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Abstract. We introduce the wisibility number b(G) of a graph G, which is the
minimum ¢ such that G can be represented by assigning each vertex a union of
at most ¢ horizontal segments in the plane so that vertices u,v are adjacent if
and only if some point assigned to u sees some point assigned to v via a vertical
segment unobstructed by other assigned points. We prove the following:

1) every planar graph has visibility number at most 2, which is sharp.

2) r <b(Kpn) <r+1, where r = [(mn + 4)/(2m + 2n)].

3) [n/6] < b( n) < [n/6] + 1.

4) When G has n vertices, b(G) < [n/6] + 2

1. INTRODUCTION

Researchers in computational geometry have studied the use of graphs to model visi-
bility relations in the plane. For example, in a polygon in the plane we say that two vertices
“see” each other if the segment joining them lies inside the polygon. Letting vertices that
see each other be adjacent defines the wisibility graph of the polygon. Similarly, we can
define a visibility graph on a set of line segments in the plane, where two segments see
each other if some segment joining them crosses no other segment. The literature on these
models has dozens of papers, mostly concerning the computation and the recognition of
visibility graphs. Also there are applications to search problems and motion planning.

We consider a simpler model in which visibility is vertical only. Let S be a family of
horizontal bars in the plane. Tamassia and Tollis [5] defined the bar wvisibility graph of S
to be the graph with vertex set S in which two vertices are adjacent if and only if there is
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some unobstructed vertical segment joining them. They characterized bar visibility graphs
as the planar graphs having a planar embedding in which all cut-vertices lie on a common
face. (Graphs generated by horizontal and vertical visibility of rectangles in the plane are
studied in [2].)

Realistically, one would like visibility to occur along a channel of positive width. This
enables two bars [(a,y), (b,y)] and [(b, 2), (¢, z)] to block visibility at b without seeing each
other. We obtain this effect by letting bars be half-open segments of the form ((a, y), (b, y)].

We study problems for visibility graphs analogous to those studied for intersection
graphs. The wnterval graph of a family S of intervals on the real line is the graph with
vertex set S in which two vertices are adjacent if and only if as intervals they intersect. Bar
visibility graphs provide a geometric analogue of interval graphs; visibility replaces inter-
section as the adjacency relation, and we place the intervals at various heights. The models
yield different families of graphs because intervening bars can block visibility, whereas in-
tervals having a common point on the horizontal line are pairwise intersecting.

The interval graph model has been generalized to permit multi-interval representa-
tions of all graphs. A ¢-interval is a union of (at most) ¢ intervals on the real line. A
t-interval representation of G is an assignment of ¢-intervals to vertices of GG so that ver-
tices are adjacent if and only if their ¢-intervals intersect. The interval number i(G) of a
graph G is the minimum ¢ such that G has a t-interval representation.

Here we similarly generalize the bar visibility model. A ¢-bar is a union of (at most)
t horizontal bars in the plane. A t-bar representation of G is an assignment of t-bars to
vertices of G so that vertices are adjacent if and only if some vertical segment links their
t-bars without intersecting any other ¢-bar in the representation. The wisibility number
b(G) of a graph G is the minimum ¢ such that G has a t-bar representation. When ¢ is
unspecified, we use the term multibar.

For graphs without large cliques, visibility number tends to be smaller than interval
number, because the upper and lower “sides” of a bar can be used independently to estab-
lish edges. Using the result of [5], we show that every planar graph has visibility number
at most two. (This compares with interval number at most three.)

For other families, our lower bounds arise from an easy lemma involving the maximum
number of edges in N-vertex planar graphs. Combining this with constructions tells us
(within 1) the visibility number for complete bipartite graphs (bicliques) and for cliques.
The visibility number of a biclique K, ,, is roughly half its interval number, but the clique
K,, has interval number 1 and visibility number roughly n/6.

We conjecture that, over graphs with n vertices, visibility number is maximized by
K,. We provide a construction for arbitrary mn-vertex graphs that always uses at most
[n/6] + 2 bars for each vertex. This solves the extremal problem for n-vertex graphs with
an error of at most two. The construction uses the result of Lovasz [4] that every m-vertex
graph can be decomposed into at most [m/2| paths and cycles.

2. PLANAR GRAPHS

We solve the extremal problem for planar graphs by expressing an arbitrary planar
graph as the union of two bar visibility graphs.



REMARK 1. b(GUH) <b(G) + b(H).
Proof: Bar visibility representations of G and H can be placed in disjoint vertical strips
to represent G U H. [ |

THEOREM 2. Every planar graph has a 2-bar representation in which all vertices other
than cut-vertices are assigned 1-bars.

