Theorem 5.2.11 (Combinatorial Hodge Theorem [51]). Let K be a simplicial complex. Then

the space C* admits an orthogonal decomposition
C*(K,R) = im(d,_1) @ ker(Ag) © im(d},)

Further, ker(Ay) = ker(0x) Nker(d_1).

With above notations, we can start to work on the comparison graph G = (V, E) induced
by a pairwise comparison matrix A on [n]. For k = 0, 1,--- , n, denote the set of all k-cliques
of G by ¥j. Then XX, = XU X, U--- U, is a simplicial complex of dimension k , called the
k-clique complex. Note that g = V and 3; = F and 3¢, = V U E is a simplicial complex of
dimension 1.

By an abuse of notation, we write X5, = (3¢, %y, .-+, 3;). In particular, G = 2},

With a graph G, C° = F(V,R) 2 R",C' = A = {X € R | XT = — X} is the set of

all skew-symmetric matrices of order n. Let T'(E) = {(i,7,k) € (‘g) | (i,7), (3, k), (k,i) € E}.
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Definition 5.2.12. /51] Let G = (V, E,T(F)) be a 2-dimensional simplicial complex.

1. The combinatorial gradient operator grad : F(V,R) — A is defined by

grad(s)(i, j) = s; — si.

fori,j €V, then grad is a linear map from C° to C*.

2. The image of F(V,R) under grad is denoted by

Mg ={X € A| X;; = s; — sj for some s : V — R}

3. The combinatorial curl operator curl : A — C? is defined by

Xij+ Xjp + X if (i,4,k) € T(E)
(curl X)(i,5, k) =

0 otherwise
for (i, 7, k) € X3, then curl is a linear map from A to C*.

4. The set of T-consistent matrices is denoted by

My ={X € A| Xip + Xju + Xpi = 0 forall (i, j, k) € T}

Then ker(curl) = Mg and Mg C My C A

Consider the case that K = K¢ for an undirected graph G = (V,E) and k = 1,

then Theorem 5.2.11 becomes:

Theorem 5.2.13 (Helmholtz Decomposition Theorem [51]). The space C*(K g, R) admits an

orthogonal decomposition
C'(Kg,R) = im(grad) @ ker(A;) @ im(curl®)

Further, ker(A;) = ker(curl) N ker(div).

Back to the story of pairwise ranking problem, if we consider X € M in equation (5.1.1),

then there exists s : V' — R so that (5.1.1) holds.
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Definition 5.2.14. (Consistency) [51] A pairwise ranking matrix X on G = (V, E) is called
1. consistency on (i, j, k) € (Z) if (i,7,k) € T(E) and X € Mr
2. globally consistency if X = grad(s) for some s € F(V,R)
3. locally consistency if curl X = 0.

4. a cyclic ranking if there exists 1,3, k,--- ,p,q € V so that
Xij + Xje + -+ Xpg + Xgi #0

Note that if X is globally consistency, then X is consistency on any 3-clique (¢, j, k) €

T(E). Now, consider the weighted trace induced by w. i.e.,

<X, Y>w = Z winin}j =tr (XT(W © Y))

(i,9)€E
for X, Y € A, where © represents the Hadamard product or elementwise product.

With respect to a weighted inner product, we obtain two orthogonal complement of .A
A= Mgd MG =Mr @ Mz

where ML = {X e R™" | (X,Y)y =0forall Y € M}}, € {G,T}.
By a simple fact of orthogonal complement, since Mg C M7, we have Mg D Mz and

we can get further orthogonal direct sum decomposition of A as follows:
A= Mg d My o Mz,

where My = MrnN Mé
This decomposition is called the combinatorial Hodge decomposition. For more detail
about the theory of combinatorial Hodge decomposition, please refer [51] for more detail.

With notations above, we can reformulate problem 5.1.2 into

Yi;eEMa =
i,j=1
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We now state one useful theorem in [51].

