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Filtered-Variate Prior Distributions
for Histogram Smoothing

James M. DICKEY and Thomas J. JIANG

We develop prior distributions for histogram inference favoring smooth population frequencies; that is, probability vectors with
small differences for neighboring categories. We give a theory of prior-random probability vectors representable as a linear
transform, or "filter," of a standard random probability vector, or equivalently, a random weighted average of nonrandom smooth
probability vectors. Promising methods of prior assessment are given based on elicitation of a list of typically smooth probability
vectors, the empirical moments of which can then be matched by the mean vector and variance matrix of a constructed continuous
type filtered-variate prior distribution.

KEY WORDS: Bayesian smoothing; Carlson function; Generalized Dirichlet distribution; Generalized hypergeometric function;
Multinomial distribution; Multinomial estimation.

(1)

1. INTRODUCTION

How can a statistician effectively model a subject-matter
expert's prior partial belief in local smoothness of the un
known sampling probabilities of histogram categories? That
is, how can a joint prior distribution be chosen to give high
prior probability to the event that the sampling probabilities
are "smooth," that neighboring categories have probabilities
close in value? Equivalently, how can one arrange low prior
expected squared differences between neighboring category
probabilities? The categories may refer to grouping inter
vals, for example, and their probabilities may be the inte
grals of a relatively smooth, but otherwise unknown, den
sity function. This problem is important for a wide range
of applications, from uses of one-way histogram data to
medical diagnosis, optical image processing, and other uses
of multidimensional histograms. The problem has been im
portant for decades (see, e.g., Dickey 1968a; Vardi, Shepp,
and Kaufman 1985). In its extreme form, with an infi
nite or continuous set of categories, it is the problem of
Bayesian nonparametric inference, a major embarrassment
to Bayesians (L. J. Savage, personal communication, 1970).
A review of the literature would be overly lengthy here,
but the reader may find interest in the discussions and cita
tions of de Finetti (1935), Diaconis and Freedman (1986),
Dickey (1968a), Lenk (1988), Leonard (1978), and Titter
ington (1985).

In its finite form, the problem can be set out as follows.
A vector will be called a probability k vector if each of
its k coordinates is nonnegative and the coordinates sum
to unity. Denote the simplex of probability k vectors by
~(k) C R k , and let 8 = (01, ... , Ok) be a probability k
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vector, the coordinates of which comprise the probability
masses of the unknown parent distribution of a sampling
process with k categories. As called for by Dickey (1968),
families of prior distributions for 8 are needed that will
have the following four properties, in addition to giving
unit probability to ~(k):

1. The family must be large enough to allow a choice ac
curately expressing the real predata expert uncertainty con
cerning 8. In particular, prior distributions favoring smooth
values of 8 should be available.

2. Situationally appropriate assessment methods should
facilitate the choice of a meaningful member of the family.

3. Following the arrival of new statistical data, Bayes
theorem calculations should be simple to carry out.

4. The resulting posterior distribution of 8 must be
tractable, in that one can easily compute inferentially useful
summaries of the posterior distribution.

We propose a family of prior distributions on ~ (k), to
gether with practical methods for their assessment, satisfy
ing these requirements. To appreciate difficulties and estab
lish notation, consider iid sampling from a finite distribution
having a probability mass function, 8 = (01, ... ,Ok) E ~(k),

with probability ()i assigned to the ith category (x = i, say),
P (x = i!8) = Oi, for i = 1, ... , k. Under noninformative
stopping (Raiffa and Schlaifer 1961, sec. 2.3), the category
counts n = (nl' ... , nk) suffice for the likelihood function
from a sample sequence x = (Xl, ... ,XN) stopped at N,

k

p(N, x18) <X IIOr; == Ln(8),

i=l

where n+ = N (defining n+ == nl + ... + nk). (The propor
tionality is taken with respect to 8). For example, if the sam
ple size N is prespecified, then (nI8) rv multinomial(N, 8).
The usual conjugate family of prior distributions for likeli
hoods (1) is the Dirichlet, 8 rv D(b), b = (bl , ... , bk), each
o ::::: b, ::::: 00, having the density (if each 0 < b, < 00),
p(8) = B(b)-1I1~=10~;-1,8 E ~(k), where B(b) =
[I1 f(bi)Jjf(b+). The k coordinates identically sum to unity,
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()+ == 1, and the density is the same for every choice of
k - 1 coordinate variables; for example, ()1,"" ()k-l. The
resulting posterior distribution would again be Dirichlet,
61N, x '" 61n '" D(b + n), with the updated parameter
vector b + n.

The general dth mixed moment of 6 '" D(b), for d =
(d1 , ... ,dd, is E f17=1 ()t i = h(d; b), where

h(d; b) = B(b + d)/B(b). (2)

combination of the prior mean and the usual maximum
likelihood estimate. But the family of normal distributions
is closed under linear operations on the random vector,
and so a normal prior distribution can be assigned an ar
bitrary prior covariance structure, say var(p.) = V JL' In
obvious notation, E(p.I{L) = (I - U){L + UE(p.), with
1 - U = VIl(VIl + V iL11l ) - 1 and U = ViLlll(VIl + V iLl ll )- I.
As noted by Titterington (1985), the difference of posterior
mean (mode) coordinates can be written as

So the mean vector and variance matrix are E6 = w, where
W = b/b+, and var(6) = (b++1)-I[diag(w)-wwT

] , where
diag(w) is the diagonal matrix with ith diagonal entry Wi,
and (taking vectors as column arrays) wwT denotes the
k x k matrix of i,jth entries WiWj' Distributions on the
probability simplex in which the first two moments are re
lated proportionally through such a matrix quadratic func
tion, with the multiplier (b+ + 1)-1 generalized to an ar
bitrary constant, will be defined as having mean-structured
variance (MSV).

Prior expected squared differences can be written as
E[(()i - ()j)2] = [E(()i) - E(()j)f + [var(()i)+ var(()j)] - 2
COV(()i, ()j). So a high positive prior correlation of adjacent
or near-neighbor category probabilities is desirable, to have
a small expected squared difference, to express a prior be
lief in local smoothness. Then the nonsmooth character of
Dirichlet distributions is revealed by their moments, ev
ery correlation from such a variance matrix being neces
sarily nonpositive: corr(()i, ()j) = -{[w;/(l- Wi)]' [Wj/(l
Wj) 1P/2. Because the posterior distribution from a Dirichlet
prior is again Dirichlet, the posterior moments are similar
in character to the prior moments. Both prior and posterior
correlations are nonpositive between every pair of category
probabilities, and this is true of the posterior distribution no
matter how smooth the data (or even the posterior mean)
may be.

