ACADEMIC PRESS

Yournal of
MATHEMATICAL
ANALYSIS AND APPLICATIONS

Blow-up for a semilinear reaction-diffusion system coupled in both equations and boundary conditions

Sheng-Chen Fu and Jong-Shenq Guo*
Department of Mathematics, National Taiwan Normal University, 88, S-4 Ting Chou Road,
Taipei 117, Taiwan

Received 26 March 2002
Submitted by H.A. Levine

Abstract

We study the blow-up behavior for a semilinear reaction-diffusion system coupled in both equations and boundary conditions. The main purpose is to understand how the reaction terms and the absorption terms affect the blow-up properties. We obtain a necessary and sufficient condition for blow-up, derive the upper bound and lower bound for the blow-up rate, and find the blow-up set under certain assumptions. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper, we study the problem for the following parabolic system

$$
\begin{array}{ll}
u_{t}=u_{x x}+v^{p_{1}}, & 0<x<1, t>0, \\
v_{t}=v_{x x}+u^{p_{2}}, & 0<x<1, t>0, \tag{1.2}
\end{array}
$$

with boundary conditions

$$
\begin{equation*}
u_{x}(0, t)=0, \quad u_{x}(1, t)=v^{q_{1}}(1, t), \quad t>0, \tag{1.3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
v_{x}(0, t)=0, \quad v_{x}(1, t)=u^{q_{2}}(1, t), \quad t>0, \tag{1.4}
\end{equation*}
$$

\]

and initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad 0 \leqslant x \leqslant 1, \tag{1.5}
\end{equation*}
$$

where $p_{1}, p_{2}, q_{1}, q_{2}$ are positive constants, and $u_{0}(x), v_{0}(x)$ are positive smooth functions satisfying the compatibility conditions

$$
u_{0}^{\prime}(0)=v_{0}^{\prime}(0)=0, \quad u_{0}^{\prime}(1)=v_{0}^{q_{1}}(1), \quad v_{0}^{\prime}(1)=u_{0}^{q_{2}}(1)
$$

The local (in time) existence and uniqueness of classical solutions of the problem (1.1)-(1.5) can be derived easily by standard parabolic theory.

We say that the solution (u, v) of the problem (1.1)-(1.5) blows up in finite time if

$$
T:=\sup \{\tau>0 \mid \text { both } u \text { and } v \text { are bounded in }[0,1] \times[0, \tau]\}<\infty .
$$

In this case, T is called the blow-up time. If $T=+\infty$, then (u, v) is said to exist globally.

Blow-up problems for the following systems:

$$
\begin{align*}
& \left\{\begin{array}{l}
u_{t}=\Delta u+v^{p}, \quad v_{t}=\Delta v+u^{q}, \quad x \in \Omega, t>0, \\
u=v=0, \quad x \in \partial \Omega, \quad t>0, \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in \Omega,
\end{array}\right. \tag{1.6}\\
& \left\{\begin{array}{l}
u_{t}=\Delta u, \quad v_{t}=\Delta v, \quad x \in \Omega, \quad t>0, \\
\frac{\partial u}{\partial v}=v^{p}, \quad \frac{\partial v}{\partial v}=u^{q}, \quad x \in \partial \Omega, t>0, \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in \Omega,
\end{array}\right. \tag{1.7}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}=\Delta u+v^{p}, \quad v_{t}=\Delta v, \quad x \in \Omega, \quad t>0 \tag{1.8}\\
\frac{\partial u}{\partial v}=0, \quad \frac{\partial v}{\partial v}=u^{q}, \quad x \in \partial \Omega, t>0, \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in \Omega
\end{array}\right.
$$

have been studied very extensively over past years. Here $p, q>0, v$ is the outer normal, and Ω is a bounded (or unbounded) domain in R^{n}. They studied the global and non-global existence, the blow-up set, and the blow-up rate for the above three systems (see, for example, [1-17] and the references cited therein). Blow-up results for other parabolic systems, we refer the readers to the survey paper [18] and the references cited therein. See also [19-22].

Recently, Lin and Wang in [23] considered the following problem for a single semilinear heat equation:

$$
\begin{align*}
& u_{t}=u_{x x}+u^{p}, \quad 0<x<1, t>0, \tag{1.9}\\
& u_{x}(0, t)=0, \quad u_{x}(1, t)=u^{q}(1, t), \quad t>0, \tag{1.10}\\
& u(x, 0)=u_{0}(x), \quad 0 \leqslant x \leqslant 1, \tag{1.11}
\end{align*}
$$

where $p, q>0$. They studied how the reaction term u^{p} and the absorption term u^{q} affect the blow-up properties of the solution of (1.9)-(1.11). They obtained a necessary and sufficient condition for blow-up, derived the upper and lower bounds for the blow-up rate, and obtained the blow-up set under some assumptions. The authors in [24] then studied the blow-up set, described the time asymptotic behavior of blow-up solutions, and proved that the blow-up is complete under certain conditions for (1.9)-(1.11).

The main purpose of this paper is to understand how the reaction terms and the boundary absorption terms affect the blow-up properties for the problem (1.1)(1.5). Some similar results to [23] and [24] are established for (1.1)-(1.5). This paper is organized as follows. We first study the global existence and blow-up results for the problem (1.1)-(1.5) in Section 2. After proving some blow-up criteria for problems in half real line in Section 3, we derive the blow-up rate estimates for (1.1)-(1.5) in Section 4. Finally, in Section 5 we deal with the blowup set.

2. Global and non-global existence

Definition 2.1. A pair of functions (u, v) is called a supersolution of (1.1)-(1.5) in $[0,1] \times[0, T)$, if $u, v \in C^{2,1}([0,1] \times[0, T))$ and (u, v) satisfies

$$
\begin{aligned}
& u_{t} \geqslant u_{x x}+v^{p_{1}}, \quad(x, t) \in(0,1) \times(0, T), \\
& v_{t} \geqslant v_{x x}+u^{p_{2}}, \quad(x, t) \in(0,1) \times(0, T), \\
& u_{x}(0, t) \leqslant 0, \quad u_{x}(1, t) \geqslant v^{q_{1}}(1, t), \quad t \in(0, T), \\
& v_{x}(0, t) \leqslant 0, \quad v_{x}(1, t) \geqslant u^{q_{2}}(1, t), \quad t \in(0, T), \\
& u(x, 0) \geqslant u_{0}(x), \quad v(x, 0) \geqslant v_{0}(x), \quad x \in[0,1] .
\end{aligned}
$$

Subsolution is defined by reversing the inequalities.
We shall use the following comparison principle to prove some global and non-global existence results.

Lemma 2.1. Let (\bar{u}, \bar{v}) and $(\underline{u}, \underline{v})$ be a positive supersolution and a nonnegative subsolution of (1.1)-(1.5) in $[0,1] \times[0, T)$, respectively. Then $\bar{u} \geqslant \underline{u}$ and $\bar{v} \geqslant \underline{v}$ in $[0,1] \times[0, T)$.

Proof. Let $w=\bar{u}-\underline{u}$ and $z=\bar{v}-\underline{v}$. Then

$$
\begin{aligned}
& w_{t} \geqslant w_{x x}+a(x, t) z, \quad z_{t} \geqslant z_{x x}+b(x, t) w, \quad 0<x<1,0<t<T, \\
& w_{x}(0, t) \leqslant 0, \quad z_{x}(0, t) \leqslant 0, \quad 0<t<T \\
& w_{x}(1, t) \geqslant c(t) z(1, t), \quad z_{x}(1, t) \geqslant d(t) w(1, t), \quad 0<t<T
\end{aligned}
$$

$$
w(x, 0) \geqslant 0, \quad z(x, 0) \geqslant 0, \quad 0 \leqslant x \leqslant 1
$$

where

$$
\begin{aligned}
& a(x, t)=\frac{\bar{v}^{p_{1}}(x, t)-\underline{v}^{p_{1}}(x, t)}{\bar{v}(x, t)-\underline{v}^{(x, t)},} \quad \text { if } \bar{v} \neq \underline{v} ; \quad=0, \text { otherwise, } \\
& b(x, t)=\frac{\bar{u}^{p_{2}}(x, t)-\underline{u}^{p_{2}}(x, t)}{\bar{u}(x, t)-\underline{u}^{(x, t)},} \quad \text { if } \bar{u} \neq \underline{u} ; \quad=0, \text { otherwise, } \\
& c(t)=\frac{\bar{v}^{q_{1}}(1, t)-\underline{v}^{q_{1}}(1, t)}{\bar{v}(1, t)-\underline{v}(1, t)}, \quad \text { if } \bar{v} \neq \underline{v} ; \quad=0, \text { otherwise, } \\
& d(t)=\frac{\bar{u}^{q_{2}}(1, t)-\underline{u}^{q_{2}}(1, t)}{\bar{u}(1, t)-\underline{u}(1, t)}, \quad \text { if } \bar{u} \neq \underline{u} ; \quad=0, \text { otherwise. }
\end{aligned}
$$