Theorem 5.2.15. [51] Let G = (V, E, w) be an edge-weighted graph induced by a pairwise

comparison matrix A. Then

1. The minimum norm solution s of (5.1.2) is the solution of the normal equation:

A()S = — le(A),
where

(

Yo wy ifi=j
k:(i,k)EE
0 otherwise

\

and

j:(i,5)EE

is the combinatorial divergence operator of A.

2. The minimum norm solution s of (5.1.2) is
s* = —Al div(A), (5.2.3)

where Ag represents the Moore-Penrose pseudo inverse of the matrix A,.

The Hodge decomposition indicates the solution of (5.1.2), while Theorem 5.2.15 shows

that such solution can be calculated by solving the normal equation. This solution is called the

HodgeRank on the pairwise comparison graph G = (V, E, w).

Definition 5.2.16. Let G be a pairwise comparison graph. Then the minimum norm solution

(5.2.3) of the minimization problem (5.1.2) is called the HodgeRank of G.

In fact, A, is the (unnormalized) graph Laplacian matrix of the graph induced by the

comparison matrix A.

Note that a pairwise comparison graph corresponds to a skew-symmetric matrix. Hence,

given an n X n skew-symmetric matrix X, HodgeRank returns the minimum norm solution
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s € R" of the optimization problem (5.1.2). This point of view makes HodgeRank a function
defined from the set of all n x n skew-symmetric matrices to R". To study the HodgeRank in

this sense, we need more terminologies about the graph Laplacian and the generalized inverse.
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Chapter 6

On Continuity of the HodgeRank

In previous chapter, we mentioned that HodgeRank can be viewed as a function defined
from the set of all n x n skew-symmetric matrices to R"™. In this chapter, we will see how to
study the continuity of the HodgeRank in this point of view.

We first recall the definition of the graph Laplacian matrix and some of its properties. Also,
we will see the Moore-Penrose pseudo inverse of a matrix and how to compute it by singular

value decomposition.

6.1 Graph Laplacian and Generalized Inverse

Definition 6.1.1. Let G be a simple undirected graph on n vertices with adjacent matrix A.
Denote deg; be the degree of vertex i and define the diagonal matrix D = diag(deg,, deg,, - -- ,deg,,).
Then the (unnormalized) graph Laplacian of G is defined by

L=D-A

Theorem 6.1.2. Let L be the graph Laplacian matrix of a graph G. Then we have:
1. L is symmetric and positive-semidefinite.
2. Every row sum and column sum of L is zero.

3. The vector with all 1 is an eigenvector of L corresponding to eigenvalue (.
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4. The dimension of the null space of L is the number of connected components of G. In

particular, if G is connected, then rank(L) = n — 1.
5. tr(L) = 2|E|.

Definition 6.1.3. Let A be an n x m matrix. Consider the following four matrix equations:

1. ABA=A
2. BAB=B

3. (AB)* = AB
4. (BA)* = BA

Am x n matrix Al is called
* a generalized inverse of A if it satisfies first equation.
* a reflexive generalized inverse of A if it satisfies first two equations.
* the Moore-Penrose pseudo inverse of A if it satisfies all four equations.

To see how to compute of the Moore-Penrose pseudo inverse of a matrix, we first consider
simplest case.

First, the Moore-Penrose pseudo inverse of a scalar a (not necessary real) is
a ! ifa#0
0 ifa=0
Then, we consider matrix of the form
D = diag(dy, da, -+ ,dp)nxm (6.1.1)
Then, the Moore-Penrose pseudo inverse of D is
D' = diag(dl, db, -, dl)mxn
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Now, for general n x m matrix A, we first consider its singular value decomposition
A=UXV*

where . is of the form (6.1.1) and U™ is the Hermitian transpose of U.

The Moore-Penrose pseudo inverse of A can be expressed as
At =vxiue

One nice property is that Moore-Penrose pseudo inverse preserves the rank.
Theorem 6.1.4. The matrix rank of A and A" are the same.
Proof. This is a direct consequence from the singular value decomposition. ]

There is another type of generalized inverse called the Drazin inverse. Drazin inverse
are discussed in the algebraic sense, where fruitful tools from the theory of C'*-algebra are

introduced to study its properties. For more detail about Drazin inverse, please refer [26].

