CRITICAL BEHAVIOR FOR AN ORIENTED PERCOLATION WITH LONG-RANGE INTERACTIONS IN DIMENSION $d>2$

Lung-Chi Chen and Narn-Rueih Shieh

Abstract

We consider a model of oriented percolation on $\mathbb{Z}^{d} \times \mathbb{Z}, d>2$, with long-range interactions, in which the bond occupation probability decays as the α-stable distribution with $\alpha=1$. We use the lace expansion to get an L^{1} infrared bound estimate which implies several critical exponents via the triangle condition.

1. Introduction

The Model

In this paper we introduce a certain type of oriented percolation model which may be regarded as an infinite layer long-range model. It is defined as follows. We consider the graph $\mathbb{Z}^{d} \times \mathbb{Z}$ and oriented bonds $((x, n),(y, n+1)), x, y \in \mathbb{Z}^{d}$, $n \in \mathbb{Z}$. Fix a parameter $\lambda>0$, to each $((x, n),(y, n+1))$ we associate a random variable taking value 1 (open) with probability $p_{x, y}^{\lambda}$ and 0 (close) with probability $1-p_{x, y}^{\lambda}$; the random variables are assumed to be totally independent. We require that $p_{x, y}^{\lambda}=p_{y, x}^{\lambda}=p_{0, y-x}^{\lambda}$, and define $p_{0, x}^{\lambda}$ to be

$$
\begin{equation*}
p_{0, x}^{\lambda}=\sum_{l=1}^{\infty} \frac{\lambda \mathbb{1}_{\left\{(l-1) L<\|x\|_{\infty} \leq l L\right\}}}{l^{2} \sum_{y \in \mathbb{Z}^{d}} \mathbb{1}_{\left\{(l-1) L<\|y\|_{\infty} \leq l L\right\}}}, \tag{1.1}
\end{equation*}
$$

where $\|x\|_{\infty}=\max _{\{j=1,2 \ldots, d\}}\left|x_{j}\right|, \mathbb{1}_{\left\{(l-1) L<\|x\|_{\infty} \leq L L\right\}}$ is the indicator function and L is a controlling factor. Note that $p_{0, x}^{\lambda}=O\left(\lambda\|x\|_{\infty}^{-d-1} L^{-d}\right)$; thus it decays as the α-stable distribution with $\alpha=1$. The factor L^{-d} is necessary to control the

[^0]convergence of the lace expansion for the dimension $d=3$. We believe that the results of this paper also hold without the factor L^{-d} for dimension d being large enough.

We write $(y, m) \longrightarrow(x, n)$ to denote the event that there is an oriented open connected path from (y, m) to (x, n), i.e., there is a sequence of sites $\left(u_{m}, m\right)=$ $(y, m),\left(u_{m+1}, m+1\right), \ldots,\left(u_{n}, n\right)=(x, n)$ such that the oriented bonds $\left(\left(u_{j-1}, j-\right.\right.$ 1), $\left.\left(u_{j}, j\right)\right), j=m+1, \ldots, n$ are all open. The joint probability distribution of the bond random variables is denoted P_{λ}, with corresponding expectation E_{λ}. Define

$$
\psi_{\lambda}(x, n)= \begin{cases}P_{\lambda}((0,0) \longrightarrow(x, n)) & \text { if } n>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
\varphi_{\lambda}(x, n)=\delta(x, n)+\psi_{\lambda}(x, n), \tag{1.2}
\end{equation*}
$$

where $\delta(x, n)$ is Kronecker's delta on $\mathbb{Z}^{d} \times \mathbb{Z}$. For brevity we write in the sequel $\sum_{(x, n)}=\sum_{x \in \mathbb{Z}^{d}, n \in \mathbb{Z}}$ and $\sum_{x}=\sum_{x \in \mathbb{Z}^{d}}$ in this paper. The Fourier-Laplace transforms are

$$
\begin{aligned}
\widehat{\psi}_{\lambda}(k, s+i t) & =\sum_{(x, n)} e^{i k \cdot x} e^{n(s+i t)} \psi_{\lambda}(x, n) \\
\widehat{\varphi}_{\lambda}(k, s+i t) & =\sum_{(x, n)} e^{i k \cdot x} e^{n(s+i t)} \varphi_{\lambda}(x, n) \\
Z_{\lambda, n}(k) & =\sum_{x} e^{i k \cdot x} \varphi_{\lambda}(x, n), \quad n \in \mathbb{Z}
\end{aligned}
$$

for $(k, t) \in[-\pi, \pi]^{d} \times[-\pi, \pi]$ and $s \in \mathbb{R}$. Let $C(0,0)=\{(x, n):(0,0) \longrightarrow$ $(x, n)\}$ and denotes its cardinality by $|C(0,0)|$. We have

$$
\begin{align*}
& E_{\lambda}(|C(0,0)|)=E_{\lambda}\left(\sum_{(x, n)} \mathbb{1}_{\{(x, n) \in C(0,0)\}}\right) \\
& =\sum_{(x, n)} E_{\lambda}\left(\mathbb{1}_{\{(x, n) \in C(0,0)\}}\right)=\widehat{\varphi}_{\lambda}(0,0), \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}(0,0)=1+\sum_{n=1}^{\infty} Z_{\lambda, n}(0) \tag{1.4}
\end{equation*}
$$

For $(0,0) \longrightarrow(x, n+m)$, there exists a vertex (y, m) such that $(0,0) \longrightarrow(y, m)$ and $(y, m) \longrightarrow(x, n)$. Since the two events are independent, by translation invari-
ant, we have

$$
\begin{align*}
Z_{\lambda, n+m}(0) & =\sum_{x} \varphi_{\lambda}(x, n+m) \\
& \leq \sum_{x} \sum_{y} \varphi_{\lambda}(y, m) \varphi_{\lambda}(x-y, n) \tag{1.5}\\
& =Z_{\lambda, n}(0) Z_{\lambda, m}(0) .
\end{align*}
$$

From the subadditive limit theorem, see for Example [9, Theorem II.2], for every $\lambda>0$, there exists m_{λ} such that

$$
\begin{equation*}
-m_{\lambda}=\lim _{n \rightarrow \infty} \frac{\log Z_{\lambda, n}(0)}{n} \quad \text { and } \quad Z_{\lambda, n}(0) \geq e^{-n m_{\lambda}} \tag{1.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Clearly, $e^{m_{\lambda}}$ is the radius of convergence of the power series $\widehat{\varphi}_{\lambda}(0, z)$. Since $E_{\lambda}(|C(0,0)|)$ is non-decreasing with respect to λ, there exists a critical point $\lambda_{c}=\sup \left\{\lambda: E_{\lambda}(|C(0,0)|)<\infty\right\}$. It is seen that

$$
\lambda_{0}:=\frac{6}{\pi^{2}} \leq \lambda_{c}
$$

due to $\sum_{x} p_{0, x}^{\lambda}=\frac{\pi^{2} \lambda}{6}$. There is another critical value traditionally defined as $\lambda_{T}=\inf \left\{\lambda: P_{\lambda}(|C(0,0)|=\infty)>0\right\}[1,9]$. For any $0<\|x\|_{\infty} \leq L$,

$$
p_{0, x}^{\lambda}=\frac{\lambda}{\sum_{y} \mathbb{1}_{\left\{0<\|y\|_{\infty} \leq L\right\}}} \geq \frac{\lambda}{(2 L+1)^{d}},
$$

which implies $\lambda_{T}<(2 L+1)^{d}$. Since our model is a kind of independent translation invariant bond percolation models, we have, by [1,Theorem 1.1], $\lambda_{c}=\lambda_{T}$.

Main Results

The paper is mainly on the infrared bond estimate; there is no general proof of infrared bound for a given percolation model. There are indications that the infrared bound is violated in less than dimension six for nearest-neighbor nonoriented percolation model [8]. In [14], it is obtained the infrared bound of the nearestneighbor percolation model in high dimensions and spread-out model for dimension $d>6$. We obtain in this paper the following infrared bound of our model for dimension $d>2$.

Theorem 1.1. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{0} (depending on d) such that for all $L \geq L_{0},(k, t) \in[-\pi, \pi]^{d} \times$ $[-\pi, \pi], s \in(0,1]$ and $\lambda \leq \lambda_{c}$ we have

$$
\left|\widehat{\varphi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right| \leq \frac{1}{c_{1}|t|+c_{2} s+c_{3}\|k\|_{1}},
$$

where $c_{j}, j=1,2,3$, are constants depending on d and L.
As usual, the critical exponents γ, β, δ and Δ_{t+1} are defined as follows:

$$
\begin{array}{rll}
E_{\lambda}(|C(0,0)|) & \sim\left(\lambda_{c}-\lambda\right)^{-\gamma} & \text { as } \quad \lambda \uparrow \lambda_{c} \\
P_{\lambda}(|C(0,0)|=\infty) & \sim\left(\lambda-\lambda_{c}\right)^{\beta} & \text { as } \quad \lambda \downarrow \lambda_{c} \\
\sum_{1 \leq n \leq \infty} P_{\lambda_{c}}(|C(0,0)|=n)\left[1-e^{-n h}\right] & \sim h^{\delta} & \text { as } \quad h \downarrow 0 \tag{1.7}\\
\frac{E_{\lambda}\left(|C(0,0)|^{t+1}\right)}{E_{\lambda}\left(|C(0,0)|^{t}\right)} & \sim\left(\lambda_{c}-\lambda\right)^{-\Delta_{t+1}} & \text { as } \quad \lambda \uparrow \lambda_{c}
\end{array}
$$

for $t \in \mathbb{N}$, where we write $A(r) \sim B(r)$ as $r \uparrow r_{0}$, resp. $r \downarrow r_{0}$, means that there are universal constants c_{1}, c_{2} such that $c_{1} B(r) \leq A(r) \leq c_{2} B(r)$ as the parameter $r \uparrow r_{0}$, resp. $r \downarrow r_{0}$. It was proved in [18] that for the nearest-neighbor oriented percolation model in high dimensions and spread-out oriented model in dimension $d>4$, the critical exponents β, γ, δ and Δ_{t+1} exist and take their meanfield values. The same results were extended to the contact process [22]. In the following theorem, we use Theorem 1.1 and the triangle condition to prove that $\gamma=1$. Then the other critical exponents δ, β and Δ_{t+1} can be obtained (see [5],[26]).

Theorem 1.2. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{0} (depending on d) such that for all $L \geq L_{0}$, the critical exponents are $\gamma=1, \beta=1, \delta=\frac{1}{2}$ and $\Delta_{t+1}=2$ for $t \in \mathbb{N}$.

Remark 1.1. Theorem 1.2 implies that there is no infinite cluster at the critical value $\lambda=\lambda_{c}$ for our model in dimension $d>2$. There have been literatures[3, $4,21]$ to discuss the cluster infinity and related properties at the critical values for non-oriented long-range percolation models with polynomial decays.

Remark 1.2. For each percolation model, there exists a upper critical dimension d_{c} such that the critical behavior is the same as the mean-field behavior when dimension $d>d_{c}$. If the random walk with one-step transition function $p_{o, x}^{\lambda} / \sum_{x} p_{o, x}^{\lambda}$ belongs to the domain of an α-stable law, then the upper critical dimension of the oriented percolation is believed to be 2α. For the case $\alpha=2$, it is proved that, by using the hyperscaling inequalities, the upper critical dimension is four [23]. The upper critical dimension is two in our model; this will be the content of a coming paper.

To prove Theorem 1.1, we use the lace expansion which is introduced in a seminal paper of [7] for studying the weakly self-avoiding walk in dimension $d>4$. The method has also been applied successfully to study the strictly self-avoiding walk
([12, 13]), percolation models ([14], [11]), oriented percolation models ([18, 19]), lattice trees and lattice animals ([15]), networks of self-avoiding walks ([20, 10]), etc. The basic idea of the present work is closely related to that in [18]; however, it should be emphasized that our infrared bound is an L^{1} estimates, rather than the L^{2} estimate as that appeared in [18] and other works. It is the L^{1} estimate makes us to be significantly different from the L^{2} arguments in [18]. An L^{1} infrared bound estimate for self-avoiding random walks has been studied by Y. Cheng (a 2000 PhD thesis of Temple University).

From the lace expansion, there is a connected function $\Pi_{\lambda}(x, n)$ such that its Fourier-Laplace transform $\widehat{\Pi}_{\lambda}(k, z)$ is defined by the renewal equation (see [17])

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}(k, z)=\frac{1+\widehat{\Pi}_{\lambda}(k, z)}{F_{\lambda}(k, z)} \tag{1.8}
\end{equation*}
$$

for $\lambda \leq \lambda_{c}, \operatorname{Re}(z)<m_{\lambda}$, where

$$
\begin{gather*}
F_{\lambda}(k, z)=1-\lambda_{0}^{-1} \lambda e^{z} \widehat{D}(k)\left(1+\widehat{\Pi}_{\lambda}(k, z)\right) \tag{1.9}\\
\widehat{D}(k)=\sum_{x} \varphi_{\lambda_{0}}(x, 1) e^{i k \cdot x} \tag{1.10}
\end{gather*}
$$

To prove Theorem 1.1, we need the following continuity of two-point functions.
Proposition 1.3. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>0$, we have
(a) $E_{\lambda}(|C(0,0)|)<\infty$ if and only if $m_{\lambda}>0$,
(b) $E_{\lambda}(|C(0,0)|)=\infty$ and $m_{\lambda}=0$ if $\lambda=\lambda_{c}$,
(c) $\widehat{\varphi}_{\lambda}(0, r)$ is continuous at λ for $0<\lambda<\lambda_{c}, r<m_{\lambda}$ and $\lim _{\lambda \uparrow \lambda_{c}} \widehat{\varphi}_{\lambda}(0, r)=$ $\widehat{\varphi}_{\lambda_{c}}(0, r)$ for $r<0$.

From [18], we know that Proposition 1.3 holds for finite-range models, and we show that it can also be extended to our model.

Next, we need to estimate $\widehat{D}(k)$ as follows:
Proposition 1.4. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{0} (depending on d) such that for $L \geq L_{0}$, we have
(a) $|\widehat{D}(k)| \leq 1-\frac{0.12 L}{d}\|k\|_{1} \quad$ for $\quad\|k\|_{\infty} \in\left[0, \frac{\pi}{4 L+1}\right]$,
(b) $|\widehat{D}(k)|<0.95 \quad$ for $\quad\|k\|_{\infty} \in\left(\frac{\pi}{4 L+1}, \frac{\pi}{L}\right]$,
(c) $|\widehat{D}(k)|<\frac{9}{10 n} \quad$ for $\quad\|k\|_{\infty} \in\left(\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right]$ with $n=1,2, \ldots, L-1$.

Finally, we want to control $\left|\widehat{\Pi}_{\lambda}(k, z)\right|$. The following two propositions give us that $\left|\widehat{\Pi}_{\lambda}(k, z)\right|$ decays to zero as L tends to infinity for $\lambda=\lambda_{0}$ and satisfies a bootstrapping argument for $\lambda \leq \lambda_{c}$, respectively.

