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Abstract

We study the blow-up behavior for a semilinear reaction-diffusion system coupled
in both equations and boundary conditions. The main purpose is to understand how
the reaction terms and the absorption terms affect the blow-up properties. We obtain a
necessary and sufficient condition for blow-up, derive the upper bound and lower bound
for the blow-up rate, and find the blow-up set under certain assumptions.
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1. Introduction

In this paper, we study the problem for the following parabolic system
Uy =u, +vP, O<x<1 t>0, (1.2)
vy =vgy +uf?2, O<x<1,t>0, (1.2)
with boundary conditions
uy(0,0)=0, u,(1,0)=v11,1), t>0, 1.3)
msponding author.
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vx(0,1) =0, v.(1,1)=u?@,1t), t>0, (1.4)

and initial conditions
u(x,0)=uo(x), v(x,0=uvo(x), 0<x<1, (1.5)

wherep1, p2, q1, g2 are positive constants, amg(x), vo(x) are positive smooth
functions satisfying the compatibility conditions

up(0) =v5(0) =0, up(D) =" (D), vo(D) =uf (D).

The local (in time) existence and uniqueness of classical solutions of the
problem (1.1)—(1.5) can be derived easily by standard parabolic theory.
We say that the solutiofu, v) of the problem (1.1)—(1.5) blows up in finite
time if
T :=sup{r > 0| bothu andv are bounded if0, 1] x [0, 7]} < oo.

In this case[ is called the blow-up time. I = +o00, then(u, v) is said to exist
globally.
Blow-up problems for the following systems:

uy=Au+v?, v=Av+u?, xe€8£,1t>0,

u=v=0, xe€9d8, >0, (1.6)
u(x,0 =uo(x), v(x,0=vo(x), xe€4,

ur=~Au, vi=Av, xe€8,1t>0,

g—]’f:v", g—]lj:uq, x€082,t>0, 1.7
u(x,0 =uo(x), v(x,0=vo(x), xec4,

and
ur=Au—+vP, vi=Av, xe£,t>0,

fu=0 =yl xedR, t>0, (1.8)
u(x,0) =uo(x), v(x,0=vo(x), xe€£,

have been studied very extensively over past years. plgfe- 0, v is the outer
normal, ands2 is a bounded (or unbounded) domainR4. They studied the
global and non-global existence, the blow-up set, and the blow-up rate for the
above three systems (see, for example, [1-17] and the references cited therein).
Blow-up results for other parabolic systems, we refer the readers to the survey
paper [18] and the references cited therein. See also [19-22].

Recently, Lin and Wang in [23] considered the following problem for a single
semilinear heat equation:

uy=u, +uf, O0O<x<1,1t>0, (1.9)
uy(0,0)=0, uy(1,0)=ul(1,1), t>0, (1.10)
u(x,0) =uog(x), 0<x<1, (1.12)
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where p, g > 0. They studied how the reaction term¥ and the absorption
term u? affect the blow-up properties of the solution of (1.9)—(1.11). They
obtained a necessary and sufficient condition for blow-up, derived the upper and
lower bounds for the blow-up rate, and obtained the blow-up set under some
assumptions. The authors in [24] then studied the blow-up set, described the
time asymptotic behavior of blow-up solutions, and proved that the blow-up is
complete under certain conditions for (1.9)—(1.11).

The main purpose of this paper is to understand how the reaction terms and the
boundary absorption terms affect the blow-up properties for the problem (1.1)—
(1.5). Some similar results to [23] and [24] are established for (1.1)—(1.5). This
paper is organized as follows. We first study the global existence and blow-up
results for the problem (1.1)—(1.5) in Section 2. After proving some blow-up
criteria for problems in half real line in Section 3, we derive the blow-up rate
estimates for (1.1)—(1.5) in Section 4. Finally, in Section 5 we deal with the blow-
up set.

2. Global and non-global existence

Definition 2.1. A pair of functions(u, v) is called a supersolution of (1.1)—(1.5)
in [0,1] x [0, T), if u, v e C%1([0, 1] x [0, T)) and (u, v) satisfies

ur > uy, +0P1,  (x,1)€(0,1) x (0, T),

vy = v +ul?2, (x,1)€(0,1) x (0, 7),

uy(0,6) <0, uy(d,t)>v"(1,r), te(0,T),

ve(0,1) <0, ve(L,0) >u?,t), te(0,T),

u(x,0) > uo(x), v(x,0) >wvo(x), xe[0,1].

