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Abstract In this chapter we conduct two experiments within an agent-based dou­
ble auction market. These two experiments allow us to see the effect of 
learning and smartness on price dynamics and allocative efficiency. Our 
results are largely consistent with the stylized facts observed in experi­
mental economics with human subjects. From the amelioration of price 
deviation and allocative efficiency, the effect of learning is vividly seen. 
However, smartness does not enhance market performance. In fact, the 
experiment with smarter agents (agenM without a quote limit) results 
in a less stable price dynamics and lower allocative efficiency. 
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Introduction 

In their seminal paper "Allocative Efficiency of Market with 
Zero-Intelligence Trader," Gode and Sunder posed an interesting 
question. How much intelligence is required of an agent to achieve 
human-level trading performance? The answer, as it first appeared, is a 
little surprising: little. How little? To make that message clearer, they 
called their agents zero-intelligence agents. These agents, when assigned 
a bargaining position in a standard double auction market, were sim­
ply bidding or asking randomly as if they had no capability to extract 
any useful information from the market. While these agents individu­
ally cannot bargain in an intelligent manner, their interactions via the 
market did collectively result in a near-100% allocative efficiency. They 
attributed this magic to Adam Smith's invisible hand. 

"Adam Smith's invisible hand may be more powerful than some have 
thought; it can generate aggregate rationality not only from individual 
rationality, but also from individual irrationality." (Gode & Sunder, 
1993, p.119, Italics added. ). 

It may be delicate to show that aggregate rationality does not rest 
upon individual rationality in some economic contexts. However, that 
does not include Gode and Sunder's case, and as a matter of fact, in their 
case it is trivial to show that allocative efficiency (aggregate rationality) 
does not rest upon individual rationality. To see this, let us simply 
assume that all agents are truth-tellers. In this regard, buyers would bid 
with their redemption values and sellers would ask with their unit costs. 
Obviously, allocative efficiency would then automatically be 100%. 

Gode and Sunder did seem to assume that individual rationality would 
necessarily imply aggregate rationality (see the quotation above). They 
might also suppose that the allocative efficiency would be near 100% if 
all traders are smart enough. Consequently, their focus was to look for 
the minimum intelligence level which can generate aggregate rationality. 
What, however, may surprise them is that this minimum level is so low 
that you only need dumb agents. 

Our picture is different: we do not assume that individual rational­
ity necessarily implies aggregate rationality. Therefore, instead of the 
minimum level, we are looking at the other direction. We already have 
argued that the minimum level is not a problem at all: a group of inno­
cent (honest) traders would result in a 100% allocative efficiency. What 
may make things uncertain is the case when traders are no longer inno-
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cent, but rather sophisticated. Hence, for us, the interesting question to 
ask is: would smart or smarter traders reduce allocative efficiency? As 
we shall see in this paper, the answer is positive. 

In this paper we conduct agent-based simulations of DA markets with 
different intelligence levels of traders. Traders in one case are endowed 
with more space to act than traders in the other case. This extra 
space makes more sophisticated trading strategies possible to emerge, 
and hence can make traders in one case potentially smarter than traders 
in the other case.! Traders who are given this favor are called the smart 
trader, and traders who are not are called the mediocre trader. We then 
examine the allocative efficiency achieved within these two different se­
tups. It is found that markets composed of mediocre traders realized 
96% of the potential social surplus, whereas markets composed of smart 
traders realized only 88% of it. 

Our finding for smart traders can be compared to the one Gode and 
Sunder saw for their zero-intelligence traders. While Gode and Sunder's 
finding shows that the invisible hand is more powerful than we thought, 
our finding shows the opposite. Moreover, to attain a higher allocative 
efficiency, the privilege given to traders should be deprived, and this de­
privation can be interpreted as a kind of an intervention used to protect 
the market. Therefore, one way to summarize our study is as the follow­
ing: Smart agents do not necessarily bring goodness to the market. One 
purpose of regulation is to annihilate the evil-side of smartness. 