Proof: If H is a disjoint union of planar graphs having at most one cut-vertex in each
component, then the result of Tamassia and Tollis [5] yields b(H) = 1. We express an
arbitrary planar graph G as the union of two such graphs, which we call Gy and G.

Begin with G and G; empty. Choose an arbitrary vertex v € V(G) as a root. Place
the union of all blocks containing v into Gy, and mark v finished. Proceed iteratively as
follows. For each unfinished vertex added to G; on the previous step, add to G;_; the
union of all blocks of G that have not yet been placed, and mark the vertex finished.
Continuing in this breadth-first manner through the blocks of G decomposes G into two
subgraphs.

At each phase when a new subgraph consisting of pairwise disjoint “stars of blocks” is
added to G, the new subgraph is disjoint from the earlier subgraphs added to G;. Thus
each component of G; has at most one cut-vertex, and the two graphs Gy, G are bar
visibility graphs. [ |

The minimal planar graphs that are not embeddable with every vertex on a single
face are K4 and K5 3. Adding a pendant edge at each vertex of such a graph produces a
planar graph that is not a bar visibility graph. Thus Theorem 2 is sharp.

3. BICLIQUES (COMPLETE BIPARTITE GRAPHS)

Our subsequent lower bounds use an easy counting argument.

LEMMA 3. The visibility number of a graph G with n vertices and e edges is at least
(e +6)/(3n). If the graph is triangle-free, then b(G) > (e +4)/(2n).
Proof: Consider a t-bar representation of G. The total number of bars used is N < nt.
In the plane, add one vertical segment joining each pair of bars that see each other. Now
shrink each bar so that it becomes a single point. The added segments remain, covering
the edges of G. The result is a planar graph G’ with N vertices and at least e edges. Since
it also has at most 3N — 6 edges, we have the desired bound.
If G is triangle-free, then the graph G’ will also be simple and triangle-free after we
contract all edges joining bars for the same vertex of G. Now G’ has at most 2N — 4 edges,
and again these cover all edges of G. ]

Lemma 3 yields b(K,, ) > [;%"j’;] Trotter and Harary [6] proved that i(K,, ) =

[";L"—_:;ﬂ Our lower bound for b(K,, ) always equals [i(K,, ,)/2] or [i(K, )/2] +1. By
using the tops and bottoms of bars separately, we prove constructively that the visibility
number of K, ,, is within one of our lower bound. Our construction is motivated by the

Trotter-Harary construction for i(K,, ).
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THEOREM 4. If r = [322487 then r < b(Kp ) <7+ 1.

Proof: We construct an r + 1-bar representation of K, ,. We may assume that m > n,
with partite sets X = {z1,..., 2z} and Y = {y1,...,y,}. Let s=|(n—1)/2] — 7.

As m grows, r increases to [n/2]. We construct a representation using [n/2] bars for
each x; and one bar for each y; by arranging the bars for Y as a horizontal sequence of
vertical pairs and separating each pair vertically by a set of bars for X.

Therefore, we may assume that r < [n/2]—1= [(n —1)/2]. Since (mn+4)/(2m+2n)
increases strictly with m (for n > 2) and equals (n — 1)/2 when m = n?> — n — 4, we may
assume that m < n? —n — 3.

We construct a multibar representation using (up to) r + 1 pairs of rows of bars for
vertices of Y. In each pair of rows, the top row has bars for y1,. ..,y /21, and the bottom
row has bars for the remainder of Y. In each row, the ith bar extends horizontally from
i — 1 to i, except that when n is odd the bar for y, extends from (n —3)/2 to (n+ 1)/2.

The bars for X also form rows, with a row for some of X between successive rows for
Y. In Fig. 1, the bars have been shrunk for clarity within rows; the overlap of half-open
bars is such that each bar sees only bars for vertices of the opposite partite set in the two
nearest rows. Each bar for z; sees two bars above it and two below it, except that when
n is odd the rightmost bar in each row for X sees bars for only three vertices of Y.
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Fig. 1. Part of a 4-bar representation of Ki311; s =2 and r = 3.

Reading from left to right within successive rows for X from top to bottom, we alter-
nate x1,x9 until we have s bars for each, then we alternate x3, x4, etc. These bars need
2s |m/2] positions. In each of up to 2(r+1)—1 rows, there are [n/2] —1 positions available.
We thus require that 2s |m/2| < |(n —1)/2] (2r + 1). Proving that ms < (s +r)(2r + 1)
will show that there are enough locations for these bars.