6.2 HodgeRank as a Composition Function

Now, given an additive pairwise comparison data X on n vertices, we can associate it with
an edge-weighted graph G = (V, E, w). We recall how to construct such graph G below.

Note that X can be extended into an n x n matrix. Set V' = [n] = {1,2,--- ;n}, E =
{(,5) € (%) | Xij # 0}. Define w : E — [0,00) by w;; = |X;|, then Gx = (V, E,w) is an
dege-weighted graph on n vertices.

HodgeRank returns a global ranking s* : V' — R so that s* is the minimizer of the least

square problem

i > X = (o) = ()P
(1,j)€EE

whose 2-norm is minimized. The property of minimum 2-norm is guaranteed since s* is
computed by solving a graph Laplacian problem.
This s* is called the HodgeRank of the pairwise comparison data X. In fact, to get s* from

the pairwise comparison data X, we have the following process:
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G = (V,E,w)
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HodgeRank Ag = L(G),b = —div(X)
¢V SR Mlnlmu@ Norm Ags = b
Solution

Figure 6.1: HodgeRank from Pairwise Comparison Data

Note that — div(X) is linear since div(X) = X - 1, where 1 € R" is the vector of all ones.
By viewing X ~ s* as a function from A to F(V,R) = RIVI, we can consider HodgeRank as a
composition function, in fact, from any X with X7 = — X, HodgeRank of X can be obtained

as follows:

X

Lx =2 L — LI, div(X)

/

— div(X)

where Ly is the graph Laplacian matrix associated with the weighted graph induced by X,
and f represents the Moore-Penrose pseudoinverse operator of a matrix.

A natural question is whether the function HodgeRank is continuous in the following sense:
Let X — X be a convergent sequence in A in the sense of maximum norm or Frobenius norm
of R™*™, Then HodgeRank of X converges to the HodgeRank of X under the maximum norm
of R".

As we mentioned above, div is a linear function, hence, it is continuous. The continuity of
(LY, —div(X)) = — L div(X)

1s obvious since it is a matrix-vector product. The remain questions are whether X — Lx and
X +— XT are continuous or not. We would wonder, under what conditions, they are continuous

function. We will answer these questions in next two sections.
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6.2.1 Continuity of X — Ly

Recall that the graph Laplacian matrix L x induced by a pairwise comparison X is defined

based on the degree of each vertex as follows:

.

k:(i,k)eE

Lx(i,5) = —wy  if(,§) €E

0 otherwise
\

Note that w;; = sign(]X;;|), hence, the continuity of X — Ly is determined by the continuity
of sign function. Note that the only discontinuity point of sign is 0.
Now, let { X} be a sequence of comparison matrices in .A which converges to X in any

matrix-norm. Denote G'x, be the graph induced by X. If there exists N € N so that
E(Gx,) = E(Gx) (6.2.1)

for £ > N, then sign is a continuous function on each (¢, ) entry, therefore, X — Ly is
continuous in this sense.

If we write X, = [Xi(f)], then condition (6.2.1) is equivalent to

sign(X(k)) = sign(X;;) forall (i, j) (6.2.2)

ij

since E(Gx,) = {(i,j) € (‘2/) | Xi(f) # 0} and Xff) — X;jas k — oo forall (i, 7).