For any fixed $\tau \in(0, T)$, we will show that $w \geqslant 0$ and $z \geqslant 0$ for $0 \leqslant x \leqslant 1$ and $0 \leqslant t \leqslant \tau$. For contradiction, we assume that w has a negative minimum in $[0,1] \times[0, \tau]$ and $\min _{[0,1] \times[0, \tau]} w \leqslant \min _{[0,1] \times[0, \tau]} z$. Let $\widetilde{w}=e^{-M t-L x^{2}} w$ and $\tilde{z}=e^{-M t-L x^{2}} z$, where

$$
L=\max _{0 \leqslant t \leqslant \tau} c(t) / 2, \quad M=2 L+4 L^{2}+\max _{[0,1] \times[0, \tau]} a(x, t)+\max _{[0,1] \times[0, \tau]} b(x, t) .
$$

Then

$$
\begin{align*}
& \widetilde{w}_{t} \geqslant \tilde{w}_{x x}+4 L x \tilde{w}_{x}+\left(2 L+4 L^{2} x^{2}-M\right) \widetilde{w}+a(x, t) \tilde{z} \\
& \quad 0<x<1,0<t<\tau \tag{2.1}\\
& \tilde{z}_{t} \geqslant \tilde{z}_{x x}+4 L x \tilde{z}_{x}+b(x, t) \tilde{w}+\left(2 L+4 L^{2} x^{2}-M\right) \tilde{z} \\
& 0<x<1,0<t<\tau \tag{2.2}
\end{align*}
$$

Since $\widetilde{w} \geqslant-\delta$ and $\tilde{z} \geqslant-\delta$ on the boundary $([0,1] \times\{0\}) \cup(\{0,1\} \times(0, \tau])$, where $-\delta:=\min _{[0,1] \times[0, \tau]} \widetilde{w}<0$, it follows from the strong maximum principle for weakly coupled parabolic systems (cf. Theorem 15 of Chapter 3 in [25]) that \widetilde{w} cannot assume its negative minimum in the interior. Hence $\widetilde{w}>-\delta$ in $(0,1) \times(0, \tau]$. Let $\left(x_{0}, t_{0}\right)$ be a minimum point on the boundary $\{0,1\} \times(0, \tau]$. Since $\widetilde{w}_{x}(0, t) \leqslant 0,0<t \leqslant \tau$, the same strong maximum principle implies that $x_{0}=1$ and $\widetilde{w}_{x}\left(x_{0}, t_{0}\right)<0$. But,

$$
\widetilde{w}_{x}\left(1, t_{0}\right) \geqslant-\left(c\left(t_{0}\right)-2 L\right) \delta \geqslant 0
$$

a contradiction. This completes the proof.
Theorem 2.2. Suppose that $\max \left\{p_{1} p_{2}, p_{1} q_{2}, p_{2} q_{1}, q_{1} q_{2}\right\} \leqslant 1$. Then the solution (u, v) of (1.1)-(1.5) exists globally.

Proof. Since $\max \left\{p_{1} p_{2}, p_{1} q_{2}, p_{2} q_{1}, q_{1} q_{2}\right\} \leqslant 1$, there exists a positive number l such that $p_{2} \leqslant l \leqslant 1 / p_{1}$ and $q_{2} \leqslant l \leqslant 1 / q_{1}$. Let

$$
\bar{u}=C e^{K t+L x^{2}}, \quad \bar{v}=C e^{l\left(K t+L x^{2}\right)}
$$

where C, K, L are positive constants satisfying

$$
\begin{aligned}
& C \geqslant \max \left\{\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty}\right\}, \\
& L \geqslant \frac{1}{2} C^{q_{1}-1}, \quad L \geqslant \frac{1}{2 l} C^{q_{2}-1}, \\
& K \geqslant 2 L C+4 L^{2}+C^{p_{1}-1}, \quad K \geqslant 2 L+4 l L^{2}+\frac{1}{l} C^{p_{2}-1} .
\end{aligned}
$$

It is easy to verify that (\bar{u}, \bar{v}) is a supersolution of (1.1)-(1.5). Then, by Lemma 2.1, we get $u \leqslant \bar{u}$ and $v \leqslant \bar{v}$. Hence the theorem follows.

Theorem 2.3. Suppose that $\max \left\{p_{1} p_{2}, q_{1} q_{2}, p_{1} q_{2}, p_{2} q_{1}\right\}>1$. Then the solution (u, v) of (1.1)-(1.5) blows up in finite time.

Proof. Set $l_{1}=\inf _{0 \leqslant x \leqslant 1} u_{0}(x)$ and $l_{2}=\inf _{0 \leqslant x \leqslant 1} v_{0}(x)$.
Suppose that $p_{1} p_{2}>1$. Let

$$
\underline{u}=A(S-t)^{-\alpha}, \quad \underline{v}=B(S-t)^{-\beta},
$$

where $\alpha=\left(p_{1}+1\right) /\left(p_{1} p_{2}-1\right), \beta=\left(p_{2}+1\right) /\left(p_{1} p_{2}-1\right)$, and A, B, S are positive constants satisfying

$$
\begin{aligned}
& B \geqslant\left(\alpha^{p_{2}} \beta\right)^{1 /\left(p_{1} p_{2}-1\right)} \\
& (\beta B)^{1 / p_{2}} \leqslant A \leqslant \alpha^{-1} B^{p_{1}}, \\
& A S^{-\alpha} \leqslant l_{1}, \quad A S^{-\beta} \leqslant l_{2} .
\end{aligned}
$$

Then $(\underline{u}, \underline{v})$ is a subsolution of (1.1)-(1.5). Thus, by Lemma 2.1, we obtain that $u \geqslant \underline{u}$ and $v \geqslant \underline{v}$ as long as both $(\underline{u}, \underline{v})$ and (u, v) exist. Therefore, (u, v) blows up in finite time.

For $q_{1} q_{2}>1$, we let

$$
\underline{u}=\left(M-\eta t-\eta x^{2}\right)^{-\alpha}, \quad \underline{v}=\left(M-\eta t-\eta x^{2}\right)^{-\beta}
$$

where $\alpha=\left(q_{1}+1\right) /\left(q_{1} q_{2}-1\right), \beta=\left(q_{2}+1\right) /\left(q_{1} q_{2}-1\right)$, and M, η are positive constants satisfying

$$
\begin{aligned}
& \eta \leqslant \min \{1 /(2 \alpha), 1 /(2 \beta)\} \\
& M \geqslant \eta+\max \left\{l_{1}^{-1 / \alpha}, l_{2}^{-1 / \beta}\right\} .
\end{aligned}
$$

Then $(\underline{u}, \underline{v})$ is a subsolution of (1.1)-(1.5). It follows from Lemma 2.1 that $u \geqslant \underline{u}$ and $v \geqslant \underline{v}$ as long as both $(\underline{u}, \underline{v})$ and (u, v) exist. Hence (u, v) blows up before $(\underline{u}, \underline{v})$ does.

For $p_{1} q_{2}>1$ or $p_{2} q_{1}>1$, the conclusion follows from Theorem 2.3 of [6] and Lemma 2.1. This completes the proof.

3. Blow-up criteria

In this section, we first derive the comparison principles for the following two problems

$$
\begin{align*}
& u_{t}=u_{x x}+v^{p}, \quad v_{t}=v_{x x}, \quad x>0, t>0 \tag{3.1}\\
& -u_{x}(0, t)=0, \quad-v_{x}(0, t)=u^{q}(0, t), \quad t>0 \tag{3.2}\\
& u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \geqslant 0 \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
& u_{t}=u_{x x}, \quad v_{t}=v_{x x}, \quad x>0, t>0, \tag{3.4}\\
& -u_{x}(0, t)=v^{p}(0, t), \quad-v_{x}(0, t)=u^{q}(0, t), \quad t>0, \tag{3.5}\\
& u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \geqslant 0, \tag{3.6}
\end{align*}
$$

where p and q are positive constants. For completeness, we shall give the proof here. To this end, we need the following lemma.

