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Abstract One of the most recent applications of GP to finance is to use genetic program-
ming to derive option pricing formulas. Earlier studies take the Black–Scholes
model as the true model and use the artificial data generated by it to train
and to test GP. The aim of this paper is to provide some initial evidence of
the empirical relevance of GP to option pricing. By using the real data from
S&P 500 index options, we train and test our GP by distinguishing the case
in-the-money from the case out-of-the-money. Unlike most empirical studies,
we do not evaluate the performance of GP in terms of its pricing accuracy.
Instead, the derived GP tree is compared with the Black–Scholes model in its
capability to hedge. To do so, a notion of tracking error is taken as the
performance measure. Based on the post-sample performance, it is found that
in approximately 20% of the 97 test paths GP has a lower tracking error than
the Black–Scholes formula. We further compare our result with the ones
obtained by radial basis functions and multilayer perceptrons and one-stage
GP. Copyright  1999 John Wiley & Sons, Ltd.
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MOTIVATION AND INTRODUCTION

Over the last few years, computational intelli-
gence has been applied to the pricing of finan-
cial derivatives. For example, in artificial neural
networks, applications can be found in Hutch-
inson, Lo, and Poggio (1994), Liu (1996),
Lajbcygier et al. (1996), and Barucci, Cherubini
and Landi (1997). As to genetic algorithms, a
similar study has been conducted by Chen and
Lee (1997a). Finally, in genetic programming,
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Noe and Wang (1997) and Trigueros (1997)
pioneer this area of research.

Option is a financial contract that gives the
right to buy (call option) or sell (put option)
an asset for a specified price (the exercise price
or the strike price) on or before a specified
time. Option trading allows us to bet on future
events and to reduce the financial risk. But
what the contract is worth is anything but
trivial. By using stochastic calculus, Black and
Scholes (1973) established the cornerstone of
modern option pricing theory.1 The Black–
Scholes model has led to many insights into
the valuation of derivative securities. In brief,
this model provides us with a formula for
option pricing.2 The basic variables included in
the formula are:



I The strike price of the option (E)
I The time to maturity (t)
I The current market price of the stock (S)
I The (instantaneous) risk-free interest rate

(rf), and
I The volatility of the stock price (s).

However, the most challenging issue lies in
the choice of the function form which can put
these five variables well together. By making
six assumptions, Black and Scholes (1973) pro-
vided the following formula for option pricing.

C = SF(d1) − Ee−rf tF(d2) (1)

where C is the call price,

d1 =
lnSS

ED + rft

sÎt
+

1
2

sÎt

d2 = d1 − sÎt, and F(d) is the cumulative distri-
bution function for the standard normal distri-
bution. This formula can apply to the case of
European-style call option. By its derivation,
the success or failure of the Black–Scholes
model crucially depends on whether any of its
six assumptions is violated. Among these six
assumptions, the one under active debate is the
dynamic process of the underlying asset price.
For example, the geometric Brownian motion
assumption on asset price has been challenged
by empirical evidence (Lo and Mackinlay,
1988). It is not surprising then that the Black–
Scholes model has been shown demonstrating
systematic biases as in much empirical research
(Hull and White, 1987; Tucker, 1990; Hull, 1993;
Rubinstein, 1985, 1994; White, 1996).3 To avoid
the empirical biases of the Black–Scholes model,
nonparametric pricing methods, which do not
rely on restrictive parametric assumptions, are
developed, and techniques derived from com-
putational intelligence are also involved.

Nonparametric pricing methods are highly
data-intensive, requiring large quantities of his-
torical prices to obtain a sufficiently well-trained
networks, trees or chromosomes. According to
the data used, the literature can be classified into
two kinds. The first assumes that the Black–
Scholes model is the true model and uses the
artificial data generated by the B–S model to
train and to establish a nonparametric model.
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Barucci, Cherubini and Landi (1997), Noe and
Wang (1997), and Trigueros (1997) are this type
of applications. However, as mentioned above,
when the assumptions behind the B–S model no
longer hold, it does not seem to make too much
sense to establish our nonparametric model upon
this ‘straw man’. In this case, the second kind of
application, which is based on real rather than
artificial data, seems to be more appropriate.
Hutchinson, Lo, and Poggio (1994) and Lajbcygier
et al. (1996) are among the few of this camp. In
the second type of application, real data, such as
the S&P 500 futures, is employed to train learning
networks.4 The performance of these learning
networks is then compared with that of the B–S
model in the holdout sample. One of the fre-
quently used performance measure is the call
price error, i.e.

uCM − Cmodelu (2)

where CM is the market call price and Cmodel is
the call price predicted by the model in ques-
tion, either the B–S model (CBS) or a nonpara-
metric model.