6.2.2 Continuity of the Pseudoinverse Operator

Let X be an n x m matrix over R. We can find its Moore-Penrose pseudoinverse X' by
using the singular value decomposition. A natural question arises: is the map X € R™*™ —

XT € R™*™ a continuous function? In other words, does

(1im X;)" = (lim X])

k—o00 k—o00
hold when the convergence of X; — X is in the sense of maximum norm or Frobenius norm?
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In general, this is not true. Consider the following example:

Example 6.2.1. Let X, = and X = Then X, — X as ¢ — 0.
0 € 0 0

However, the pseudoinverse of X is

=)
™ =

In this example, the limit lir% X does not exists. That is, X} — X does not guarantee the
e—
convergence of X ,1 — XT. That is, the pseudoinverse operator is not continuous.
However, a well-known result proved in [85] says that the necessary and sufficient

condition of the continuity of  operator

Theorem 6.2.2 ([85]). Let { X} } be a sequence of matrices so that X, — X under the maximum

norm or Frobenius norm. Then X,I — X1, if and only if, there exists N € N so that
rank(Xy) = rank(X) for k > N. (6.2.3)

In Example 6.2.1, X /4 (21_1}(1) X.)' since rank(X) = 1 and rank(X.) = 2 for any € # 0.

Hence, when discussing the continuity of the pseudoinverse operator 1 defined on R™*",
the set of all n x n matrices, we must restrict the domain as a set of matrices of constant rank.

Based on above discussion, we have the following consequence about sufficient condition

of the continuity of the HodgeRank on A.

Theorem 6.2.3. Let { Xy} be a sequence in A which converges to a matrix X € A. Then
condition (6.2.1) implies the condition (6.2.3).

Proof. Since the underlying graphs of X and X have the same edge set for k£ large enough,
then X and X have the same number of connected components. By Theorem 6.1.2, the nullity

of Lx, and Ly are the same. By dimension theorem, for n > N, rank(Ly, ) = rank(Lyx). O

Corollary 6.2.4. Let { X} be a sequence in A which converges to a matrix X € A. If the
condition (6.2.1) holds for { X}.}, then HodgeRank is continuous at X.
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6.3 Class of Graph Laplacian Matrices

Moore-Penrose pseudoinverse of the graph Laplacian matrix is not only necessary in the
computation of the HodgeRank, it also plays an important role in spectral graph theory [16,
46] and machine learning [44, 81]. Hence, we consider a more general condition other than
HodgeRank in this section.

Let G, = {L € R"™" | L = L(G) for some graph G of n vertices}. Then the
pseudoinverse operator T : G, — R"*" is well-defined.

In fact, we can partition G,, by matrix rank, we have

n—1

G, = U{L € G, | rank(L) = k}

To understand the behavior of 1 on G,,, we must study how { behaves on each {L €
G, | rank(L) = k}. For convenience, we can relax each component into R"*". This extends
the graph Laplacain matrix into the case of edge-weighted graph.

For fixed n, denote G, = {L € R | rank(L) = k} for 0 < k£ < n — 1.
By Theorem 6.2.2, we have { is continuous on each G, ;. By Theorem 6.1.4, L and LT are
of the same rank, hence,  is an operator on G, .

A natural question arises, does there exist a graph attention neural network (or a general
graph neural network) so that if we input L into such graph neural network, then it outputs L?

Moreover, will the i-th column of L be mapped to the i-th column of L' for all L € G, ;?

6.4 Perspective from Grassmannian Manifold

Now, we consider a more general case to see whether the previous question can be solved
or not.

For each L € G, 1, there exists k£ columns of L which are independent. Each L associates
a k-dimensional subspace of R".

Therefore, there is an map 7 : G,, , — Gr(k,n) by sending L € G, ; to the k-dimensional
subspace generated by columns of L, where Gr(k, n) is the space of all k-dimensional subspace
of R", called the Grassmannian manifold. There are some advantages to treat a graph Laplacian

matrix as a point on a Grassmannian manifold. The first one is one can introduce the theory
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of Riemannian manifold to deal with such problem. Besides, topological properties of Gr(k, n)

are well-studied.

Theorem 6.4.1 ([69, p. 57-59]). Gr(k,n) is a Hausdorff, compact, connected smooth manifold
of dimension k(n — k).

However, one disadvantage is that two matrices of the same rank may generate the same
subspace of R". The pseudoinverse operator { may not be well-defined in this case. Even if we
can modify t so that it is well-defined on G,, ., properties of { on Gr(k, n) may not hold on G,, .
under 7. Therefore, we leave above issues as our future work to extend the HodgeRank as a

function of the graph Laplacian matrix into an operator on a Grassmannian manifold.