Subsolution is defined by reversing the inequalities.

We shall use the following comparison principle to prove some global and
non-global existence results.

Lemma 2.1. Let (z, v) and (u, v) be a positive supersolution and a nonnegative
subsolution of(1.1)—(1.5)in [0, 1] x [0, T), respectively. Thend > u andv > v
in[0,1] x [0, T).

Proof. Letw =i —u andz =9 —v. Then
wr 2 wyy +alx, )z, zrZzxx+bx,Hw, O<x<1l1l 0<r<T,
wx(ovt)goa Zx(o,t)go, O<t<Ta
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wx,020, z(x,0020, 0<x<1

where

vPi(x,t) —vPi(x,t) ., _ .
a(x,t) o) —o ) if v+#uv; 0, otherwise

uP2(x,t) —uP2(x,t) e .
b(x,t) = = , f ;. =0, otherwis
= ) —u nFu ¢
v (1, 0) —uv (L, 1) .
1) = , f ;. =0, otherwis
O=Tan—wan = "7 °
w21, 1) —u?2(1,t) ., _ .
d@) = = , |if ;. =0, otherwise
W= a0 nu
For any fixedr € (0, T), we will show thatw >0 andz >0 for0<x <1
and 0< r < 7. For contradiction, we assume thathas a negative minimum
in [0, 1] x [0, ] and Mino,1jx[0,7] w < MIiNo,1x[0,7] 2- Letw = e’Mt’szw and

~ 2
7= e Mi—Lx" where

L= maxc(r)/2, M= 2L+4L2+ o max a(x t)+ max b(x,1).

0<r<t ,11x[0,7 ,11x[0,7]

Then
Wy > Wy +4LxTy + (2L +4L%x% — M) +a(x, 1)z,

O<x<1 O<t<rm, (2.2)
Zr > Zox +ALxE, + b(x, B + (2L + 4L%x% — M)z,
O<x<1 O<t<r. (2.2)

Sincew > —§ andZ > —§ on the boundary[0, 1] x {0}) U ({0, 1} x (0, 1),
where—§ := ming,1x[0,-1 W < 0, it follows from the strong maximum principle
for weakly coupled parabolic systems (cf. Theorem 15 of Chapter 3 in [25])
that w cannot assume its negative minimum in the interior. Heface —§ in
(0,1) x (0, 7]. Let (xg, t0) be a minimum point on the boundaf®, 1} x (0, t].
Sincew,(0,7) < 0,0 < ¢ < 7, the same strong maximum principle implies that
xo =1 andw, (xo, tg) < 0. But,

Wy (L, 10) > —(c(to) —2L)8 >0,
a contradiction. This completes the proofa

Theorem 2.2. Suppose thammax{ p1p2, p1g2, p2q1, 192} < 1. Then the solution
(u, v) of (1.1)—(1.5)xists globally.

Proof. Since maxpip2, p1g2, p2q1, 192} < 1, there exists a positive numbier

suchthatp, <1< 1/p1andgz <1< 1/q:1. Let

_ 2 _ 2
i = CeK1HLa®, 5= Cel K+Lx?)
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whereC, K, L are positive constants satisfying

C = max{|[uolloo, volloc },

1 1
L>>-cnt [ >_cel
2 21

1
K >2LC + 4L+ CcP 1, K>2L+4L%+ 7CPz*l.

It is easy to verify that(u, v) is a supersolution of (1.1)-(1.5). Then, by
Lemma 2.1, we get < i andv < v. Hence the theorem follows.O

Theorem 2.3. Suppose thammax{ p1p2, q192, p1g2, p2q1} > 1. Then the solution
(u, v) of (1.1)—(1.5)blows up in finite time.

Proof. Setl; =infogyg1uo(x) andly = infog, <1 vo(x).
Suppose thap1po > 1. Let

u=AS—-1""%  v=BES-1n",

wherea = (p1 + 1) /(p1p2 — 1), B=(p2+ 1) /(p1p2 — 1), and A, B, S are
positive constants satisfying

B> (011172’3)1/(,171,172—1)7

(BBYYP2 < A<a B,

ASTE <, ASTP <o
Then(u, v) is a subsolution of (1.1)—(1.5). Thus, by Lemma 2.1, we obtain that
u > u andv > v as long as botliu, v) and (u, v) exist. Therefore(u, v) blows
up in finite time.