The rest of the paper is organized as follows. Section 1 shall briefly re­
view the agent-based double auction markets used in this paper. Section 
3 proposes experimental designs and measures of market performance. 
Section 4 presents and analyzes the simulation results, as Section 5 pro­
vides the concluding remarks. 

1. Agent-Based Double Auction Markets: 
AIE-DA 

Agent-based double auction (DA) markets were first seen in Dawid 
(1999), who applied the single-population genetic algorithm (SGA) to 
evolve traders' bids and asks, but not bargaining strategies per se. Chen 
(2000) proposed an agent-based DA market which is suitable for study­
ing the evolution of bargaining strategies and which can be implemented 
with the software AIE-DA, developed by the AI-ECON Research 
Center. Chen (2001) and Chen, Chie, and Tai (2001) prepared a doc­
umentation accompanying this software, which is written in the lan­
guage of Delphi, and is largely motivated by object-oriented program-



360 GA AND GP IN COMPUTATIONAL FINANCE 

AI E-DA: DA Market Architecture 

Buyer 1 Seller 1 ~ 

Buyer 2 Seller 2 ~ 

@-1BUyer3~ seller3~ 
• • • • • • • 

Buyer N1 SellerN2 ~ 

Figure 17.1. The AIE-DA Architecture: Multi-Population Genetic Programming. 

ming (OOP). The experiments conducted in this paper will be based on 
this software. 

All buyers and sellers in AIE-DA are artificial adaptive agents as de­
scribed in Holland and Miller (1991). Each artificial adaptive agent 
is built upon genetic programming. The architecture of genetic pro­
gramming used in AIE-DA is what is known as multi-population genetic 
programming (MGP). Briefly, we view or model an agent as a popula­
tion of bargaining strategies.2 Genetic programming is then applied to 
evolving each population of bargaining strategies. In this case, a society 
of bargaining agents consists of many populations of programs. This 
architecture is shown in Figure 17.l. 

The evolution of bargaining strategies for each agent proceeds as fol­
lows. First, consider a counter called generation. At generation t, each 
agent is assigned K bargaining strategies, collectively denoted by Gent, 
whose determination will be explained later. For each trading period 
h, the agent takes a random strategy I as follows: I f'.I Uniform[l, K]. 
At the end of the trading period, the profits of the chosen strategy i 
(i E [1, K]) will be recorded as 7ri,h' If strategy i is not chosen, then its 
profits will be counted as zero. After every H periods of trading, these k 
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strategies will be revised and renewed by standard genetic programming. 
The fitness is the mean profits: 

'L-f[=l 1ri,h 
1ri = H ' 

L:h=lli,h 
(17.1) 

where 1i ,h is 1 if i is selected at period h, otherwise it is 0.3 The revision 
and renew process will generate a new generation of K strategies, and 
at this point, the counter shall move to generation t + 1. The new 
generation of K strategies will be denoted by Gent+ 1. This revision and 
renew procedure is summarized as follows. 

Gent+! ¢= [Reproduction] V [Crossover] V[Mutation]e(Gent) 
, I 

v 
Genetic Operators 

(17.2) 
As for the initial generation Geno, it will be generated by the ramped 
half-and-half method. This process will continue when t hits a prespec­
ified number T. For the simulations in this paper, K is set to 50, H is 
100, and T is 100.4 

2. Experimental Designs 

2.1. Quote Limit 

To test the effect of smartness on allocative efficiency, a quote limit 
(upper bound for bid and lower bound for ask) is imposed in one ex­
periment, but not the other. The purpose of a quote limit is to prevent 
buyers and sellers from bidding and asking an unprofitable price, and so 
a buyer cannot bid a price higher than his redemption value, and a seller 
cannot not ask a price lower than his unit cost. One may wonder why 
traders would be so foolish to bid or ask a price outside the quotation 
limit. Would they definitely make a loss? The answer is negative. Quot­
ing a price outside the limit makes a trader's offer more lucrative, and 
enhances the chance of making a deal. Once the deal is won, depending 
on the trading mechanism, the trader may actually fulfill the transaction 
with a price which is different from his original quote. 