6.5 Conclusion

In this chapter, we review some knowledge of the generalized inverse. Also, by
viewing HodgeRank as a function of skew-symmetric matrix, we discuss the continuity of the
HodgeRank. A theorem for the continuity of the HodgeRank is provided. In the end of chapter,
some ongoing works that the notation of generalized inverse f is extended to an operator on
the Grassmannian is introduced. This demonstrates the connection of graph Laplacian and the
graph neural network. In next chapter, we will see an application of the HodgeRank to a real

world problem.
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Chapter 7

Online Peer Assessment Problem

This chapter is based on the publication [60]. In this work, we apply HodgeRank to deal

with an online peer assessment problem to eliminate the bias and heterogeneity.

7.1 Introduction

Bias and heterogeneity in peer assessment can lead to the issue of unfair scoring in the
educational field. To deal with this problem, we propose a reference ranking method for an
online peer assessment system using HodgeRank.

A peer assessment system is used to enhance students’ learning process, especially in
higher education. Through such a system, students are given the opportunity to not only learn
knowledge from textbooks and instructors, but also from the process of making judgements on
assignments completed by their peers. This process helps them understand the weaknesses and
strengths in the work of others, and then to review their own.

However, there are some practical issues associated with a peer assignment system. For
example, students tend to give significantly higher grades than senior graders or professionals
(see [35] for more details). Also, students have a tendency to give grades within a range, with
the center of such a range often being based on the first grade they gave. Therefore, bias and
heterogeneity can occur in a peer assessment system.

There are various ranking methods on peer assessment problem, such as PeerRank [93]
and Borda-like aggregation algorithm [11]. PeerRank, a famous method based on a iterative

process to solve the fixed-point equation. PeerRank has many interesting properties from the
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view of linear algebra. Borda-like aggregation algorithm, a random method based on the theory
of random graphs and voting theory, which provides some probabilistic explanation on peer
assessment problem.

We propose another ranking scheme to deal with peer assessment problems that uses
HodgeRank, a statistical preference aggregation problem from pairwise comparison data. The
purpose of HodgeRank is to find a global ranking system based on pairwise comparison data.
HodgeRank can not only generate a ranking order, but also highlight inconsistencies in the
comparisons (see [51] for more detail). We apply HodgeRank to the problems in online

assessment and display ranking results from HodgeRank and PeerRank in turn.

7.2 Problem Definition

Let V represents the set of students to be ranked by their peers.

Denote A to be the number of assignments. Then each assignment o € A, for students
i,j € V, if their cumulative score at assignment « are X;* and X7, respectively. Then, score
different can be defined as Y} = X" — X¥. We also define Y7 = 07 and j are not compared
in assignment . For example, ¥;§ € [—100,100] on hundred-mark system.

Hence, each @ € A associates with an edge-weighted graph G, = (V, E,,Y?) of
assignment «, where (7, j) € F,, if students i and j are compared at assignment « .

For each comparison (4, j) € E,, we consider a weight w® be the number of comparison
between student ¢ and j in assignment «v. That is, w, (i, ) = 0if (i, j) ¢ E,.

Define £ = |J E,, Y = ) Y*andw = > w® then we can get a pairwise comparison
graph G = (V, E,OC}E/)x < <

The goal of the HodgeRank on G is to find a skew-symmetric X € M which is the
minimizer of the following optimization problem:

min wii (X — Yig)? (7.2.1)

XeMg
(i.4)eE

The minimizer X* of the problem 7.2.1 can be represented as X;; = grad(s*)(i, j) for
some s* : V' — R. Such s* is the HodgeRank of (G, which provides a reference score which is

compatible with the score different with minimum error.
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7.3 Data Description

As previously mentioned, bias and heterogeneity can lead to unfair scoring in online peer
assessments. Students usually grade other students based on the first score they gave, which
causes bias. However, since scores are usually compared with others, we can use this comparison
behavior to reconstruct true ranking.