The Dirichlet posterior mean can be written as an estima
tor that shrinks the usual unbiased maximum likelihood es
timate, 0 = n/N, toward the prior mean point w, E(6In) =

(l-u) O+uw, where u = b+/(b++N). Ifthe prior mean w
is smoother than 0, then so is the posterior mean, and thus
we would have a "smoothed" estimate. However, as recog
nized by Good and Gaskins (1971, 1980), such smoothing
by scale-shrinkage is global rather than local, in the sense
that the differences between neighboring probabilities are
diminished to no greater extent than are the nonneighbor
ing differences. Indeed, the effect of this global smoothing
in a posterior mean difference, E( ()i In) - E( ()j In), depends
only on the corresponding prior mean difference Wi - Wj
and not on the distance between categories (e.g., Ii - jl),
because E(()i In) - E(()j In) = (1- U)(Oi - OJ) + u(Wi - Wj),
for all i, i. where the weights 1 - u and u are independent
of i, j. If the prior mean is smooth, then ui; - Wj in the
second term is close to 0 for short distances Ii - jl, but
ui, - Wj may also be close to 0 for various longer distances.
A similar situation holds for the posterior mode.

In multivariate-normal sampling, however, with a con
jugate multivariate-normal prior, the posterior mean and
mode are the same point, and this point is a matrix-convex

E(/lil{L) - E(/ljl{L)

= (Di,jVIl)(VIl + V iL 11l)-I{L

+ (Di,jViLlll)(VIl + V iL11l)-IE(p.), (3)

where the operator Di,j yields the difference between the
ith and jth row vectors, Di,j V = (ViI - Vjl,"" Vik - Vjk).
By (3), we see that normal-theory smoothing can be truly lo
cal, in that a gently varying prior variance-covariance would
mean a small difference between the ith and jth row vec
tors of V 11 for a short distance Ii - j I, and thereby a small
effect from the local differences in the data {L through the
first term of (3).

Lenk (1988), Leonard (1973), and others achieved local
smoothing of histogram data by modifying and exploiting
the normal conjugate theory. A nonlinear (logistic) change
of variable on a multivariate normal vector was used to
guarantee prior certainty for the event that all the category
probabilities are nonnegative and sum to unity. (See Good
and Gaskins 1971, 1980 for related methods.) As an alter
native theory, we will work directly with a linear transform
or "filter" of a Dirichlet or other MSV random vector, the
support set of which naturally will lie within the probability
simplex. Unlike the normal distributions, however, a class
of MSV distributions is not closed under linear transforma
tions of the vector variate. The density of a linear transform
is complicated, and if such a density were used as the prior
density for multinomial sampling, then the posterior density
would be even more complicated. But we shall succeed in
using the distribution of a linear transform of an MSV vec
tor as the prior distribution of the category probabilities by
maintaining the untransformed MSV random vector as the
variable of integration of the prior and posterior density
functions. Both the prior and the resulting posterior dis
tributions will then be tractable. The posterior mean, and
sometimes the posterior mode, will be computable as esti
mates, together with other inferential summaries and prop
erties of the prior and posterior distributions.

In Section 2 we formalize the concept of linearly filtering
a random vector to obtain a "filtered-variate" generalization
of its distribution for prior local smoothness. In Section
3, we develop the filtered-variate Dirichlet family of prior
distributions and their consequent posterior distributions.
The corresponding posterior family will be a filtered-variate
form of Dickey's (1983) generalized Dirichlet distribution.
In Section 3 we also give the inferences read from the poste
rior distribution for smoothed estimation and for hypothesis
comparison.

A central problem of this research is how to choose
or "assess" a specific filtered-variate prior distribution. A
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Dickey and Jiang: Prior Distributions for Histogram Smoothing 653

2. FILTERED-VARIATE DISTRIBUTIONS

We obtain a random probability vector (J in ~ (k) by defin
ing (J as a linear transform of a "standard" random proba
bility vector a in ~ (m). Let

promising line of approach was found by viewing the
filtered-variate Dirichlet as a filtered-variate MSV distribu
tion. The crucial property of a filtered-variate MSV is that
the low-order moments can be expressed in terms of the
corresponding moments of a finite distribution on the set of
column vectors of the filter matrix. This will enable the elic
itation of expert prior opinion in the form of a list of typi
cally smooth probability vectors, which can then be linearly
transformed, or "dilated," to serve as the column vectors in
the filtering matrix, thereby yielding a filtered-variate prior
distribution having first- and second-order moments identi
cal to the empirical moments of the assessed list of typical
vectors. The theory of general MSV distributions and their
filtered-variate forms is developed in Section 4, and used for
prior assessment in Section 5. In Section 6 we give simple
examples of the assessment and use of filtered-variate priors
in histogram smoothing problems. We conclude in Section
7 by mentioning generalizations to a continuous sampling
variable and/or continuous-type random mixing measure.
We provide the relevant proofs in an Appendix.

(J = Go, (4)

bility vector for every realization of a, and in particular
for each unit-coordinate point, Qj = 1,Qj' = 0 (all j' f- i).
we have the following result.

Lemma 1. If the support of the underlying random prob
ability m vector a includes the extreme points of ~ (m) ,

then the requirement that the support of (J (4) be contained
in ~(k) is equivalent to the requirement that each column
vector gj of G be a probability k vector.

Thus we assume that all entries of G are nonnegative and
each column sums to unity. That is, the fixed matrix G is
what is called a (singly) stochastic matrix. If the support
set of the random weights a is the full probability simplex
~(m) (e.g., if a", D(a) and for each parameter coordinate,
o< aj < 00), then the support set of random (J is the full
convex hull of the (fixed)column vectors of G, CHull(G), a
convex polytope and subset of ~(k). The vertices or extreme
points of CHull(G) are column vectors of G, but not all
columns of G need be vertices. The polytope CHull(G)
would be a complicated range to work with if one tried to
develop and use a density for (J, with only the case k = m
with nonsingular G being simple. The only densities that
we use are densities of the weights vector a, whose support
is chosen to be the full probability simplex ~(m). Note that
our focus here is on statistical inference about (J = Go, and
not about a or G, so no problem of identifiability can arise
from a choice of lower rank for G. But, as with any prior
distribution, the support CHull(G) should include, or nearly
include, the so-called "true" value of the parameter (J.

where G(k x m) is a constant matrix and the proba
bility m vector a (column) has a specified distribution.
Then (J will be said to have a filtered-variate form of
the distribution of a. If a has a Dirichlet distribution,
a", D(a),a = (al, ... ,am ) , then (J has e filtered-variate
Dirichlet distribution. Denote the distribution of (4), where
a '" D(a), by (J '" FcD(a). (This distribution is in no
way a "mixture of Dirichlet distributions," because there
is only one Dirichlet distribution involved.) What are es
sentially one-dimensional filtered-variate Dirichlet distribu
tions were studied by Bloch and Watson (1967), Cifarelli
and Regazzini (1990), Diaconis and Kemperman (1996),
Dickey (1983), and Jiang (1984, 1988). Properties in ar
bitrary dimensions, including results on the density, were
given by Dickey, Garthwaite, and Bian (1995). The Dirich
let distribution D (a) itself is the special case F[D (a).