Forgiq2 > 1, we let

u=M—-nt—nx?)"%  v=M-nt—m?) ",
wherea = (q1 +1)/(q192 — 1), B = (g2 + 1)/(g192 — 1), and M, n are positive
constants satisfying

n <min{1/(2), 1/(28)},

M = n+maxiy Ve P
Then(u, v) is a subsolution of (1.1)—(1.5). It follows from Lemma 2.1 that u
andv > v as long as bothu, v) and (u, v) exist. Hencgu, v) blows up before
(u, v) does.

For p1g2 > 1 or p2g1 > 1, the conclusion follows from Theorem 2.3 of [6] and
Lemma 2.1. This completes the proof
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3. Blow-up criteria

In this section, we first derive the comparison principles for the following two
problems

Ur=uyx +07, vi=vyx, x>0, ¢t>0, (3.1)

—uy(0,1) =0, —vy(0,1)=u?(0,1), t>0, (3.2)

u(x,0) =ug(x), v(x,0 =uvo(x), x=0, (3.3)
and

Uy =1Uyxy, Vr=0uxx, Xx>0,1>0, (3.4

—u,(0,1) =v”(0,1), —v(0,8)=u?(0,t), t>0, (3.5)

u(x,0) =ug(x), v(x,0)=wvo(x), x>0, (3.6)

wherep andg are positive constants. For completeness, we shall give the proof
here. To this end, we need the following lemma.

Lemma 3.1. Let * > 0 and letu € C%1((0,0) x (0,7*)) be a bounded
continuous function ifi0, co) x [0, *) satisfying

u <uyxe, x>0 0<t<th (3.7)
u0,H)<0, O<t<rt¥ (3.8)
u(x,00<0, x=0. (3.9)

Thenu <0in [0, o0) x [0, T%).

Proof. Given any fixedr € (0,7*). Let x be aCi°(R) function satisfying
0< x <1 and supp C [0, 00). For anyR > 1 such that supp c [0, R — 1],
let ¢ be the solution of the following backward problem

o +oxr=¢, O0<x<R, O0<t<r, (3.10)
90,1)=¢(R,1)=0, O0<r<r, (3.11)
px,7)=e "x(x), O<x<R. (3.12)

It follows from the maximum principle that
O0<p<e™, O0<x<R, 0K« (3.13)
Set

I/I(X) — K(efx _ ex72R)’ €

=e—1/e'

It is easy to see that satisfies
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v =v, R—-1<x<R,

Y(R—D=eFD  y(R) =0
Applying the maximum principle, we obtain that< ¢ for R — 1< x < R and
0< < t.Sincep(R,t) =¥ (R) =0, we conclude that

0< —gu(R, 1)< —Y/(R)=2Ke R, O<t<rt. (3.14)
Multiplying both sides of (3.7) by and integrating it ovefO, R] x [0, t], by
(3.8)—(3.14), we deduce that

R T R

/u(x, e x(x)dx < / / ute ™ dxdt+2KMre R,

0 00
whereM = Ssufg ooy x 0.7+ |#]- Letting R — oo, we get

o0 T 0
/u(x, )e " x(x)dx < / / uTe ™ dxdt. (3.15)
0 00
Note that (3.15) holds for any € C5°(R) satisfying 0< x <1 and supp C
[0, c0).
Now, for eachk € N, let xx = gihi, Whereg, is aC*°(R) function satisfying
O0<gr<land
(x) = 1 ifu(x,7)e”™ >1/k and 0< x < 3k,

A T u(x,)e*<0o0rx <0
(notice that such functiopg, exists, since the sék | u(x, t)e ™ > 1/k and 0<
x < 3k} is compact, the sdix | u(x, t)e™™ < 0orx < 0} is closed, and they are
disjoint), andiy is a Cy° (R) function satisfying O< /4 < 1 and

1 ifx <k,

hi(x) = {o if x > 2k.
Clearly, xx € C3°(R), 0< xx < 1, and suppix C [0, oo) for anyk € N. Replacing
x by xr in (3.15) and applying the Lebesgue dominated convergence theorem, we
obtain that

o]