To show an example, consider the AURORA computerized trading 
system developed by the Chicago Board of Trade. AURORA rules stip­
ulate that only the holder of current bid (c:a) or current ask (CA) is 
allowed to trade if CB 2: CA.5 By the AURORA rule, the actual trans­
action price (P) to fulfill a transaction will be somewhere between the 
current ask and the current bid. Let us assume the middle of them,6 
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Table 17.1. Values of Control Parameters for Genetic Programming 

Number of Generations (T) 100 
Population Size (K) 50 
Evaluation Cycle (H) 100 
Fitness Function Mean Profits 
Elitist Strategy On 
Number of Elites 1 
Number of Strategies Chosen in Each Generation 100 
Selection Scheme Tournament 
Tournament Size 5 
Mutation Rate 0.05 
'free Mutation 0.1 
Point Mutation 0.9 
MaxDepth 17 

i.e., 

(17.3) 

It is therefore clear that C A ::::; P ::::; C B, and so neither side would have 
to fulfill the transaction with their original quotes. This explains why 
the trader may take a risk of quoting a price outside the limit. This ag­
gressive quotation should therefore be considered as a strategic behavior 
instead of a foolish one. Furthermore, this kind of aggressive bargaining 
strategy can actually emerges from the evolution of DA markets (Chen 
and Chie 2001). 

2.2. Designs of Markets and Traders 
Once the meaning of the quote limit is clear, we run two series of 

experiments. The first series of experiments are conducted without the 
quote limit, whereas the other series are conducted with it. This is 
essentially to say that we do not allow traders in the second series of 
experiments to evolve and develop aggressive bargaining strategies, while 
they are free to do so in the first series. By this limit, the "smartness" 
of the traders in the second series is restricted, whereas traders in the 
first are not. We therefore call traders in the ~first series smart traders, 
and traders in the second series mediocre traders.7 

Twenty experiments were conducted for each series. In each experi­
ment a token-value table, which is randomly generated, is applied to both 
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Table 17.2. List of Primitives, the Terminal Set and Function 
Set 

Terminal Set Function Set 
Highest Token (HT) 
Next Token (NT) Arithmetic Operators (+, -, x, +) 
Lowest Token (LT) 

Current Ask (CASK) 
Absolute Value (abs) 

Current Bid (CBID) 

Time Left Before the Termination of a 
Logarithmic and Exponential 

Trading Period (Tl) and Time Elaspe 
Functions (exp, log) 

Since the Last Successful Trading (T2) 

The Average, Minimum and the Maximum 
Price of the Previous Trading Period Trigonometric Functions (sin, cos) 

(PAvg, PMin, PMax) 

The Average, Minimum and the Maximum 
Logical Operators (If-Then-Else, 

Bid of Previous Trading Period 
If-Bigger-Then-Else) 

(PAvgBid, PMinBid, PMaxBid) 

The Average, Minimum and the Maximum 
Ask of the Previous Trading Period Extreme Operators (max, min) 

(PAvgAsk, PMinAsk, PMaxAsk) 

Quiet (Pass) Comparison Operator (» 
Ephemeral Random Constants (C) 

series. This table allows for four buyers and four sellers each with four 
units of tokens to trade. The 20 token-value tables (markets) generated 
are depicted in Figure 17.2. In each market, buyers and sellers' trading 
strategies evolved with genetic programming, whose control parameters 
are specified in Table 17.1 and 17.2. 