It is instructive to interpret a filtered-variate distribution
(4) in two ways:

1. Each coordinate of (J is a linear combination (or "fil
ter") of the coordinates of the random vector a, ()i =
gi,IQI + .,. + gi,mQm, each i = 1, ... , k. Hence our use of
the compound adjective "filtered-variate" for the random
vector (J. The variate is filtered rather than the distribution,
as would be the case with a mixture of prior distributions
or a density transformed by an integral operator.

2. The vector (J is a weighted average of the fixed col
umn vectors of G, with random weights a. For an ar
ray of column vectors, G = (gl,.'" gm), write (J =

QIgI + .,. + Qmgm' Because (J will need to be a proba-

3. STATISTICAL INFERENCE

3.1 Bayes Theorem

The posterior density of the weights p(aln) is propor
tional to the product of the prior density p(a) and the like
lihood (1) rewritten as a function of a, Ln((J(a)). We give
details for the case of a prior-distributed Dirichlet.

Theorem 1. The likelihood (1) for iid sampling from a
finite distribution with unknown probability vector (J, to
gether with the filtered-variate Dirichlet prior distribution
(J '" FeD (a) on ~ (k), yield the posterior filtered-variate
distribution (Jln '" FeD (a, G T , n), in which again (J = Go,
but a has the posterior generalized Dirichlet distribution
aln '" D(a,GT,n), defined by the density on ~(m)

p(aln) ~ (B(a)-' fi0;'-')
x D, (~Oj9'jrj1Jl(a, G'',-n). (5)

The normalizing constant in the density (5) is a special
case of Carlson's (1971) symmetrized multiple hypergeo
metric function, R(a, G T

, -n) = Rn + (a, G T , -.n), (Note
the difference in sign between the final parameters in our
notation for the distribution, D(a, G T , n), and Carlson's
function.) This function is the complete integral of the nu-
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merator of (5), a Dirichlet expectation of the likelihood, that
is, the Bayesian prior-predictive probability.

Corollary 1. If 0 ...., FeD (a), then the prior predictive
probability of a sample sequence x with frequency counts
n, for fixed N =0 n+, is p(x) = ELn(O) = 3?(a, G T , -n).

The posterior distribution of the category probabilities 0
is induced by the posterior distribution of the weights vec
tor aln rv D(a, G T , n) with density (5). Such generalized
Dirichlet distributions D(a, B, c) were defined by Dickey
(1983) and applied to missing-data problems by Dickey,
Jiang, and Kadane (1987). (The Dirichlet D(a) itself is the
special case, B = 0 or c = 0.) The posterior distribution of
the linearly transformed 0 = Go, 0ln...., FeD (a, G T

, n), is
then a "filtered-variate generalized Dirichlet" distribution.
A family of such distributions is obviously closed under fur
ther sampling from the same sampling distribution: a prior
distribution 0 ...., FeD(a, G T , c) and sample data n would
yield the posterior distribution Oln ...., FeD(a, G T , c + n).

But an even greater generality is available without sac
rificing tractability. Define the filtered-variate generalized
Dirichlet distribution, FeD (a, B, c), as the distribution of
o = Go, where a ...., D(a, B, c). Then such a prior fam
ily is closed under sampling. Writing B = (A, G T ) (with
out loss of generality; e.g., by writing a concatenated list
c = (d,O», obtain the posterior distribution from the data
n with likelihood (1), as Oln ...., FeD(a, B, c + n"}, where
the concatenated list n« = (0, n).

We give further details regarding the posterior distribu
tion of the weights a in the case of a Dirichlet prior for
a. The generalized Dirichlet posterior distribution, (3.1), is
tractable in several senses. (For additional properties, see
Dickey, Garthwaite, and Bian 1995.)

Corollary 2. From (5), the posterior cth mixed moment
of a, for c = (el,"" em), is proportional to a ratio of
Carlson functions,

= h(c; a)3?(a + c, G T
, -n)/3?(a, G T

, -n). (6)

The proportionality factor h(c; a) is the corresponding prior
Dirichlet cth moment (2).

Carlson's functions can be calculated easily with a micro
computer by multinomial expansion for small to medium
N, Laplace's asymptotic method for medium to large N, or
Monte Carlo in a ...., D(a) on ~(m) (for details, see Jiang,
Kadane, and Dickey 1992). Typically, in histogram smooth
ing problems, one would use either Laplace or Monte Carlo
methods. We use Monte Carlo for the examples in Section 6.

3.2 Estimates

The posterior mean is an attractive and natural estimate
for O. It minimizes expected squared error and will be
smoother than the raw relative frequencies when the prior
distribution favors smooth probability vectors. But although
the mean tends to be close to true 0, it tends to be smoother

Journal of the American Statistical Association, June 1998

than O. Define the nonsmoothness, or r-roughness, of a vec
tor by the average of its squared r-distant differences,

k-r
Qr(O) = L ((}i - (}Hr)2/(k - r), (7)

i=l

with special interest in adjacent differences, r = 1. Then
the posterior expected roughness exceeds the roughness of
the posterior mean, because E[Qr(O)ln] - Qr[E(Oln)] =
2:~~; var(Oi - 0Hrln)/(k - r) ~ O. In our view, achiev
ing an accurate estimation is usually more important than
portraying the true smoothness, and so we recommend the
posterior mean (or the mode) when the posterior distribu
tion must be summarized in the form of a vector estimate.
But there may be occasions when it is reasonable to quote
an estimate that exhibits a roughness equal to the posterior
expected roughness, an interesting problem for treatment
in future work. Of course, a Bayesian posterior distribu
tion contains more information than a single estimate, and
Bayesian inference is not restricted to the reporting of an
estimate.

The mean of a filtered-variate random vector 0 = Go is
the same linear filter of the mean of the underlying vector
a, E(Oln) = GE(aln). The posterior variance matrix is a
linear function of the posterior variances and covariances of
a, var(Oln) = G var(aln)GT . In the prior filtered-variate
Dirichlet case we have seen, in (6), that the posterior mo
ments of the underlying weights a are proportional to ratios
of computationally feasible Carlson functions. The poste
rior moments of 0 themselves are similarly expressible.

Corollary 3. The posterior dth moment of 0, for d =
(dl , ... , dk ) , is

E((1 of' In) = 3?(a,GT
, -(n + d»/3?(a, GT

, -n). (8)

Hence the first two posterior moments are E((}iln), given
by (8) with d = ()(i)' and E((}iOi'ln), given by (8) with
d = ()(i) + ()(i ')' where ()(i) = (lSil, ... , lSik), with lSii = 1
and lSij = 0 all j i=- i. Equation (8) also gives the posterior
predictive probability p(yln) of any specific further sample
sequence y with frequency counts d.