T O
/u+(x, e dx < /u+e_x dxdt.
0 00
Then from the Gronwall’s inequality it follows that

T o0
//que*x dxdt <0.
00

Henceut =0in[0, oo) x [0, T]. Sincer is arbitrary, the lemma follows. O
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Definition 3.1. A pair of functions(i, v) is called a (honnegative) supersolution
of (3.1)—(3.3) in[0, 00) x [0, T), if i1, v € C%1((0, 00) x (0, T)) N C([0, 00) x
[0, T)) and(iz, v) satisfies

Uy iy +07, U >0, x>0, 0<t<T, (3.16)
—i(0,1) >0, —v,(0,1)>u?(0,t), O<t<T, (3.17)
i(x,0) > uo(x), v(x,0 =>wvo(x), x=0. (3.18)

Subsolution is defined by reversing the inequalities in (3.16)—(3.18). Similarly, we
can define supersolution and subsolution of (3.4)—(3.6).

Theorem 3.2. Let (i, v) and (u, v) be a supersolution and a subsolution(@f1)—

(3.3)in [0, 00) x [0, T'), respectively. Suppose th@t, v) and (u, v) are bounded
in [0,00) x [0, T). If 4(0,0) > u(0,0) and v(0, 0) > v(0,0), thenu > u and

v>vin[0,00) x [0, T).

Proof. For contradiction, we assume that
fo:=sup{c >0|u>uandv>vin[0,00) x [0,0]} <T.

Sinceu(0,0) > u(0,0) andv(0, 0) > v(0, 0), there exists™ € (0, T) such that
i(0,1) > u(0,t) andv(0, ) > v(0, r) for ¢ € [0, T*]. From Lemma 3.1, we obtain
thatd > v in [0, c0) x [0, T*]. Thus

(=)= (U —wyx+0P —vP > @ —uy, in(0,00) x(0,7%).

Again, by Lemma 3.1, we obtain that> u in [0, co) x [0, *]. Hencerp > t* >
0. The definition ofg implies that there existgy > 0 such that eithei& (xo, 19) =
u(xo, o) Or v(xo, tp) = v(xo, f0). By the strong maximum principleg = 0. Then,
by applying the Hopf’s boundary point lemma, either(0, r0) > u, (0, rg) or
vy (0, 10) > v,.(0, 10), a contradiction. Hencg = T and the proofis complete.O

Now, we consider the problem
@s =@y + YL, Yy =y +puapf?, ¥y >0, 5 >0,
@y(0,5) = —p2¢(0,5), ¥y(0,5) =—¢%(0,s5), s>0, (3.19)
e(y,0=9o(y), ¥ (. 0=vo(y), y=0,
whereu; € {0,1},i =1, 2. Set
P12 __Zaatl
2(p1g2— 1)’ 2(p1g2— 1)

Theorem 3.3. Suppose thatpig2 > 1. Under the assumption that either
maX{w, B} > 1/2, or, maXea, B} = 1/2 and min{p1, g2} > 1, every nontrivial
nonnegative solutiofy, ) of (3.19)blows up in finite time.
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Proof. This theorem is just the main Theorem of [8] when= w2 =0.

In general, we may without loss of generality assume thg0) > 0 and
Yo(0) > 0, sincep(0,s) > 0 andy (0, s) > 0 as long asp, ¥ exist ands > 0.
Now, let (u,v) be a solution of (3.1)—(3.3) withp = p1,9 = g2, and initial
functionsug = ¢o/2, vo = ¥o/2. Then by the comparison principle (Theorem 3.2)
we havey > u andy > v as long ast, v, ¢, ¥ are bounded. Sincet, v) blows
up in finite time, the theorem follows. O

Using a similar argument as in the proof of Theorem 3.2, we can also prove
the following theorem.

Theorem 3.4. Let (i, v) and(u, v) be a supersolution and a subsolution(8f4)—
(3.6)in [0, 00) x [0, T'), respectively. Suppose th@t, v) and (u, v) are bounded
in [0,00) x [0, T). If 2(0,0) > u(0,0) and (0, 0) > v(0, 0), theni > u and
v>vin[0,00) x [0, T).