2.3. Measures of Market Performance 

In experimental economics, two measures are frequently used for mar­
ket performance. One is the so-called alpha 'value, and the other is the 
efficiency ratio. The alpha value takes the competitive equilibrium price 
(p*) as a benchmark, and attempts to measure the deviation degree 
between market prices and the competitive equilibrium price. More pre-
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Figure 17,2, 20 Different Markets Used in the Experiments, 

cisely, it is defined as follows, 

a= 

JE:-l (~i-P*)2 
P* 

(17.4) 

where n is the number of transaction made in each trading period, and Pi 
is the market price of the ith transaction. One technical issue involved 
in this definition is the location of P*. The meaning of competitive 
equilibrium price is clear when the demand and supply curves intersect 
at a single point, e.g., Markets 10 and 16 (See Figure 17.2). However, 
it is less clear when they intersect at an interval (Markets 7 and 20) or 
have no intersection at all (Markets 3 and 9). For the former case, we 
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Figure 17.3. Consumers' Surplus & Producers' Surplus. 

would define P* as the midpoint of the intersecting interval, while for 
the latter case it is the midpoint between the lowest redemption value 
and the highest unit cost. 

As to the second measure, we first take the sum of consumers' surplus 
(CS) and producers' surplus (PS) as the potential social surplus (See Fig­
ure 17.3). We then divide the realized surplus by the potential surplus, 
and post-multiply the quotient by 100%. The result is then a measure 
for allocative efficiency. It is mathematically described as follows. Let 
1rj be trader j's profits at a specific trading period, 

and 

1rj = L (Vj,q - Pq), j E Buyer, 
qEbought 

7rj = L (Pq - Vj,q), j E Seller, 
qE80ld 

(17.5) 

(17.6) 

where Vj,q is the redemption value of the qth unit for the jth buyer, or 
the unit cost of the qth unit for the jth seller. Term Pq is the transaction 
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price of that unit. The realized surplus (RS) is then simply the sum of 
profits earned by all traders, namely, 

RS = L 7rj, j E traders. 
j 

The efficiency ratio f3 is 
RS 

f3 = PS' 

where PSis the potential surplus. By this definition, 0 ~ f3 ~ 1. 

3. Experimental Results 

3.1. Price Dynamics 

Experiment 1 Bxperlmen. 2 
Markel 7 

(17.7) 

(17.8) 
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........ fI II" II .. II ................ II" ........ ". .. ...... fI" III ....................... "" .......... . 

Matkcl20 

-~ .. ~.~ .. ~.~ .. ~.~.~,.~.~ .. ~.~ .. ~.~.~ .. ~.~ .. ~. 

Figure 17.4. CASE 1: Time Series Plots of Price for Market 7, 10, and 20. 

Our analysis of the simulation results will be based on the two mea­
sures introduced above. However, before proceeding to those measures, 
it will be useful to first look at the price dynamics of those markets. 
For this purpose, we demonstrate time series plots of the price for the 
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following six markets: Markets 3, 7, 9, 10, 16, and 20 (Figures 17.4, 
17.5, 17.6). For each figure, there are three plots. The leftmost plot is 
the market with its equilibrium price or equilibrium price interval. The 
middle plot is the time series of the price of experiment 1, whereas the 
rightmost plot is that of experiment 2. We shall distinguish these results 
by three separate cases. The first case refers to Markets 7, 10, and 20 
(Figure 17.4). In these markets, we either have a unique equilibrium 
price (Market 10) or a tight equilibrium interval (Markets 7 and 20). 
Market prices in this case quickly move toward the equilibrium price (or 
price interval), and then slightly fluctuate around there. This result is 
basically consistent with what we learned from experimental economics 
with human subjects (Smith 1991). 

Bxperimcnl 1 Bxperimenl 2 
Market 3 

_ .... all.lI.II."' •••• "' ..... ~ •••••• _ ................ "' •••• r:: •••••• 

Figure 17.5. CASE 2: Time Series Plots of Price for Market 3 and 9. 