Because mn + 4 < 2r(m + n), we have m(n/2 —r) < rn — 2. When n is odd, this
inequality becomes m(s+1/2) < r(2s+2r+1) —2. Since r(2s+2r+1) < (s+7r)(2r+1),
the desired inequality holds. When n is even, the known inequality becomes m(s + 1) <
2r(s+r+1)—2. Since 2r(s+r+1)—=2=(s+7r)(2r+1)+r —s—2 and m > r, again
the desired inequality holds.

If the available postions are not all needed, we discard the later bars for Y to avoid
visibilities between vertices of Y. If m is odd, we add one long bar for z,, at the top and
another at the bottom; together these see all of Y. If m is odd and the bottom row of
intervals for Y was deleted, then we can put it above the top bar for z,, instead.



For x1,...,22),/2], we have established visibility to 4s or to at least 4s — 1 (if n is
odd) vertices of Y. These visibilities involve distinct vertices of Y, because m > n implies
that r > [n/4], and hence s < [(n — 3)/4]. With r 4+ 1 bars allowed per vertex, we have
r+1— s = [n/2] — 2s bars remaining to be assigned to z;. There remain n — 4s (or at
most n + 1 — 4s if n is odd) vertices in Y that z; must see. Picking up two of these with
each remaining bar completes the representation.

The visibilities established so far for x; consist of two strings A, B of consecutive en-
tries in the list y1,...,y,, viewed cyclically. The lists may have length 2s each, or one
may have length 2s — 1 if n is odd and it includes y,,. The ending positions of A and B
are separated by [n/2] or [n/2]. If the last bar placed for x; sees y; and y; at its right
end, then we add a small bar for x; by shrinking the next two bars for X between y;
and y;/ ;1. Continuing in this fashion extends A and B to create the remaining visibilities.
When n is odd, we need two visibilities for each new interval assigned to z; if and only if
x; already sees y,, in the first phase; otherwise x; starts with 4s visibilities and one of the
small intervals seeing y,, picks up only one. |

4. CLIQUES

A surprisingly simple construction for b(K,) produces a representation using at most
one more bar per vertex than the counting bound from Lemma 3.

THEOREM 5. [n/6] < b(K,) < [n/6] + 1.
Proof: Lemma 3 yields b(K,,) > [2z1 + 2| = [n/6]. For the upper bound, we first reduce
to the case where n is divisible by 6. In a visibility representation of a clique, deleting the

bars for a vertex cannot introduce unwanted visibilities, since all visibilities are wanted.
Deletion also cannot destroy visibilities. Hence b(K,,_1) < b(K,,).

Now let n = 6m. We partition the vertex set into three sets Ay, As, A3, each of size
2m. A clique with 2m vertices has a decomposition into m spanning paths, consisting of
the m rotations of a zig-zag path when the vertices are placed around a circle (see Fig. 2).

Fig. 2. Path decomposition of K,,.

Our visibility representation of K, consists of 3m isomorphic modules. Each module is
a bar visibility representation of the join P, V2K;, using one bar per vertex. We represent
the path by a staircase of bars, each of which sees the bar before and after it. We add one
long bar above and one long bar below; each sees the entire path (see Fig. 3).



Fig. 3. Bar visibility representation of P,, V 2Kj;.

To each of the m paths in the decomposition of A;, we assign two vertices in A;4;
(indices modulo 3). This produces m pairwise edge-disjoint copies of P, V 2K;. Their
union covers A; and all edges from A; to A;11. Doing this for each A; yields 3m modules
whose union represents K,,.

A vertex of A; appears in each path drawn from A;, and it appears once as a top or
bottom bar in a module for a path in A; ;. Thus each vertex is assigned m + 1 bars. R

Example 6. b(Kg) = 2. A graph represented with one bar per vertex must be planar,
so the upper bound of Theorem 5 cannot be improved when 5 < n < 6. However, it can
be improved when 7 < n < 9.

When we allow only two bars per vertex, it is possible that we use the first bar for
each vertex in one vertical strip and the second bar in another. This would express the
graph as the union of two planar subgraphs: thickness 2. The graph Kg has thickness 3.
However, the flexibility of putting the representation for one subgraph above the other and
thereby obtaining an extra edge yields b(Kyg) = 2 (see Fig. 4).
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Fig. 4. 2-bar representation of K.