Lemma 3.1. Let $\tau^{*}>0$ and let $u \in C^{2,1}\left((0, \infty) \times\left(0, \tau^{*}\right)\right)$ be a bounded continuous function in $[0, \infty) \times\left[0, \tau^{*}\right)$ satisfying

$$
\begin{align*}
& u_{t} \leqslant u_{x x}, \quad x>0,0<t<\tau^{*}, \tag{3.7}\\
& u(0, t) \leqslant 0, \quad 0<t<\tau^{*}, \tag{3.8}\\
& u(x, 0) \leqslant 0, \quad x \geqslant 0 . \tag{3.9}
\end{align*}
$$

Then $u \leqslant 0$ in $[0, \infty) \times\left[0, \tau^{*}\right)$.
Proof. Given any fixed $\tau \in\left(0, \tau^{*}\right)$. Let χ be a $C_{0}^{\infty}(\mathbf{R})$ function satisfying $0 \leqslant \chi \leqslant 1$ and $\operatorname{supp} \chi \subset[0, \infty)$. For any $R>1$ such that $\operatorname{supp} \chi \subset[0, R-1]$, let φ be the solution of the following backward problem

$$
\begin{align*}
& \varphi_{t}+\varphi_{x x}=\varphi, \quad 0<x<R, 0<t<\tau, \tag{3.10}\\
& \varphi(0, t)=\varphi(R, t)=0, \quad 0<t<\tau, \tag{3.11}\\
& \varphi(x, \tau)=e^{-x} \chi(x), \quad 0 \leqslant x \leqslant R . \tag{3.12}
\end{align*}
$$

It follows from the maximum principle that

$$
\begin{equation*}
0 \leqslant \varphi \leqslant e^{-x}, \quad 0 \leqslant x \leqslant R, 0 \leqslant t \leqslant \tau . \tag{3.13}
\end{equation*}
$$

Set

$$
\psi(x)=K\left(e^{-x}-e^{x-2 R}\right), \quad K=\frac{e}{e-1 / e}
$$

It is easy to see that ψ satisfies

$$
\begin{aligned}
& \psi^{\prime \prime}=\psi, \quad R-1<x<R \\
& \psi(R-1)=e^{-(R-1)}, \quad \psi(R)=0
\end{aligned}
$$

Applying the maximum principle, we obtain that $\varphi \leqslant \psi$ for $R-1 \leqslant x \leqslant R$ and $0 \leqslant t \leqslant \tau$. Since $\varphi(R, t)=\psi(R)=0$, we conclude that

$$
\begin{equation*}
0 \leqslant-\varphi_{x}(R, t) \leqslant-\psi^{\prime}(R)=2 K e^{-R}, \quad 0<t<\tau \tag{3.14}
\end{equation*}
$$

Multiplying both sides of (3.7) by φ and integrating it over $[0, R] \times[0, \tau]$, by (3.8)-(3.14), we deduce that

$$
\int_{0}^{R} u(x, \tau) e^{-x} \chi(x) d x \leqslant \int_{0}^{\tau} \int_{0}^{R} u^{+} e^{-x} d x d t+2 K M \tau e^{-R}
$$

where $M=\sup _{[0, \infty) \times\left[0, \tau^{*}\right]}|u|$. Letting $R \rightarrow \infty$, we get

$$
\begin{equation*}
\int_{0}^{\infty} u(x, \tau) e^{-x} \chi(x) d x \leqslant \int_{0}^{\tau} \int_{0}^{\infty} u^{+} e^{-x} d x d t \tag{3.15}
\end{equation*}
$$

Note that (3.15) holds for any $\chi \in C_{0}^{\infty}(\mathbf{R})$ satisfying $0 \leqslant \chi \leqslant 1$ and supp $\chi \subset$ $[0, \infty)$.

Now, for each $k \in \mathbf{N}$, let $\chi_{k}=g_{k} h_{k}$, where g_{k} is a $C^{\infty}(\mathbf{R})$ function satisfying $0 \leqslant g_{k} \leqslant 1$ and

$$
g_{k}(x)= \begin{cases}1 & \text { if } u(x, \tau) e^{-x} \geqslant 1 / k \text { and } 0 \leqslant x \leqslant 3 k \\ 0 & \text { if } u(x, \tau) e^{-x} \leqslant 0 \text { or } x \leqslant 0\end{cases}
$$

(notice that such function g_{k} exists, since the set $\left\{x \mid u(x, \tau) e^{-x} \geqslant 1 / k\right.$ and $0 \leqslant$ $x \leqslant 3 k\}$ is compact, the set $\left\{x \mid u(x, \tau) e^{-x} \leqslant 0\right.$ or $\left.x \leqslant 0\right\}$ is closed, and they are disjoint), and h_{k} is a $C_{0}^{\infty}(\mathbf{R})$ function satisfying $0 \leqslant h_{k} \leqslant 1$ and

$$
h_{k}(x)= \begin{cases}1 & \text { if } x \leqslant k \\ 0 & \text { if } x \geqslant 2 k\end{cases}
$$

Clearly, $\chi_{k} \in C_{0}^{\infty}(\mathbf{R}), 0 \leqslant \chi_{k} \leqslant 1$, and supp $\chi_{k} \subset[0, \infty)$ for any $k \in \mathbf{N}$. Replacing χ by χ_{k} in (3.15) and applying the Lebesgue dominated convergence theorem, we obtain that

$$
\int_{0}^{\infty} u^{+}(x, \tau) e^{-x} d x \leqslant \int_{0}^{\tau} \int_{0}^{\infty} u^{+} e^{-x} d x d t
$$

Then from the Gronwall's inequality it follows that

$$
\int_{0}^{\tau} \int_{0}^{\infty} u^{+} e^{-x} d x d t \leqslant 0
$$

Hence $u^{+}=0$ in $[0, \infty) \times[0, \tau]$. Since τ is arbitrary, the lemma follows.

Definition 3.1. A pair of functions (\bar{u}, \bar{v}) is called a (nonnegative) supersolution of (3.1)-(3.3) in $[0, \infty) \times[0, T)$, if $\bar{u}, \bar{v} \in C^{2,1}((0, \infty) \times(0, T)) \cap C([0, \infty) \times$ $[0, T)$) and (\bar{u}, \bar{v}) satisfies

$$
\begin{align*}
& \bar{u}_{t} \geqslant \bar{u}_{x x}+\bar{v}^{p}, \quad \bar{v}_{t} \geqslant \bar{v}_{x x}, \quad x>0,0<t<T \tag{3.16}\\
& -\bar{u}_{x}(0, t) \geqslant 0, \quad-\bar{v}_{x}(0, t) \geqslant \bar{u}^{q}(0, t), \quad 0<t<T, \tag{3.17}\\
& \bar{u}(x, 0) \geqslant u_{0}(x), \quad \bar{v}(x, 0) \geqslant v_{0}(x), \quad x \geqslant 0 . \tag{3.18}
\end{align*}
$$

Subsolution is defined by reversing the inequalities in (3.16)-(3.18). Similarly, we can define supersolution and subsolution of (3.4)-(3.6).

Theorem 3.2. Let (\bar{u}, \bar{v}) and $(\underline{u}, \underline{v})$ be a supersolution and a subsolution of (3.1)(3.3) in $[0, \infty) \times[0, T)$, respectively. Suppose that (\bar{u}, \bar{v}) and $(\underline{u}, \underline{v})$ are bounded in $[0, \infty) \times[0, T)$. If $\bar{u}(0,0)>\underline{u}(0,0)$ and $\bar{v}(0,0)>\underline{v}(0,0)$, then $\bar{u} \geqslant \underline{u}$ and $\bar{v} \geqslant \underline{v}$ in $[0, \infty) \times[0, T)$.