Proposition 1.5. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{1} (depending on d) such that for $L \geq L_{1}$, we have

$$
\begin{aligned}
& \sum_{(x, n)}\left|\Pi_{\lambda_{0}}(x, n)\right| \leq \frac{\tau_{0}}{L}, \\
& \sum_{(x, n)}\left|n \Pi_{\lambda_{0}}(x, n)\right| \leq \frac{\tau_{1}}{L}, \\
& \sum_{(x, n)}\|x\|_{1}\left|\Pi_{\lambda_{0}}(x, n)\right| \leq \frac{\tau_{2}(\log L)^{\frac{1}{3}}}{L}
\end{aligned}
$$

for some universal constants τ_{0}, τ_{1} and τ_{2}.
Proposition 1.6. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{0} (depending on d) such that for $L \geq L_{0}, \lambda \leq \lambda_{c}$ and $r \leq m_{\lambda},\left(P_{4}\right)$ implies $\left(P_{2}\right)$, where $\left(P_{\alpha}\right)$ means that the following inequalities hold

$$
\begin{gather*}
\sum_{(x, n)}\left|\Pi_{\lambda}(x, n) e^{r n}\right| \leq \frac{\alpha \tau_{0}^{\prime}}{L}, \tag{1.11}\\
\sum_{(x, n)}\left|n \Pi_{\lambda}(x, n) e^{r n}\right| \leq \frac{\alpha \tau_{1}^{\prime}}{L}, \tag{1.12}\\
\sum_{(x, n)}\left|x \|_{1}\right| \Pi_{\lambda}(x, n) e^{r n} \left\lvert\, \leq \frac{\alpha \tau_{2}^{\prime}(\log L)^{\frac{1}{3}}}{L}\right. \tag{1.1.1}
\end{gather*}
$$

for some universal constants $\tau_{0}^{\prime}, \tau_{1}^{\prime}$ and τ_{2}^{\prime} with $\tau_{j}^{\prime} \geq \tau_{j}, \tau_{j}$ as in Proposition 1.5.
We denote c to be a positive constant, whose precise value is not important to us and may vary from line to line. In Section 2, we prove the main theorems by assuming Propositions 1.3, 1.5 and 1.6. In Section 3, we define the Feynman diagrams which are the same as in [18]. Proposition 1.3 is proved in Section 4 and Proposition 1.4 is proved in Section 5. In Section 6, we prove Proposition 1.5 and 1.6 by Proposition 1.4 and the inequalities in Section 3.

2. Proof of the Main Theorems

The following inequality is used to prove Theorem 1.1.

Lemma 2.1. For our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>2$, there exists an L_{0} (depending on d) such that for $L \geq L_{0}, \lambda \leq \lambda_{c}$ and $r \leq m_{\lambda}$, $\left(P_{4}\right)$ and Proposition 1.4 imply

$$
\left|\widehat{\Pi}_{\lambda}(0, r)-\widehat{\Pi}_{\lambda}(k, r-s+i t) e^{-s+i t} \widehat{D}(k)\right| \leq \frac{1}{3}\left|1-e^{-s+i t} \widehat{D}(k)\right|
$$

Proof. Since

$$
\begin{align*}
& \left|\widehat{\Pi}_{\lambda}(0, r)-\widehat{\Pi}_{\lambda}(k, r-s+i t) e^{-s+i t} \widehat{D}(k)\right| \\
& \quad \leq\left|\widehat{\Pi}_{\lambda}(0, r)-\widehat{\Pi}_{\lambda}(0, r-s+i t)\right| \\
& \quad+\left|\widehat{\Pi}_{\lambda}(0, r-s+i t)-\widehat{\Pi}_{\lambda}(k, r-s+i t)\right| \tag{2.1}\\
& \quad+\left|\widehat{\Pi}_{\lambda}(k, r-s+i t)\right|\left|1-e^{-s+i t} \widehat{D}(k)\right|
\end{align*}
$$

we have, by Mean-Value theorem and $\left(P_{4}\right)$,

$$
\begin{align*}
\left|\widehat{\Pi}_{\lambda}(k, r-s+i t)-\widehat{\Pi}_{\lambda}(0, r-s+i t)\right| & \leq\left[\sum_{(x, n)}\|x\|_{1}\left|\Pi_{\lambda}(x, n) e^{r-s+i t}\right|\right]\|k\|_{1} \tag{2.2}\\
& \leq \frac{4 \tau_{2}^{\prime}(\log L)^{\frac{1}{3}}}{L}\|k\|_{1}
\end{align*}
$$

and

$$
\begin{align*}
\left|\widehat{\Pi}_{\lambda}(0, r)-\widehat{\Pi}_{\lambda}(0, r-s+i t)\right| & \leq\left[\sum_{(x, n)}\left|n \Pi_{\lambda}(x, n) e^{r+i t}\right|\right](|s-i t|) \tag{2.3}\\
& \leq \frac{4 \tau_{1}^{\prime}}{L}(|s-i t|)
\end{align*}
$$

Then by (2.1)-(2.3),

$$
\begin{align*}
& \left|\widehat{\Pi}_{\lambda}(0, r)-\widehat{\Pi}_{\lambda}(k, r-s+i t) e^{-s+i t} \widehat{D}(k)\right| \leq \frac{4 \tau_{2}^{\prime}(\log L)^{\frac{1}{3}}}{L}\left(\|k\|_{1}\right) \tag{2.4}\\
& \quad+\frac{4 \tau_{1}^{\prime}}{L}(|s-i t|)+\frac{4 \tau_{0}^{\prime}}{L}\left|1-e^{-s+i t} \widehat{D}(k)\right|
\end{align*}
$$

On the other hand, we have, by Proposition 1.4,

$$
\begin{align*}
\left|1-e^{-s+i t} \widehat{D}(k)\right|^{2} & =\left|\left(1-e^{-s+i t}\right)+e^{-s+i t}[1-\widehat{D}(k)]\right|^{2} \\
& \geq\left|1-e^{-s+i t}\right|^{2}+c e^{-2 s}\|k\|_{1}^{2} \tag{2.5}\\
& \geq \frac{\left(c^{\prime}|s-i t|+c e^{-s}\|k\|_{1}\right)^{2}}{2}
\end{align*}
$$

for some universal constants $c, c^{\prime}>0$. From (2.4) and (2.5), let $L>0$ large enough, this lemma follows.

Proof of Theorem 1.1. By Proposition 1.5, for $L \geq L_{1},\left(P_{1}\right)$ is stisfied at $\lambda=\lambda_{0}$ and $r=0$. Then $\widehat{\varphi}_{\lambda_{0}}(0,0)=E_{\lambda_{0}}(|C(0,0)|)<\infty$, by (1.8). From Proposition 1.3 (a) and (b), we have $\lambda_{c}>\lambda_{0}$. According to (1.8)-(1.9) and Proposition 1.3 (c), the left-hand sides of (1.11)-(1.13) are continuous at λ for every $\lambda<\lambda_{c}$ and $r<m_{\lambda}$. Then from Proposition 1.6 and inductive method, $\left(P_{4}\right)$ is satisfied for every $\lambda \in\left(0, \lambda_{c}\right)$ and $r<m_{\lambda}$. By the Dominated Convergence theorem, we have

$$
\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)=\lim _{s \downarrow 0} \widehat{\Pi}_{\lambda}\left(0, m_{\lambda}-s\right)
$$

which implies $\left(P_{4}\right)$ is satisfied for every $\lambda \in\left(0, \lambda_{c}\right)$ and $r \leq m_{\lambda}$. From (1.4) and (1.6), we have

$$
\begin{aligned}
\widehat{\varphi}_{\lambda}\left(0, m_{\lambda}\right) & =\lim _{s \downarrow 0} \widehat{\varphi}_{\lambda}\left(0, m_{\lambda}-s\right)=1+\lim _{s \downarrow 0} \sum_{n=1}^{\infty} Z_{\lambda, n}(0) e^{\left(m_{\lambda}-s\right) n} \\
& \geq 1+\lim _{s \downarrow 0} \sum_{n=1}^{\infty} e^{-s n}=\infty
\end{aligned}
$$

and
$1+\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)=\lim _{s \downarrow 0} \frac{\widehat{\varphi}_{\lambda}\left(0, m_{\lambda}-s\right)}{1+\lambda_{0}^{-1} \lambda e^{m_{\lambda}-s} \widehat{\varphi}_{\lambda}\left(0, m_{\lambda}-s\right)}=\frac{1}{\frac{1}{\hat{\varphi}_{\lambda}\left(0, m_{\lambda}\right)}+\lambda_{0}^{-1} \lambda e^{m_{\lambda}}}<\infty$.
Then

$$
\begin{equation*}
F_{\lambda}\left(0, m_{\lambda}\right)=\lim _{s \downarrow 0} \frac{1+\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}-s\right)}{\widehat{\varphi}_{\lambda}\left(0, m_{\lambda}-s\right)}=0 \tag{2.6}
\end{equation*}
$$

and $1+\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)=\lambda_{0} \lambda^{-1} e^{-m_{\lambda}}$. (2.6) implies

$$
\begin{aligned}
F_{\lambda}\left(k, m_{\lambda}-s+i t\right)= & F_{\lambda}\left(k, m_{\lambda}-s+i t\right)-F_{\lambda}\left(0, m_{\lambda}\right) \\
= & \lambda_{0}^{-1} \lambda e^{m_{\lambda}}\left(1-e^{-s+i t} \widehat{D}(k)\right)+\lambda_{0}^{-1} \lambda e^{m_{\lambda}}\left[\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)\right. \\
& \left.-e^{-s+i t} \widehat{D}(k) \widehat{\Pi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right]
\end{aligned}
$$

Since $\left(P_{4}\right)$ is satisfied for all $\lambda \in\left(0, \lambda_{c}\right)$ with $r \leq m_{\lambda}$, there exists $L_{0}>0$ such that for $L \geq L_{0}$ and $\lambda \in\left(0, \lambda_{c}\right),\left|\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)\right|<\frac{1}{2}$, and from Lemma 2.1, we have

$$
\begin{align*}
\left|F_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right| & \geq \frac{2 \lambda e^{m_{\lambda}}}{3 \lambda_{0}}\left|1-e^{-s+i t} \widehat{D}(k)\right| \\
& =\frac{2}{3\left[1+\widehat{\Pi}_{\lambda}\left(0, m_{\lambda}\right)\right]}\left|1-e^{-s+i t} \widehat{D}(k)\right| \tag{2.7}\\
& \geq \frac{4}{9}\left|1-e^{-s+i t} \widehat{D}(k)\right|
\end{align*}
$$

with $s \in(0,1)$. Besides, by Proposition $1.3, \widehat{\varphi}_{\lambda}(k,-s+i t)$ is left continuous at $\lambda=\lambda_{c}$ for $s \in(0,1)$. This completes the proof.

Proof of Theorem 1.2. Let

$$
\begin{aligned}
\nabla \lambda(x, n) & =\sum_{\left(u_{1}, n_{1}\right)} \sum_{\left(u_{2}, n_{2}\right)} P_{\lambda}\left((0,0) \longrightarrow\left(u_{1}, n_{1}\right)\right) P_{\lambda}\left(\left(u_{1}, n_{1}\right) \longrightarrow\left(u_{2}, n_{2}\right)\right) \\
& \times P_{\lambda}\left((x, n) \longrightarrow\left(u_{2}, n_{2}\right)\right) .
\end{aligned}
$$

Since the x-space is symmetric with respect to the origin, its Fourier transform is

$$
\widehat{\nabla}_{\lambda}(k, i t)=\widehat{\varphi}_{\lambda}(k, i t)^{2} \widehat{\varphi}_{\lambda}(-k,-i t)=\widehat{\varphi}_{\lambda}(k, i t)^{2} \widehat{\varphi}_{\lambda}(k,-i t) .
$$

Then, by Hausdorff-Young's inequality and infrared bound (we write $\iint d k d t=$ $\frac{1}{(2 \pi)^{d+1}} \int_{t \in[-\pi, \pi]} \int_{k \in[-\pi, \pi]^{d}} d k d t$ and $\int d k=\frac{1}{(2 \pi)^{d}} \int_{k \in[-\pi, \pi]^{d}} d k$ in this paper),

$$
\begin{aligned}
\left\{\sum_{(x, n)}\left|\nabla_{\lambda}(x, n)\right|^{p}\right\}^{\frac{1}{p}} & \leq\left\{\iint\left|\widehat{\varphi}_{\lambda}(k, i t)^{2} \widehat{\varphi}_{\lambda}(k,-i t)\right|^{q} d k d t\right\}^{\frac{1}{q}} \\
& \leq\left\{\iint\left|\frac{1}{c_{1} m_{\lambda}+c_{2}|t|+c_{3}\|k\|_{1}}\right|^{3 q} d k d t\right\}^{\frac{1}{q}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $0<q \leq 2$. Then for any $d>2$ and $1<q<1+\frac{1}{3}$, there exists constant c_{0} (depending on d and q) such that for all $\lambda<\lambda_{c}, \sum_{(x, n)}|\nabla \lambda(x, n)|^{p} \leq$ c_{0}. Since $\sum_{(x, n)}\left|\nabla_{\lambda_{c}}(x, n)\right|^{p}=\lim _{\lambda \uparrow \lambda_{c}} \sum_{(x, n)}\left|\nabla_{\lambda}(x, n)\right|^{p}$, which implies the triangle condition holds, that is,

$$
\lim _{R \rightarrow \infty} \sup \left\{\nabla \lambda_{c}(x, n):\|x\|_{2}+|n| \geq R\right\}=0
$$

Then $\gamma=1, \delta=\frac{1}{2}, \beta=1$ and $\Delta=2$ (see [5,18, 16] etc.). This completes the proof.

3. Estimates of $\Pi_{\lambda}(x, n)$ and Its Derivatives

As in [17], there are unique the lace parts $\Pi_{\lambda}^{(l)}(x, n)$ for $l=0,1,2, \ldots$, such that

$$
\widehat{\Pi}_{\lambda}(k, z)=\sum_{l=0}^{\infty}(-1)^{l} \widehat{\Pi}_{\lambda}^{(l)}(k, z) .
$$

In this section, we describe the Feynman diagrams which are adapted from [18] and use them to control the upper bound of $\left|\widehat{\Pi}_{\lambda}^{(l)}(k, z)\right|$ for each $l=0,1,2, \ldots$.