The linear relation between the posterior means of 0
and a does not depend in any way on the rank of the fil
ter matrix G.· When G is nonsingular, the posterior mode
also can be conveniently calculated as the linear filter of
the posterior mode of a, modeie]n) = G modeto]n).
because in this case the posterior densities of 0 and a
are directly proportional. To appreciate that nonsingularity
of G would be needed for such invariance of the poste
rior mode, note that, unlike the mean, a mode is not pre
served under marginalization (a singular linear transforma
tion). For example, in the case of a Dirichlet distribution,
(al, ... ,ak)...., D(a,b, ... ,b), where a > 1,b > 1, we have
the vector mode(al,"" ak-d = (a - 1, b - 1, ... , b - 1)/
(a + (k - l)b - k), but because al ...., beta(a, (k - l)b), the
scaler modeto-) = (a - l)/(a + (k - l)b - 2), which is not
equal to the first coordinate of the joint mode.
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Dickey and Jiang: Prior Distributions for Histogram Smoothing 655

Our interest is in random probability vectors. So, if y has
nonnegative coordinates Yj 2: 0, and has moments (9) with
J.L+ = 1, we shall say that y has a distribution with MSV
and write

j = 1, ... , m. More generally for 0 :::; c :::; 1, z has the first
two moments E(z) = E(z), and var(z) = c var(z), where z
has the distribution P.

Corollary 5. If z ......, D(a) with a = a+u, then the limit
ing distribution of z, as a+ .j. 0 (as c = (c., + 1)-1 t 1), is
the finite distribution P (11).

4.2 Filtered-Variate Mean-Structured-Variance
Distributions

We tum again to the idea of filtering a random probability
vector, keeping in mind that for a filtered-variate Dirichlet,
the underlying Dirichlet distribution is MSV. Consider the
random vector 0 = Ga and assume that a ......, MSV(u, c)
(requiring 0 :::; c :::; 1). Then we say that the induced dis
tribution of 0 is filtered-variate mean-structured variance
(FMSV) and write 0 ......, FcMSV(u, c). Again, 0 has a dis
tribution supported on a subset of CHull(G), the convex
hull of the set of column vectors of G. Our limiting case
of an MSV distribution, P (11), implies a finitely supported
limiting case Pc, for the corresponding FMSV distribution.
For 0 ......, FcMSV(u, c), as c t 1,0 has the limiting distribu
tion Pc finitely supported on the set of column vectors of
G = (gl,'" ,gm),

(11)

(10)s r- MSV(p" c).

Such y thus is restricted to D.(m). Among others, the nor
malized multinomial and the Dirichlet are MSV distribu
tions: (a) If z = (ZI,"" zm) ......, multinomial(N, cP) and
y = zfN, then y ......, MSV(cP,N-1 ) ; (b) If y ......, D(a) on
D.(m), with a = a+u, then y ......, MSV[u, (e., + 1)-IJ. The
corresponding Dirichlet-multinomial distribution (by tak
ing cP ......, D(a) is also in this class, y ......, MSV(u, c), with
c = N- 1 + (c., + 1)-1 - [N(a+ + 1)]-1. (This is true for
any MSV mixture over the mean of a conditionally MSV
distribution.) MSV distributions are of interest in their own
right, and an account of their properties will be published
elsewhere. (Related properties in one dimension were stud
ied by Bar-Lev and Enis 1986.) These distributions have a
simple limiting case that will be useful in our methods of
assessment of uncertainty as a filtered-variate MSV distri
bution.

Theorem 2. If z r-- MSV(u, c) on D.(m), then 0:::; c :::; 1.
As c t 1, z takes the limiting distribution MSV(u, 1), the
(unique to u) finite distribution P supported on the set of
vertices of the probability simplex D. (m) ,

4.1 Distributions with Mean-Structured Variance

Lemma 2. Suppose that a random vector y
(Yl, ... ,Ym) has the first two moments,

3.3 Comparison of Hypotheses

Posterior "scientific reporting" was defined by Dickey
(1973) to require the communication (e.g., by table or
graphical display) of the dependence of the inference on
the prior distribution meaningfully interpreted in real prob
lems. Bayesian comparative judgement of hypotheses is
based on the posterior odds for one hypothesis versus an
other, P(H1Ix)/P(H2Ix), given observed data x. The evi
dence in the statistical data x relevant to such a judgment
is summarized through the Bayes factor, the ratio of the
posterior odds to the prior odds, reportable even without a
choice of prior odds. The Bayes factor can be calculated
from the data and the conditional prior distributions given
each of the two hypotheses, as the ratio of the two con
ditional predictive probabilities (or densities) of the data,
[P(H1Ix)/P(H2Ix)JI[P(H1)/P(H2 )J = p(xIH1)/p(xIH2 ) .

Such a predictive probability conditional on a hypothesis
Hi is the integral function of the conditional prior distri
bution, p(xIHi ) = Jp(xIO) dP(OIHi ) . In Corollary I we
obtained the predictive probability of a sample sequence,
x = (Xl,oo.,XN), under a filtered-variate Dirichlet prior
distribution. An ordinary Dirichlet prior distribution would
have the predictive probability hen;b) (2). Thus the Bayes
factor for comparing our models for histograms is just a
simple ratio involving Carlson functions. For example, we
obtain the following from Corollary 1.

Corollary 4. The Bayes factor in favor of the point null
Ho: (J = (Jo versus the composite alternative HA: 0 i= 00

under the filtered-variate conditional prior OIHA ......, FcD(a)
is (I17=1 (}~ii )/~(a, GT

, -n).

4. MOMENTS OF FINITE AND CONTINUOUS-TYPE
DISTRIBUTIONS

In many situations, smooth category probabilities are
considered likely, and the specification of a prior distri
bution favoring smooth values is desired. But how can
one choose a particular filtered-variate distribution to ex
press particular prior opinion about smoothness? Here
we propose methods involving the specification of typical
category-probability vectors and the prior matching of their
empirical moments. Toward this end, we first develop a gen
eral theory of distributions on the probability simplex hav
ing a structured variance matrix depending quadratically on
the mean vector. This is followed by a second-order repre
sentation theory for filtered variates of such distributions,
which can be used to achieve a continuous-type prior dis
tribution with moments matching the empirical moments of
the list of typical vectors.

Ey = p" (9) j = 1, ... ,m. (12)

for some fixed vector (vertical array) p, = (J.Ll, ... , J.Lm) and
scalar c 2: O. Then for 8 = 0, 1, separately, Y+ = 8 with
probability I iff J.L+ = 8.

The finite support of Pc includes the extreme or vertex
points of CHull(G). Using Theorem 2 and the relations
E(O) = GE(a), var(O) = G var(a)GT, we express the
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low-order moments of an FMSV distribution in terms of
its limiting moments.

Corollary 6 (Proportional Moments). If 0 '" FcMSV
(u, c) and Oc has the finite distribution Pc (12) sUPI:?0rted
on the set of column vectors of G, then E(O) = E(fJc) =
g and var(fJ) = e var(Oc) = eS g , where the u-weighted
discrete averages, g = Gu = L:Ujgj and Sg = (G
gl~)Tdiag(u)(G- gl~) = L:Uj(gj _ g)(gj - g)T.