The distinguishing feature of our DA markets actually starts from the 
second case, Markets 3 and 9 (Figure 17.5). The common characteristic 
of these two markets is that demand and supply curves are completely 
flat with no intersection. This case, while very intriguing, has almost 
been neglected in experimental economics literature.8 How the price shall 
be determined under this circumstance is still an open question. Our 
simulation results from both markets seem to indicate that the price 
can shop around the whole interval, and is difficult to settle down to a 
narrow niche, but the price does not just randomly fluctuate. In fact, 
in Experiment 2, we see evidence of a slowly-upward moving trend. It 
begins with a price favorable to buyers, but then eventually turns to the 
seller side. For Experiment 1, Market 9 in particular, the price path is 
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even more complicated. It starts with a downward trend, but then ends 
up with an upward trend. In the middle, the trend breaks occur several 
times.9 

Experiment 1 Experiment 2 
Markel 16 

.... ·afl""" .. Il ••• "II. ••• "" •••••• 

Figure 17.6. CASE 3: Time Series Plots of Price for Market 16. 

We have so far not seen any qualitatively differences between Exper­
iments 1 and 2. Their divergence appears to be clear in Case 3, Market 
16 (Figure 17.6). In this market, demand and supply do intersect at a 
unique price. Based on our experience with Case 1, one might predict 
that the price will converge to this competitive equilibrium price; nev­
ertheless, these two curves are completely flat before the intersection, 
and, as we have encountered in Case 2, the price may find it difficult to 
converge. The perplexity of this situation is also seen in our simulation 
results: Experiment 2 confirms the first conjecture, whereas Experiment 
1 supports the second. Here is a good time to ask: would a market with 
smart traders (a market without a quote limit) destabilize rather than 
stabilize the market? We shall now deal with this question with more 
delicate statistics. 

3.2. Alpha Value 
As defined in Equation 17.4, the Alpha value measures the price 

deviation of a market period. Let O'.t,h be the 0'. value observed at 
the hth market period in the tth generation. In an ideal case, where 
limt->oo Pt,h -t P*, 

lim at h = 0, h = 1, ... , H. 
t->oo ' 

(17.9) 

The distribution (histogram) of {O'.t,hH'~l might also be expected to 
degenerate to the point zero. To see how far we are away from the ideal 
case, we draw the histogram of {O'.t,h}f[=l for every 10 generations, i.e., 
t=O, 10, ... 100. To economize the presentation, the histogram is drawn 
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Figure 17.7. The Distribution of a Values: Experiment 1. 

by pooling the {at,h}~=1 of all twenty markets. Figures 17.7 and 17.8 
give the results of Experiments 1 and 2, respectively.IO 

These two figures roughly do indicate that these distributions exhibit 
a mass at zero and a skew to the right. Furthermore, Figure 17.9 plots 
the time series of the medium of {at,h}~=1 for both experiments. Here, 
we can see the effect of learning on price deviation: alpha values in both 
experiments tend to decrease in time. Drawing the two lines together 
also makes the effect of smartness transparent: the experiment with 
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Figure 17.B. The Distribution of a Values: Experiment 2. 

smarter agents (Experiment 1) tends to have a higher medium value at 
any point in time. This may help us answer the question posed above: 
markets with smarter agents tend to be more fluctuating. Hence, smarter 
agents playa destabilizing role for the market. 

3.3. Beta Ratio 
The (3 ratio, as defined in Equation 17.8, measures the allocative ef­

ficiency of a DA market. From the proceeding analysis above, we are 
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Figure 17.9. Time Series of the Median of the distribution of Q Values. 

interested in two things: first, the role of learning in allocative efficiency, 
and second, the role of smarter agents. Our first concern is shown in 
Figure 17.10. Figure 17.10 has three time series plots of the f3 ratio. 
The first time series plot shows that the f3 ratio increases with time. In 
this case, learning enhances the allocative efficiency, but, the second and 
the third do not. The third case even shows that allocative efficiency 
deteriorates after learning. 