Proof. For contradiction, we assume that

$$
t_{0}:=\sup \{\sigma \geqslant 0 \mid \bar{u} \geqslant \underline{u} \text { and } \bar{v} \geqslant \underline{v} \text { in }[0, \infty) \times[0, \sigma]\}<T .
$$

Since $\bar{u}(0,0)>\underline{u}(0,0)$ and $\bar{v}(0,0)>\underline{v}(0,0)$, there exists $\tau^{*} \in(0, T)$ such that $\bar{u}(0, t)>\underline{u}(0, t)$ and $\bar{v}(0, t)>\underline{v}(0, t)$ for $t \in\left[0, \tau^{*}\right]$. From Lemma 3.1, we obtain that $\bar{v} \geqslant \underline{v}$ in $[0, \infty) \times\left[0, \tau^{*}\right]$. Thus

$$
(\bar{u}-\underline{u})_{t} \geqslant(\bar{u}-\underline{u})_{x x}+\bar{v}^{p}-\underline{v}^{p} \geqslant(\bar{u}-\underline{u})_{x x} \quad \text { in }(0, \infty) \times\left(0, \tau^{*}\right) .
$$

Again, by Lemma 3.1, we obtain that $\bar{u} \geqslant \underline{u}$ in $[0, \infty) \times\left[0, \tau^{*}\right]$. Hence $t_{0} \geqslant \tau^{*}>$ 0 . The definition of t_{0} implies that there exists $x_{0} \geqslant 0$ such that either $\bar{u}\left(x_{0}, t_{0}\right)=$ $\underline{u}\left(x_{0}, t_{0}\right)$ or $\bar{v}\left(x_{0}, t_{0}\right)=\underline{v}\left(x_{0}, t_{0}\right)$. By the strong maximum principle, $x_{0}=0$. Then, by applying the Hopf's boundary point lemma, either $\bar{u}_{x}\left(0, t_{0}\right)>\underline{u}_{x}\left(0, t_{0}\right)$ or $\bar{v}_{x}\left(0, t_{0}\right)>\underline{v}_{x}\left(0, t_{0}\right)$, a contradiction. Hence $t_{0}=T$ and the proof is complete.

Now, we consider the problem

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\mu_{1} \varphi^{p_{2}}, \quad y>0, s>0 \tag{3.19}\\
\varphi_{y}(0, s)=-\mu_{2} \psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\varphi^{q_{2}}(0, s), \quad s>0 \\
\varphi(y, 0)=\varphi_{0}(y), \quad \psi(y, 0)=\psi_{0}(y), \quad y \geqslant 0
\end{array}\right.
$$

where $\mu_{i} \in\{0,1\}, i=1,2$. Set

$$
\alpha=\frac{p_{1}+2}{2\left(p_{1} q_{2}-1\right)}, \quad \beta=\frac{2 q_{2}+1}{2\left(p_{1} q_{2}-1\right)}
$$

Theorem 3.3. Suppose that $p_{1} q_{2}>1$. Under the assumption that either $\max \{\alpha, \beta\}>1 / 2$, or, $\max \{\alpha, \beta\}=1 / 2$ and $\min \left\{p_{1}, q_{2}\right\} \geqslant 1$, every nontrivial nonnegative solution (φ, ψ) of (3.19) blows up in finite time.

Proof. This theorem is just the main Theorem of [8] when $\mu_{1}=\mu_{2}=0$.
In general, we may without loss of generality assume that $\varphi_{0}(0)>0$ and $\psi_{0}(0)>0$, since $\varphi(0, s)>0$ and $\psi(0, s)>0$ as long as φ, ψ exist and $s>0$. Now, let (u, v) be a solution of (3.1)-(3.3) with $p=p_{1}, q=q_{2}$, and initial functions $u_{0}=\varphi_{0} / 2, v_{0}=\psi_{0} / 2$. Then by the comparison principle (Theorem 3.2) we have $\varphi \geqslant u$ and $\psi \geqslant v$ as long as u, v, φ, ψ are bounded. Since (u, v) blows up in finite time, the theorem follows.

Using a similar argument as in the proof of Theorem 3.2, we can also prove the following theorem.

Theorem 3.4. Let (\bar{u}, \bar{v}) and $(\underline{u}, \underline{v})$ be a supersolution and a subsolution of (3.4)(3.6) in $[0, \infty) \times[0, T)$, respectively. Suppose that (\bar{u}, \bar{v}) and $(\underline{u}, \underline{v})$ are bounded in $[0, \infty) \times[0, T)$. If $\bar{u}(0,0)>\underline{u}(0,0)$ and $\bar{v}(0,0)>\underline{v}(0,0)$, then $\bar{u} \geqslant \underline{u}$ and $\bar{v} \geqslant \underline{v}$ in $[0, \infty) \times[0, T)$.

Using Theorem 2.1 of [5] and Theorem 3.4, we can prove the following blowup result for solutions of the system:

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\mu_{1} \psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\mu_{2} \varphi^{p_{2}}, \quad y>0, \quad s>0 \tag{3.20}\\
\varphi_{y}(0, s)=-\psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\varphi^{q_{2}}(0, s), \quad s>0 \\
\varphi(y, 0)=\varphi_{0}(y), \quad \psi(y, 0)=\psi_{0}(y), \quad y \geqslant 0
\end{array}\right.
$$

where $\mu_{i} \in\{0,1\}, i=1,2$.
Theorem 3.5. Suppose that $q_{1} q_{2}>1$. Set

$$
\alpha=\frac{q_{1}+1}{2\left(q_{1} q_{2}-1\right)}, \quad \beta=\frac{q_{2}+1}{2\left(q_{1} q_{2}-1\right)} .
$$

Under the assumption that $\max \{\alpha, \beta\} \geqslant 1 / 2$, every nontrivial nonnegative solution (φ, ψ) of (3.20) blows up in finite time.

Finally, we consider the following problem:

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\varphi^{p_{2}}, \quad y>0, s>0 \tag{3.21}\\
\varphi_{y}(0, s)=-\mu_{1} \psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\mu_{2} \varphi^{q_{2}}(0, s), \quad s>0 \\
\varphi(y, 0)=\varphi_{0}(y), \quad \psi(y, 0)=\psi_{0}(y), \quad y \geqslant 0
\end{array}\right.
$$

where $\mu_{i} \in\{0,1\}, i=1,2$.
Theorem 3.6. Suppose that $p_{1} p_{2}>1$. Set

$$
\alpha=\frac{p_{1}+1}{p_{1} p_{2}-1}, \quad \beta=\frac{p_{2}+1}{p_{1} p_{2}-1} .
$$

Under the assumption that $\max \{\alpha, \beta\} \geqslant 1 / 2$, every nontrivial nonnegative solution (φ, ψ) of (3.21) blows up in finite time.

Proof. Let

$$
\begin{aligned}
& G(x, y, t)=(4 \pi t)^{-1 / 2} \exp \left(-\frac{(x-y)^{2}}{4 t}\right) \\
& g(t) w(x, \cdot)=\int_{0}^{\infty}[G(x, y, t)+G(x,-y, t)] w(y, \cdot) d y
\end{aligned}
$$

Then the solution (φ, ψ) of (3.21) can be represented by

$$
\begin{aligned}
\varphi(\cdot, s)= & g(s) \varphi_{0} \\
& +\int_{0}^{s} g(s-t) \psi^{p_{1}}(\cdot, t) d t+2 \mu_{1} \int_{0}^{s} G(\cdot, 0, s-t) \psi^{q_{1}}(0, t) d t \\
\psi(\cdot, s)= & g(s) \psi_{0} \\
& +\int_{0}^{s} g(s-t) \varphi^{p_{2}}(\cdot, t) d t+2 \mu_{2} \int_{0}^{s} G(\cdot, 0, s-t) \varphi^{q_{2}}(0, t) d t
\end{aligned}
$$

The theorem can be proved by following the proof of Theorem 2 in [7] step by step.

4. Blow-up rate

In this section, we always assume that $u_{0}^{\prime} \geqslant 0, v_{0}^{\prime} \geqslant 0$, and the solution (u, v) of (1.1)-(1.5) blows up in finite time T. Then by the maximum principle we have $u_{x} \geqslant 0$ and $v_{x} \geqslant 0$ in $[0,1] \times[0, T)$. Notice that $u(1, t)=\max _{0 \leqslant x \leqslant 1} u(x, t)$ and $v(1, t)=\max _{0 \leqslant x \leqslant 1} v(x, t)$. Motivated by [26] for scalar equations and [1] for systems, we shall use a scaling method (cf. [27]) to derive the blow-up rate.