5. PRIOR ASSESSMENT

If we define prior smoothness by small prior expectation
of a quadratic quantification of roughness, say Qr (0), then

k-r

E[Qr(O)] = Qr[E(O)] +L [var(Bi ) + var(Bi+r)
i=l

- 2 cov(Bi , Bi+r)]/(k - r ), (13)

interest focuses on the low-order moments of 0, which can
be controlled by use of the following theorem. Because a
continuous-type distribution fJ '" FcMSV(u, c) in Corol
lary 6 would necessitate the strict inequality 0 < e < I,
such a distribution for 0 cannot have the same moments as
the corresponding finite limiting distribution Pc, for which
e t 1. But the moments of () can be made to match the mo
ments of a finite distribution PH, of which Pc is a dilation.

Theorem 3 (Second-Order Equivalence to a Finite Dis
tribution). If the (filtering) matrix G is obtained as a d
dilation of the (elicited) matrix H,

Journal of the American Statistical Association, June 1998

5.1 Constructing the Prior Distribution

There are many variations on the use of Theorem 3 or
its Corollary 7 to construct a meaningful distribution for
o in various situations. We set out the principles and offer
specific detailed suggestions, but the approach is too new
and the possibilities too rich to advocate, now, a unique
"best" assessment procedure.

To construct a filtered-variate form of prior 0 '"
FcMSV(u, c), one first develops a discrete (finite) distri
bution PH having the desired mean h and the desired vari
ance Sh, and then fine tunes the remaining proportionality
constant d with e = d- 2

, for example, by examining Monte
Carlo samples of 0 for overall suitability to depict the ex
pert's prior opinion. We are not advocating use of the tuning
parameter dto control the extent to which the prior distri
bution favors smoothness. This aspect is controlled largely
by the smoothness of the column vectors of H, as captured
by their low-order empirical moments, matched, for each
value of d, by the corresponding moments of the prior dis
tribution.

For simplicity, it is temptin~ to begin by considering
cases where the random vector fJH is discrete uniform over
its finite support set,

j = 1, ... ,m. (16)

We restrict our discussion to this choice, for which u =
Im/m. Following the specification of "typical-vector"
columns h j for H, a filtered-variate Dirichlet prior distri
bution would be constructed as

(14) (17)

where h = L:Ujhj, the u-weighted average of the columns
of H, and if such G is then used to define the filtered
variate distribution fJ '" FcMSV(u, c), then we have the
proportional moments,

and

2 - 2var(fJ) = cd var(OH) = cd Sh, (15)

where OH has the finite distribution PH with the probabil
ity masses u at the column vectors of H, with mean h and
variance s, = L:Uj (h j - h) (hj - h) T. If the columns of H
are all probability vectors and if d ::; [1 - minj(hi,j/hi )]- l
for each hi > 0, then the columns of G (14) are also prob
ability vectors, and further assuming d ;:::: I, the convex hull
CHull(G) contains the column vectors of H. For choices
ed2 = 1 in (15), the first two moments of the (constructed)
distribution of fJ are equal to the moments of the (elicited)
finite distribution PH, E(O) = hand var(fJ) = Sh. In this
case, the mean roughnesses (13) also match, E[Qr(O)] =

E[Qr(OH)] = L:7~; L:j uj(hi,j - hi+r,j)2 /(k - r).

Corollary 7. Both the limiting distribution (12) and the
moment representation (15) hold for the continuous-type
filtered-variate Dirichlet, 0", FcD(a), a = a+u, with e =
(a+ + 1)-1.

where a = (d2 - 1)/m, with G being the d-dilation (14) of
the specified matrix H.

5.2 Using a Small Number of Elicited Typical Vectors
With Additional Prior Invariance Assumptions

A practical problem arises immediately. The expert may
find it more difficult to devise a whole list of vectors having
prior means and variances as the empirical moments of the
list than just to state a few vectors that are typically smooth.
Enough vectors will be needed to produce a sufficiently rich
convex hull. One obvious solution is to use smoothness
preserving transformations to generate a balanced set of
vectors from just a few elicited typical vectors. For ex
ample, for a one-dimensional histogram with sequentially
numbered categories, i = 1, ... , k, consider a square matrix
H, k x k (m = k), where each point h, = (h1,j, ... ,hk,j) is
a cyclically j-shifted version of a single typical probability
vector t = (h, ... ,tk). That is, for each i, j = 1, ... , k,

(18)

where s = i - j + 1 (mod k). This implies an ergodic prop
erty for PH, whereby the joint distribution of any subset
of coordinates of 0H is identical to their serial distribution
over the cyclic coordinate shifts of any particular possible
outcome vector hj' Then EBi = EOHi = l = l/k, for all i,
and similarly, the variance is a cyclic Toeplitz-form matrix,
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ts,s' ex 1 + sin[ (sBs' - Os,)27rI k]. (19)

and denote the shifted difference vectors, constructed by
shifting t" according to (18), by h; = (hij, ... ,h'k),j =
1, ... , k. (Here 2:tT = 0, and similarly for each vector h*.)
Then if min(tT) + min(pi) ::::: 0, the new vectors, defined by

j = 1, ... , k, are probability vectors. The new list has the
empirical mean, h = L h, I k = p, and the empirical vari
ance matrix, in Toeplitz form matching the serial covari
ances from t*,a-i,i+r == Lst;t;+rlk = f*(r).

In the constant-mean case, the shifts can be applied di
rectly to the typical vectors themselves, because the shifts
have no effect on the mean vector. Finally, in this case, if

a-i,i+r == 2:8 tsts+rlk - U")2 = f(r), for all i, where tk+s
is taken to equal t; Such cyclical translation invariance in
one or more dimensions provides a powerful simplicity, al
though it may need to be corrected in use for unrealistic
edge effects.

Somewhat less simply, one can increase the number of
column vectors m to a multiple of k and include different
shapes or "frequencies" along with the shifts or "phases";
for example,

where 0 has the filtered-variate Dirichlet (prior) distribution
o '" FeD (a), say with a = aIm. (Note that the expectations
on the right side of (22) are taken with the data n fixed,
but not conditioned on.) We use Monte Carlo to compute
the numerator and denominator of (22), because a is small
and m is not small, in the examples. Because 0 = G . Q,

where Q '" D(alm ) , this means pseudorandom sampling
of a Dirichlet vector, with coordinates expressible as ratios
constructed from independent chi-squared variates, OJ =

Xjl L'; Xi, where X j '" X~a' The relative errors in the
computations can be estimated explicitly and they are small
in all of the following examples, with most less than 1%.
(Jiang, Kadane, and Dickey 1992 treated the computation
of R for statistical uses.)

