
THE VISIBILITY NUMBER OF A GRAPHYi-Wu ChangNational Politics University, Taipei, TaiwanMichael S. Jacobson and Jen}o LehelUniversity of Louisville, Louisville, KYmsjaco01@ulkyvx.louisville.edu and j0lehe01@ulkyvx.louisville.eduDouglas B. WestyUniversity of Illinois, Urbana, IL 61801-2975, west@math.uiuc.eduAbstract. We introduce the visibility number b(G) of a graph G, which is theminimum t such that G can be represented by assigning each vertex a union ofat most t horizontal segments in the plane so that vertices u; v are adjacent ifand only if some point assigned to u sees some point assigned to v via a verticalsegment unobstructed by other assigned points. We prove the following:1) every planar graph has visibility number at most 2, which is sharp.2) r � b(Km;n) � r + 1, where r = d(mn+ 4)=(2m+ 2n)e.3) dn=6e � b(Kn) � dn=6e+ 1.4) When G has n vertices, b(G) � dn=6e+ 2.1. INTRODUCTIONResearchers in computational geometry have studied the use of graphs to model visi-bility relations in the plane. For example, in a polygon in the plane we say that two vertices\see" each other if the segment joining them lies inside the polygon. Letting vertices thatsee each other be adjacent de�nes the visibility graph of the polygon. Similarly, we cande�ne a visibility graph on a set of line segments in the plane, where two segments seeeach other if some segment joining them crosses no other segment. The literature on thesemodels has dozens of papers, mostly concerning the computation and the recognition ofvisibility graphs. Also there are applications to search problems and motion planning.We consider a simpler model in which visibility is vertical only. Let S be a family ofhorizontal bars in the plane. Tamassia and Tollis [5] de�ned the bar visibility graph of Sto be the graph with vertex set S in which two vertices are adjacent if and only if there isyResearch supported in part by NSA/MSP Grant MDA904-93-H-3040.Running head: VISIBILITY NUMBERAMS codes: 05C35, 05C10Keywords: visibility representation, planar graph, interval numberWritten July 1994 and June 1998.



2some unobstructed vertical segment joining them. They characterized bar visibility graphsas the planar graphs having a planar embedding in which all cut-vertices lie on a commonface. (Graphs generated by horizontal and vertical visibility of rectangles in the plane arestudied in [2].)Realistically, one would like visibility to occur along a channel of positive width. Thisenables two bars [(a; y); (b; y)] and [(b; z); (c; z)] to block visibility at b without seeing eachother. We obtain this e�ect by letting bars be half-open segments of the form ((a; y); (b; y)].We study problems for visibility graphs analogous to those studied for intersectiongraphs. The interval graph of a family S of intervals on the real line is the graph withvertex set S in which two vertices are adjacent if and only if as intervals they intersect. Barvisibility graphs provide a geometric analogue of interval graphs; visibility replaces inter-section as the adjacency relation, and we place the intervals at various heights. The modelsyield di�erent families of graphs because intervening bars can block visibility, whereas in-tervals having a common point on the horizontal line are pairwise intersecting.The interval graph model has been generalized to permit multi-interval representa-tions of all graphs. A t-interval is a union of (at most) t intervals on the real line. At-interval representation of G is an assignment of t-intervals to vertices of G so that ver-tices are adjacent if and only if their t-intervals intersect. The interval number i(G) of agraph G is the minimum t such that G has a t-interval representation.Here we similarly generalize the bar visibility model. A t-bar is a union of (at most)t horizontal bars in the plane. A t-bar representation of G is an assignment of t-bars tovertices of G so that vertices are adjacent if and only if some vertical segment links theirt-bars without intersecting any other t-bar in the representation. The visibility numberb(G) of a graph G is the minimum t such that G has a t-bar representation. When t isunspeci�ed, we use the term multibar.For graphs without large cliques, visibility number tends to be smaller than intervalnumber, because the upper and lower \sides" of a bar can be used independently to estab-lish edges. Using the result of [5], we show that every planar graph has visibility numberat most two. (This compares with interval number at most three.)For other families, our lower bounds arise from an easy lemma involving the maximumnumber of edges in N -vertex planar graphs. Combining this with constructions tells us(within 1) the visibility number for complete bipartite graphs (bicliques) and for cliques.The visibility number of a biclique Km;n is roughly half its interval number, but the cliqueKn has interval number 1 and visibility number roughly n=6.We conjecture that, over graphs with n vertices, visibility number is maximized byKn. We provide a construction for arbitrary n-vertex graphs that always uses at mostdn=6e+2 bars for each vertex. This solves the extremal problem for n-vertex graphs withan error of at most two. The construction uses the result of Lov�asz [4] that every m-vertexgraph can be decomposed into at most bm=2c paths and cycles.2. PLANAR GRAPHSWe solve the extremal problem for planar graphs by expressing an arbitrary planargraph as the union of two bar visibility graphs.