For convenience, we let

$$
\begin{array}{ll}
p_{1}^{*}:=\frac{2 q_{1} q_{2}+q_{1}-1}{q_{2}+1}, & p_{2}^{*}:=\frac{2 q_{1} q_{2}+q_{2}-1}{q_{1}+1}, \\
q_{1}^{*}:=\frac{p_{1} p_{2}+2 p_{1}+1}{2\left(p_{2}+1\right)}, & q_{2}^{*}:=\frac{p_{1} p_{2}+2 p_{2}+1}{2\left(p_{1}+1\right)}
\end{array}
$$

for given positive constants $p_{1}, p_{2}, q_{1}, q_{2}$. It is easy to check that $\max \left\{p_{1} p_{2}, p_{1} q_{2}\right.$, $\left.p_{2} q_{1}, q_{1} q_{2}\right\} \leqslant 1$ if one of the following conditions holds:
(1) $p_{1} q_{2} \leqslant 1, p_{1} \geqslant p_{1}^{*}$, and $q_{2} \geqslant q_{2}^{*}$;
(2) $p_{2} q_{1} \leqslant 1, p_{2} \geqslant p_{2}^{*}$, and $q_{1} \geqslant q_{1}^{*}$;
(3) $q_{1} q_{2} \leqslant 1, p_{1} \leqslant p_{1}^{*}$, and $p_{2} \leqslant p_{2}^{*}$;
(4) $p_{1} p_{2} \leqslant 1, q_{1} \leqslant q_{1}^{*}$, and $q_{2} \leqslant q_{2}^{*}$.

Since (u, v) blows up in finite time, it follows from the above observation and Theorem 2.2 that
(1) $p_{1} q_{2}>1$, if $p_{1} \geqslant p_{1}^{*}$ and $q_{2} \geqslant q_{2}^{*}$;
(2) $p_{2} q_{1}>1$, if $p_{2} \geqslant p_{2}^{*}$ and $q_{1} \geqslant q_{1}^{*}$;
(3) $q_{1} q_{2}>1$, if $p_{1} \leqslant p_{1}^{*}$ and $p_{2} \leqslant p_{2}^{*}$;
(4) $p_{1} p_{2}>1$, if $q_{1} \leqslant q_{1}^{*}$ and $q_{2} \leqslant q_{2}^{*}$.

We also define

$$
(\alpha, \beta)= \begin{cases}\left(\frac{p_{1}+2}{2\left(p_{1} q_{2}-1\right)}, \frac{2 q_{2}+1}{2\left(p_{1} q_{2}-1\right)}\right), & \text { if } p_{1} \geqslant p_{1}^{*} \text { and } q_{2} \geqslant q_{2}^{*} \tag{4.1}\\ \left(\frac{p_{2}+2}{2\left(p_{2} q_{1}-1\right)}, \frac{2 q_{1}+1}{2\left(p_{2} q_{1}-1\right)}\right), & \text { if } p_{2} \geqslant p_{2}^{*} \text { and } q_{1} \geqslant q_{1}^{*} \\ \left(\frac{q_{1}+1}{2\left(q_{1} q_{2}-1\right)}, \frac{q_{2}+1}{2\left(q_{1} q_{2}-1\right)}\right), & \text { if } p_{1} \leqslant p_{1}^{*} \text { and } p_{2} \leqslant p_{2}^{*} ; \\ \left(\frac{p_{1}+1}{p_{1} p_{2}-1}, \frac{p_{2}+1}{p_{1} p_{2}-1}\right), & \text { if } q_{1} \leqslant q_{1}^{*} \text { and } q_{2} \leqslant q_{2}^{*} .\end{cases}
$$

Theorem 4.1. Suppose that $p_{1} \geqslant p_{1}^{*}, q_{2} \geqslant q_{2}^{*}$, and that either $\max \{\alpha, \beta\}>1 / 2$, or, $\max \{\alpha, \beta\}=1 / 2$ and $\min \left\{p_{1}, q_{2}\right\} \geqslant 1$. Then there exist positive constants C_{i}, $i=1,2,3,4$, such that

$$
\begin{array}{ll}
C_{1}(T-t)^{-\alpha} \leqslant \sup _{0<\tau<t} u(1, \tau) \leqslant C_{2}(T-t)^{-\alpha}, & \forall t \in[0, T), \\
C_{3}(T-t)^{-\beta} \leqslant \sup _{0<\tau<t} v(1, \tau) \leqslant C_{4}(T-t)^{-\beta}, & \forall t \in[0, T), \tag{4.3}
\end{array}
$$

where (α, β) is defined by (4.1).
Proof. We shall divide the proof into the following four steps.
Step 1: Scaling. Let $M_{u}(t)=\sup _{\tau \in(0, t)} u(1, \tau)$ and $M_{v}(t)=\sup _{\tau \in(0, t)} v(1, \tau)$. Without loss of generality we may assume that $M_{u}(t) \rightarrow+\infty$ as $t \rightarrow T$. Given $t \in(0, T)$ such that $M_{u}(t)>\left\|u_{0}\right\|_{\infty}$, there exists $\hat{t} \in(0, t]$ such that

$$
\begin{equation*}
u(1, \hat{t})=M_{u}(t) \tag{4.4}
\end{equation*}
$$

Take $\lambda=M_{u}^{-1 /(2 \alpha)}(t)$. Let

$$
\begin{align*}
& \varphi^{\lambda}(y, s)=\lambda^{2 \alpha} u\left(1-\lambda y, \hat{t}+\lambda^{2} s\right) \tag{4.5}\\
& \psi^{\lambda}(y, s)=\lambda^{2 \beta} v\left(1-\lambda y, \hat{t}+\lambda^{2} s\right) \tag{4.6}
\end{align*}
$$

for any $(y, s) \in[0,1 / \lambda] \times\left[-\hat{t} / \lambda^{2},(T-\hat{t}) / \lambda^{2}\right)$. It is easy to see that $\left(\varphi^{\lambda}, \psi^{\lambda}\right)$ is the solution of the problem (P^{λ}):

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\lambda^{\gamma_{1}} \varphi^{p_{2}}, \quad(y, s) \in\left(0, \frac{1}{\lambda}\right) \times\left(-\frac{\hat{t}}{\lambda^{2}}, \frac{T-\hat{t}}{\lambda^{2}}\right), \\
\varphi_{y}\left(\frac{1}{\lambda}, s\right)=0, \quad \psi_{y}\left(\frac{1}{\lambda}, s\right)=0, \quad s \in\left(-\frac{\hat{t}}{\lambda^{2}}, \frac{T-\hat{t}}{\lambda^{2}}\right), \\
\varphi_{y}(0, s)=-\lambda^{\gamma_{2}} \psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\varphi^{q_{2}}(0, s), \quad s \in\left(-\frac{\hat{t}}{\lambda^{2}}, \frac{T-\hat{t}}{\lambda^{2}}\right), \\
\varphi(0,0)=1
\end{array}\right.
$$

and satisfies

$$
\begin{align*}
& 0 \leqslant \varphi^{\lambda} \leqslant 1, \quad 0 \leqslant \psi^{\lambda} \leqslant M_{u}^{-\beta / \alpha}(t) M_{v}(t) \\
& \forall(y, s) \in\left[0, \frac{1}{\lambda}\right] \times\left[-\frac{\hat{t}}{\lambda^{2}}, 0\right] \tag{4.7}
\end{align*}
$$

where $\gamma_{1}:=2 \beta+2-2 \alpha p_{2} \geqslant 0$ and $\gamma_{2}:=2 \alpha+1-2 \beta q_{1} \geqslant 0$, since $p_{1} q_{2}>1$, $p_{1} \geqslant p_{1}^{*}$, and $q_{2} \geqslant q_{2}^{*}$. Moreover, $\gamma_{1}=0$ if and only if $q_{2}=q_{2}^{*} ; \gamma_{2}=0$ if and only if $p_{1}=p_{1}^{*}$.