However, we have 20 markets for each experiment; therefore, we have 
numerous such time series plots. To economize our presentation, we use 
the sup function and the in! function to capture the essential character­
istics of these three different time series plots. l1 Given an ordered series 
{XtlT=l' the sup function is defined as 

T i 
SUPi( {Xth=l) = max{Xth=l' i = 1, ... , T, (17.1O) 

and the in! function is12 

in!i({xdf=l) = min{xdT=i' i = 1, ... ,T. (17.11) 

The corresponding sup and in! functions of the three series are also 
drawn in Figure 17.10. As we can see from this diagram, if learning 
can enhance allocative efficiency, then these two functions should ideally 
display many upward jumps. On the contrary, if allocative efficiency 
deteriorates during the course of learning, then these two functions are 
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Figure 17.10. Three Possible Time Paths of Beta Ratio. 

totally fiat with no jumps at all. Therefore, by counting the number of 
jumps and the total jump size, one can effectively summarize the role of 
learning in allocative efficiency over different markets. 

Figure 17.11 plots the number of jumps (on the y-axis) and jump size 
for the in! and sup function of the (3 values over 20 markets. Since 
each market may start with different initial ratios of (3, we distinguish 
them by two different symbols, namely, diamond and box. Diamond 
stands for a lower initial ratio of (3 (below 0.4), whereas box stands for a 
higher initial ratio of f3 (between 0.4 and 0.6). Since jumps are prevalent 
for all markets, allocative efficiency becomes ameliorated as times goes 
on. Furthermore, for those markets with lower initial ratios of (3, the 
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Figure 17.11. The Number of Jumps and Jump Size of Inf and Sup Functions. 

amelioration degree is generally more significant than those with higher 
initial values. 

To see the effect of smartness, the beta ratios of the initial generation 
and the last generation are shown in Table 17.3. The {3s of Experiment 1 
start with a range from 5% to 48%, and end up with a range from 79% to 
98%. The {3s of Experiment 2 are much higher: they start with a range 
from 33% to 59%, and end up with a range from 92% to 98%. If we 
compare these ratios pairwisely, then Experiment 1 is uniformly beaten 
by Experiment 2 in its resultant allocative efficiency, except for Market 
9. Therefore, smarter traders do not enhance allocative efficiency. 

4. Concluding Remarks 
Our evidence is quite clear: smarter agents fail to enhance market 

performance. I3 They induce a relatively unstable price (higher alpha 
value) and lower allocative efficiency (lower f3 ratio). There is only thing 
left to address in this concluding section. Why? 
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Table 17.3. The Beta Ratio of the Initial and Last Generation 

Experiment 1 Experiment 2 
Market Initial End Initial End 

1 29.09 94.67 56.93 97.56 
2 32.09 85.60 44.01 96.14 
3 45.56 83.44 41.19 97.00 
4 8.59 90.91 45.32 93.37 
5 11.11 92.28 33.75 96.78 
6 46.66 89.28 46.74 94.73 
7 6.41 86.45 59.69 96.29 
8 48.32 96.63 46.72 97.25 
9 46.09 98.31 38.50 97.23 
10 9.92 79.33 42.12 94.41 
11 33.42 90.91 55.26 96.00 
12 45.50 92.62 39.66 97.66 
13 4.47 80.07 34.59 98.59 
14 8.57 84.27 33.78 96.34 
15 48.42 95.18 36.86 98.78 
16 6.44 89.19 46.69 98.00 
17 34.14 89.10 43.62 98.11 
18 3.80 89.37 38.82 92.55 
19 47.26 79.40 38.02 94.26 
20 5.46 89.03 45.80 94.51 