Using Theorem 2.1 of [5] and Theorem 3.4, we can prove the following blow-
up result for solutions of the system:
©s = @yy + mayPr, gy = Yyy + u2e?P?2,  y>0,s>0,
©y(0,5) = —y91(0,s5), V¥,(0,5)=—¢%2(0,s), s>0, (3.20)
(3,0 =¢po(y), ¥(.0=vo(y), y=0,
whereu; €{0,1},i =1, 2.

Theorem 3.5. Suppose thajig> > 1. Set
e 0 +1 . q+1
2(q192— 1)’ 2(q192—1)°

Under the assumption thamaxXe, 8} > 1/2, every nontrivial nonnegative
solution (g, ¥) of (3.20)blows up in finite time.

Finally, we consider the following problem:
Ys = @yy + YPr o gy = Yyy + P2, y>0,s>0,
§0y (07 S) = _/’Llwa (07 S), Wy (O, S) = _/’ngoqz(oﬂ S)v § > Oa (321)
(. 0)=¢o(y), ¥v(.0=vo(y)., y=0,
whereu; €{0,1},i =1, 2.

Theorem 3.6. Suppose thapy p> > 1. Set

_ p+1 _ p2+1

C pip2—1 Cpip2—1
Under the assumption thamaxa, 8} > 1/2, every nontrivial nonnegative
solution(g, ¥) of (3.21)blows up in finite time.
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Proof. Let

—_ )2

9]

gw(x, ) =/[G(x,y,t)+G(x,—y,t)]w(yw)dy.
0
Then the solutiorfe, ¥) of (3.21) can be represented by

@, 5)=g(s)po
+/g(s —DHYPL(, 1) dt+2u1/G(',0,s — Y10, 1) dt,
0 0
Y(-,s)=g(s)¥o
+/g(s —t)gopz(«,t)dt—i-ZMz/G(«,O,S—t)goqz(o, 1) dt.
0 0

The theorem can be proved by following the proof of Theorem 2 in [7] step by
step. O

4. Blow-up rate

In this section, we always assume thagt> 0, vy > 0, and the solutiofiu, v)
of (1.1)—(1.5) blows up in finite tim& . Then by the maximum principle we have
uy = 0andv, >0in[0,1] x [0, T). Notice thatu (1, 1) = maxgg g1 u(x, t) and
v(l, 1) = maxogrg1v(x, t). Motivated by [26] for scalar equations and [1] for
systems, we shall use a scaling method (cf. [27]) to derive the blow-up rate.
For convenience, we let

v 2q1q2+q1—1 v 2q192+q2-1
= Dy i=——————
qg2+1 g1+1
«._ Dip2+2p1+1 o= pip2+2p2+1
LT 22+ 27 2pi+ D)

for given positive constants, p2, g1, g2. Itis easy to check that m@us p2, p1g2,
P2q1, q192} < 1 if one of the following conditions holds:

(1) p1g2<1, p1 > pi, andqz > q3;
(2) p2q1<1, p2 > p3, andqr > qf;
(3) 9192 < 1, p1 < pi, andpz < p3;
(4) pip2<1,q1<gqi, andg2 < g;.
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Since (u, v) blows up in finite time, it follows from the above observation and
Theorem 2.2 that

(1) p1g2>1,if p1> p] andgz > g3;
(2) p2q1>1,if p2 > p5 andq1 > q7;
(3) q192> 1,if p1 < pj andpz < p3;
(4) p1p2>1,ifq1<q7 andgz <gq;.

We also define

p1t+2 2go+1 )
2(p192—1)° 2(p1g2—-1 /)’

2 2 1 : .
bt A=) if po > ph andgy > g5

( it p1> pI andgz > g3;
(2 1)’ 2 -1
(@, B) = ( (p2q1—1) 2(p2g1—1) (4.1)

(]1-‘,—1 q2+1 . " ..
2(q192-1)° 2(q1q2—1))’ if p1 < P1 andp2 < 123

p1t+l p2+1 )
p1p2—1’ pipo—1)°

if g1 < g7 andg2 < g5.

Theorem 4.1. Suppose thapy > pj, g2 > g5, and that eithemaxa, g} > 1/2,
or, maX{«, B} = 1/2 andmin{p1, g2} > 1. Then there exist positive constaiits
i =1,2, 3,4,such that

Ci(T—-0)"*< supu(l,r)<Co(T —1)™%, Vrel0,T), (4.2)
O<t<t

C3(T —1P < sup v(d, 1) <Ca(T — 1), Viel0,T), (4.3)
O<t<t

where(a, B) is defined by4.1).