Step 2: Claim that there exists $\delta>0$ such that

$$
\begin{equation*}
\delta \leqslant M_{u}^{-1 /(2 \alpha)}(t) M_{v}^{1 /(2 \beta)}(t) \leqslant \delta^{-1}, \quad \forall t \in[0, T) \tag{4.8}
\end{equation*}
$$

If the lower bound estimate in (4.8) does not hold, then there exists a sequence $\left\{t_{j}\right\} \nearrow T$ such that $M_{u}\left(t_{j}\right)>\left\|u_{0}\right\|_{\infty}, \forall j$, and

$$
\begin{equation*}
M_{u}^{-1 /(2 \alpha)}\left(t_{j}\right) M_{v}^{1 /(2 \beta)}\left(t_{j}\right) \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{4.9}
\end{equation*}
$$

For each j, we define $\hat{t_{j}}, \lambda_{j}$, and $\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)$ as in Step 1 such that the solution ($\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}$) of the corresponding problem ($P^{\lambda_{j}}$) satisfies

$$
\begin{align*}
0 & \leqslant \varphi^{\lambda_{j}} \leqslant 1, \quad 0 \leqslant \psi^{\lambda_{j}} \leqslant M_{u}^{-\beta / \alpha}\left(t_{j}\right) M_{v}\left(t_{j}\right), \\
& \forall(y, s) \in\left[0, \frac{1}{\lambda_{j}}\right] \times\left[-\frac{\hat{t_{j}}}{\lambda_{j}^{2}}, 0\right] . \tag{4.10}
\end{align*}
$$

Note that $\hat{t_{j}} \rightarrow T$ and $\lambda_{j} \rightarrow 0$ as $j \rightarrow \infty$. For any $m \in N$, from (4.9) and (4.10) it follows that

$$
\begin{equation*}
0 \leqslant \varphi^{\lambda_{j}} \leqslant 1, \quad 0 \leqslant \psi^{\lambda_{j}} \leqslant 1, \quad \forall(y, s) \in[0, m] \times\left[-m^{2}, 0\right] \tag{4.11}
\end{equation*}
$$

if j is sufficiently large. Then applying the standard parabolic estimate for scalar equations (cf. [28] or [29]), we obtain that

$$
\begin{align*}
& \left\|\varphi^{\lambda_{j}}\right\|_{C^{2+\sigma, 1+\sigma / 2}\left([0, m] \times\left[-m^{2}, 0\right]\right)} \leqslant C \tag{4.12}\\
& \left\|\psi^{\lambda_{j}}\right\|_{C^{2+\sigma, 1+\sigma / 2}\left([0, m] \times\left[-m^{2}, 0\right]\right)} \leqslant C \tag{4.13}
\end{align*}
$$

for some $0<\sigma<\min \left\{1, p_{1}, p_{2}, q_{1}, q_{2}\right\}$ and $C=C(m, \sigma)>0$. Using (4.12), (4.13), and a diagonal process, we can get a subsequence (still denoted by $\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)$) such that $\varphi^{\lambda_{j}} \rightarrow \varphi$ and $\psi^{\lambda_{j}} \rightarrow \psi$ uniformly on each compact subset of $[0, \infty) \times(-\infty, 0]$ for some (φ, ψ) satisfying

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\mu_{1} \varphi^{p_{2}}, \quad 0<y<\infty, \quad-\infty<s<0 \tag{4.14}\\
\varphi_{y}(0, s)=-\mu_{2} \psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\varphi^{q_{2}}(0, s) \\
\quad-\infty<s<0 \\
\varphi(0,0)=1
\end{array}\right.
$$

where $\mu_{i} \in\{0,1\}, i=1,2, \mu_{1}=1$ if and only if $q_{2}=q_{2}^{*}$, and $\mu_{2}=1$ if and only if $p_{1}=p_{1}^{*}$. But, by (4.10), $\psi \equiv 0$, a contradiction. Hence there exists $\delta>0$ such that the lower bound estimate in (4.8) holds.

If the upper bound estimate in (4.8) does not hold, then there exists a sequence $\left\{t_{j}\right\} \nearrow T$ such that

$$
\begin{equation*}
M_{u}^{-1 /(2 \alpha)}\left(t_{j}\right) M_{v}^{1 /(2 \beta)}\left(t_{j}\right) \rightarrow+\infty \tag{4.15}
\end{equation*}
$$

Clearly, $M_{v}\left(t_{j}\right) \rightarrow+\infty$. Choose $j^{*} \in N$ such that $M_{v}\left(t_{j}\right)>\left\|v_{0}\right\|_{\infty}, \forall j \geqslant j^{*}$. For any $j \geqslant j^{*}$, we take $\hat{t_{j}} \in\left(0, t_{j}\right]$ such that $v\left(1, \hat{t_{j}}\right)=M_{v}\left(t_{j}\right)$. Let $\lambda_{j}=$ $M_{v}^{-1 /(2 \beta)}\left(t_{j}\right)$. Define $\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)$ by (4.5) and (4.6) with $\lambda=\lambda_{j}$. Then $\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)$ is the solution of $\left(P^{\lambda_{j}}\right)$ such that

$$
\begin{aligned}
0 & \leqslant \varphi^{\lambda_{j}} \leqslant M_{u}\left(t_{j}\right) M_{v}^{-\alpha / \beta}\left(t_{j}\right), \quad 0 \leqslant \psi^{\lambda_{j}} \leqslant 1, \\
& \forall(y, s) \in\left[0,1 / \lambda_{j}\right] \times\left[-\hat{t_{j}} / \lambda_{j}^{2}, 0\right] .
\end{aligned}
$$

Proceeding as before, we will get a contradiction. Thus (4.8) is established.
Step 3: Estimate the lower bounds. Given any $t \in(0, T)$ such that $M_{u}(t)>$ $\left\|u_{0}\right\|_{\infty}$. Let \hat{t}, λ, and $\left(\varphi^{\lambda}, \psi^{\lambda}\right)$ be defined as in Step 1 . Since φ^{λ} blows up in finite time, there exists positive number s_{λ} such that

$$
\begin{equation*}
\max _{0 \leqslant y \leqslant 1 / \lambda} \varphi_{\lambda}(y, s)<2 \quad \text { for }-\hat{t} / \lambda^{2} \leqslant s<s_{\lambda} \tag{4.16}
\end{equation*}
$$

and $\max _{0 \leqslant y \leqslant 1 / \lambda} \varphi_{\lambda}\left(y, s_{\lambda}\right)=2$. From (4.7), (4.8), and (4.16), one can easily show that

$$
0 \leqslant \varphi^{\lambda} \leqslant 2, \quad 0 \leqslant \psi^{\lambda} \leqslant 2^{\beta / \alpha} \delta^{-2 \beta}, \quad \forall(y, s) \in[0,1 / \lambda] \times\left[-\hat{t} / \lambda^{2}, s_{\lambda}\right] .
$$

Then by applying the standard parabolic estimate for scalar equations (cf. [28] or [29]), we get

$$
\begin{aligned}
& \left\|\varphi^{\lambda}\right\|_{C^{2+\sigma, 1+\sigma / 2}\left([0,1 / \lambda] \times\left[0, s_{\lambda}\right]\right)} \leqslant C, \\
& \left\|\psi^{\lambda}\right\|_{C^{2+\sigma, 1+\sigma / 2}\left([0,1 / \lambda] \times\left[0, s_{\lambda}\right]\right)} \leqslant C
\end{aligned}
$$

for some $0<\sigma<\min \left\{1, p_{1}, p_{2}, q_{1}, q_{2}\right\}$ and a positive constant C independent of λ. This implies that $s_{\lambda} \geqslant c>0$ for some positive constant c independent of λ, or, equivalently independent of t. Let $t_{0}=\hat{t}$ and $t_{1}=t_{0}+\lambda^{2} s_{\lambda}$. Then $M_{u}\left(t_{1}\right)=2 M_{u}\left(t_{0}\right)$ and $M_{u}^{1 / \alpha}\left(t_{0}\right)\left(t_{1}-t_{0}\right)=s_{\lambda} \geqslant c$.