The data we used in this section were collected from an undergraduate calculus course. In
this course, 133 students were asked to upload their GeoGebra [47] assignments. Each student
was then asked to review five randomly chosen assignments completed by their peers to receive
partial credits in return. There are 13 assignments during one semester.

For each assignment m € A = [13], each student k& € V is asked to evaluate homework of
at most 5 other students. Let ;™ be the set of students be graded by k£ at assignment m. Then
(Ag?) forms a subset of V' x V.. For n € [13], define E,, = Lnj (Ag'?), then G,, = (V, E,,) forms
a graph. Set G = G13. T

One key point of the HodgeRank is the connectedness of the graph G generated by pairwise
comparison data. Note that £,, C FE, .; for 1 < n < 12. Hence, If G, is a connected graph,
then so is GG,,, for all m > n.

In Table 7.1, we compute the number of connected components of each GG,, to see when G,
is connected. We can easily find that after half the semester passed (that is, n > 7), comparison
data between students forms a connected graph. Hence, we can apply HodgeRank to calculate

the ranking of all the students after assignment n = 7.

Table 7.1: Number of components of G,, for n € [13]

n 1 2 3 4 5 6 7T~13
# of componentsinG,, |21 5 4 3 2 2 1

7.4 Numerical Results

The traditional method for finalizing peer assessment consists of either using an average
cumulative score or a truncated average score. Although these approaches might have their own
statistical meaning, they cannot avoid bias and heterogeneity in peer assessment.

We first state some ranking methods below
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Definition 7.4.1. Fori € V, a € A, let X{* be the grade of student i obtained in assignment c.

Then the weighted cumulative score of student i is given by

Xi=> w'Xp

aEA

where w® > 0 is the weight among all assignments so that »_ w® = 1.
aEN

The weighted cumulative score is irrelevant to the structure of peer assessment. However,
there is another ranking method based on the peer assessment, called the PeerRank. The

PeerRank is to iterate the cumulative score to find a fixed point of the iteration process.

Definition 7.4.2 (PeerRank [93]). Fori,j € V, define A;; € [0, 1] be the normalized grade of
i given by j. For o € (0, 1), we consider the following iteration process:

1 n
Let X° € R" defined by X = =Y A;j. Then, for k >0,
n =1

J

(0%

1 Xkl

XFl = (1—a)X + AXF

The sequence { X*} converges to X* € [0,1]" as k — oo, X* is called the PeerRank.

Note that PeerRank exists and are the same for any o € (0, 1), so we consider a finite
iteration X* of the PeerRank instead of X *

In practice, we can consider A;; = ) w*Af, where Af} is the grade of student i given by
J in assignment . oot

Below, we compute the rankings based on the cumulative score, PeerRank under different
a and the HodgeRank. Figure 7.1 displays the cumulative score, PeerRank with @ =
{0.25,0.5,0.75} and the HodgeRank, respectively. For each «, we compute 15 iterations
instead.

We normalize each ranking to the interval [0, 1] linearly and sorted in ascending order to
compare ranking from different methods. In addition, to reveal the tendency of each ranking
method, a steady line was plotted on the graph. There are some interesting implications that can
be observed from this figure.

First, the cumulative score offers a ranking higher than the steady line. This reflects the

existence of bias and heterogeneity in the cumulative average method. Second, PeerRank can be

viewed as a modification of the average scoring. Third, sorted ranking result from HodgeRank
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Results from Different Methods
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Figure 7.1: Final results using different ranking methods

is a normal distributed curve. This result can might be an explanation why HodgeRank can be
solution to eliminate bias and heterogeneity by the normality.

Note that the reason why HodgeRank and PeerRank provides different results is that their
conclusion base are totally different, while former method relies on the pairwise comparison data
and latter one is applied on the average score as an initial ranking. Hence, HodgeRank provides
instructors with an objective scoring reference using score difference rather than cumulative or
average score.