3REMARK 1. b(G [H) � b(G) + b(H).Proof: Bar visibility representations of G and H can be placed in disjoint vertical stripsto represent G [H.THEOREM 2. Every planar graph has a 2-bar representation in which all vertices otherthan cut-vertices are assigned 1-bars.Proof: If H is a disjoint union of planar graphs having at most one cut-vertex in eachcomponent, then the result of Tamassia and Tollis [5] yields b(H) = 1. We express anarbitrary planar graph G as the union of two such graphs, which we call G0 and G1.Begin with G0 and G1 empty. Choose an arbitrary vertex v 2 V (G) as a root. Placethe union of all blocks containing v into G0, and mark v �nished. Proceed iteratively asfollows. For each un�nished vertex added to Gi on the previous step, add to G1�i theunion of all blocks of G that have not yet been placed, and mark the vertex �nished.Continuing in this breadth-�rst manner through the blocks of G decomposes G into twosubgraphs.At each phase when a new subgraph consisting of pairwise disjoint \stars of blocks" isadded to Gj , the new subgraph is disjoint from the earlier subgraphs added to Gj . Thuseach component of Gj has at most one cut-vertex, and the two graphs G0; G1 are barvisibility graphs.The minimal planar graphs that are not embeddable with every vertex on a singleface are K4 and K2;3. Adding a pendant edge at each vertex of such a graph produces aplanar graph that is not a bar visibility graph. Thus Theorem 2 is sharp.3. BICLIQUES (COMPLETE BIPARTITE GRAPHS)Our subsequent lower bounds use an easy counting argument.LEMMA 3. The visibility number of a graph G with n vertices and e edges is at least(e+ 6)=(3n). If the graph is triangle-free, then b(G) � (e+ 4)=(2n).Proof: Consider a t-bar representation of G. The total number of bars used is N � nt.In the plane, add one vertical segment joining each pair of bars that see each other. Nowshrink each bar so that it becomes a single point. The added segments remain, coveringthe edges of G. The result is a planar graph G0 with N vertices and at least e edges. Sinceit also has at most 3N � 6 edges, we have the desired bound.If G is triangle-free, then the graph G0 will also be simple and triangle-free after wecontract all edges joining bars for the same vertex of G. Now G0 has at most 2N�4 edges,and again these cover all edges of G.Lemma 3 yields b(Km;n) � d mn+42m+2ne. Trotter and Harary [6] proved that i(Km;n) =dmn+1m+n e. Our lower bound for b(Km;n) always equals di(Km;n)=2e or di(Km;n)=2e+1. Byusing the tops and bottoms of bars separately, we prove constructively that the visibilitynumber of Km;n is within one of our lower bound. Our construction is motivated by theTrotter-Harary construction for i(Km;n).



4THEOREM 4. If r = d mn+42m+2ne, then r � b(Km;n) � r + 1.Proof: We construct an r + 1-bar representation of Km;n. We may assume that m � n,with partite sets X = fx1; : : : ; xmg and Y = fy1; : : : ; yng. Let s = b(n� 1)=2c � r.As m grows, r increases to dn=2e. We construct a representation using dn=2e bars foreach xi and one bar for each yj by arranging the bars for Y as a horizontal sequence ofvertical pairs and separating each pair vertically by a set of bars for X.Therefore, we may assume that r � dn=2e�1 = b(n� 1)=2c. Since (mn+4)=(2m+2n)increases strictly with m (for n > 2) and equals (n� 1)=2 when m = n2 � n� 4, we mayassume that m < n2 � n� 3.We construct a multibar representation using (up to) r + 1 pairs of rows of bars forvertices of Y . In each pair of rows, the top row has bars for y1; : : : ; ydn=2e, and the bottomrow has bars for the remainder of Y . In each row, the ith bar extends horizontally fromi� 1 to i, except that when n is odd the bar for yn extends from (n� 3)=2 to (n+ 1)=2.The bars for X also form rows, with a row for some of X between successive rows forY . In Fig. 1, the bars have been shrunk for clarity within rows; the overlap of half-openbars is such that each bar sees only bars for vertices of the opposite partite set in the twonearest rows. Each bar for xi sees two bars above it and two below it, except that whenn is odd the rightmost bar in each row for X sees bars for only three vertices of Y .
x13x11 x12 x11 x12 y11y1 y11y1 x8 x9 x10 x9 x10x5 x6 x7 x8 x7x4 x3 x4 x5 x6x1 x2 x1 x2 x3 y11y1 x13