Replacing t by t_{1}, defining the corresponding \hat{t}, λ, and $\left(\varphi^{\lambda}, \psi^{\lambda}\right)$ as in Step 1, and by the same process as above, we obtain a new s_{λ} such that $M_{u}\left(t_{2}\right)=2 M_{u}\left(t_{1}\right)$ and $M_{u}^{1 / \alpha}\left(t_{1}\right)\left(t_{2}-t_{1}\right)=s_{\lambda} \geqslant c$, where $t_{2}=t_{1}+\lambda^{2} s_{\lambda}$. Continuing in this process, we can get a sequence $\left\{t_{j}\right\} \nearrow T$ such that

$$
\begin{aligned}
& M_{u}^{1 / \alpha}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right) \geqslant c, \quad \forall j \in N, \\
& M_{u}\left(t_{j}\right)=2 M_{u}\left(t_{j-1}\right), \quad \forall j \in N .
\end{aligned}
$$

Using a similar argument as Lemma 3.1 in [26], we derive that $M_{u}\left(t_{1}\right) \geqslant$ $c\left(T-t_{1}\right)^{-\alpha}$. Since $M_{u}\left(t_{1}\right)=2 M_{u}\left(t_{0}\right)=2 M_{u}(t)$ and $t_{1}>t$, it follows that $M_{u}(t) \geqslant c(T-t)^{-\alpha}$. Hence the lower bound for u in (4.2) holds, i.e.,

$$
\begin{equation*}
\sup _{0<\tau<t} u(1, \tau) \geqslant C_{1}(T-t)^{-\alpha}, \quad \forall t \in[0, T) \tag{4.17}
\end{equation*}
$$

Then the lower bound for v in (4.3) follows from (4.17) and (4.8).
Step 4: Estimate the upper bounds. To this end, we claim that there exists a positive number C such that $s_{\lambda} \leqslant C$ for all sufficiently small λ, where s_{λ} is defined as in Step 3. For contradiction, we suppose that there exists a sequence $\left\{\lambda_{j}\right\}$ with $\lambda_{j} \rightarrow 0$ such that $s_{\lambda_{j}} \rightarrow+\infty$. Take $t_{j}=\max \left\{t \mid M_{u}(t)=\lambda_{j}^{-2 \alpha}\right\}$. As before, we can define $\hat{t_{j}}, \lambda_{j}$, and $\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)$, the solution of $\left(P^{\lambda_{j}}\right)$ in $\left[0,1 / \lambda_{j}\right] \times$ $\left[-\hat{t_{j}} / \lambda_{j}^{2},\left(T-\hat{t_{j}}\right) / \lambda_{j}^{2}\right)$, such that

$$
\begin{align*}
0 & \leqslant \varphi^{\lambda_{j}} \leqslant 2, \quad 0 \leqslant \psi^{\lambda_{j}} \leqslant \lambda_{j}^{2 \beta} M_{v}\left(\hat{t}_{j}+\lambda_{j}^{2} s_{\lambda_{j}}\right) \\
& \forall(y, s) \in\left[0,1 / \lambda_{j}\right] \times\left[-\hat{t_{j}} / \lambda_{j}^{2}, s_{\lambda_{j}}\right] \tag{4.18}
\end{align*}
$$

By using (4.8) and (4.18), we obtain that

$$
0 \leqslant \psi^{\lambda_{j}} \leqslant 2^{\beta / \alpha} \delta^{-2 \beta}, \quad \forall(y, s) \in\left[0,1 / \lambda_{j}\right] \times\left[-\hat{t_{j}} / \lambda_{j}^{2}, s_{\lambda_{j}}\right]
$$

if j is sufficiently large. As before, we can find a subsequence of $\left\{\left(\varphi^{\lambda_{j}}, \psi^{\lambda_{j}}\right)\right\}$ converging to a solution of

$$
\left\{\begin{array}{l}
\varphi_{s}=\varphi_{y y}+\psi^{p_{1}}, \quad \psi_{s}=\psi_{y y}+\mu_{1} \varphi^{p_{1}}, \quad(y, s) \in(0, \infty) \times(-\infty, \infty) \tag{4.19}\\
\varphi_{y}(0, s)=-\mu_{2} \psi^{q_{1}}(0, s), \quad \psi_{y}(0, s)=-\varphi^{q_{2}}(0, s), \\
\quad s \in(-\infty, \infty), \\
\varphi(0,0)=1,
\end{array}\right.
$$

where μ_{1} and μ_{2} are defined as in (4.14). In addition, we have

$$
0 \leqslant \varphi \leqslant 2, \quad 0 \leqslant \psi \leqslant 2^{\beta / \alpha} \delta^{-2 \beta}, \quad y>0, s>0
$$

However, by Theorem 3.3 the nontrivial solution (φ, ψ) of (4.19) must blow up in finite time, a contradiction. Hence $s_{\lambda} \leqslant C$ for all sufficiently small λ for some $C>0$.

Let $t_{0}=t$ and $t_{1}=\lambda^{2} s_{\lambda}+\hat{t}$. Then $M_{u}\left(t_{1}\right)=2 M_{u}\left(t_{0}\right)$ and $M_{u}^{1 / \alpha}\left(t_{0}\right)\left(t_{1}-t_{0}\right) \leqslant$ $M_{u}^{1 / \alpha}\left(t_{0}\right)\left(t_{1}-\hat{t}\right)=s_{\lambda} \leqslant C$. Continuing in this process, we can get a sequence $\left\{t_{j}\right\} \nearrow T$ such that

$$
\begin{aligned}
& M_{u}^{1 / \alpha}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right) \leqslant C, \quad \forall j \in N, \\
& M_{u}\left(t_{j}\right)=2 M_{u}\left(t_{j-1}\right), \quad \forall j \in N .
\end{aligned}
$$

Again, from Lemma 3.1 in [26] and (4.8), the upper bounds for u and v follow. This completes the proof.

Similarly, we have the following theorem.
Theorem 4.2. Suppose that $p_{2} \geqslant p_{2}^{*}, q_{1} \geqslant q_{1}^{*}$, and that either $\max \{\alpha, \beta\}>1 / 2$, or, $\max \{\alpha, \beta\}=1 / 2$ and $\min \left\{p_{2}, q_{1}\right\} \geqslant 1$. Then there exist positive constants C_{i}, $i=1,2,3,4$, such that (4.2) and (4.3) hold, where (α, β) is defined by (4.1).

Proceeding as the proof of Theorem 4.1 and using Theorem 3.5, we can prove the following theorem.

Theorem 4.3. Suppose that $p_{1} \leqslant p_{1}^{*}, p_{2} \leqslant p_{2}^{*}$, and $\max \{\alpha, \beta\} \geqslant 1 / 2$. Then there exist positive constants $C_{i}, i=1,2,3,4$, such that (4.2) and (4.3) hold, where (α, β) is defined by (4.1).

Finally, the following theorem can be deduced by using Theorem 3.6.

Theorem 4.4. Suppose that $q_{1} \leqslant q_{1}^{*}, q_{2} \leqslant q_{2}^{*}$, and $\max \{\alpha, \beta\} \geqslant 1 / 2$. Then there exist positive constants $C_{i}, i=1,2,3,4$, such that (4.2) and (4.3) hold, where (α, β) is defined by (4.1).

Remark. Notice that
(a) $q_{1} \leqslant q_{1}^{*}$ and $q_{2} \geqslant q_{2}^{*}$, if $p_{1} \geqslant p_{1}^{*}$ and $p_{2} \leqslant p_{2}^{*}$.
(b) $q_{1} \geqslant q_{1}^{*}$ and $q_{2} \leqslant q_{2}^{*}$, if $p_{1} \leqslant p_{1}^{*}$ and $p_{2} \geqslant p_{2}^{*}$.

Suppose that (u, v) blows up in finite time. Then we can also classify the exponents for the blow-up rates as follows.

$$
(\alpha, \beta)= \begin{cases}\left(\frac{p_{1}+2}{2\left(p_{1} q_{2}-1\right)}, \frac{2 q_{2}+1}{2\left(p_{1} q_{2}-1\right)}\right), & \text { if } p_{1} \geqslant p_{1}^{*} \text { and } p_{2} \leqslant p_{2}^{*} ; \tag{4.20}\\ \left(\frac{p_{2}+2}{2\left(p_{2} q_{1}-1\right)}, \frac{2 q_{1}+1}{2\left(p_{2} q_{1}-1\right)}\right), & \text { if } p_{1} \leqslant p_{1}^{*} \text { and } p_{2} \geqslant p_{2}^{*} ; \\ \left(\frac{q_{1}+1}{2\left(q_{1} q_{2}-1\right)}, \frac{q_{2}+1}{2\left(q_{1} q_{2}-1\right)}\right), & \text { if } p_{1} \leqslant p_{1}^{*} \text { and } p_{2} \leqslant p_{2}^{*} ; \\ \left(\frac{p_{1}+2}{2\left(p_{1} q_{2}-1\right)}, \frac{2 q_{2}+1}{2\left(p_{1} q_{2}-1\right)}\right), & \\ \text { if } p_{1} \geqslant p_{1}^{*}, p_{2} \geqslant p_{2}^{*}, & \text { and } q_{2} \geqslant q_{2}^{*} ; \\ \left(\frac{p_{2}+2}{2\left(p_{2} q_{1}-1\right)}, \frac{2 q_{1}+1}{2\left(p_{2} q_{1}-1\right)}\right), \\ \text { if } p_{1} \geqslant p_{1}^{*}, p_{2} \geqslant p_{2}^{*}, & \text { and } q_{1} \geqslant q_{1}^{*} ; \\ \left(\frac{p_{1}+1}{p_{1} p_{2}-1}, \frac{p_{2}+1}{p_{1} p_{2}-1}\right), \\ \text { if } p_{1} \geqslant p_{1}^{*}, p_{2} \geqslant p_{2}^{*}, q_{1}<q_{1}^{*}, \text { and } q_{2}<q_{2}^{*} .\end{cases}
$$

5. Blow-up set

We shall modify the method of Hu and Yin [30] to study the blow-up set.