Proof. We shall divide the proof into the following four steps.

Stepl: Scaling.Let M, (1) = SUp.¢ o, (1, T) and My (1) = sup.¢ o ;) v(1, 7).
Without loss of generality we may assume tht(r) — +oo ast — T. Given
t € (0, T) such thatM, (z) > |luolleo, there exists e (0, ] such that

u(l,1) = My (1). (4.4)
Taker = M, @), Let
0 (y,5) = 2% u(1— Ay, 7+ %), (4.5)
Yt (y,s) =2%Pu(1 -y, T+ %), (4.6)
forany (v, s) € [0, 1/A] x [—/A2, (T —)/A?). Itis easy to see thap’, y*) is
the solution of the problert®*):
s =@y F YL, Yy =y A2, (y,9) € (0* %) x (_Aiz’ TA; )’
or(19) =0 Uy(}5) =0 se (- T5).

(py(07 S) = _)\‘Vqul(O’ S)v Wy(O, S) = _(pqz(ov S), WS (_)LLZ’ T)\_Zf )a
9(0,00=1

~>
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and satisfies
0<¢* <1, o<yt <M, P )M, (),
1 .
Y(y,s) € [O, ﬂ X [—é,o} 4.7)

whereyy :=28 + 2 — 2apy > 0 andy, := 2o + 1 — 2841 > 0, sincepigz > 1,
p1 = p;,andgz > g5. Moreover,yy = 0 ifand only ifg2 = g5, y2 = O if and only

if p1=pI.
Step2: Claim that there exist8 > 0 such that
s <MY MYCP (1) <57t Vi el0,T). (4.8)

If the lower bound estimate in (4.8) does not hold, then there exists a sequence
{t;} /' T suchthatM,(t;) > [luollo, ¥,j, and

M, Y HyMY PP (1) >0 asj— oo. (4.9)
For eachj, we definet}, Aj, and(¢*7, ¥*i) as inStepl such that the solution
(¢*i, y*i) of the corresponding problenP(/) satisfies

0< ™ <L 0<y™ <M P ()M (t)),

1 i
Note that/; — T andi; — 0 asj — oco. For anym € N, from (4.9) and (4.10)
it follows that

0<¢h <1, 0<y™ <1 V(y.s)e[0,m]x [—m?, 0], (4.11)

if j is sufficiently large. Then applying the standard parabolic estimate for scalar
equations (cf. [28] or [29]), we obtain that

”@Aj ”C2+o,l+o/2([0’m]X[_mz’o]) < C, (412)
H 1//)“j ”C2+a.1+a/2([0,m]X[,mz,o]) < C (413)

for some O< o < min{1, p1, p2,91,92} andC = C(m, o) > 0. Using (4.12),
(4.13), and a diagonal process, we can get a subsequence (still denoted by
(™, ¥*1)) such thatp*/ — ¢ andy*/ — ¥ uniformly on each compact subset
of [0, co) x (—o0, 0] for some(yp, ¥) satisfying

‘ﬂszfpyy‘i‘wplv wszl/fyy‘f‘ﬂlwpzv O<y<oo, —00o<s <0,

(ﬂy(oa S) = _MZW‘“(OJ), 1/fy(07 S) = _qu(oa S)v

—o00<s <0,

¢(0,00=1,
whereu; € {0,1},i =1,2,u1 = 1ifand only ifg2 = g5, andu2 = 1 if and only
if p1 = pj. But, by (4.10); =0, a contradiction. Hence there exists 0 such
that the lower bound estimate in (4.8) holds.

(4.14)
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If the upper bound estimate in (4.8) does not hold, then there exists a sequence
{t;} /' T such that

MY MY PP (1) — oo (4.15)
Clearly, M, (t;) — +oo. Choosej* € N such thatM,(t;) > |volleo, Vj > j*.
For any j > j*, we takef; € (0,¢;] such thatv(l,7;) = M,(t;). Let A; =
M, %) (1), Define(g*i, y*i) by (4.5) and (4.6) with. = ;. Then(g*/, y/)
is the solution of £*/) such that

0< ™ <M ()M, P ), 0<yhi <1,

V(y.s) €0, 1/x;] x [—£;/25.0].
Proceeding as before, we will get a contradiction. Thus (4.8) is established.
Step3: Estimate the lower bound&iven any: € (0, T) such thatM,, (¢) >

luolloo- Let7, &, and(e*, ¥*) be defined as iBtepl. Sincep* blows up in finite
time, there exists positive numhbgrsuch that

max , 2 for—f/A%2< 4.16
ogygl/xm(y §) < / 5 <8 (4.16)

and maxgy <1/ 9.(, 83.) = 2. From (4.7), (4.8), and (4.16), one can easily show
that

0<¢* <2, 0<y <2747, V(y,s) €0, 1/A] x [-i/3?, 5].