Fig. 1. Part of a 4-bar representation of K13;11; s = 2 and r = 3.Reading from left to right within successive rows for X from top to bottom, we alter-nate x1; x2 until we have s bars for each, then we alternate x3; x4, etc. These bars need2s bm=2c positions. In each of up to 2(r+1)�1 rows, there are dn=2e�1 positions available.We thus require that 2s bm=2c � b(n� 1)=2c (2r + 1). Proving that ms � (s+ r)(2r + 1)will show that there are enough locations for these bars.Because mn + 4 � 2r(m + n), we have m(n=2 � r) � rn � 2. When n is odd, thisinequality becomes m(s+1=2) � r(2s+2r+1)� 2. Since r(2s+2r+1) < (s+ r)(2r+1),the desired inequality holds. When n is even, the known inequality becomes m(s + 1) �2r(s+ r + 1)� 2. Since 2r(s+ r + 1)� 2 = (s+ r)(2r + 1) + r � s� 2 and m > r, againthe desired inequality holds.If the available postions are not all needed, we discard the later bars for Y to avoidvisibilities between vertices of Y . If m is odd, we add one long bar for xm at the top andanother at the bottom; together these see all of Y . If m is odd and the bottom row ofintervals for Y was deleted, then we can put it above the top bar for xm instead.



5For x1; : : : ; x2bm=2c, we have established visibility to 4s or to at least 4s � 1 (if n isodd) vertices of Y . These visibilities involve distinct vertices of Y , because m � n impliesthat r � dn=4e, and hence s � b(n� 3)=4c. With r + 1 bars allowed per vertex, we haver + 1 � s = dn=2e � 2s bars remaining to be assigned to xi. There remain n � 4s (or atmost n+ 1� 4s if n is odd) vertices in Y that xi must see. Picking up two of these witheach remaining bar completes the representation.The visibilities established so far for xi consist of two strings A;B of consecutive en-tries in the list y1; : : : ; yn, viewed cyclically. The lists may have length 2s each, or onemay have length 2s � 1 if n is odd and it includes yn. The ending positions of A and Bare separated by dn=2e or bn=2c. If the last bar placed for xi sees yj and y0j at its rightend, then we add a small bar for xi by shrinking the next two bars for X between yj+1and yj0+1. Continuing in this fashion extends A and B to create the remaining visibilities.When n is odd, we need two visibilities for each new interval assigned to xi if and only ifxi already sees yn in the �rst phase; otherwise xi starts with 4s visibilities and one of thesmall intervals seeing yn picks up only one.4. CLIQUESA surprisingly simple construction for b(Kn) produces a representation using at mostone more bar per vertex than the counting bound from Lemma 3.THEOREM 5. dn=6e � b(Kn) � dn=6e+ 1.Proof: Lemma 3 yields b(Kn) � �n�16 + 2n� = dn=6e. For the upper bound, we �rst reduceto the case where n is divisible by 6. In a visibility representation of a clique, deleting thebars for a vertex cannot introduce unwanted visibilities, since all visibilities are wanted.Deletion also cannot destroy visibilities. Hence b(Kn�1) � b(Kn).Now let n = 6m. We partition the vertex set into three sets A1; A2; A3, each of size2m. A clique with 2m vertices has a decomposition into m spanning paths, consisting ofthe m rotations of a zig-zag path when the vertices are placed around a circle (see Fig. 2).� � ������ � � � ������ � � � ������ �
Fig. 2. Path decomposition of Kn.Our visibility representation ofKn consists of 3m isomorphic modules. Each module isa bar visibility representation of the join Pm_2K1, using one bar per vertex. We representthe path by a staircase of bars, each of which sees the bar before and after it. We add onelong bar above and one long bar below; each sees the entire path (see Fig. 3).



6
Fig. 3. Bar visibility representation of Pm _ 2K1.To each of the m paths in the decomposition of Ai, we assign two vertices in Ai+1(indices modulo 3). This produces m pairwise edge-disjoint copies of Pm _ 2K1. Theirunion covers Ai and all edges from Ai to Ai+1. Doing this for each Ai yields 3m moduleswhose union represents Kn.A vertex of Ai appears in each path drawn from Ai, and it appears once as a top orbottom bar in a module for a path in Ai�1. Thus each vertex is assigned m+ 1 bars.Example 6. b(K9) = 2. A graph represented with one bar per vertex must be planar,so the upper bound of Theorem 5 cannot be improved when 5 � n � 6. However, it canbe improved when 7 � n � 9.When we allow only two bars per vertex, it is possible that we use the �rst bar foreach vertex in one vertical strip and the second bar in another. This would express thegraph as the union of two planar subgraphs: thickness 2. The graph K9 has thickness 3.However, the 
exibility of putting the representation for one subgraph above the other andthereby obtaining an extra edge yields b(K9) = 2 (see Fig. 4).
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Fig. 4. 2-bar representation of K9.5. n-VERTEX GRAPHSWhen bounding the visibility number of an n-vertex graph G, it is tempting to useRemark 1 and express G as a union of planar graphs, since planar graphs have visibility at