Given sites $\left(x_{1}, n_{1}\right),\left(x_{2}, n_{2}\right),(x, n)$ and an oriented bond b, define the triangle function:

$$
\begin{aligned}
& T_{\lambda}\left[\left(\left(x_{1}, n_{1}\right),\left(x_{2}, n_{2}\right)\right) ;((x, n), b)\right]=P_{\lambda}(b: \text { open }) P_{\lambda}(\text { top of } b \longrightarrow(x, n)) \\
& \quad \times P_{\lambda}\left(\left(x_{2}, n_{2}\right) \longrightarrow \text { bottom of } b\right) \psi_{\lambda}\left(x-x_{1}, n-n_{1}\right)
\end{aligned}
$$

Let the triangle function $T_{\lambda}\left[\left(u, n^{\prime}\right) ;((x, n), b)\right]=T_{\lambda}\left[\left(\left(x_{1}, n_{1}\right),\left(x_{2}, n_{2}\right)\right) ;((x, n), b)\right]$ if $\left(x_{1}, n_{1}\right)=\left(x_{2}, n_{2}\right)=\left(u, n^{\prime}\right)$. We also assume

$$
T_{\lambda}\left[\left(\left(x_{2}, n_{2}\right),\left(x_{1}, n_{1}\right)\right) ;(b,(x, n))\right]=T_{\lambda}\left[\left(\left(x_{1}, n_{1}\right),\left(x_{2}, n_{2}\right)\right) ;((x, n), b)\right]
$$

Define the bubble functions as follows

$$
\begin{aligned}
Q_{(y, m)}^{(\lambda, 1)}(x, n) & =\varphi_{\lambda}(x, n) \varphi_{\lambda}(x-y, n-m) \\
Q_{(y, m)}^{(\lambda, 2)}(x, n) & =\psi_{\lambda}(x, n)\left[\sum_{u} \psi_{\lambda}(x-u, 1) \varphi_{\lambda}(u-y, n-m-1)\right] \\
Q_{(y, m)}^{(\lambda, 3)}(x, n) & =\left[\sum_{u} \varphi_{\lambda}(u, n-1) \psi_{\lambda}(x-u, 1)\right] \psi_{\lambda}(x-y, n-m) .
\end{aligned}
$$

They are represented by the diagrams in Figure 1.

Fig. 1.
For l pairs of sites and bonds $\left\{\left(\left(u_{j}, n_{j}\right), b_{j}\right), j=1,2, \ldots, l\right\}$, set $\sigma_{j}\left(\left(u_{j}, n_{j}\right), b_{j}\right)=$ $\left(\left(u_{j}, n_{j}\right), b_{j}\right)$ or $\left(b_{j},\left(u_{j}, n_{j}\right)\right), j=1,2,3, \ldots, l-1$ and $\sigma_{l}\left(\left(u_{l}, n_{l}\right), b_{l}\right)=\left(\left(u_{l}, n_{l}\right), b_{l}\right)$.
Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$, the diagram

$$
D_{\lambda}^{(l)}\left[\sigma,(0,0),\left(b_{j},\left(u_{j}, n_{j}\right)\right),(x, n) ; j=1,2, \ldots, l\right]
$$

is defined by

$$
\begin{gather*}
T_{\lambda}\left[(0,0) ;\left(\left(u_{1}, n_{1}\right), b_{1}\right)\right]\left\{\prod _ { j = 2 , \ldots , l } T _ { \lambda } \left[\sigma_{j-1}\left(\left(u_{j-1}, n_{j-1}\right), b_{j-1}\right)\right.\right. \\
\left.\left.\sigma_{j}\left(\left(u_{j}, n_{j}\right), b_{j}\right)\right]\right\} \times Q_{b_{l}}^{(\lambda, 1)}\left(x-u_{l}, n-n_{l}\right) \tag{3.1}
\end{gather*}
$$

The diagram $D_{\lambda}^{(l)}(x, n)$ is defined as the sum of $D_{\lambda}^{(l)}\left[\sigma,(0,0),\left(b_{j},\left(u_{j}, n_{j}\right)\right),(x, n) ; j=\right.$ $1,2, \ldots, l]$ over $\left\{\left(b_{j},\left(u_{j}, n_{j}\right)\right), j=1,2, \ldots, l\right\}$ and σ such that $\sigma_{l}=$ identity and σ_{i}
is identity map or the permutation of sites and bonds for all $j=1,2, \ldots, l-1$ and $l \in \mathbb{N}$. Let $D_{\lambda}^{(0)}(x, n)=Q_{(0,0)}^{(\lambda, 2)}(x, n)$. The following lemma states upper bounds of $\Pi_{\lambda}^{(l)}(x, n)$ and their Fourier-Laplace transforms which were proved in [18] by diagrams introduced above and Van Den Berg-Kesten's inequality (see [6]).

Lemma 3.1. For $l \in \mathbb{N} \cup\{0\}$, we have
$\Pi_{\lambda}^{(l)}(x, n) \leq D_{\lambda}^{(l)}(x, n)$ for $(x, n) \in \mathbb{Z}^{d} \times \mathbb{Z}, \quad \widehat{\Pi}_{\lambda}(0, s) \leq \widehat{D}_{\lambda}^{(l)}(0, s)$ for $s \in \mathbb{R}$.

Fig. 2.
To estimate the upper bounds of the Feynman diagrams $\widehat{D}_{\lambda}^{(l)}(0, s)$ for all $l \in \mathbb{N}$, we have to introduce the triangle functions which are defined in [18].

$$
\begin{aligned}
T_{(y, m)}^{(\lambda, 1)}(x, n)= & \varphi_{\lambda}(x, n) \sum_{\left(u_{1}, n_{1}\right)} \varphi_{\lambda}\left(x-u_{1}, n-n_{1}\right) \varphi_{\lambda}\left(u_{1}-y, n_{1}-m\right), \\
T_{(y, m)}^{(\lambda, 2)}(x, n)= & \psi_{\lambda}(x, n)\left\{\sum_{\left(u_{1}, n_{1}\right)} \sum_{u \in \mathbb{Z}^{d}} \varphi_{\lambda}\left(x-u_{1}, n-n_{1}\right) \psi_{\lambda}\left(u_{1}-u, 1\right)\right. \\
& \left.\times \varphi_{\lambda}\left(u-y, n_{1}-1-m\right)\right\}, \\
T_{(y, m)}^{(\lambda, 3)}(x, n)= & \sum_{\left(u_{1}, n_{1}\right)} \sum_{u \in \mathbb{Z}^{d}} \varphi_{\lambda}(u, n-1) \psi_{\lambda}(x-u, 1) \varphi_{\lambda}\left(x-u_{1}, n-n_{1}\right) \\
& \times \psi_{\lambda}\left(u_{1}-y, n_{1}-m\right) .
\end{aligned}
$$

They are represented by the diagrams in Figure 3. We have the following lemma which is the same as (32) in [18].

Fig. 3.

Lemma 3.2.

$$
\widehat{D}_{\lambda}^{(l)}(0, s) \leq 2^{l-1}\left[\sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0, s)\right]\left[\sup _{(y, m)} \widehat{T}_{\lambda,(y, m)}(0, s)\right]^{l} \quad \text { for } l \in \mathbb{N},
$$

where

$$
\widehat{T}_{\lambda,(y, m)}(0, s)=\max \left\{\widehat{T}_{(y, m)}^{(\lambda, 2)}(0, s), \quad \widehat{T}_{(y, m)}^{(\lambda, 3)}(0, s)\right\} .
$$

Define

$$
\delta_{k_{j}} \widehat{f}(0, s)=\sum_{(x, n)}\left|x_{j}\right| f(x, n) e^{s n}, \quad \delta_{z} \widehat{f}(0, s)=\sum_{(x, n)}|n| f(x, n) e^{s n},
$$

where $f(x, n)$ is any function on $\mathbb{Z}^{d} \times \mathbb{Z}$ and $j \in\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \left|\delta_{k_{j}} \widehat{\Pi}_{\lambda}^{(0)}(0, s)\right| \leq \sup _{(y, m)}\left\{\sum_{(x, n)}\left|x_{j}\right| Q_{(y, m)}^{(\lambda, 2)}(x, n) e^{s n}\right\}=\sup _{(y, m)}\left[\delta_{k_{j}} \widehat{Q}_{(y, m)}^{(\lambda, 2)}(0, s)\right], \\
& \left|\delta_{z} \widehat{\Pi}_{\lambda}^{(0)}(0, s)\right| \leq \sup _{(y, m)}\left\{\sum_{(x, n)}|n| Q_{(y, m)}^{(\lambda, 2)}(x, n) e^{s n}\right\}=\sup _{(y, m)}\left[\frac{\partial}{\partial z} \widehat{Q}_{(y, m)}^{(\lambda, 2)}(0, s)\right] .
\end{aligned}
$$

Clearly, the upper bound of $\delta_{a} \widehat{D}_{\lambda}^{(l)}(0, s)$ is also an upper bound of $\delta_{a} \widehat{\Pi}_{\lambda}^{(l)}(0, s)$ with $l \in \mathbb{N} \cup\{0\}$ for $a=k_{1}, \ldots, k_{d}$ or $a=z$. To estimate $\delta_{a} \widehat{D}_{\lambda}^{(l)}(0, s)$, we need to distribute the factors such that $\left|x_{j}\right|$ or n is along the top of the diagram. Using the same technique as in Section 3.2 of [14], we have the following lemma.

Lemma 3.3. For $l \in \mathbb{N}, a \in\left\{k_{1}, \ldots, k_{d}\right\}$ or $a=z$, we have

$$
\begin{aligned}
\left|\delta_{a} \widehat{\Pi}_{\lambda}^{(l)}(0, s)\right| \leq & 2^{l-1} l\left[\sup _{(y, m)} \widehat{T}_{\lambda,(y, m)}(0, s)\right]^{l-1}\left[\sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 1)}(0, s)\right]\left[\sup _{(y, m)} \delta_{a} \widehat{Q}_{\lambda,(y, m)}(0, s)\right] \\
& +2^{l-1}\left[\sup _{(y, m)} \delta_{a} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0, s)\right]\left[\sup _{(y, m)} \widehat{T}_{\lambda,(y, m)}(0, s)\right]^{l},
\end{aligned}
$$

where

$$
\widehat{Q}_{\lambda,(y, m)}(0, s)=\max \left\{\widehat{Q}_{(y, m)}^{(\lambda, 2)}(0, s), \widehat{Q}_{(y, m)}^{(\lambda, 3)}(0, s)\right\} .
$$

The upper bounds of the triangle functions and bubble functions in terms of related Fourier-Laplace transforms are stated in the following lemma which was proved in [17].

Lemma 3.4.

$$
\begin{aligned}
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0, s) \leq \iint\left|\widehat{\varphi}_{\lambda}(k, s+i t) \widehat{\varphi}_{\lambda}(k, i t)\right| d k d t \\
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 2)}(0, s) \leq \iint\left|\widehat{D}(k) \widehat{\psi}_{\lambda}(k, s+i t) \widehat{\varphi}_{\lambda}(k, i t)\right| d k d t \\
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 3)}(0, s) \leq e^{s} \iint\left|\widehat{D}(k) \widehat{\varphi}_{\lambda}(k, s+i t) \widehat{\psi}_{\lambda}(k, i t)\right| d k d t \\
& \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 1)}(0, s) \leq \iint\left|\widehat{\varphi}_{\lambda}(k, s+i t) \widehat{\varphi}_{\lambda}^{2}(k, i t)\right| d k d t \\
& \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 2)}(0, s) \leq \iint\left|\widehat{D}(k) \widehat{\psi}_{\lambda}(k, s+i t) \widehat{\varphi}_{\lambda}^{2}(k, i t)\right| d k d t \\
& \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 3)}(0, s) \leq e^{s} \iint\left|\widehat{D}(k) \widehat{\varphi}_{\lambda}(k, i t) \widehat{\psi}_{\lambda}(k, i t) \widehat{\varphi}_{\lambda}(k, s+i t)\right| d k d t
\end{aligned}
$$

Next, we want to estimate the derivatives of the bubble functions in terms of $\widehat{\varphi}_{\lambda}(k, z)$ and its derivatives. Note that $\varphi_{\lambda}(x, n)=0$ if $n<0$. Using HausdorffYoung's inequality, we have

$$
\begin{aligned}
\sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0, s) & =\sup _{(y, m)} \sum_{(x, n)}|n| Q_{(y, m)}^{(\lambda, 1)}(x, n) e^{s n}=\sup _{(y, m)} \sum_{(x, n)} n Q_{(y, m)}^{(\lambda, 1)}(x, n) e^{s n} \\
& =\sup _{(y, m)} \varphi_{\lambda, s, z} * \varphi_{\lambda}(y, m) \leq \iint\left|\widehat{\varphi}_{\lambda, s, z}(k, i t) \widehat{\varphi}_{\lambda}(k, i t)\right| d k d t
\end{aligned}
$$

where $\varphi_{\lambda, s, z}(x, n)=\varphi_{\lambda}(x, n) e^{s n} n$, and

$$
\widehat{\varphi}_{\lambda, s, z}(k, i t)=\sum_{(x, n)} \varphi_{\lambda}(x, n) e^{s n} n e^{i k \cdot x} e^{i t n}=\frac{\partial}{\partial z} \widehat{\varphi}_{\lambda}(k, s+i t)
$$

By this argument, we have the following lemma:

Lemma 3.5.

$$
\begin{aligned}
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0, s) \leq \iint\left|\widehat{\varphi}_{\lambda}(k, i t) \frac{\partial}{\partial z} \widehat{\varphi}_{\lambda}(k, s+i t)\right| d k d t \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 2)}(0, s) \leq \iint\left|\widehat{D}(k) \widehat{\varphi}_{\lambda}(k, i t) \frac{\partial}{\partial z} \widehat{\psi}_{\lambda}(k, s+i t)\right| d k d t \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 3)}(0, s) \leq e^{s} \iint\left|\widehat{\varphi}_{\lambda}(k, i t) \frac{\partial}{\partial z}\left[\widehat{D}(k) \widehat{\varphi}_{\lambda}(k, s+i t)\right]\right| d k d t .
\end{aligned}
$$

4. Proof of Proposition 1.3

In order to prove Proposition 1.3, we need the following lemma.
Lemma 4.1. In our infinite layer long-range model on $\mathbb{Z}^{d} \times \mathbb{Z}$ with $d>0$, we have
(a) for any n finite, $\varphi_{\lambda}(x, n)$ and $Z_{\lambda, n}(0)$ are continuous functions of λ on $\lambda \in\left(0,(2 L+1)^{d}\right)$,
(b) m_{λ} is a continuous function of λ on $\lambda \in\left(0, \lambda_{c}\right]$.

Proof of Proposition $1.3(a)$. If $m_{\lambda}>0$, by the definition of $m_{\lambda}, E_{\lambda}(|C(0,0)|)<$ ∞. On the other hand, if $E_{\lambda}(|C(0,0)|)<\infty$, by (1.4), there exists $n_{1}>0$ such that $Z_{\lambda, n}(0) \leq u<1$ for $n \geq n_{1}$. Then by (1.5), we have

$$
\lim _{n \rightarrow \infty} Z_{\lambda, n}(0) \leq \lim _{n \rightarrow \infty} u^{\frac{n}{n_{1}}}
$$

which implies $m_{\lambda}>0$ by (1.6). This completes the proof.
Proof of Proposition 1.3 (b). From Proposition 1.5 (a) and Lemma 4.1 (c), we have $m_{\lambda_{c}} \geq 0$. Suppose $m_{\lambda_{c}}>0$, since

$$
\widehat{\varphi}_{\lambda_{c}}(0,0)=1+\sum_{n=1}^{n_{0}} Z_{\lambda_{c}, n}(0)+\sum_{n=n_{0}+1}^{\infty} Z_{\lambda_{c}, n}(0)
$$

and the second term can be made arbitrarily small since $Z_{\lambda_{c}, n}(0) \sim e^{-n m_{\lambda_{c}}}$ as n_{0} large, by (1.6), and the first term is finite sum of the continuous functions, by Lemma 4.1(a), we have $\widehat{\varphi}_{\lambda}(0,0)$ is continuous at $\lambda=\lambda_{c}$. Then there exists $\lambda_{1}>\lambda_{c}$ such that $\widehat{\varphi}_{\lambda_{1}}(0,0)<\infty$, which is contradictory to the definition of λ_{c}. Hence, $m_{\lambda_{c}}=0$. This completes the proof of (b).