Then by applying the standard parabolic estimate for scalar equations (cf. [28] or
[29]), we get

a

A
9™l c2+0.1+0/2(10,1/2)x[0.5,]) <
A
1" Nl c2to1tor20,1/01x10.52)) < €

for some O< o < min{1, p1, p2, q1, g2} and a positive constar independent
of A. This implies thats, > ¢ > 0 for some positive constant independent
of A, or, equivalently independent of Let 1o = 7 and 1, = 19 + A%s;. Then
M, (11) = 2M,,(10) and M, * (10) (11 — 10) = 51 > c.

Replacing: by 11, defining the corresponding A, and(¢”, ¥*) as inStepl,
and by the same process as above, we obtain ansuch thatV,, (r2) = 2M,,(t1)
andMul/“ (1)) (t2 — t1) = 5. = ¢, Wherero = 11 + A2s;,. Continuing in this process,
we can get a sequengg} ' T such that

1 :
Mu/a(tj—l)(tj —tji_1)=c, VYjeN,
M,,(tj)=2Mu(tj,1), VjeN.

Using a similar argument as Lemma 3.1 in [26], we derive th&i(1) >
c(T — 1)~ %. Since M, (t1) = 2M,(tp) = 2M,(t) and 1 > ¢, it follows that
My, (t) > (T — t)~*. Hence the lower bound farin (4.2) holds, i.e.,
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sup u(l,t) > C(T —1)™%, VrelO,T). (4.17)

O<t<t
Then the lower bound far in (4.3) follows from (4.17) and (4.8).
Step4: Estimate the upper bound%o this end, we claim that there exists
a positive numberC such thats, < C for all sufficiently smallix, wheres,, is
defined as irtep3. For contradiction, we suppose that there exists a sequence
{%;} with A; — 0 such thats,, — +oco. Taker; = maxr | M,(t) = A]TZ“}. As
before, we can defing, 1, and(¢/, ¥*/), the solution of /) in [0, 1/A;] x
[—t}/k?, (T — t})/)»?), such that
0< o™ <2, 0<y™ <AF My (6 +33s,,).
V(y.s) €[0,1/2;]1 x [ /3%, 5:,]. (4.18)
By using (4.8) and (4.18), we obtain that
0<yh <2P/%6720  W(y,s) €10, 1/4;] x [=£; /3%, 5],
if j is sufficiently large. As before, we can find a subsequencgfi, v*/))
converging to a solution of
Os = Qyy + YP = Yyy + n1ePt,  (y,s) € (0,00) x (=00, 00),
(py (O, S) = _/1«2‘1”(]1 (07 S), 1//}' (07 S) = _€0q2(0a S)v
s € (—00,00),
¢(0,0)=1,
whereu1 anduz are defined as in (4.14). In addition, we have
0<¢<2 0<y<2P*s=2 >0 s>0.
However, by Theorem 3.3 the nontrivial soluti¢p, y) of (4.19) must blow up
in finite time, a contradiction. Henog < C for all sufficiently smallx for some
C>0.
Letrg =1 andty = A%s, + 7. ThenM, (t1) = 2M,,(to) andMul/“ (to)(r1 — 1) <

Mj/“(to)(tl — ) = s, < C. Continuing in this process, we can get a sequence
{t;} /' T such that

(4.19)

Mul/a(fj—l)(fj —ti-1)<C, VjeN,

Mu(tj)ZZMu(tjfl), VjEN'
Again, from Lemma 3.1 in [26] and (4.8), the upper boundsuif@ndv follow.
This completes the proof.O

Similarly, we have the following theorem.