Average 88.80 96.28 

While it is not easy to provide a mathematical proof, we try to make 
our argument as plausible as possible. We shall build our argument based 
on the competition between intra-marginal and extra-marginal agents, 
who are the trading partners of intra-marginal and extra-marginal to­
kens. Intra-marginal and extra-marginal tokens are the tokens which 
are just inside or outside the equilibrium frontier. Without loss of gen­
erality, let us consider a very simple demand and supply schedule, as 
shown in Figure 17.12. Clearly, in this diagram only Seller 1 may have 
a successful trade. Let us also assume that Buyer 1 takes a random bid 
from the open interval (5,9). Given this bid and the imposition of the 
quote limit, Buyer 2 has no chance to beat Buyer 1 since his redemption 
value is only 5. In this case, Buyer 1 is an intra-marginal buyer, and 
Buyer 2 is the extra-marginal buyer. 
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Figure 17.12. Removal of the Quote Limit and the Competition between Intra- and 
Extra-Marginal Agents. 

Now consider the removal of the quote limit. Buyer 2 then strategically 
makes a bid up to 10 by not making a loss deal. 14 Supposing now that 
Buyer 1 still takes a random bid from (5, 9), the deal-winning chance 
for Buyer 2 will then jump from 0 to 0.2 if he takes a random bid from 
(5, 10). If Buyer 2 wins the deal, then the allocative efficiency derived 
becomes lower as opposed to the case where Buyer 1 wins the case. This 
gives us an explanation for why allocative efficiency will be deteriorated 
when the quote limit is removed. 

One may next ask why Buyer 1 would not enlarge his bidding area, say 
up to 18. Yes,he will, if Buyer 2 continues to undertake the ambitious 
bidding. Nonetheless, when Buyer 2 is scared away, Buyer 1 may shift 
down his bidding area, and hence open the gate for the intruder again. 
Since we are using multi-population genetic programming to model our 
agents, it would be useful to make a distinction between phenotype and 
genotype in interpreting this dynamics. What we see from the outside 
is a competition between intra- and extra-marginal buyers, but what 
really happens inside (mentally) is the enduring competition between 
greedy strategies and cautious strategies. Greedy strategies nurse the 
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growth of cautious strategies, which in turn do the same thing for the 
greedy strategies. The market just cannot settle its dynamics steadily. 
The in-and-out process is a generic property observed in many other 
agent-based markets. 

Notes 

1. Chen and Chie (2001) examined some smart stmtegies that evolved from their agent­
based simulation of DA markets. 

2. The number of bargaining strategies assigned to each bargaining agent is called the pop­
ulation size. AIE-DA Version 2 allows each agent to have at most 1000 bargaining strategies. 

3. For the case when i is never selected, its mean profits would automatically be O. 

4. In other words, there totally are H x T = 10,000 periods of trading for a single run of 
simulation. 

5. Current bid refers to the highest bid at the current trading step, and current ask refers 
to the lowest ask. When CA is greater then CB, there shall be no match between buyers and 
sellers at the current step. 

6. While the Aurora rules allow a random determination between CA and CB, we shall 
only consider the case by taking the average. See also Dawid (1999). 

7. Notice that none of them in both series are born intelligent. They all have to learn 
and adapt to be intelligent. These terms only refer to the potentials which they may later 
develop. 

8. To the best of our knowledge, Dawid (1999) is the only study that has drawn attention 
to this case. 

9. Our results can be compared to Dawid (1999). Dawid (1999) found that price always 
converges, even though it did not necessary converge to the middle point of the demand and 
supply curves. However, there are several noticeable differences between our simulations and 
Dawid's. Firstly, Dawid did not use the Aurora Rule as the trading mechanism. Secondly, 
his market size is much bigger than us. Finally, his model of adaptive agents is also different 
from ours. 

10. Since H is set to 100 in this paper, and there are 20 markets, there are 2,000 observa-
tions in each histogram. 

11. This idea was first used in Chen, Kuo, and Lin (1996). 

12. Actually, this is the in! function in reverse order. 

13. Alternatively speaking, making everybody dumb by imposing a quote limit does not 
have a negative impact on market efficiency. 

14. This upper limit is obtained by assuming that Seller 1 is a truth teller. 
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