Proof of Proposition 1.3 (c). For any $0<\lambda_{1}<\lambda_{c}$, from Lemma 4.1 (b), there exists $\lambda_{1}<\lambda^{\prime}<\lambda_{c}$ such that $0<m_{\lambda^{\prime}}-r<m_{\lambda_{1}}-r$. This implies $\widehat{\varphi}_{\lambda^{\prime}}(0, r)<\infty$, by the Dominated Convergence theorem and Lemma 4.1 (a), we have

$$
\lim _{\lambda \rightarrow \lambda_{1}} \widehat{\varphi}_{\lambda}(0, r)=\lim _{\lambda \rightarrow \lambda_{1}} \sum_{(x, n)} \varphi_{\lambda}(x, n) e^{r n}=\sum_{(x, n)} \lim _{\lambda \rightarrow \lambda_{1}} \varphi_{\lambda}(x, n) e^{r n}=\widehat{\varphi}_{\lambda_{1}}(0, r),
$$

Besides, by the Monotone Convergence theorem, for $r<0$ we have $\lim _{\lambda} \uparrow \lambda_{c} \widehat{\varphi}_{\lambda}(0, r)$ $=\widehat{\varphi}_{\lambda_{c}}(0, r)$. This completes the proof of (c).

For any n, let $C_{\leq n}(0,0)=\left\{x:(x, m) \in C_{m}(0,0)\right.$ for $\left.m \leq n\right\}$, and denotes its cardinality by $\left|C_{\leq n}(0,0)\right|$. To prove Lemma 4.1, we use the following lemma. The proof of Lemma 4.2 is the same as the one of Lemma A. 5 [1].

Lemma 4.2. In our infinite layer long-range model, for any finite number n and $m, P_{\lambda}\left(\left|C_{\leq n}(0,0)\right|=m\right)$ is a continuous function of λ.

Proof of Lemma 4.1. (a). Since for $n<\infty, P_{\lambda}\left(\left|C_{\leq n}(0,0)\right|=\infty\right)=0$, we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow \lambda_{1}} \varphi_{\lambda}(x, n) & =\lim _{\lambda \rightarrow \lambda_{1}} P_{\lambda}\left((x, n) \in C_{n}(0,0)\right) \\
& =\lim _{\lambda \rightarrow \lambda_{1}} P_{\lambda}\left((x, n) \in C(0,0),\left|C_{\leq n}(0,0)\right|<\infty\right) \\
& =\varphi_{\lambda_{1}}(x, n),
\end{aligned}
$$

where the last equality is by Lemma 4.2. Then $\varphi_{\lambda}(x, n)$ is a continuous function of λ for any (x, n) with $n<\infty$. Moreover, for any $\lambda \in\left(0,(2 L+1)^{d}\right)$ and $n<\infty$ we have

$$
Z_{\lambda, n}(0)=\sum_{x:\|x\|_{\infty} \leq m} \varphi_{\lambda}(x, n)+\sum_{x:\|x\|_{\infty}>m} \varphi_{\lambda}(x, n)<\infty,
$$

where the second term can be made arbitrarily small uniformly, by choosing m large enough and the first term is finite sum of the continuous functions. The proof of (a) is completed.

Proof of Lemma 4.1. (b). For any $n<\infty$ and $\lambda_{1} \in\left(0, \lambda_{c}\right)$, we have (i). $Z_{\lambda, n}(0)=\lim _{m \rightarrow \infty} \sum_{x:\|x\|_{\infty} \leq m L} \varphi_{\lambda}(x, n)$ pointwise on $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$, (ii). $\left\{\sum_{x:\|x\|_{\infty} \leq m L} \varphi_{\lambda}(x, n)\right\}_{m<\infty}$ is a sequence of continuous functions on $\left[\lambda_{1}, \lambda_{c}\right.$] and $Z_{\lambda, n}(0)$ is also a continuous function on $\left[\lambda_{1}, \lambda_{c}\right]$, (iii) $\sum_{x:\|x\|_{\infty} \leq m L} \varphi_{\lambda}(x, n) \leq$ $\sum_{x:\|x\|_{\infty} \leq(m+1) L} \varphi_{\lambda}(x, n)$ for all $m \in \mathbb{N}$ and $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$. Then, by (i) (ii) and (iii), for any $n<\infty$, we have

$$
Z_{\lambda, n}(0)=\lim _{m \rightarrow \infty} \sum_{x:\|x\|_{\infty} \leq m L} \varphi_{\lambda}(x, n)
$$

uniformly on $\left[\lambda_{1}, \lambda_{c}\right]$. This implies for any $n<\infty$, there exists a $M_{n}>1$ which is independent of $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$ such that

$$
\begin{equation*}
\sum_{x:\|x\|_{\infty}>M_{n} L} \varphi_{\lambda}(x, n) \leq \sum_{x:\|x\|_{\infty} \leq M_{n} L} \varphi_{\lambda}(x, n) . \tag{4.1}
\end{equation*}
$$

By the definition of $Z_{\lambda, n}(0)$, for any $\lambda \leq \lambda_{c}$ and $t \geq 1$,
(4.2) $\lim _{n \rightarrow \infty} \sum_{x:\|x\|_{\infty}>n t L} \varphi_{\lambda}(x, n) \leq \lim _{n \rightarrow \infty} Z_{\lambda, n}(0)=\lim _{n \rightarrow \infty} \sum_{x:\|x\|_{\infty} \leq n t L} \varphi_{\lambda}(x, n)$.

By (4.1) - (4.2), there exists a constant $M>1$ (depending only on λ_{1}) such that for any $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$ and $n \in \mathbb{Z}$,

$$
\sum_{x:\|x\|_{\infty}>n M L} \varphi_{\lambda}(x, n) \leq \sum_{x:\|x\|_{\infty} \leq n M L} \varphi_{\lambda}(x, n)
$$

Then

$$
\begin{equation*}
Z_{\lambda, n}(0) \leq 2 \sum_{x:\|x\|_{\infty} \leq n M L} \varphi_{\lambda}(x, n) \leq 2(2 n M L+1)^{d}\left\{\sup _{x:\|x\|_{\infty} \leq n M L} \varphi_{\lambda}(x, n)\right\} \tag{4.3}
\end{equation*}
$$

and

$$
\sup _{\|x\|_{\infty}>n M L} \varphi_{\lambda}(x, n) \leq 2(2 n M L+1)^{d}\left\{\sup _{\|x\|_{\infty} \leq n M L} \varphi_{\lambda}(x, n)\right\}
$$

with $n \in \mathbb{Z}, \lambda \in\left[\lambda_{1}, \lambda_{c}\right]$. By (1.5), we have

$$
\begin{aligned}
\sup _{x:\|x\|_{\infty} \leq(n+m) M L} \varphi_{\lambda}(x, n+m)= & \sup _{x:\|x+y\|_{\infty} \leq(n+m) M L} \varphi_{\lambda}(x+y, n+m) \\
\leq & \sup _{x:\|x+y\|_{\infty} \leq(n+m) M L} \sum_{y} \varphi_{\lambda}(y, n) \varphi_{\lambda}(x, m) \\
\leq & \sum_{y:\|y\| \infty \leq n M L} \varphi_{\lambda}(y, n)\left[\sup _{x} \varphi_{\lambda}(x, m)\right] \\
& +\sum_{y:\|y\|_{\infty}>n M L} \varphi_{\lambda}(y, n)\left[\sup _{x:\|x\|_{\infty} \leq m M L} \varphi_{\lambda}(x, m)\right] \\
\leq & c(2 m M L)^{d} \sum_{y} \varphi_{\lambda}(y, n)\left[\sup _{\|x\|_{\infty} \leq m M L} \varphi_{\lambda}(x, m)\right] \\
\leq & c(2 m M L)^{d}(2 n M L)^{d}\left[\sup _{\|y\|_{\infty} \leq n M L} \varphi_{\lambda}(y, n)\right] \\
& \times\left[\sup _{\|x\|_{\infty} \leq m M L} \varphi_{\lambda}(x, m)\right]
\end{aligned}
$$

for all n, m. Thus, there is a universal constant c such that
(4.4) $\quad \gamma_{n+m}(\lambda) \leq c d[\log (2 n M L)+\log (2 m M L)]+\gamma_{n}(\lambda)+\gamma_{m}(\lambda)$,
where

$$
\gamma_{n}(\lambda)=\log \left\{\sup _{x:\|x\|_{\infty} \leq n M L} \varphi_{\lambda}(x, n)\right\}
$$

Let $b_{n}(\lambda)=-\frac{\gamma_{n}}{n}$, then, by (4.4) and the Generalized Subadditive Limit theorem (see Appendix II in [9]), we have $\lim _{n \rightarrow \infty} b_{n}(\lambda)$ exists. From (1.6) and (4.3), we have

$$
\begin{equation*}
\left|m_{\lambda}-b_{n}(\lambda)\right| \leq \frac{c d \log (2 M n L+1)}{n} \tag{4.5}
\end{equation*}
$$

for some universal constant c. Thus by (4.5), $b_{n}(\lambda) \rightarrow m_{\lambda}$ uniformly as $n \rightarrow \infty$. Also, $b_{n}(\lambda)$ is a continuous function of λ on $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$, by Lemma 4.1 (a) and $\left\{x:\|x\|_{\infty} \leq c n L\right\}$ be only the finite collection. Therefore, m_{λ} is a continuous function of λ on $\lambda \in\left[\lambda_{1}, \lambda_{c}\right]$. This completes the proof.

5. Proof of Proposition 1.4

5.1 Estimates $\widehat{D}(k)$

To prove Proposition 1.4, we first need to analyze $\widehat{D}(k)$. Let $L>0$ be fixed, and define $B_{l}=\left\{x \in \mathbb{Z}^{d}:(l-1) L<\|x\|_{\infty} \leq l L\right\}$ and denote its cardinality by $\left|B_{l}\right|$. Since all B_{l} are symmetric with respect to the origin, the part of sine in the following sum vanish. Thus we have

$$
\begin{aligned}
\widehat{D}(k) & =\sum_{x} \sum_{l=1}^{\infty} \frac{\lambda_{0} 1_{\left\{(l-1) L<\|x\|_{\infty} \leq l L\right\}}}{l^{2}\left|B_{l}\right|} e^{i k \cdot x} \\
& =\sum_{l=1}^{\infty} \sum_{x} \frac{\lambda_{0} 1_{\left\{(l-1) L<\|x\|_{\infty} \leq L L\right\}}}{l^{2}\left|B_{l}\right|}[\cos (k \cdot x)+i \sin (k \cdot x)] \\
& =\sum_{l=1}^{\infty} \sum_{x \in B_{l}} \frac{\lambda_{0} \cos (k \cdot x)}{l^{2}\left|B_{l}\right|},
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{x \in B_{l}} \cos \left(k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{d} x_{d}\right) \\
& =\sum_{x \in B_{l}}\left\{\cos \left(k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{d-1} x_{d-1}\right) \cos k_{d} x_{d}\right. \\
& \left.\quad-\sin \left(k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{d-1} x_{d-1}\right) \sin k_{d} x_{d}\right\} \\
& = \\
& \sum_{x \in B_{l}} \cos \left(k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{d-1} x_{d-1}\right) \cos k_{d} x_{d} \\
& =\sum_{x \in B_{l}} \prod_{j=1}^{d} \cos k_{j} x_{j}
\end{aligned}
$$

so

$$
\widehat{D}(k)=\sum_{l=1}^{\infty} \frac{\lambda_{0}}{l^{2}\left|B_{l}\right|}\left\{\sum_{x \in B_{l}} \prod_{j=1}^{d} \cos k_{j} x_{j}\right\}
$$

For $l \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{x \in B_{l}}=\sum_{\substack{(l-1) L<x_{1} \leq l L \\
-l L \leq x_{1}<-(l-1) L}} \sum_{\substack{x_{2}=-l L}}^{l L} \cdots \sum_{x_{d}=-l L}^{l L} \\
& +\sum_{x_{1}=-(l-1) L}^{(l-1) L} \sum_{\substack{(l-1) L<x_{2} \leq l L \\
-l L \leq x_{2}<-(l-1) L}} \sum_{\substack{ \\
x_{3}=-l L}}^{l L} \cdots \sum_{x_{d}=-l L}^{l L} \\
& +\quad \ldots \\
& +\sum_{x_{1}=-(l-1) L}^{(l-1) L} \cdots \sum_{x_{j-1}=-(l-1) L}^{(l-1) L} \sum_{\substack{(l-1) L<x_{j} \leq l L \\
-l L \leq x_{j}<-(l-1) L}} \sum_{\substack{x_{j+1}=-l L}}^{l L} \cdots \sum_{x_{d}=-l L}^{l L} \\
& +\quad \ldots \\
& +\sum_{x_{1}=-(l-1) L}^{(l-1) L} \cdots \sum_{x_{d-1}=-(l-1) L}^{(l-1) L} \sum_{\substack{(l-1) L<x_{d} \leq L L \\
-L \leq \leq x_{d}<-(l-1) L}}
\end{aligned}
$$

and for $j=1,2, \ldots, d$

$$
\begin{aligned}
& \sum_{x_{1}=-(l-1) L}^{(l-1) L} \cdots \sum_{x_{j-1}=-(l-1) L}^{(l-1) L} \sum_{\substack{(l-1) L<x_{j} \leq l-L \\
-L L \leq x_{j}-(l-1) L}} \sum_{x_{j+1}=-l L}^{l L} \cdots \sum_{x_{d}=-l L}^{l L} \prod_{j=1}^{d} \cos k_{j} x_{j} \\
= & {\left[\sum_{x_{1}=-(l-1) L}^{(l-1) L} \cos k_{1} x_{1}\right] \cdots\left[\sum_{x_{j-1}=-(l-1) L}^{(l-1) L} \cos k_{j-1} x_{j-1}\right]\left[2 \sum_{x_{j}=(l-1) L+1}^{L l} \cos k_{j} x_{j}\right] } \\
& \times\left[\sum_{x_{j+1}=-l L}^{l L} \cos k_{j+1} x_{j+1}\right] \cdots\left[\sum_{x_{d}=-l L}^{l L} \cos k_{d} x_{d}\right] \\
= & {\left[1+2 \sum_{x_{1}=1}^{(l-1) L} \cos k_{1} x_{1}\right] \cdots\left[1+2 \sum_{x_{j-1}=1}^{(l-1) L} \cos k_{j-1} x_{j-1}\right]\left[2 \sum_{m=0}^{L-1} \cos (l L-m) k_{j}\right] } \\
& \times\left[1+2 \sum_{x_{j+1}=1}^{l L} \cos k_{j+1} x_{j+1}\right] \cdots\left[1+2 \sum_{x_{d}=1}^{l L} \cos k_{d} x_{d}\right] .
\end{aligned}
$$