Theorem 4.2. Suppose thap, > p3, g1 > ¢7, and that eithemaxa, g} > 1/2,
or, maX{w, B} = 1/2 andmin{pz, g1} > 1. Then there exist positive constaiits
i =1,2, 3, 4,suchthat(4.2)and(4.3)hold, where(a, B) is defined by4.1).
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Proceeding as the proof of Theorem 4.1 and using Theorem 3.5, we can prove
the following theorem.

Theorem 4.3. Suppose thapy < pJ, p2 < p5, andmaxa, B} > 1/2. Then there
exist positive constants;, i = 1, 2, 3, 4, such that(4.2) and (4.3) hold, where
(o, B) is defined by4.1).

Finally, the following theorem can be deduced by using Theorem 3.6.
Theorem 4.4. Suppose thagi < g7, g2 < g5, andmaxa, B} > 1/2. Then there
exist positive constants;, i = 1, 2, 3, 4, such that(4.2) and (4.3) hold, where
(o, B) is defined by4.1).

Remark. Notice that

(@ 1< ql andgp > qz, if p1> pl andpz <
(b) g1 > gy andg2 < g5, if p1 < pj andpz > pz.

Suppose thaiu, v) blows up in finite time. Then we can also classify the
exponents for the blow-up rates as follows.

( p1+2 2q7+1 )
2(p192—1)° 2(p1g2—-1 /°
( p2+2 2q1+1 )

2(p2q1—1)° 2(p2q1—-1) /)’
( q1+1 g2+1 )
(

if p1 > p7 andpz

<
if p1 < piandpz>
<

2(9192—1)° 2(q192-D /)’ if p1 < pl andp»

p1+2 2g0+1 )

_ 2(p192—1)° 2(p1g2—1) /)’
(@ p) = if p1> pi, p2> p5, andgz > q5;
( p2+2 2g1+1 )
2(p2q1—1)° 2(p2q1—1)
if p1> pI, p2> p5, andq1 > q7;

( pitl _potl )
p1p2—1’ p1p2—1

if p1>pl. p2=p5, q1<gqj, andgz < g5.

(4.20)

5. Blow-up set
We shall modify the method of Hu and Yin [30] to study the blow-up set.

Lemma 5.1. Suppose thagigz > 1, p1 < p], and p2 < p5. Let (4, v) be the
solution of (1.1)—(1.5)satisfying

max u(x,r) <C(T —1)™* and
<1

\)C\
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maxlv(x,t) <C(T-07 P, 0<r<T,

o<y
for some positive constant, where
1 1
o= q1+ and B = q2 + .
2(q192— 1) 2(q192 — 1)
Then the blow-up point occurs only at= 1.

Proof. Setn(x) = (1—x?)2. Let
AB® DB#

, X, 1) = ,
[n(x)+ B(T —1)]* vrn [n(x)+ B(T —1)]P
whereA, B, D are positive constants satisfying

p(x, 1) =

D>2°c, A>2C,

Boti-fp > 2”‘+2_/3P1D”1a_1A_1,

BA+I-arz 5 of+2-ap2 gp2g-1p-1

B > 320 + 16, B > 328+ 16.
Note thate + 1 — Bp1 > 0 andg + 1 — ap2 > 0 by assumptions. Chooggsuch
that B(T — 19) = 1. Then(g, ¥) satisfies

O 2 Qe P Y > Y + 9P, O<x <1 o<t <T,

ox(0,6) =0,v,(0,1) =0, r<t<T,

oL, )=AT - *>2C(T -0 *>ull,t), to<t<T,

vA,=DT -0P>cT-n"P>v@1), 1n<t<T,

P(x,10) 2 27YA(T —10) ™ =2 C(T —t0) ™™ 2 u(x,10), 0<x <1,

Y(x,10) 2 2 A(T —10) > C(T —10) ¥ > v(x,10), 0<x<L

By the maximum principle, we hawe< ¢ andv < ¢ in [0, 1] x [fo, T). Since
(¢, ¥) does not blow up at any point {i0, 1), the lemma follows. O

Combining Theorem 4.3 and Lemma 5.1, we conclude that
Theorem 5.2. Suppose thagig2 > 1, p1 < p7, and p2 < p3. Suppose also that
[max{q1, g2} + 11/[2(q192 — 1)1 > 1/2. Let (u, v) be the solution o{1.1)—(1.5)
with u > 0 andvg > 0. Then the blow-up point occurs only at= 1.
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