Lemma 5.1. Suppose that $q_{1} q_{2}>1, p_{1}<p_{1}^{*}$, and $p_{2}<p_{2}^{*}$. Let (u, v) be the solution of (1.1)-(1.5) satisfying

$$
\max _{0 \leqslant x \leqslant 1} u(x, t) \leqslant C(T-t)^{-\alpha} \quad \text { and }
$$

$$
\max _{0 \leqslant x \leqslant 1} v(x, t) \leqslant C(T-t)^{-\beta}, \quad 0 \leqslant t<T,
$$

for some positive constant C, where

$$
\alpha=\frac{q_{1}+1}{2\left(q_{1} q_{2}-1\right)} \quad \text { and } \quad \beta=\frac{q_{2}+1}{2\left(q_{1} q_{2}-1\right)} .
$$

Then the blow-up point occurs only at $x=1$.
Proof. Set $\eta(x)=\left(1-x^{2}\right)^{2}$. Let

$$
\varphi(x, t)=\frac{A B^{\alpha}}{[\eta(x)+B(T-t)]^{\alpha}}, \quad \psi(x, t)=\frac{D B^{\beta}}{[\eta(x)+B(T-t)]^{\beta}},
$$

where A, B, D are positive constants satisfying

$$
\begin{aligned}
& D \geqslant 2^{\beta} C, \quad A \geqslant 2^{\alpha} C, \\
& B^{\alpha+1-\beta p_{1}} \geqslant 2^{\alpha+2-\beta p_{1}} D^{p_{1}} \alpha^{-1} A^{-1}, \\
& B^{\beta+1-\alpha p_{2}} \geqslant 2^{\beta+2-\alpha p_{2}} A^{p_{2}} \beta^{-1} D^{-1}, \\
& B \geqslant 32 \alpha+16, \quad B \geqslant 32 \beta+16 .
\end{aligned}
$$

Note that $\alpha+1-\beta p_{1}>0$ and $\beta+1-\alpha p_{2}>0$ by assumptions. Choose t_{0} such that $B\left(T-t_{0}\right)=1$. Then (φ, ψ) satisfies

$$
\begin{aligned}
& \varphi_{t} \geqslant \varphi_{x x}+\psi^{p_{1}}, \psi_{t} \geqslant \psi_{x x}+\varphi^{p_{2}}, \quad 0<x<1, t_{0}<t<T \\
& \varphi_{x}(0, t)=0, \psi_{x}(0, t)=0, \quad t_{0}<t<T \\
& \varphi(1, t)=A(T-t)^{-\alpha} \geqslant C(T-t)^{-\alpha} \geqslant u(1, t), \quad t_{0}<t<T \\
& \psi(1, t)=D(T-t)^{-\beta} \geqslant C(T-t)^{-\beta} \geqslant v(1, t), \quad t_{0}<t<T \\
& \varphi\left(x, t_{0}\right) \geqslant 2^{-\alpha} A\left(T-t_{0}\right)^{-\alpha} \geqslant C\left(T-t_{0}\right)^{-\alpha} \geqslant u\left(x, t_{0}\right), \quad 0 \leqslant x \leqslant 1, \\
& \psi\left(x, t_{0}\right) \geqslant 2^{-\alpha} A\left(T-t_{0}\right)^{-\alpha} \geqslant C\left(T-t_{0}\right)^{-\beta} \geqslant v\left(x, t_{0}\right), \quad 0 \leqslant x \leqslant 1 .
\end{aligned}
$$

By the maximum principle, we have $u \leqslant \varphi$ and $v \leqslant \psi$ in $[0,1] \times\left[t_{0}, T\right)$. Since (φ, ψ) does not blow up at any point in $[0,1)$, the lemma follows.

Combining Theorem 4.3 and Lemma 5.1, we conclude that
Theorem 5.2. Suppose that $q_{1} q_{2}>1, p_{1}<p_{1}^{*}$, and $p_{2}<p_{2}^{*}$. Suppose also that $\left[\max \left\{q_{1}, q_{2}\right\}+1\right] /\left[2\left(q_{1} q_{2}-1\right)\right] \geqslant 1 / 2$. Let (u, v) be the solution of (1.1)-(1.5) with $u_{0}^{\prime} \geqslant 0$ and $v_{0}^{\prime} \geqslant 0$. Then the blow-up point occurs only at $x=1$.

Acknowledgment

This work was partially supported by National Science Council of the Republic of China under the contract NSC 90-2115-M-003-009. The authors thank the referee for some helpful comments.

References

[1] M. Chlebík, M. Fila, From critical exponents to blow-up rate for parabolic problems, Rend. Mat. 19 (1999) 449-470.
[2] G. Caristi, E. Mitidieri, Blow-up estimates of positive solutions of a parabolic system, J. Differential Equations 113 (1994) 265-271.
[3] K. Deng, Global existence and blow-up for a system of heat equations with nonlinear boundary conditions, Math. Methods Appl. Sci. 18 (1995) 307-315.
[4] K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys. 47 (1996) 132-143.
[5] K. Deng, M. Fila, H.A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenian. 63 (1994) 169-192.
[6] K. Deng, C.L. Zhao, Blow-up for a parabolic system coupled in an equation and a boundary condition, Proc. Roy. Soc. Edinburgh 131A (2001) 1345-1355.
[7] M. Escobedo, M.A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations 89 (1991) 176-202.
[8] M. Fila, H.A. Levine, On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition, J. Math. Anal. Appl. 204 (1996) 494-521.
[9] A. Friedman, Y. Giga, A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 44 (1987) 65-79.
[10] B. Hu, H.M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Methods Appl. Sci. 19 (1996) 1099-1120.
[11] Z. Lin, C. Xie, The blow-up rate for a system of heat equations with nonlinear boundary conditions, Nonlinear Anal. 34 (1998) 767-778.
[12] M. Pedersen, Z. Lin, Blow-up estimates of the positive solution of a parabolic system, J. Math. Anal. Appl. 255 (2001) 551-563.
[13] M. Pedersen, Z. Lin, Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition, Appl. Math. Lett. 14 (2001) 171-176.
[14] M.X. Wang, Blow-up estimates for semilinear parabolic systems coupled in an equation and a boundary condition, Sci. China Ser. A 44 (2001) 1465-1468.
[15] M.X. Wang, Blow-up properties of solutions to parabolic systems coupled in equations and boundary conditions, J. London Math. Soc., to appear.
[16] S. Wang, M.X. Wang, C. Xie, Reaction-diffusion systems with nonlinear boundary conditions, Z. Angew. Math. Phys. 48 (6) (1997) 994-1001.
[17] S. Wang, C. Xie, M.X. Wang, Note on critical exponents for a system of heat equations coupled in the boundary conditions, J. Math. Anal. Appl. 218 (1998) 313-324.
[18] K. Deng, H.A. Levine, The role of critical exponents in blow-up theorems, J. Math. Anal. Appl. 243 (2000) 85-126.
[19] M. Pedersen, Z. Lin, Coupled diffusion systems with localized nonlinear reactions, Comput. Math. Appl. 42 (2001) 807-816.
[20] F. Quirós, J.D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J., to appear.
[21] F. Quirós, J.D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. Angew. Math. Phys. 52 (2001) 342-346.
[22] S. Zheng, Global existence and global non-existence of solutions to a reaction-diffusion system, Nonlinear Anal. 39 (2000) 327-340.
[23] Z. Lin, M. Wang, The blow-up properties of solutions to semilinear heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 50 (1999) 361-374.
[24] S.-C. Fu, J.-S. Guo, J.-C. Tsai, Blow-up behavior for a semilinear heat equation with a nonlinear boundary condition, Preprint.
[25] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
[26] B. Hu, Remark on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Differential Integral Equations 9 (1996) 891-901.
[27] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981) 883-901.
[28] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.
[29] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
[30] B. Hu, H.M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994) 117-135.

[^0]: * Corresponding author.

 E-mail address: jsguo@cc.ntnu.edu.tw (J.-S. Guo).