Example 1 (Chondrite Data). The chondrite data of
Ahrens (1965) appeared in continuous form, but it has been
converted here to counts n with k = 10 categories and
total count n+ = 22 (Table 1, column 2). To construct a
prior distribution symmetrically, as in (18), we start with
a single simple vector, t = (1,2, ... ,10)/55. We omit the
dilation step for further simplicity. Then lJ is set up first
to have the discrete uniform distribution over the m = 10
column vectors gj of G, obtained by cyclic shifts of t.

The mean (average) of such lJ is g = IlOIlO, and its vari
ance is the cyclic Toeplitz-form matrix with first row as
given (Table 2). If the expert assesses his or her prior vari
ance of 0 to be c = .5 times this variance of 0 with the
same correlations (so a dilation step would not be needed),
then he or she will have the assessed prior distribution,
0", FcD(allO), with a = (c- 1 -1)/10 = 1/10. The corre
sponding posterior distribution is then provided by Theorem
1 as Oln '" FeD[11O/I0, G T

, n].
To compare our posterior means to other probability esti

mates discussed in this example (Titterington 1985, p. 149),
we include the following estimates (Table 1, columns 3-7):

E[g(O)ln] = E[Ln(O)g(O)]IE[Ln(O)], (22)

o '" FcMSV(lklk, c), with c = d- 2
, where m = k and

G is derived by the dilation (14) from the shifts H on the
single typical vector, ho = 1k I k + t *, then the prior ex
pectation of the r-roughness Qr(0) (7) will be the same as
the empirical serial roughness of the expert's typical vector,
E[Qr(O)] = Li (hi,o - hi+r,o)2/(k - r), in which hk+s,o is
taken to equal hs,o, (Each of the k - r terms of Qr(O) has
the same expected value.)

6. EXAMPLES

We illustrate the theory with three examples. In the first
example, symmetric-prior methods will be used, and the
posterior means of category probabilities will be compared
to other estimates in a data problem studied in the literature.
In the second example, elicited typical vectors are used to
construct the prior distribution, and the posterior means are
compared for different values of the tuning parameter d. In
our third example, we construct the typical vectors from
historical data. In each case we report posterior moments,
computed according to (8), which can be viewed as the ratio
of prior moments, each in the form of Corollary I,

(21)

(20)ho=p+t*,

h, = p + hi,

Table 1. Chondrite Data: Probability Estimates

Silica
Estimation method

percentage Counts A B C D E

20.00-21.60 1 .0455 .0588 .0645 .0664 .0795
21.61-23.20 3 .1364 .1275 .1237 .0796 .0873
23.21-24.80 0 .0000 .0245 .0349 .0561 .0764
24.81-26.40 0 .0000 .0245 .0349 .0665 .0880
26.41-28.00 6 .2727 .2305 .2124 .1508 .1034
28.01-29.60 2 .0909 .0931 .0941 .1041 .1076
29.61-31.20 1 .0455 .0588 .0645 .0848 .1117
31.21-32.80 1 .0455 .0588 .0645 .0969 .1234
32.81-34.40 7 .3182 .2648 .2420 .1894 .1374
34.41-36.00 1 .0455 .0588 .0645 .1055 .0855

Such a frequency-and-phase approach is related to that of
Lo (1984) in the continuous realm.

We suggest that the expert state a characteristic variety
of typical vectors. If he or she avows a symmetry like the
shift-invariance (18), or for some other reason would like
to express a prior distribution of the form E()i == 11k and
COV(Oi,Oi+r) == f(r), then moments of this form can be
achieved by extending the expert's elicited list of typical
vectors to include all their coordinate shifts. Or if a non
constant mean EOi is desired, the shifts can be performed on
the difference vectors, typical vectors minus desired mean
vector, as follows. (As mentioned in Sec. 3.2 in connection
with equation (7), a mean itself should not be considered a
typical vector.) For simplicity, we state results in terms of
a single typical vector ho and the desired mean vector p.

Theorem 4. Given two probability vectors, ho and p,
define the difference vector t" by
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Table 2. Chondrite Data: First Row of Cyclic Variance Matrix for 1J

13.63 6.20 .41 -3.72 -6.20 -7.02 -6.02 -3.72 .41 6.20

NOTE: All entries are to be multiplied by 10-4
.

A, unsmoothed relative frequencies, B, minimum quadratic
risk using convex smoothing prescription (Fienberg and
Holland 1973), C, cross-validation with convex smoothing
prescription and quadratic loss (Stone 1974), D, minimum
quadratic risk using our minimum penalized distance pre
scription (Simonoff 1983), and E, the posterior means using
the constructed smooth prior. The plot of these estimates
(Fig. 1) shows that all the methods B-E smooth away the
zero counts, and method E, leads to more local smoothness
than methods A-D. If the vector t were chosen increasingly
smooth, then the prior and posterior distributions would
both concentrate more closely toward the central vector
1 10 / 10.

Example 2 (Women Categorized by Number of Children.
In 1960, the U.S. Public Health Service interviewed Ameri
can women aged 18-79 years and determined a distribution
of women by number of children born, 0, ... ,9+{9 or more)
(Table 3, column 2; from Freedman, Pisani, and Purves
1978, p. 38). The example treats this parent distribution
as unknown, to be estimated from a sample n. We used the
distribution as the k = 10 multinomial probabilities to gen
erate N = 32 women with the observed sample category
counts n as shown (column 3). Included for comparison is
the maximum likelihood estimate, the sample relative fre
quencies n/32 (column 4).

To construct a prior distribution here, we use the method
of elicited typical vectors. We assume that a subject-matter
expert has assessed the set of m = 10 column vectors of
matrix H, as shown (in Table 4), chosen to be typical for
their local smoothness and to have an empirical mean vector
and variance matrix matching the expert's personal means
and variances of vector 8. (The prior mean h is given in

0.36

I
0.30

"A
,

,I,
0.24

0.18

0.12

0.06

0.00
20.8 22.4 24.0 25.6 27.2 28.8 30.4 32.0 33.6 35.2

Silica percentage (interval midpoints)

Figure 1. Chondrite Data: Probability Estimates. A. Observed fre
quencies; B. minimum risk (Fienberg and Holland 1973); C. cross vali
dation; D, minimum risk (Simono" 1983); E. posterior means.
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Table 3. Distribution of Women by Number of Children Born

Sample
Number of Distribution Sample relative Prior Posterior

children of women counts frequency mean mean

0 .22 5 .15625 .083 .1301
1 .17 3 .09375 .096 .1882
2 .21 14 .43750 .104 .2394
3 .16 0 .00000 .108 .1800
4 .10 6 .18750 .109 .1179
5 .05 3 .09375 .109 .0661
6 .03 0 .00000 .108 .0278
7 .02 0 .00000 .104 .0148
8 .02 0 .00000 .096 .0158
9+ .03 1 .03125 .083 .0198

Table 3, column 5.) Denoting the ith coordinate of h by hi,
the average of entries in the ith row of matrix H, we com
pute mini{[1 - minj(hi,j/hi)]-l} = 1.477. For any value
d between 1 and 1.477, the prior distribution would be
8 '" FcD(a11O), where G follows from H by equation
(14) and a = (d? -1)/10 (17). Using such a prior distribu
tion, we generated 30 random vector values 8 for each of
several tentative choices of d. Assuming that the expert in
the example chooses d = 1.429 from inspection of our sets
of representative outcomes, the prior distribution then has
a = .1041.