We have

$$
\widehat{D}(k)=\sum_{l=1}^{\infty} \sum_{x \in B_{l}} \frac{\lambda_{0} \prod_{j=1}^{d} \cos \left(k_{j} x_{j}\right)}{l^{2}\left|B_{l}\right|}
$$

$$
\begin{align*}
= & \lambda_{0} \sum_{l=1}^{\infty} \frac{1}{l^{2}\left|B_{l}\right|}\left\{\sum_{j=1}^{d}\left[\prod_{\mu=1}^{j-1}\left(1+2 \sum_{x_{\mu}=1}^{(l-1) L} \cos k_{\mu} x_{\mu}\right)\right]\left[2 \sum_{m=0}^{L-1} \cos (l L-m) k_{j}\right]\right. \\
& \left.\times\left[\prod_{\nu=j+1}^{d}\left(1+2 \sum_{x_{\nu}=1}^{l L} \cos k_{\nu} x_{\nu}\right)\right]\right\} \\
= & \lambda_{0} \sum_{l=1}^{\infty} \frac{2^{d} L}{\left|B_{l}\right|} \sum_{j=1}^{d}\left\{\left[\sum_{m=0}^{L-1} \frac{\cos (l L-m) k_{j}}{l^{2} L}\right] \prod_{\mu=1}^{j-1}\left[\frac{1}{2}+\sum_{x_{\mu}=1}^{(l-1) L} \cos k_{\mu} x_{\mu}\right]\right. \tag{5.1}\\
& \left.\times \prod_{\nu=j+1}^{d}\left[\frac{1}{2}+\sum_{x_{\nu}=1}^{l L} \cos k_{\nu} x_{\nu}\right]\right\} \\
= & \lambda_{0} \sum_{l=1}^{\infty} \sum_{j=1}^{d}\left[\sum_{m=0}^{L-1} \frac{\cos (L l-m) k_{j}}{L l^{2}}\right] J_{l}^{j}(k),
\end{align*}
$$

where

$$
\begin{equation*}
J_{l}^{j}(k)=\frac{\prod_{\mu=1}^{j-1}\left[\frac{1}{2}+\sum_{x_{\mu}=1}^{L(l-1)} \cos k_{\mu} x_{\mu}\right] \prod_{\nu=j+1}^{d}\left[\frac{1}{2}+\sum_{x_{\nu}=1}^{L l} \cos k_{\nu} x_{\nu}\right]}{A_{l}}, \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{l}=\frac{\left|B_{l}\right|}{2^{d} L}=\frac{\left(\frac{1}{2}+l L\right)^{d}}{L}\left[1-\left(\frac{\frac{1}{2}+(l-1) L}{\frac{1}{2}+l L}\right)^{d}\right] \tag{5.3}
\end{equation*}
$$

Let $g_{l}(r)=\frac{6}{\pi^{2}} \sum_{m=0}^{L-1} \frac{\cos (L L-m) r}{L l^{2}}$ for $l \in \mathbb{N}$ and $g_{l}(r)=0$ for $l \leq 0$. By (5.1) and recall $\lambda_{0}=\frac{6}{\pi^{2}}$, we have

$$
\begin{equation*}
\widehat{D}(k) \quad=\frac{\pi^{2} \lambda_{0}}{6} \sum_{j=1}^{d} \sum_{l=1}^{\infty}\left[g_{l}\left(k_{j}\right) J_{l}^{j}(k)\right]=\sum_{j=1}^{d} \sum_{l=1}^{\infty}\left[g_{l}\left(k_{j}\right) J_{l}^{j}(k)\right] . \tag{5.4}
\end{equation*}
$$

Suppose k with $\|k\|_{\infty}$ tends to 0 , it is easy to see that $\sum_{j=1}^{d} J_{l}^{j}(k)$ tends to 1 . Then we define $G(r)=\sum_{l=1}^{\infty} g_{l}(r)$ for $r \in[-\pi, \pi]$ and use it to control $\widehat{D}(k)$. From trigonometric series [24], we have

$$
\begin{equation*}
G(r)=\sum_{l=1}^{\infty} g_{l}(r)=f_{1}(r) f_{2}(r)+f_{3}(r) f_{4}(r) \tag{5.5}
\end{equation*}
$$

with

$$
\begin{align*}
& f_{1}(r)=\frac{6}{\pi^{2}} \sum_{l=1}^{\infty} \frac{\cos (L l r)}{l^{2}}=1-\frac{3}{\pi} L|r|+\frac{3}{2 \pi^{2}} L^{2} r^{2} \tag{5.6}\\
& f_{3}(r)=\frac{6}{\pi^{2}} \sum_{l=1}^{\infty} \frac{\sin (L l r)}{l^{2}}=\frac{6}{\pi^{2}}\left\{-(\log 2) L r-\int_{0}^{L r} \log \left|\sin \frac{t}{2}\right| d t\right\} \tag{5.7}\\
& f_{2}(r)=\frac{1}{L} \sum_{m=0}^{L-1} \cos (m r)=\frac{1}{L} \frac{\sin \left(\frac{2 L-1}{2} r\right)+\sin \left(\frac{r}{2}\right)}{2 \sin \left(\frac{r}{2}\right)} \tag{5.8}\\
& f_{4}(r)=\frac{1}{L} \sum_{m=0}^{L-1} \sin (m r)=\frac{1}{L} \frac{\cos \left(\frac{r}{2}\right)-\cos \left(\frac{2 L-1}{2} r\right)}{2 \sin \left(\frac{r}{2}\right)} \tag{5.9}
\end{align*}
$$

The behavior of $f_{1}(r), f_{2}(r), f_{3}(r)$ and $f_{4}(r)$ is stated in the following three lemmas.
Lemma 5.1. (a). $f_{1}(r)$ is an even function and strictly decreasing for $|r| \leq \frac{\pi}{L}$ with $f_{1}\left(\frac{3-\sqrt{3}}{3 L}\right)=0, f_{1}\left(\frac{\pi}{L}\right)=\frac{-1}{2}$,
(b). $f_{3}(r)$ is a odd function, strictly increasing for $r \in\left[0, \frac{\pi}{3 L}\right]$ with $f_{3}\left(\frac{\pi}{3 L}\right) \leq 0.64$ and strictly decreasing for $r \in\left[\frac{\pi}{3 L}, \frac{\pi}{L}\right]$ with $f_{3}\left(\frac{\pi}{L}\right) \geq 0$,
(c). For $|r| \leq \frac{\pi}{4 L+1}$,

$$
1-\frac{3}{\pi} L|r| \leq f_{1}(r) \leq 1-\frac{21 L|r|}{8 \pi}
$$

and

$$
\frac{6 L r}{\pi^{2}}\{1-\log (L r)\} \leq\left|f_{3}(r)\right| \leq \frac{6 L|r|}{\pi^{2}}\{1.12-\log (L|r|)\}
$$

Proof. (a) and (b) are obvious by (5.6) and (5.7). Since $0.89 u \leq u-\frac{u^{3}}{6} \leq$ $\sin u \leq u$ for $u \in\left[0, \frac{\pi}{4}\right]$, we have, by (5.7),

$$
\begin{aligned}
\left|f_{3}(r)\right| & \leq \frac{6}{\pi^{2}}\left\{-(\log 2) L r-\int_{0}^{L r} \log \left(0.89 \frac{t}{2}\right) d t\right\} \\
& =\frac{6 L r}{\pi^{2}}\{-\log 0.89+1-\log (L r)\} \leq \frac{6 L r}{\pi^{2}}\{-\log (L|r|)+1.12\}
\end{aligned}
$$

and $\left|f_{3}(r)\right| \geq \frac{6 L r}{\pi^{2}}\{1-\log (L r)\}$ for $r \in\left[0, \frac{\pi}{4 L+1}\right]$. By (5.6), we have $\frac{21}{8 \pi} L|r| \leq$ $1-f_{1}(r) \leq \frac{3 L|r|}{\pi}$ for $|r| \leq \frac{\pi}{4 L+1}$. This completes the proof.

Lemma 5.2. For $|r| \leq \frac{\pi}{4 L+1}$, we have $1-\frac{(L-1)(2 L-1) r^{2}}{12} \leq f_{2}(r) \leq 1-$ $\frac{0.94(L-1)(2 L-1) r^{2}}{12}$ and $\frac{0.89 r(L-1)}{2} \leq f_{4}(r) \leq \frac{r(L-1)}{2}$.

Proof. By Taylor's formula, $1-\frac{u^{2}}{2} \leq \cos u \leq 1-\frac{u^{2}}{2}+\frac{u^{4}}{24}$. For $|u|<\frac{\pi}{4}$, we have $1-\frac{|u|^{2}}{2} \leq \cos u \leq 1-0.94 \frac{|u|^{2}}{2}$. Then

$$
1-\frac{(L-1)(2 L-1) r^{2}}{12} \leq \frac{1}{L} \sum_{m=0}^{L-1} \cos (m r) \leq 1-\frac{0.94(L-1)(2 L-1) r^{2}}{12}
$$

Similarly, by (5.9), $\frac{0.89 r(L-1)}{2} \leq f_{4}(r) \leq \frac{r(L-1)}{2}$ for $|r| \leq \frac{\pi}{4 L+1}$. This completes the proof.

Lemma 5.3.

(a) $0 \leq f_{2}(r) \leq \frac{\sin L r}{\operatorname{Lr}\left(1-\frac{1}{L^{2}}\right)}+\frac{1}{2 L}$ for $r \in\left[\frac{\pi}{4 L+1}, \frac{\pi}{L}\right]$,
(b) $\left|f_{4}(r)\right| \leq \frac{1-\cos L r}{L r\left(1-\frac{1}{L^{2}}\right)}$ for $r \in\left[\frac{\pi}{4 L+1}, \frac{\pi}{L}\right]$,
(c) $\left|f_{2}(r)\right|+\left|f_{4}(r)\right| \leq \frac{2}{n \pi}+\frac{1}{2 L}$ for $r \in\left[\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right]$ and $n=1,2, \ldots, L-1$.

The proof of Lemma 5.3 is similar to the one of Lemma 5.2 and is omitted.

5.2 Proposition 1.4

Let $K_{l}(r)=\frac{1}{2}+\sum_{m=1}^{L l} \cos m r$ be the l-th Dirichlet kernel for $l \in \mathbb{N}$. The following lemma is the key lemma to show Proposition 1.4.

Lemma 5.4. There is a large constant L_{1} such that for $L \geq L_{1}$, we have
(a) for $\|k\|_{\infty} \in\left[0, \frac{\pi}{4 L+1}\right], \quad|\widehat{D}(k)| \leq\left|G\left(\|k\|_{\infty}\right)\right|+0.48 L\|k\|_{\infty}$,
(b) for $\|k\|_{\infty} \in\left(\frac{\pi}{4 L+1}, \frac{\pi}{L}\right],|\widehat{D}(k)| \leq\left|G\left(\|k\|_{\infty}\right)\right|+\frac{6}{\pi^{3}}+\frac{3}{L \pi^{2}}$, for $\quad\|k\|_{\infty} \in$ $\left(\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right]$, with $n=1,2, \ldots, L-1,|\widehat{D}(k)| \leq\left|G\left(\|k\|_{\infty}\right)\right|+\frac{6}{n \pi^{3}}+\frac{3}{L \pi^{2}}$,
(c) $\left|\frac{\partial}{\partial k_{\nu}} \widehat{D}(k)\right| \leq c\left|\frac{d}{d k_{\nu}} G\left(k_{\nu}\right)\right|$ with $k \in[-\pi, \pi]^{d}, \nu \in\{1,2, \ldots, d\}$ and $c>0$.

Proof. Clearly, $\widehat{D}(0)=G(0)=1$. For any $k \in[-\pi, \pi]^{d}$ with $\|k\|_{\infty}=\left|k_{\mu}\right|$, there exists k^{∞} such that $k^{\infty}=\|k\|_{\infty} e_{\mu}$. Clearly, $|\widehat{D}(k)| \leq\left|\widehat{D}\left(k^{\infty}\right)\right|$. To estimate the upper bound of $|\widehat{D}(k)|$, it is sufficient to estimate $\left|\widehat{D}\left(k^{\infty}\right)\right|$.

Let $\left|k_{\mu}\right|=\|k\|_{\infty}$ for some $\mu \in\{1,2, \ldots, d\}$ and $k=\|k\|_{\infty} e_{\mu}$. Clearly, $g_{l}\left(k_{j}\right)=$ $\frac{6}{\pi^{2} l^{2}}$ for $j \neq \mu$. Then, by (5.2),

$$
\begin{align*}
\widehat{D}(k)= & \sum_{l=1}^{\infty} g_{l}\left(k_{\mu}\right) J_{l}^{\mu}(k)+\sum_{l=1}^{\infty} \sum_{j=1, j \neq \mu}^{d} g_{l}\left(k_{j}\right) J_{l}^{j}(k) \\
= & \sum_{l=1}^{\infty} g_{l}\left(k_{\mu}\right) \frac{\left(\frac{1}{2}+l L\right)^{d-\mu}\left(\frac{1}{2}+(l-1) L\right)^{\mu-1}}{A_{l}} \\
& +\sum_{l=1}^{\infty} \frac{6}{l^{2} \pi^{2}}\left[\sum_{j=1, j \neq \mu}^{d} J_{l}^{j}(k)\right] \tag{5.10}\\
= & \sum_{l=1}^{\infty} g_{l}\left(k_{\mu}\right) \frac{\left(\frac{1}{2}+L l\right)^{d-1}\left(r_{l}\right)^{\mu-1}}{A_{l}}+\sum_{l=1}^{\infty} \frac{6}{l^{2} \pi^{2}}\left[\sum_{j=1, j \neq \mu}^{d} J_{l}^{j}(k)\right],
\end{align*}
$$

where $r_{l}=\frac{\frac{1}{2}+(l-1) L}{\frac{1}{2}+l L}$. By (5.2)-(5.3),

$$
J_{l}^{j}(k)=\frac{\left(\frac{1}{2}+(l-1) L\right)^{j-1} K_{l}\left(k_{\mu}\right)\left(\frac{1}{2}+l L\right)^{d-j-1}}{A_{l}} \quad \text { for } j<\mu,
$$

and

$$
J_{l}^{j}(k)=\frac{\left(\frac{1}{2}+(l-1) L\right)^{j-2} K_{l-1}\left(k_{\mu}\right)\left(\frac{1}{2}+l L\right)^{d-j}}{A_{l}} \quad \text { for } j>\mu
$$