7most 2. When n is not 9 or 10, every n-vertex graph is the union of at most b(n+ 7)=6cplanar graphs, with equality for cliques (see [1] for n 6� 4mod6, with the remaining casesettled through the work of many authors). This yields about n=3 as an upper bound onvisibility number of n-vertex graphs. Using planar graphs whose cut-vertices lie on oneface, which seems feasible, could eliminate the factor of 2 between this and the lower boundin Theorem 5.Instead, we generalize the construction in Theorem 5 to prove directly that b(G) �dn=6e+ 2. The construction in Theorem 5 establishes each edge once, but it is di�cult tomodify it to delete an arbitrary set of edges. For example, let u; v; w appear consecutivelyon some path in the decomposition of A1, and let y; z be the vertices of A2 whose barssurround this path. By extending u or w, it is possible to block v from seeing y or z. Bydeleting the bar for v and extending those for u and w to the same vertical line, we candelete all these edges. However, how can we delete vy; vz; uv and keep vw?If all edges of the path in A were present, then we could delete arbitrary edges to yand z by extending the bars for vertices on the path. If tk is the maximum number of pathsneeded to partition the edges of a k-vertex graph, we could thus obtain b(G) � tn=3 + 1.Gallai [3] conjectured that tk = dk=2e, which would yield b(G) � dn=6e+ 1.We do almost as well by using the result of Lov�asz [4] that every k-vertex graph can bedecomposed into bk=2c paths and cycles. Each vertex of odd degree must be an endpointof some path in such a decomposition. Thus the decomposition must consist entirely ofpaths when G has at most one vertex of even degree.THEOREM 7. If G has n vertices, then b(G) � dn=6e+ 2.Proof: By adding isolated vertices, we may assume that n is divisible by 6. Let n = 6m,and again partition V (G) into sets A1; A2; A3 of size 2m. To G[Ai], add one vertex wadjacent to all vertices with even degree in G[Ai]; call this graph G0i. Since G0i has at mostone vertex of even degree, G0i has a decomposition into b(2m+ 1)=2c = m paths.To each such path P , we assign two vertices of Ai+1. We design a module for ourrepresentation that establishes all the edges of P contained in G and all the edges of Gjoining Ai with these two vertices of Ai+1. In each such module, we use one bar for eachvertex of Ai and two bars for each of the two special vertices of Ai+1. Doing this for eachi and each P in the decomposition of G0i produces a visibility representation with m + 2bars per vertex (see Fig. 5).Let Iv be the bar (or two) to be assigned to v in such a module. Let y; z be the twospecial vertices of Ai+1. We begin by representing P as a staircase of bars, with a bar fory underneath and a bar for z above. The edges on P that don't involve the dummy vertexw belong to G, so we never need to block these visibilities. Erasing Iw will produce a gapthat may cause us to break Iy and Iz.Begining at the upper right end of P , which is also initially the right end of Iy, weblock visibilities between y and P as needed. When the current vertex v of P is notadjacent to y, we extend the bar for the next lower vertex of P to the right end of thecurrent Iv. If the last vertex v before w is not adjacent to y, then we cannot extend alower bar to block Iv from Iy; instead, we break Iy and shorten the left end of the rightportion to the right endpoint of Iv.



8Having arrived at Iw, we delete it; the staircase was built so that the bar for the vertexu after w on P does not see the bar for the vertex v before w on P . We now continueblocking vertices in the rest of P from seeing Iy as needed, in the same manner as before.Visibilities up to Iz are corrected in the symmetric manner, working from the bottom leftend of P .We still must consider the vertices of A that do not belong to P . Each such vertex isadjacent to neither, one, or both of fy; zg. Vertices adjacent to neither can be ignored; weneed add no bar. For each vertex adjacent only to y, we add a bar at the right of P ; noneof these see each other, and Iu extends to the right to see them all. Similarly, the bars forvertices of A� V (P ) adjacent only to z can be added at the left of the bars for P .For vertices of A� V (P ) adjacent to both y and z, we add a bar in the gap betweenthe left and right portions of P that was left by deleting w. Together they �ll this gap sothat Iy does not see Iz. The left portion of Iy and the right portion of Iz see these bars.If there are no such vertices adjacent to both y and z, then we shorten the left portion ofIy and the right portion of z so that they won't see each other.We have established and/or deleted all the desired adjacencies, using the desired num-ber of bars for each vertex.
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