With this prior distribution and the sample data n,
our posterior distribution is the filtered-variate generalized
Dirichlet, Bin '" FcD(al lO , G T , n). The corresponding
posterior mean of B is as shown (column 6). As depicted
by the plot of posterior-mean coordinates and standard de
viations (Fig. 2), the posterior mean smooths out the zero
counts and is locally smoother than the maximum likelihood
estimate. This smoothed estimate is, perhaps surprisingly,
close to the parent distribution in the plot. Examining the
effect of different choices of d, we found that the posterior
mean coordinates change by about .01 as d varies from 1.33
to 1.47, with each coordinate changing monotonically.

Example 3 (Household Size). Consider the distribution
of U.S. households by number of persons in the house
hold, i = 1, ... ,6+ (6 or more). This distribution is given
in Table 5 for each of the seven years at 5-year inter
vals from 1955 to 1985. We discuss the problem of in
ferring the distribution for 1985 from a sample of N = 600
U.S. households from 1985, with the category counts n =
(159,210,81,90,42,18). In the inference problem, this sam
ple and the six previous distributions at 5-year intervals are
assumed known, while the 1985 distribution is not known.

Table 4. Distribution of Women: Matrix H of Typical Vectors

.056 .043 .035 .031 .030 .040 .071 .115 .173 .236

.056 .043 .035 .031 .040 .070 .111 .165 .223 .186

.056 .043 .035 .041 .070 .110 .161 .215 .173 .136

.056 .043 .045 .071 .110 .160 .211 .165 .123 .096

.056 .053 .075 .111 .160 .210 .161 .115 .083 .066

.066 .083 .115 .161 .210 .160 .111 .075 .053 .056

.096 .123 .165 .211 .160 .110 .071 .045 .043 .056

.136 .173 .215 .161 .110 .070 .041 .035 .043 .056

.186 .223 .165 .111 .070 .040 .031 .035 .043 .056

.236 .173 .115 .071 .040 .030 .031 .035 .043 0.56
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7. CONCLUSION

In our class of inference problems, the filter 0 = G . a

Bayes-Factor Test ofHypothesis. Finally, for illustration
of Bayesian comparison of hypotheses, we test in the con
text of this example the silly model of equal category prob
abilities, Ho: 0 = (1/6, ... ,1/6), nested within the local
smoothness hypothesis H 1 of our assessed prior model.
The Bayes factor in favor of Ho versus H 1 is computed
as in Section 3.3, as follows: P(nIHo) = I1(1/6)n i =

(1/6)600 = 1.2896 x 10-467;P(nlHd = ~(a, G T , -n) =

2.5935 x 10-4 11 , and so the odds for Ho are diminished by
the extreme factor, [P(Holn)/P(H1In)JI[P(Ho)/P(Hdl =
4.972 x 10-57.

A deeper treatment and scientific report of a real version
of any of these inference problems of course would include
an analysis of the sensitivity of the inference to the prior as
sessment and structure and would report the inferences for
a variety of contending expert's prior opinions and extreme
bounding opinions, in the spirit of Dickey (1973).

dieted values is the predicted value 1. Using this result, we
obtain the vector p of linear-trend values predicted for 1985
based on 1955-1980 (Table 6, column 8). This serves as our
prior mean and the empirical mean h for our constructed
list of typical vectors hj. Let hi be the residual vector back
at the jth time under the linear-trends fit and define the typ
ical vectors as the sums, h, = p + hi .i = 1, ... , 6. Because
the residuals hi sum to 0 over time i. the empirical mean
of the hj's is h = p, and we obtain a matrix H of typical
vectors, as displayed in Table 6, columns 2-7.

Proceeding as in Example 2, we have k = m = 6
and 1 < d < 3.156. But now, to help in choosing d,
quantify roughness by Q1(0) = L (Oi - Oi+d2/5. Using
Monte Carlo samples of size 400, we obtain prior quan
tiles of Q1 (0)1/2 for various values of d. Boxplots of me
dians, hinges, and so on (Mendenhall, Reinmuth, Beaver,
and Duhan 1986) are given here for a few illustrative d
values (Fig. 3). Choosing, for example, d = 3.125, we
have a = 1.46 and G from H according to (14). The
posterior distribution is again the corresponding filtered
variate Dirichlet. The posterior means and standard devia
tions are plotted for comparison to the sample relative fre
quencies, the least-squares linear trend predictions (prior
mean vector), and the eventual "true" distribution for 1985
(Fig. 4).

-~----------0.450

0.375

0.300

0.225

0.150

0.075

0.000

0

Figure 2. Distribution of Women: Probability Estimates. A, Parent
distribution; B, sample relative frequency; C, prior mean; 0, posterior
mean (and mean ± SO).

In such an inference problem, an expert's prior opinion
might be expressible as a list of typical category-probability
vectors, either having the needed low-order prior moments
as their empirical moments or accompanied by shift invari
ance or other assumptions further needed to define the prior
moments. Our illustration uses the household-size distribu
tion vectors from the previous years to construct typical
vectors and prior moments regarding the 1985 vector. The
prior information available in this problem has structure
beyond the ergodic situation of the category shifts (18),
and even beyond the more general setting of the enrich
ment Theorem 4. So we use a further modified assessment
method. Stochastic processes and other sophisticated mod
els using more extensive prior data could provide relatively
accurate predictions of the 1985 vector. Also, plots against
time of the given prior data show obvious advantages for
curvilinear trend analysis and growth-curve analysis for
predicting the population frequencies for 1985. But for our
illustration, we merely assume simple linear time trends
and use the following result about least-squares fitting to
construct a list of typical vectors.

Consider as observed data a list of probability vectors in
R k , the list indexed by time. If each category's probability
is separately regressed against time, then the vector of pre
dicted values at any common time sums to unity (although
the predicted values may fail to fall within [0, 1]).This is be
cause the predicted value for each category is the same lin
ear function of past years' observed sample data, the same
linear calculation performed during the least-squares fitting
to the respective category's data. Because the sum of each
year's data over categories is the constant 1, the sum of pre-

Table 5. Household-Size Historical Distributions; Percentages of u.s.
Households by Number of Persons in Household, at 5-Year Intervals

2 3 4 5 6 789
Number of children

Number of
persons 1955 a 1960 b 1965 b 1970 c 1975c 1980 c 1985 c

1 10.9 13.1 15.0 17.1 19.6 22.7 23.7
2 28.5 27.8 28.1 28.9 30.6 31.4 31.6
3 20.4 18.9 17.9 17.3 17.4 17.5 17.8
4 18.9 17.6 16.1 15.8 15.6 15.7 15.7
5 11.1 11.5 11.0 10.3 9.0 7.5 7.0
6+ 10.2 11.1 11.9 10.6 7.8 5.2 4.2

a Data from U.S. Bureau of the Census ('975). p. 42.
b Dala from Hoffman (1987). p. 777.
C Data from U.S. Bureau of the Census (1987). p. 44.