With $\frac{6}{l^{2} \pi^{2}}\left[K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right]=L g_{l}\left(k_{\mu}\right)$ and $1-r_{l}=\frac{L}{\frac{1}{2}+l L}$, we have

$$
\begin{align*}
& \sum_{l=1}^{\infty} \frac{6}{l^{2} \pi^{2}}\left[\sum_{j=1, j \neq \mu}^{d} J_{l}^{j}(k)\right] \\
& =\sum_{l=1}^{\infty} \frac{6}{l^{2} \pi^{2}}\left\{\left[\sum_{j=1}^{\mu-1}\left(\frac{1}{2}+(l-1) L\right)^{j-1} K_{l}\left(k_{\mu}\right)\left(\frac{1}{2}+l L\right)^{d-j-1}\right]\right. \\
& \left.\quad+\left[\sum_{j=\mu+1}^{d}\left(\frac{1}{2}+(l-1) L\right)^{j-2} K_{l-1}\left(k_{\mu}\right)\left(\frac{1}{2}+l L\right)^{d-j}\right]\right\}\left(A_{l}\right)^{-1} \\
& =\sum_{l=1}^{\infty} \frac{6}{l^{2} \pi^{2}}\left\{\left[\sum_{j=1}^{\mu-1}\left(\frac{1}{2}+(l-1) L\right)^{j-1}\left(K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right)\left(\frac{1}{2}+l L\right)^{d-j-1}\right]\right. \tag{5.11}\\
& \left.\quad+\left[\sum_{j=1}^{d-1}\left(\frac{1}{2}+(l-1) L\right)^{j-1} K_{l-1}\left(k_{\mu}\right)\left(\frac{1}{2}+l L\right)^{d-j-1}\right]\right\}\left(A_{l}\right)^{-1} \\
& =\sum_{l=1}^{\infty} g_{l}\left(k_{\mu}\right) \frac{\left(\frac{1}{2}+l L\right)^{d-1}\left(1-r_{l}^{\mu-1}\right)}{A_{l}} \\
& \quad+\frac{6}{l^{2} \pi^{2} L} \frac{\left(\frac{1}{2}+l L\right)^{d-1}\left(1-r_{l}^{d-1}\right)}{A_{l}} K_{l-1}\left(k_{\mu}\right) .
\end{align*}
$$

Since $A_{l}=\frac{\left(\frac{1}{2}+l L\right)^{d}\left(1-r_{l}^{d}\right)}{L}$, by (5.10)-(5.11), we have

$$
\begin{align*}
\widehat{D}(k) & =\sum_{l=1}^{\infty}\left\{\frac{\left(\frac{1}{2}+L l\right)^{d-1}}{A_{l}} g_{l}\left(k_{\mu}\right)+\frac{6}{l^{2} \pi^{2} L} \frac{\left(\frac{1}{2}+l L\right)^{d-1}\left(1-r_{l}^{d-1}\right)}{A_{l}} K_{l-1}\left(k_{\mu}\right)\right\} \tag{5.12}\\
& =\sum_{l=1}^{\infty}\left\{\frac{g_{l}\left(k_{\mu}\right) L}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)}+\frac{6}{l^{2} \pi^{2}} \frac{\left(1-r_{l}^{d-1}\right)}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)} K_{l-1}\left(k_{\mu}\right)\right\} .
\end{align*}
$$

Due to $g_{l}\left(k_{\mu}\right)=\frac{6}{l^{2} \pi^{2} L}\left[K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right]$, by (5.12),

$$
\begin{align*}
\widehat{D}(k) & =G\left(k_{\mu}\right)-\sum_{l=1}^{\infty}\left\{\left(1-\frac{1-r_{l}}{1-r_{l}^{d}}\right) g_{l}\left(k_{\mu}\right)-\frac{6}{l^{2} \pi^{2}} \frac{\left(1-r_{l}^{d-1}\right)}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)} K_{l-1}\left(k_{\mu}\right)\right\} \\
& =G\left(k_{\mu}\right)-\sum_{l=1}^{\infty}\left\{\frac{r_{l}\left(1-r_{l}^{d-1}\right)}{1-r_{l}^{d}} g_{l}\left(k_{\mu}\right)-\frac{6}{l^{2} \pi^{2}} \frac{\left(1-r_{l}\right)\left(1-r_{l}^{d-1}\right)}{L\left(1-r_{l}^{d}\right)} K_{l-1}\left(k_{\mu}\right)\right\} \tag{5.13}\\
& =G\left(k_{\mu}\right)-\sum_{l=1}^{\infty}\left\{\frac{6\left(1-r_{l}^{d-1}\right)}{l^{2} \pi^{2} L\left(1-r_{l}^{d}\right)}\left[r_{l} K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right]\right\} .
\end{align*}
$$

Then

$$
\begin{equation*}
\widehat{D}(k)-G\left(k_{\mu}\right)=\frac{6}{l^{2} \pi^{2} L} S_{1}\left(k_{\mu}\right)-S_{2}\left(k_{\mu}\right) \tag{5.14}
\end{equation*}
$$

where

$$
S_{1}\left(k_{\mu}\right)=\sum_{l=1}^{\infty}\left(1-\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}}\right)\left[r_{l} K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right],
$$

and

$$
S_{2}\left(k_{\mu}\right)=\sum_{l=1}^{\infty} \frac{6}{\pi^{2} l^{2} L}\left[r_{l} K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right] .
$$

From $K_{l}\left(k_{\mu}\right)=\frac{\sin \left(l L+\frac{1}{2}\right) k_{\mu}}{2 \sin \frac{1}{2} k_{\mu}}$,

$$
\begin{align*}
& r_{l} K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right) \\
& =\frac{1}{2}\left\{\cot \left(\frac{k_{\mu}}{2}\right)\left[\sin \left(l L k_{\mu}\right)\left(r_{l}-\cos L k_{\mu}\right)+\cos \left(l L k_{\mu}\right) \sin \left(L k_{\mu}\right)\right]\right. \tag{5.15}\\
& \left.-\sin \left(l L k_{\mu}\right) \sin \left(L k_{\mu}\right)+\cos \left(l L k_{\mu}\right)\left(r_{l}-\cos L k_{\mu}\right)\right\} .
\end{align*}
$$

For $\left|k_{\mu}\right| \leq \frac{\pi}{4 L+1}$, we have $r_{l}-\cos \left(L k_{\mu}\right)=\frac{-L}{\frac{1}{2}+l L}+1-\cos \left(L k_{\mu}\right)$. Then by
(5.15), (5.6) and (5.7),

$$
\begin{aligned}
& S_{2}\left(k_{\mu}\right)=\sum_{l=1}^{\infty} \frac{3}{l^{2} \pi^{2} L}\left\{\operatorname { c o t } (\frac { k _ { \mu } } { 2 }) \left[\left(\frac{-L}{\frac{1}{2}+l L}+1-\cos L k_{\mu}\right) \sin l L k_{\mu}\right.\right. \\
& \left.+\sin L k_{\mu} \cos l L k_{\mu}\right]-\sin L k_{\mu} \sin l L k_{\mu} \\
& \left.+\left(\frac{-L}{\frac{1}{2}+l L}+1-\cos L k_{\mu}\right) \cos l L k_{\mu}\right\} \\
& =\sum_{l=1}^{\infty} \frac{3}{l^{2} \pi^{2} L}\left\{\frac{-L \sin \left(l L+\frac{1}{2}\right) k_{\mu}}{\left(\frac{1}{2}+l L\right)\left(\sin \frac{k_{\mu}}{2}\right)}+\cot \frac{k_{\mu}}{2}\left[\left(1-\cos L k_{\mu}\right) \sin l L k_{\mu}\right.\right. \\
& \left.\left.+\sin L k_{\mu} \cos l L k_{\mu}\right]-\sin L k_{\mu} \sin l L k_{\mu}+\left(1-\cos L k_{\mu}\right) \cos l L k_{\mu}\right\} \\
& =\frac{-\int_{0}^{k_{\mu}}\left[\sum_{l=1}^{\infty} \frac{3}{l^{2} \pi^{2}} \cos \left(l L+\frac{1}{2}\right) t\right] d t}{\sin \frac{k_{\mu}}{2}}+\frac{1}{2 L}\left\{\operatorname { c o t } \frac { k _ { \mu } } { 2 } \left[\left(1-\cos L k_{\mu}\right) f_{3}\left(k_{\mu}\right)\right.\right. \\
& \left.\left.+\sin L k_{\mu} f_{1}\left(k_{\mu}\right)\right]-\sin L k_{\mu} f_{3}\left(k_{\mu}\right)+\left(1-\cos L k_{\mu}\right) f_{1}\left(k_{\mu}\right)\right\} \\
& =\frac{-\int_{0}^{k_{\mu}}\left[f_{1}(t) \cos \frac{t}{2}-f_{3}(t) \sin \frac{t}{2}\right] d t+\frac{\cos \frac{k_{\mu}}{2}}{L} \sin L k_{\mu} f_{1}\left(k_{\mu}\right)}{2 \sin \frac{k_{\mu}}{2}} \\
& +\frac{\left(1-\cos L k_{\mu}\right)}{2 L}\left[\cot \frac{k_{\mu}}{2} f_{3}\left(k_{\mu}\right)-\frac{\sin L k_{\mu} f_{3}\left(k_{\mu}\right)}{\left(1-\cos L k_{\mu}\right)}+f_{1}\left(k_{\mu}\right)\right] \\
& \geq \frac{-\int_{0}^{k_{\mu}} f_{1}(t) \cos \frac{t}{2} d t+\frac{\cos \frac{k_{\mu}}{2}}{L} \sin L k_{\mu} f_{1}\left(k_{\mu}\right)}{2 \sin \frac{k_{\mu}}{2}} \\
& \geq \frac{-\left[k_{\mu}-\frac{3 L k_{\mu}^{2}}{2 \pi}+\frac{L^{2} k_{\mu}^{3}}{6 \pi^{2}}\right]+\frac{1}{L}\left[L k_{\mu}-\frac{\left(L k_{\mu}\right)^{3}}{6}\right]\left[1-\frac{3 L k_{\mu}}{\pi}+\frac{3 L^{2} k_{\mu}^{2}}{2 \pi^{2}}\right]}{k_{\mu}} \\
& \geq-\frac{3 L k_{\mu}}{2 \pi},
\end{aligned}
$$

for $\left|k_{\mu}\right| \leq \frac{\pi}{4 L+1}$. By the definition of the l-th Dirichlet's kernel $K_{l}(r)$ and r_{l}, it is easy to see that

$$
r_{1} K_{1}\left(k_{\mu}\right)-K_{0}\left(k_{\mu}\right)=\left(\frac{\frac{1}{2}}{\frac{1}{2}+L}\right) \frac{\sin \left(\frac{1}{2}+L\right) k_{\mu}}{2 \sin \frac{k_{\mu}}{2}}-\frac{1}{2} \leq 0
$$

For $l>1$, since $\frac{1}{r_{l}}=1+\frac{L}{\frac{1}{2}+(l-1) L}$, let $u=L k_{\mu} \in\left(0, \frac{\pi}{4}\right]$, we have

$$
\begin{aligned}
1-\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}} & =\frac{r_{l}^{d-1}}{1+r_{l}+r_{l}^{2}+\cdots+r_{l}^{d-1}}=\frac{L}{\left[\frac{1}{2}+(l-1) L\right]\left[\left(1+\frac{L}{\frac{1}{2}+(l-1) L}\right)^{d}-1\right]} \\
& =\frac{1}{d+c_{l}},
\end{aligned}
$$

with $c_{l} \geq 0$. For $\left|L k_{\mu}\right|=|u| \leq \frac{\pi}{4}$, we have, by (5.15),

$$
\begin{aligned}
S_{1}\left(k_{\mu}\right) \leq & \sum_{l=2}^{\infty} \frac{L}{u\left(d+c_{l}\right)}\left\{\sin l u\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)+\cos l u\left[u+\frac{u}{L}\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)\right]\right\} \\
\leq & \sum_{l=2}^{\left[\frac{\pi}{u}\right]} \frac{L}{u d}\left\{\sin l u\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)+\cos l u\left[u+\frac{u}{L}\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)\right]\right\} \\
& +\sum_{n=1}^{\infty}(-1)^{n}\left\{\sum_{l=1}^{\left[\frac{\pi}{u}\right]} \frac{L}{u\left(d+c_{n\left[\frac{\pi}{u}\right]+l}\right.} \times\left[\sin l u\left(\frac{-1}{n\left[\frac{\pi}{u}\right]+l}+\frac{u^{2}}{2}\right)\right.\right. \\
& \left.\left.+\cos l u\left(u+\frac{u}{L}\left(\frac{-1}{n\left[\frac{\pi}{u}\right]+l}+\frac{u^{2}}{2}\right)\right)\right]\right\} \\
= & \sum_{l=2}^{\left[\frac{\pi}{u}\right]} \frac{L}{u d}\left\{\sin l u\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)+\cos l u\left[u+\frac{u}{L}\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)\right]\right\} \\
& +\sum_{n=1}^{\infty}(-1)^{n} R_{n}(u) .
\end{aligned}
$$

For $l u \leq \pi$ with $l>1$, we have

$$
\begin{aligned}
& \sin l u\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)+\cos l u\left[u+\frac{u}{L}\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)\right] \\
& \quad \leq\left(l u-\frac{l^{3} u^{3}}{6}\right)\left(\frac{-1}{l}+\frac{u^{2}}{2}\right)+u\left(1-\frac{u^{2} l^{2}}{2}+\frac{u^{4} l^{4}}{24}\right)<0 .
\end{aligned}
$$

Similarly, we have $\sum_{n=1}^{\infty}(-1)^{n} R_{n}(u)<0$ since $R_{n}(u)$ is positive and strictly decreasing of n. This implies $S_{1}\left(k_{\mu}\right)<0$, by (5.17). Therefore, for $0<k_{\mu} \leq \frac{\pi}{4 L+1}$ and large L, we have, by (5.14) and (5.16)-(5.17),

$$
\begin{equation*}
\left|\widehat{D}(k)-G\left(k_{\mu}\right)\right| \leq \frac{3 L k_{\mu}}{2 \pi} \leq 0.48 L k_{\mu} \tag{5.18}
\end{equation*}
$$

This completes the proof of (a).
To show (b), since

$$
\begin{aligned}
& \frac{r_{l}}{l^{2}}\left(\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}}\right)-\frac{1}{(l+1)^{2}}\left(\frac{1-r_{l+1}^{d-1}}{1-r_{l+1}^{d}}\right) \\
& \quad=\frac{1}{l^{2}}\left[1-\frac{1}{1+r_{l}+\cdots+r_{l}^{d-1}}\right]-\frac{1}{(l+1)^{2}}\left[1-\frac{r_{l+1}^{d}}{1+r_{l+1}+\cdots+r_{l+1}^{d-1}}\right]
\end{aligned}
$$

we get

$$
\begin{aligned}
\frac{1}{l^{2}}-\frac{1}{(l+1)^{2}} & \geq \frac{r_{l}}{l^{2}}\left(\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}}\right)-\frac{1}{(l+1)^{2}}\left(\frac{1-r_{l+1}^{d-1}}{1-r_{l+1}^{d}}\right) \\
& \geq \frac{1}{l^{2}}-\frac{1}{(l+1)^{2}}-\frac{1}{l^{2}\left[1+r_{l}+\cdots+r_{l}^{d-1}\right]}
\end{aligned}
$$

This implies $\frac{r_{l}}{l^{2}}\left(\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}}\right)-\frac{1}{(l+1)^{2}}\left(\frac{1-r_{l+1}^{d-1}}{1-r_{l+1}^{d}}\right)$ is non-negative and monotone decreasing sequence. For $k=\|k\|_{\infty} e_{\mu}$ and $\|k\|_{\infty} \in\left(\frac{\pi}{4 L+1}, \frac{\pi}{L}\right)$, we have, by (5.13),

$$
\begin{align*}
\left|\widehat{D}(k)-G\left(k_{\mu}\right)\right|= & \left|-\sum_{l=1}^{\infty} \frac{6\left(1-r_{l}^{d-1}\right)}{\pi^{2}\left(1-r_{l}^{d}\right) l^{2} L}\left[r_{l} K_{l}\left(k_{\mu}\right)-K_{l-1}\left(k_{\mu}\right)\right]\right| \\
= & \left\lvert\, \frac{3}{L \pi^{2}} \frac{1-r_{1}^{d-1}}{1-r_{1}^{d}}-\frac{6}{L \pi^{2}} \sum_{l=1}^{\infty}\left[\frac{r_{l}}{l^{2}}\left(\frac{1-r_{l}^{d-1}}{1-r_{l}^{d}}\right)\right.\right. \\
& \left.-\frac{1}{(l+1)^{2}}\left(\frac{1-r_{l+1}^{d-1}}{1-r_{l+1}^{d}}\right)\right] \left.\times \frac{\sin \left(l L+\frac{1}{2}\right) k_{\mu}}{2 \sin \frac{1}{2} k_{\mu}} \right\rvert\, \tag{5.19}\\
\leq & \frac{3}{L \pi^{2}}+\frac{6}{L \pi^{2}} \sum_{l=2}^{\infty}\left[\frac{1}{l^{2}}-\frac{1}{(l+1)^{2}}\right] \frac{1}{k_{\mu}} \\
\leq & \frac{3}{L \pi^{2}}+\frac{6}{\pi^{3}} .
\end{align*}
$$

By the same way, we have $\left|\widehat{D}(k)-G\left(k_{\mu}\right)\right| \leq \frac{3}{L \pi^{2}}+\frac{6}{n \pi^{3}}$ for $k=\|k\|_{\infty} e_{\mu}$ and $\|k\|_{\infty} \in\left(\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right]$ with $n=1,2, \ldots, L-1$. This completes the proof of (b).