5. n-VERTEX GRAPHS

When bounding the visibility number of an n-vertex graph G, it is tempting to use
Remark 1 and express G as a union of planar graphs, since planar graphs have visibility at
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most 2. When n is not 9 or 10, every n-vertex graph is the union of at most |(n + 7)/6]
planar graphs, with equality for cliques (see [1] for n Z 4mod 6, with the remaining case
settled through the work of many authors). This yields about n/3 as an upper bound on
visibility number of n-vertex graphs. Using planar graphs whose cut-vertices lie on one
face, which seems feasible, could eliminate the factor of 2 between this and the lower bound
in Theorem 5.

Instead, we generalize the construction in Theorem 5 to prove directly that b(G) <
[n/6] + 2. The construction in Theorem 5 establishes each edge once, but it is difficult to
modify it to delete an arbitrary set of edges. For example, let u, v, w appear consecutively
on some path in the decomposition of A, and let ¥, z be the vertices of Ay whose bars
surround this path. By extending u or w, it is possible to block v from seeing y or z. By
deleting the bar for v and extending those for v and w to the same vertical line, we can
delete all these edges. However, how can we delete vy, vz, uv and keep vw?

If all edges of the path in A were present, then we could delete arbitrary edges to y
and z by extending the bars for vertices on the path. If #; is the maximum number of paths
needed to partition the edges of a k-vertex graph, we could thus obtain b(G) < lns3 + 1.
Gallai [3] conjectured that ¢, = [k/2], which would yield b(G) < [n/6] + 1.

We do almost as well by using the result of Lovész [4] that every k-vertex graph can be
decomposed into |k/2] paths and cycles. Each vertex of odd degree must be an endpoint
of some path in such a decomposition. Thus the decomposition must consist entirely of
paths when G has at most one vertex of even degree.

THEOREM 7. If G has n vertices, then b(G) < [n/6] + 2.

Proof: By adding isolated vertices, we may assume that n is divisible by 6. Let n = 6m,
and again partition V(G) into sets Aj, As, Az of size 2m. To G[A;], add one vertex w
adjacent to all vertices with even degree in G[A;]; call this graph G). Since G has at most
one vertex of even degree, G} has a decomposition into |(2m + 1)/2] = m paths.

To each such path P, we assign two vertices of A;11. We design a module for our
representation that establishes all the edges of P contained in G and all the edges of G
joining A; with these two vertices of A;;1. In each such module, we use one bar for each
vertex of A; and two bars for each of the two special vertices of A;,1. Doing this for each
i and each P in the decomposition of G} produces a visibility representation with m + 2
bars per vertex (see Fig. 5).

Let I, be the bar (or two) to be assigned to v in such a module. Let y, z be the two
special vertices of A;,1. We begin by representing P as a staircase of bars, with a bar for
y underneath and a bar for z above. The edges on P that don’t involve the dummy vertex
w belong to G, so we never need to block these visibilities. Erasing I,, will produce a gap
that may cause us to break I, and I,.

Begining at the upper right end of P, which is also initially the right end of I, we
block visibilities between y and P as needed. When the current vertex v of P is not
adjacent to y, we extend the bar for the next lower vertex of P to the right end of the
current I,. If the last vertex v before w is not adjacent to y, then we cannot extend a
lower bar to block I, from I; instead, we break I, and shorten the left end of the right
portion to the right endpoint of I,,.



Having arrived at I,,, we delete it; the staircase was built so that the bar for the vertex
u after w on P does not see the bar for the vertex v before w on P. We now continue
blocking vertices in the rest of P from seeing I, as needed, in the same manner as before.
Visibilities up to I, are corrected in the symmetric manner, working from the bottom left
end of P.

We still must consider the vertices of A that do not belong to P. Each such vertex is
adjacent to neither, one, or both of {y, z}. Vertices adjacent to neither can be ignored; we
need add no bar. For each vertex adjacent only to y, we add a bar at the right of P; none
of these see each other, and I,, extends to the right to see them all. Similarly, the bars for
vertices of A — V(P) adjacent only to z can be added at the left of the bars for P.

For vertices of A — V(P) adjacent to both y and z, we add a bar in the gap between
the left and right portions of P that was left by deleting w. Together they fill this gap so
that I, does not see I,. The left portion of I, and the right portion of I, see these bars.
If there are no such vertices adjacent to both y and z, then we shorten the left portion of
I, and the right portion of z so that they won’t see each other.

We have established and/or deleted all the desired adjacencies, using the desired num-
ber of bars for each vertex. [ |

Y Y

Fig. 5. Module for multibar representation of general graph.
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