Table 6. Prior-Chosen Typical Household-Size Distributions for
1985; Matrix H of Typical Column Vectors

Number of
persons h, 112 h:l "" hs lis h=p

1 24.7 24.6 24.2 24.0 24.2 25.0 24.5
2 32.6 31.2 30.8 30.9 32.0 32.1 31.6
3 17.0 16.1 15.7 15.6 16.3 16.9 16.3
4 15.1 14.4 13.6 13.9 14.3 15.1 14.4
5 6.6 7.8 8.0 8.1 7.5 6.7 7.4
6+ 4.0 5.9 7.8 7.5 5.7 4.2 5.8

NOTE: The average vector h is the prior mean p for the 1985 household size percentages.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 1

9:
38

 1
4 

Ja
nu

ar
y 

20
16

 



660 Journal of the American Statistical Association, June 1998

d=3.155

o 000 0•
1 1

+----1 1-----------++ 0

1------1

d=3.l25

xx•
1------1

+-----1 1-----------++ 0 0 000 0

1 1 3 2

d=3.065

1 1
+ 1 • 1 + 000 00 0 0 xx

1 1 32 2

d-2.975

1 1
+----1 • 1 +00 000 0 000 X

1 1 2 22

d=2.855

1
+----1 • 1 0ooooooסס+ 0 0 0

1--------1 2 22

d-2.705

1 1
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Figure 3. Household Size: Boxplots of Prior Distributions of Smoothness Measure. " Median location; I, hinge location; +, adjacent value; 0,

mild outlier; X, extreme outlier.

is just a device used in the construction of a tractable hi
erarchical prior distribution expressing opinion for a lo
cally smooth O. In another, more general area of inference,
G . a = L ajgj might represent a "mixed-distribution"
sampling model with component conditional sampling dis
tributions gj and unknown mixing proportions parameter
a = (aI, ... , am). From this viewpoint, at each trial in the
sample there would be an independent random selection,
according to fixed weights aj, of a component distribution
to further draw from. For the case of known G, interest
would focus on estimation of the unknown sampling pa
rameter, a. Titterington, Smith, and Markov (1985, p. 107)
have proposed Dirichlet prior distributions for such a in
finite-mixture distribution problems.

The likelihood function Ln(O(a)) entering into our pos
terior density (5) is a product of weighted averages. In
the special case where the prior support of the unknown
weights a is restricted to the set of vertices of the proba
bility simplex (c t 1, P [a = 15(j)J = Uj,j = 1, ... , m), the
prior belief is that a mixture-distribution sampling model
would randomly select a model from a known set of al
ternate models gj, once only, and maintain the same such
model gj for every trial in the sample. The single randomly
selected model would be hidden, so one would have in ef-

feet a "model-choice" or model-recognition inference prob
lem. In this case the likelihood would degenerate into a
product of factors from the coordinates of one vector gj,
where which vector to use is not known. The reader should
avoid an unfortunate tendency to confuse this extreme case
with our adaptation of the fuller mixture distribution as a
sample distribution.

The theory here can be generalized to a continuous sam
pling variable x (or i) and/or a continuous filtering variable
j. A continuous sampling variable alone requires no addi
tional theory. One merely tends to have a different row of G
arise for each observed datum value, with each frequency
count ni equal to 1, and so there would be n+ distinct fac
tors in the likelihood and in the Carlson functions.

A continuous filtering variable, on the other hand, is more
problematic. For example, the mixing distribution might be
prior distributed according to a Dirichlet process. A realized
outcome distribution of a prior Dirichlet random process is,
with probability 1, a discrete distribution (Blackwell 1973;
Ferguson 1973). The work here with filtered-variate Dirich
let distributions can be viewed as a finite-dimensional ana
log of La's (1984, 1987) prior process for Bayesian non
parametric inference. La used a Dirichlet process to mix
over an infinite class of densities that are smooth to various
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0.325

0.250

smoothness that can be combined coherently with what
ever information on smoothness is inherent in the sample
data. The resultant posterior distribution would then express
the corresponding coherently updated uncertainty regard
ing the probability vector and its smoothness. Alternative
approaches are less ambitious. One of the authors (JMD)
recalls an insightful statement by John Tukey during a dis
cussion in 1971 to the effect that the nonsmooth appearance
of a histogram reported as an estimate could be useful to
help warn against undue trust in a small sample. For a judg
ment of relative practicality, more extensive experience is
needed with the filtered-variate Dirichlet and other filtered
variate MSV prior distributions and their assessment. The
mechanics of their prior assessment, their updating by sam
ple data and their posterior inferences are easy enough with
present computing tools, and their potential advantages are
strong enough, we hope, to tempt the reader to experiment
with their assessment and use.

APPENDIX: PROOFS

Proof of Lemma 2

Proof of Theorem 3

The proportionality of moments (I5) follows from Corollary 6
and the proportionality, E(8c) = E(8H), var(8c) = d2var(8

H ) .

To prove that CHull(G) contains the columns of H, note that
because ii = g, the columns of Hand G are related by h,
d-1g j + (1 - d-1)g, a convex combination when d ~ 1.

E(y+) = /1+ and var(y+) = C/1+ (1 - /1+)'
So, if /1+ = 8, then var(y+) = 0 and with probability 1 y+
E(y+) = /1+ = 8. Conversely, if y+ = 8 with probability 1, then
E(y+) = 8, so /1+ =.s.

Proof of Theorem 2

Lemma. If the (scalar) random quantity z is supported on the
unit interval, 0 ~ z ~ 1, and Ez = u, then the variance of z is
maximized for fixed U by the Bemoulli(u) distribution.

Proof var(z) = E(Z2) - u2 ~ E(z) - u2 = u(1 - u).

Apply the lemma to each coordinate Zj of z, for which var(zj) =
CUj (l-uj), which is maximized to the Bernoulli variance at c = 1.
So c ~ 1. P is the only joint distribution on ~ (m) having such
margins.
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Figure 4. Household Size Distribution. A, Eventual "true" distribu
tion for 1985 (---); B, sample relative frequency (- -- - -- -); C, least
squares linear trend prediction (prior mean) (- -- - -); 0, posterior mean
(and mean ± SO) (-).

extents (see also Antoniak 1974, the reply to the discussants
in Diaconis and Freedman 1986, Escobar 1988, and Tiwari,
Chib, and Jammalamadaka 1987). An entirely different ap
proach that estimates a continuous sampling distribution as
a filtered-variate distribution per se was explored by Dickey
et al. (1989).

The approach here is motivated by the desire for pre
cise and controlled expression of prior uncertainty about
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