To prove (c), for $\nu \in\{1,2, \ldots, d\}$, clearly, $\left|\frac{\partial}{\partial \nu} \widehat{D}(k)\right| \leq\left|\frac{\partial}{\partial \nu} \widehat{D}\left(k^{\nu}\right)\right|$, where $k^{\nu}=k_{\nu} e_{\nu}$. Since $\frac{6}{\pi^{2}} K_{l-1}(r)=L\left[\frac{6}{2 \pi^{2}}+\sum_{m=l}^{l-1} g_{m}(r) m^{2}\right]$, by (5.12) and Fubini's theorem, we have

$$
\begin{aligned}
& \left|\frac{\partial}{\partial \nu} \widehat{D}\left(k^{\nu}\right)\right|=\left|\frac{d}{d_{\nu}}\left\{\sum_{l=1}^{\infty} \frac{g_{l}\left(k_{\nu}\right) L}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)}+\frac{6}{l^{2} \pi^{2}} \frac{\left(1-r_{l}^{d-1}\right)}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)} K_{l-1}\left(k_{\nu}\right)\right\}\right| \\
& =\left|\frac{d}{d_{\nu}}\left\{\sum_{l=1}^{\infty} \frac{g_{l}\left(k_{\nu}\right) L}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)}+\frac{L\left(1-r_{l}^{d-1}\right)}{l^{2}\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)}\left[\frac{6}{2 \pi^{2}}+\sum_{m=1}^{l-1} g_{m}\left(k_{\nu}\right) m^{2}\right]\right\}\right| \\
& \leq\left|\frac{d}{d_{\nu}}\left\{\sum_{l=1}^{\infty} \frac{g_{l}\left(k_{\nu}\right) L}{\left(\frac{1}{2}+l L\right)\left(1-r_{l}^{d}\right)}+\sum_{m=1}^{\infty}\left[c g_{m}\left(k_{\nu}\right)+c^{\prime}\right]\right\}\right| \leq c_{1}\left|\frac{d}{d_{\nu}} G\left(k_{\nu}\right)\right|
\end{aligned}
$$

with some positive constants c, c^{\prime} and c_{1}. This completes the proof of (c).
Proof of Proposition 1.4. By Lemma $5.1-5.2$, we have

$$
\begin{aligned}
& \left|G\left(k_{j}\right)\right| \\
\leq & {\left[1-\frac{21}{8 \pi} L\left|k_{j}\right|\right]\left[1-0.156(L-1)^{2} k_{j}^{2}\right]+\frac{3\left|k_{j}\right|^{2} L(L-1)}{\pi^{2}}\left[1.2-\log \left|L k_{j}\right|\right] } \\
\leq & 1-0.6 L\left|k_{j}\right|
\end{aligned}
$$

for $k \in\left\{k:\|k\|_{\infty} \leq \frac{\pi}{4 L+1}\right\}$. By Lemma 5.4 (a), there exists $L_{1}>0$, for any $L \geq L_{1}$,

$$
|\widehat{D}(k)| \leq 1-0.6 L\left\|k_{j}\right\|_{\infty}+0.48 L\left\|k_{j}\right\|_{\infty}=1-0.12 L\|k\|_{\infty} \leq 1-\frac{0.12 L}{d}\|k\|_{1} .
$$

Similarly, by Lemma 5.4 and Lemma 5.3,

$$
\begin{aligned}
|\widehat{D}(k)| & \leq \sup _{j \in\{1,2, \ldots, d\}}\left|G\left(k_{j}\right)\right|+\frac{3}{L \pi^{2}}+\frac{6}{\pi^{3}} \\
& \leq\left(\frac{1}{2}\right)\left[\frac{\frac{\sqrt{2}}{2}}{\frac{\pi}{4}\left(1-\frac{1}{L^{2}}\right)}+\frac{1}{2 L}\right]+0.64\left(\frac{1-\frac{\sqrt{2}}{2}}{\frac{\pi}{4}\left(1-\frac{1}{L^{2}}\right)}\right)+\frac{3}{L \pi^{2}}+\frac{6}{\pi^{3}}<0.95
\end{aligned}
$$

with $k \in\left\{k: \frac{\pi}{4 L+1}<\|k\|_{\infty}<\frac{\pi}{L}\right\}$, and

$$
\begin{aligned}
|\widehat{D}(k)| & \leq\left|G\left(\|k\|_{\infty}\right)\right|+\frac{6}{n \pi^{3}} \leq\left|f_{2}\left(\|k\|_{\infty}\right)\right|+\left|f_{4}\left(\|k\|_{\infty}\right)\right|+\frac{6}{n \pi^{3}} \\
& \frac{2}{n \pi}+\frac{1}{2 L}+\frac{6}{n \pi^{3}} \leq \frac{9}{10 n}
\end{aligned}
$$

with $\|k\|_{\infty} \in\left(\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right], n=1, \ldots, L-1$. This completes the proof.

$$
\text { 6. Estimates For } \widehat{\Pi}_{\lambda}(k, z)
$$

Proof of Proposition 1.5. We use the the following propositions to prove Proposition 1.5.

Proposition 6.1. For any dimension $d>2$, there exist constants L_{0}, c_{1}, c_{2} and c_{3} such that for $L \geq L_{0}$ and $n=1,2$, we have

$$
\begin{equation*}
\int \frac{|\widehat{D}(k)|}{(1-|\widehat{D}(k)|)^{n}} d k \leq \frac{c_{1} \log L}{L} \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{|\widehat{D}(k)|^{2}}{(1-|\widehat{D}(k)|)^{n}} d k \leq \frac{c_{2}}{L} \tag{6.2}
\end{equation*}
$$

Proof. Let $R_{1}=\left[-\frac{\pi}{4 L+1}, \frac{\pi}{4 L+1}\right]^{d}, R_{2}=\left[-\frac{\pi}{L}, \frac{\pi}{L}\right]^{d}$, by Proposition 1.6, for $d>2$ there exists $\sigma \in(0,1)$ such that

$$
\begin{aligned}
\int \frac{|\widehat{D}(k)|}{1-|\widehat{D}(k)|} d k= & \left(\frac{1}{2 \pi}\right)^{d}\left\{\int_{k \in R_{2}} \frac{|\widehat{D}(k)|}{1-|\widehat{D}(k)|} d k+\int_{k \in[-\pi, \pi]^{d} \backslash R_{2}} \frac{|\widehat{D}(k)|}{1-|\widehat{D}(k)|} d k\right\} \\
\leq & \left(\frac{1}{2 \pi}\right)^{d}\left\{\int_{k \in R_{1}} \frac{1}{\frac{0.12 L}{d}\|k\|_{1}} d k+\frac{1}{1-0.95} \int_{k \in R_{2} \backslash R_{1}}|\widehat{D}(k)| d k\right. \\
& \left.+\sum_{l=1}^{L-1} 2 \int_{\frac{l \pi}{L}}^{\frac{(l+1) \pi}{L}}\left(\frac{9(2 \pi)^{d-1}}{10 l\left(1-\frac{9}{10 l}\right)}\right) d k_{\mu}\right\} \\
& \leq c \frac{\log L}{L},
\end{aligned}
$$

and

$$
\int \frac{|\widehat{D}(k)|}{(1-|\widehat{D}(k)|)^{2}} d k \quad \leq \frac{c}{L^{d}}+\sum_{l=1}^{L-1} \frac{9}{10 l\left(1-\frac{9}{10 l}\right)^{2} L} \leq c \frac{\log L}{L}
$$

By above argument, we obtain the inequalities (6.2) for $d>2$. This completes the proof.

Proposition 6.2. For any dimension $d>2$, there exists $L_{1}>0$ and universal constant c such that for $L \geq L_{1}, r>1 n=1,2$ and $\nu \in\{1,2, \ldots, d\}$, we have

$$
\int \frac{\left|\frac{\partial}{\partial k_{\nu}} \widehat{D}(k)\right|^{r}}{(1-|\widehat{D}(k)|)^{n}} d k \leq \frac{c}{L}, \quad \int \frac{\left|\frac{\partial}{\partial k_{\nu}} \widehat{D}(k)\right|}{(1-|\widehat{D}(k)|)^{n}} d k \leq \frac{c \log L}{L}
$$

Proof. By (5.6)-(5.9), for $|r| \in\left[\frac{n \pi}{L}, \frac{(n+1) \pi}{L}\right], n \in\{0,1, \ldots, L-1\}$, we have $f_{j}(r) \leq 1$ with $j=2,4$

$$
\begin{aligned}
& \left|f_{j}(r)\right| \leq \min \left\{\frac{c}{L r}, 1\right\}, \quad\left|f_{j}^{\prime}(r)\right| \leq \frac{c}{|L r|^{2}} \\
& \left|f_{1}^{\prime}(r)\right| \leq c L, \quad\left|f_{3}^{\prime}(r)\right| \leq c L+c^{\prime} L\left|\log L\left(r-\frac{n \pi}{L}\right)\right|
\end{aligned}
$$

Therefore, for $|r| \leq \frac{\pi}{L}$, we have $\left|\frac{d}{d r} G(r)\right| \leq c_{1}+c_{2}|\log L r|$ with some constants c_{1}, c_{2}. For $\frac{n \pi}{L} \leq r \leq \frac{(n+1) \pi}{L}$, we have $\left|\frac{d}{d r} G(r)\right| \leq \frac{c_{1}^{\prime}}{n}+c_{2}^{\prime} \frac{\left|\log L\left(r-\frac{n \pi}{L}\right)\right|}{n}, n \in$
$\{1, \ldots, L-1\}$. Then by Lemma 5.4 (c) and Proposition 1.6, for $d>2$, there exists $\sigma_{1}>0$, such that

$$
\begin{aligned}
& \int \frac{\left|\frac{\partial}{\partial k_{\nu}} \widehat{D}(k)\right|^{r}}{1-|\widehat{D}(k)|} \left\lvert\, d k \leq\left(\frac{1}{\pi}\right)^{d} \int_{k \in\left[0, \frac{\pi}{L}\right]^{d}} \frac{\left(c_{1}+c_{2}\left|\log L k_{\nu}\right|\right)^{r}}{\frac{\sigma_{1} L\|k\|_{1}}{d}} d k\right. \\
& \quad+c \sum_{l=1}^{L-1} \int_{\frac{l \pi}{L}}^{\frac{(l+1) \pi}{L}} \frac{\left[c_{1}^{\prime}+c_{2}^{\prime}\left|\log L\left(k_{\nu}-\frac{l \pi}{L}\right)\right|\right]^{r}}{l^{r}\left(1-\frac{9}{10 l}\right)} d k_{\nu} \\
& \quad \leq \frac{c}{L}\left\{\int_{0}^{\pi} t^{d-2}\left[\left(c_{1}\right)+\left(c_{2}\right)|\log t|\right] d t+\sum_{l=1}^{L-1} \int_{0}^{\pi} \frac{\left(c_{1}^{\prime}+c_{2}^{\prime}|\log t|\right)^{r}}{l^{r}\left(1-\frac{9}{10 l}\right)} d t\right\} \\
& \quad \leq c \sum_{l=1}^{L-1} \frac{1}{l^{r}}(L)^{-1}
\end{aligned}
$$

By above argument, this lemma follows.
Let $S(x, n)$ denote the two-point function of the random walk on \mathbb{Z}^{d} with 1step transition function $D(x)$ for $n \in \mathbb{N}, S(x, n)=0$ for all $x \in \mathbb{Z}^{d}, n \leq 0$ and $S_{0}(x, n)=S(x, n)+\delta(x, n)$. For $\lambda=\lambda_{0}$, we have, by Hölder's inequality,

$$
\begin{align*}
\sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) & =\sup _{(y, m)} \sum_{(x, n)}\left|x_{\mu}\right| \varphi_{\lambda}(x-y, n-m) \varphi_{\lambda}(x, n) \\
& \leq\left\|\varphi_{\lambda}(x, n)\right\|_{\frac{3}{2}}\left\|x_{\mu} \varphi_{\lambda}(x, n)\right\|_{3} \tag{6.3}\\
& \leq\left\|S_{0}(x, n)\right\|_{\frac{3}{2}}\left\|x_{\mu} S_{0}(x, n)\right\|_{3} .
\end{align*}
$$

Since $\sum_{x} S(x, n)=1$ for all n

$$
\sum_{(x, n)} S(x, n)^{\frac{3}{2}}=\sum_{n=1}^{\infty}\left[\sum_{x} S(x, n)^{\frac{3}{2}}\right] \leq \sum_{n=1}^{\infty}\left\{\sup _{x} S(x, n)^{\frac{1}{2}}\right\}=\sum_{n=1}^{\infty}\left\{\sup _{x} S(x, n)\right\}^{\frac{1}{2}}
$$

by Hausdorff-Young's inequality, let $R_{1}=\left[-\frac{\pi}{4 L+1}, \frac{\pi}{4 L+1}\right]^{d}$ and $R_{2}=\left[-\frac{\pi}{L}, \frac{\pi}{L}\right]^{d}$, we have, for $d>2$,

$$
\begin{align*}
\sum_{(x, n)} S(x, n)^{\frac{3}{2}} \leq & \sum_{n=1}^{\infty}\left\{\int|\widehat{D}(k)|^{n} d k\right\}^{\frac{1}{2}} \\
= & \sum_{n=1}^{\infty}\left(\frac{1}{2 \pi}\right)^{d}\left\{\int_{k_{\mu} \in R_{1}}|\widehat{D}(k)|^{n} d k+\int_{k_{\mu} \in R_{2} \backslash R_{1}}|\widehat{D}(k)|^{n} d k\right. \tag{6.4}\\
& \left.+\int_{k_{\mu} \in[-\pi, \pi]^{d} \backslash R_{2}}|\widehat{D}(k)|^{n} d k\right\}^{\frac{1}{2}}
\end{align*}
$$

$$
\begin{aligned}
& \leq \sum_{n=1}^{\infty}\left\{\frac{c_{0}}{L^{d}(n+1) \cdots(n+d)}+\frac{c_{1}(0.95)^{n}}{L^{d}}+\frac{c_{2}}{L} \sum_{l=1}^{L}\left(\frac{9}{10 l}\right)^{n}\right\}^{\frac{1}{2}} \\
& \leq \sum_{n=1}^{\infty}\left(\frac{c}{n^{d} L^{d}}\right)^{\frac{1}{2}}+\left(\frac{c^{\prime} \log L}{L}\right)^{\frac{1}{2}} \leq c\left(\frac{\log L}{L}\right)^{\frac{1}{2}}
\end{aligned}
$$

with universal constants c. From (6.3), (6.4) and Hausdorff-Young's inequality, we have

$$
\begin{align*}
\sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) & \leq\left\{1+\tau_{\frac{3}{2}}\left(\frac{\log L}{L}\right)^{\frac{1}{3}}\right\}\left\|x_{\mu} S_{0}(x, n)\right\|_{3} \\
& \leq\left\{1+\tau_{\frac{3}{2}}\left(\frac{\log L}{L}\right)^{\frac{1}{3}}\right\}\left\{\iint\left|\frac{\partial}{\partial k_{\mu}} \widehat{S}_{0}(k, i t)\right|^{\frac{3}{2}} d k d t\right\}^{\frac{2}{3}} \tag{6.5}
\end{align*}
$$

for some universal constants $\tau_{\frac{3}{2}}$. By the same argument, we also have

$$
\begin{equation*}
\sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq \tau_{\frac{3}{2}}\left(\frac{\log L}{L}\right)^{\frac{1}{3}}\left\{\iint\left|\frac{\partial}{\partial k_{\mu}} \widehat{S}_{0}(k, i t)\right|^{\frac{3}{2}} d k d t\right\}^{\frac{2}{3}} \tag{6.6}
\end{equation*}
$$

with $j=2,3$.