In conclusion, this is the first time HodgeRank has been applied in the field of education.
While numerical results were processed using real world data in this study, certain issues, such
as how to aggregate the HodgeRank ranking method into a peer assessment system, remain

unsolved. This task will be attempted as part of our future work.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

In this dissertation, we review background theory of deep learning and HodgeRank. These
theories can be applied into some real world problems. Below, we review of each chapter which
apply these theories in our work.

In chapter 2, we recall some basic definitions of neural networks including universal
approximation theorems of depth-bounded type and of width-bounded type. To connect the
generalized inverse operator {, we also introduce the graph neural network along with the
attention mechanism.

In chapter 3, we see how neural network models can be applied to solve a moving boundary
problem, by reformulating such problem, we can apply neural network as a numerical solution of
the certain problem. In our numerical test, the analytical solution of the free boundary problem
is well approximated by our neural network solution. This shows the capacity of the neural
network models as numerical solver.

In chapter 4, we review manifold reconstruction algorithms proposed in [30]. With
properties of affine projections, such manifold interpolation algorithm can be modified as a
learning process of a residual network. Hence, we propose our deep learning version manifold
interpolation algorithm by considering properties of affine projections into the objective
function.

If we view HodgeRank which is introduced in chapter 5 as a function by sending a skew-

symmetric matrix into a global ranking, then we can talk about its continuity. This issue is
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studied in chapter 6. Also, a potential linkage between graph and manifold is provided but
without further result yet. To see how HodgeRank can be applied in practice, in chapter 7, we
consider a peer assessment problem we faced in real world. By treating peer assessment as a
pairwise comparison data. Then HodgeRank provides an alternative reference ranking generated
based on the combinatorial Hodge theory.

In the end of this dissertation, we propose some unsolved problems which are close to our

research above.

8.2 Unsolved Problems and Future works

8.2.1 Dimension of the Reconstructed Manifold

Note that manifold interpolation algorithm is guaranteed theoretically. However, some
criteria should be checked beforehand. These practical issues may cause unexpected issue when
reconstructing the desired manifold.

We first state some issues about assumptions of the manifold interpolation algorithm below.
Let X C R™ be finite or countable with diam(X) < oco. For (6,n,r) € (0,7) x [m — 1] X
(0, diam(X)), we use the notation X € P(d,n,r) if X is d-close to n-flats at scale .

The following questions are essential to determine the dimension of the reconstructed

manifold.
1. How to check if X € P(d,n,r)? Also, is the set {(d,n,7) | X € P(d,n,r)} non-empty?
2. Foreachn € [m — 1], how to check if {(d,7) | X € P(d,n,r)} # ¢?
3. Givenr > 0,n <m,is{(6,n) € (0,r) x [m — 1] | X € P(d,n,r)} non-empty?
4. Givend > 0,n < m, is {(r,n) € (§,diam(X)) x [m — 1] | X € P(d,n,r)} non-empty?

5. Given0 < 6 <r,is{n € [m—1] | X € P(J,n,r)} non-empty? If so, how to compute

min{n € [m —1] | X € P(§,n,r)}?
If we expect to interpolate a data cloud by a manifold using the interpolation algorithm,

then above issues should be concerned before we process the algorithm. In fact, let X be a data
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N
cloud in R™ and write X = |J Xj. If the last question can be answered, then we can associate
k=1
for each X a dimension n, € [m — 1] so that X, € P(d,ng,r). Therefore, the dimension of
the resulting manifold M is max ny
1<k<N

8.2.2 HodgeRank and Graph Neural Network

There are two questions about HodgeRank. The first one whether HodgeRank is that
whether it can be approximated by a neural network (especially, a graph-type neural network)
or not. If this can be proved, then we can generate a local graph Laplacian solver accordingly.
This can largely reduce the computational cost of the traditional solver for linear systems.

Besides, if one can extend such problem into Grassmannian, then deep learning techniques
can be applied as a tool for Riemannian optimization. This may provide the insight of the deep

learning into the optimization on differential geometry and vice versa.
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