Remark 6.1. In (6.5), we obtain the upper bound of $\delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0)$ which is different from the upper bound of $\delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0)$ in Lemma 3.5. If we follows this method, we have

$$
\sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0)=\sup _{(y, m)} \varphi_{\lambda}^{\mu} * \varphi_{\lambda}(y, m) \leq \iint\left|\widehat{\varphi}_{\lambda}^{\mu}(k, i t) \widehat{\varphi}_{\lambda}(k, i t)\right| d k d t
$$

where $\varphi_{\lambda}^{\mu}(x, n)=\left|x_{\mu}\right| \varphi_{\lambda}(x, n)$. We can not control $\widehat{\varphi}_{\lambda}^{\mu}(k, i t)$ since $\widehat{\varphi}_{\lambda}^{\mu}(k, i t)$ is not equal to $\frac{\partial}{\partial k_{\mu}} \widehat{\varphi}_{\lambda}(k, i t)$ for any $\mu \in\{1,2, \ldots, d\}$. If we use Hausdorff-Young inequality

$$
\sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq\left\{\iint\left|\widehat{\varphi}_{\lambda}(k, i t)\right|^{2} d k d t\right\}^{\frac{1}{2}}\left\{\iint\left|\frac{\partial}{\partial k_{\mu}} \widehat{\varphi}_{\lambda}(k, i t)\right|^{2} d k d t\right\}^{\frac{1}{2}}
$$

this right hand side is divergence for the dimension $d=3$.

Proof of Proposition 1.5 For $\lambda=\lambda_{0}$, by Proposition 6.2, (6.5)-(6.6) and Lemma $3.4-3.5$, for any $d>2$ there exists an L_{1} (depending on d) and universal constant
c such that

$$
\begin{aligned}
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c, \quad \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c \frac{\log L}{L}, \quad \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq \frac{c}{L^{\frac{2}{3}}} \\
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq c \frac{\log L}{L}, \quad \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, j)}(0,0) \leq \frac{c}{L} \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq \frac{c}{L}, \quad \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq c \frac{(\log L)^{\frac{1}{3}}}{L}
\end{aligned}
$$

and

$$
\sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, j)}(0,0) \leq c \int \frac{\widehat{D}(k)^{2}}{[1-\widehat{D}(k)]^{2}} d k \leq \frac{c}{L_{1}}<\frac{1}{2}
$$

for $j \in\{2,3\}$. By Lemma $3.1-3.3$, we obtain Proposition 1.5. This completes the proof.

Proof of Proposition 1.6

Since $\left(P_{4}\right)$ is satisfied, from (1.5), (2.7) and (6.3), $\left|\widehat{\varphi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right| \leq$ $c\left|\widehat{S}_{0}(k,-s+i t)\right|$ and $\left|\widehat{\psi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right| \leq c|\widehat{S}(k,-s+i t)|$, moreover, from (1.17), we have

$$
\begin{align*}
\left|\frac{\partial}{\partial k_{\mu}} \widehat{\varphi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)\right| & =\left|\frac{\partial}{\partial k_{\mu}}\left[\frac{1+\widehat{\Pi}_{\lambda}\left(k, m_{\lambda}-s+i t\right)}{F\left(k, m_{\lambda}-s+i t\right)}\right]\right| \\
& \leq \frac{c}{\left|1-\widehat{D}(k) e^{-s+i t}\right|^{2}} \tag{6.7}\\
& \leq c\left|\frac{\partial}{\partial k_{\mu}} \widehat{S}(k,-s+i t)\right|
\end{align*}
$$

with universal constant c for any $k \in[-\pi, \pi]^{d}$ and $s \in(0,1)$. By Hölder's inequality,

$$
\begin{align*}
& \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}\left(0, m_{\lambda}-s\right) \\
= & \sup _{(y, m)} \sum_{(x, n)}\left|x_{\mu}\right| \varphi_{\lambda}(x-y, n-m) \varphi_{\lambda}(x, n) e^{\left(m_{\lambda}-s\right) n} \tag{6.8}\\
\leq & \left\|\varphi_{\lambda}(x, n)\right\|_{\frac{3}{2}}\left\|x_{\mu} \varphi_{\lambda}(x, n) e^{\left(m_{\lambda}-s\right) n}\right\|_{3} .
\end{align*}
$$

Since $m_{\lambda}>0$ for $\lambda \in\left(0, \lambda_{c}\right)$, from (6.4),

$$
\begin{align*}
\sum_{(x, n)} \psi_{\lambda}(x, n)^{\frac{3}{2}} & =\lim _{s \uparrow m_{\lambda}} \sum_{(x, n)}\left\{\psi_{\lambda}(x, n) e^{\left(m_{\lambda}-s\right) n}\right\}^{\frac{3}{2}} \\
& \leq c \lim _{s \uparrow m_{\lambda}} \sum_{(x, n)}\left\{S(x, n) e^{-s n}\right\}^{\frac{3}{2}} \\
& =c \sum_{(x, n)}\left\{S(x, n) e^{-m_{\lambda} n}\right\}^{\frac{3}{2}} \tag{6.9}\\
& \leq c \sum_{(x, n)}\{S(x, n)\}^{\frac{3}{2}} \leq c\left(\frac{\log L}{L}\right)^{\frac{1}{2}}
\end{align*}
$$

By (6.7)-(6.9), we have

$$
\begin{align*}
& \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}\left(0, m_{\lambda}-s\right) \leq\left\{1+\tau_{\frac{3}{2}}\right\}\left(\frac{\log L}{L}\right)^{\frac{1}{3}}\left\{\iint\left|\frac{\partial}{\partial k_{\mu}} \widehat{S}_{0}(k, i t)\right|^{\frac{3}{2}} d k d t\right\}^{\frac{2}{3}} \tag{6.10}\\
& \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}\left(0, m_{\lambda}-s\right) \leq \tau_{\frac{3}{2}}\left(\frac{\log L}{L}\right)^{\frac{1}{3}}\left\{\iint\left|\frac{\partial}{\partial k_{\mu}} \widehat{S}_{0}(k, i t)\right|^{\frac{3}{2}} d k d t\right\}^{\frac{2}{3}}
\end{align*}
$$

with $j=2,3$. By Lemma $3.4-3.5$, (6.7)-(6.9) and Proposition 6.2 , for any $d>2$, we have

$$
\begin{aligned}
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c, \quad \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq c \frac{\log L}{L}, \quad \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, 1)}(0,0) \leq \frac{c}{L^{\frac{2}{3}}} \\
& \sup _{(y, m)} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq \frac{c}{L}, \quad \sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, j)}(0,0) \leq \frac{c}{L} \\
& \sup _{(y, m)} \delta_{z} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq \frac{c}{L}, \quad \sup _{(y, m)} \delta_{k_{\mu}} \widehat{Q}_{(y, m)}^{(\lambda, j)}(0,0) \leq c \frac{(\log L)^{\frac{1}{3}}}{L}
\end{aligned}
$$

with $j \in\{2,3\}$ and $\mu=1,2, \ldots, d$. Let $L_{0} \geq L_{1}$ sufficiently large such that

$$
\sup _{(y, m)} \widehat{T}_{(y, m)}^{(\lambda, j)}(0, r) \leq \frac{c}{L}<\frac{1}{2},
$$

for any $L \geq L_{0}$ and $j=2,3$. From Lemma 3.1-3.3, we have

$$
\begin{aligned}
& \sum_{(x, n)}\left|\Pi_{\lambda}(x, n) e^{r n}\right| \leq \frac{c_{0}}{L}, \quad \sum_{(x, n)}\left|n \Pi_{\lambda}(x, n) e^{r n}\right| \leq \frac{c_{1}}{L} \\
& \sum_{(x, n)}\left|x_{\mu} \Pi_{\lambda}(x, n) e^{r n}\right| \leq \frac{c_{2}(\log L)^{\frac{1}{3}}}{L}
\end{aligned}
$$

where c_{0}, c_{1} and c_{2} are constants which are independent of $\tau_{0}^{\prime}, \tau_{1}^{\prime}, \tau_{2}^{\prime}$ for any $r<m_{\lambda}$ and $\lambda \in\left(0, \lambda_{c}\right)$. Let

$$
\tau_{0}^{\prime}=\max \left\{\tau_{0}, \frac{c_{0}}{2}\right\}, \tau_{1}^{\prime}=\max \left\{\tau_{1}, \frac{c_{1}}{2}\right\}, \text { and } \tau_{2}^{\prime}=\left\{\tau_{2}, \frac{c_{2}}{2}\right\}
$$

where c_{i} as in the Proposition 1.6. Therefore $\left(P_{4}\right)$ implies $\left(P_{2}\right)$. This completes the proof.

Acknowledgement

The authors thank Professor Wei-Shih Yang for suggesting this problem and helpful conversations when he visited National Center for Theoretical Sciences Mathematics Division.

References

1. M. Aizenman and D. J. Barsky, Sharpness of The Phase Transition in Percolation Models, Commum. Math. Phys., 108 (1987), 489-526.
2. M. Aizenman and C. M. Newman, Tree Graph Inequalities and Critical Behavior in Percolation Models, J. Stat. Phys., 36 (1984), 107-143.
3. M. Aizenman and C. M. Newman, Discontinuity of The Percolation Density in One Dimension $1 /|x-y|^{2}$ Percolation Models, Commum. Math. Phys., 107 (1986), 611-647.
4. D. J. Berger, Transience, Recurrence and Critical Behavior for Long-Range Percolation, Comm. Math. Phys., 226 (2001), 531-558.
5. D. J. Barsky and M. Aizenman, Percolation Critical Exponents under The Triangle Condition, Ann. Prob. (4), 19 (1991), 1520-1536.
6. J. Van Den Berg and H. Kesten, Inequalities With Applications to Percolation and Reliability, J. Appl. Prob., 22 (1985), 556-569.
7. D. Brydges and T. Spencer, Self-Avoiding Walk in 5 or More Dimensions, Commum. Math. Phys., 97 (1985), 125-148.
8. J. W. Essam, percolation Theory, Z. Rep. Prog. Phys, 43 (1980), 833-912.
9. G. Grimmett, Percolation, Springer-Verlag, New York Inc., 1989.
10. M. Holmes, A. A. Jarai, A. Sakai and G. Slade, High-dimensional graphical networks of self-avoiding walks, Canad. J. Math., 56 (2004), 77-114.
11. T. Hara, Remco van der Hofstad and G. Slade, Critical Two-Point Functions and The Lace Expansion for Spread-Out High-Dimensional Percolation and Related Models, The Ann. Probab., 31 (2003), 349-408.
12. T. Hara and G. Slade, Self-Avoiding Walk in Five or More dimensions. I, Commun. Math. Phys., 147 (1992), 101-136.
13. T. Hara and G. Slade, The Lace Expansion for Self-Avoiding Walk in Five or More Dimensions, Rev. Math. Phys., 4 (1992), 235-327.
14. T. Hara and G. Slade, Mean-Field Critical Behavior for Percolation in High Dimension, Commun. Math. Phys., 128 (1990), 233-391.
15. T. Hara and G. Slade, On The Upper Critical Dimension of Lattice Trees and Lattice Animals, J. Stat. Phys., 59 (1990), 1469-1510.
16. B. G. Nguyen, Gap Exponents for Percolation Processes with Triangle Condition, J. Stat. Phys., 49 (1987), 235-243.
17. B. G. Nguyen and W. S. Yang, Triangle Condition for Oriented Percolation in High Dimensions, Ann. Probab. (4), 21 (1993), 1809-1844.
18. B. G. Nguyen and W. S. Yang, Gaussian Limit for Critical Oriented Percolation in High Dimensions, J. Stat. Phys., 21 (1995), 841-876.
19. Remco van der Hofstad and G. Slade, Convergence of Critical Oriented Percolation to Super-Brownian Motion above $4+1$ Dimensions, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 413-485.
20. Remco van der Hofstad and G. Slade, The lace expansion on a tree with application to networks of self-avoiding walks, Adv. Appl. Math., 30 (2003), 471-528.
21. L. S. Schulman, Long-Range Percolation in One Dimension, J. Phys. A, 16(17) (1983), L639-L641.
22. A. Sakai, Mean-Field Critical Behavior for the Contact Process, J. stat. Phys., 104 (2001), 111-143.
23. A. Sakai, Hyperscaling Inequalities for the Contact Process and Oriented Percolation, J. Stat. Phys., 106 (2002), 201-211.
24. A. Zygmund, Trigonometric Series, (2nd ed.), Cambridge Univ. Press. Cambridge, 1968.

Lung-Chi Chen
Department of Mathematics,
Fu-Jen Catholic University,
Hsinchuang, Taipei Hsien 24205,
Taiwan
E-mail: lcchen@math.fju.edu.tw

[^1]
[^0]: Received January 6, 2005; accepted April 26, 2005
 Communicated by Yuan-Chung Shen.
 2000 Mathematics Subject Classification: 82C43.
 Key words and phrases: Oriented percolation, Critical exponent, Infrared bound, Lace expansion, Connectivity function, Mean-field behavior, Long-range interaction.

[^1]: Narn-Rueih Shieh
 Department of Mathematics, National Taiwan University,
 Taipei 10617,
 Taiwan
 E-mail: shiehnr@math.ntu.edu.tw