The problem with this measure is that CM is
assumed as the ‘true’ price and our trained
model is designed to fit this ‘true’ price. How-
ever, for the reason given below, we hesitate
to take CM as the true price. The call price
observed in the market usually is set by using
the B–S model as a reference price. Therefore,
while CM can be different from the call price
estimated by the Black–Scholes formula, they
can be highly correlated. For example, accord-
ing to Hutchinson et al. (1994), the correlation
coefficient of CM/E and CBS/E can be high up
0.85 (E is the strike price).5 In this situation, if
CBS is wrong, then CM, using CBSas a reference,
may also be wrong. Therefore, using the call
price error as a performance measure to guide
machine learning may run the risk of ‘following
the herd’, and not being able to discover the
true direction. Certainly, applying machine
learning in this style can hardly be con-
sidered novel.

Given the possibility that CM may not be the
true price, this paper will not take uCM − Cmodelu
as the performance measure. Instead, we turn
to the key argument for deriving the Black–
Scholes formula, i.e. the no-arbitrage principle.



This is the application of the law of one price
to financial assets, and forms the basis of the
theory of option pricing. This principle is
concretized by the famous Black–Scholes partial
differential equation (PDE), which says that the
instantaneous difference between the return on
a hedged option portfolio and the return on a
bank deposit should be identical 0.6 Solving
this equation leaves us an dynamic strategy
for hedging, which enables us to monitor and
rebalance the hedged option portfolio in a way
such that the Black–Scholes PDE can hold.
Therefore, if our option pricing formula is cor-
rect, then the associated dynamic hedging strat-
egy should satisfy the Black–Scholes PDE. A
slight modification of this observation gives us
a notion of the tracking error introduced by
Hutchinson et al. (1994). In this paper, we shall
base our performance evaluation on the track-
ing error.

The rest of the paper is organized as follows.
In the next section the tracking error is intro-
duced. The data employed is described in the
third section followed by the design of the
two-stage genetic programming in the fourth
section. The fifth section presents the experi-
mental results, and the final section presents
conclusions.

TRACKING ERRORS

Despite its computational convince, the meas-
ure uCM − Cmodelu is not ideal for telling us the
practical value of any improvement in pricing
accuracy that genetic programming might give
us. As pointed out in Hutchinson et al. (1994),
‘a more meaningful measure of performance
for a given option pricing formula is the “track-
ing error” of various replicating portfolios
designed to delta-hedge an option position,
using the formula in question to calculate the
hedge ratios or deltas’ (p.868).

The idea of using tracking error as a perform-
ance measure of our model is based on the
assumption of the no-arbitrage principle. By
that principle, the expected value of a hedged
option portfolio at the expiration date should
be exactly zero. More specifically, suppose at
date 0 we sell one call option and undertake
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the usual dynamic trading strategy in stocks
and bonds to hedge this call during its life. If
the option pricing model is correct, and if we
can costlessly and continuously hedge, then at
expiration the combined value of our stock and
bond position should exactly offset the value
of the call.

Mathematically, let V(t) be the dollar value
of the GP-based replicating portfolio at date t
and let

V(t) = VS(t) + VB(t) + VC(t) (3)

where VS(t) is the dollar value of stocks, VB(t)
the dollar value of bonds, and VC(t) the dollar
value of call options held in the portfolio at
date t. Moreover,

VS(t) = S(t)QS(t) (4)

where S(t) is the stock price at date t, and QS(t)
is the shares of the stock held in the portfolio
at date t.

Let us assume the initial composition of the
GP-based portfolio at date 0 is assumed to be:

a0 = 3
VS(0)

VC(0)

VB(0)
4 = 3

S(0)DGP(0)

−CM(0)

−(VS(0) + VC(0))
4 (5)

where CM(0) is the market call option price,
and DGP(0) is the derivative of the GP pricing
formula CGP with respect to the stock price, i.e.

DGP(0) ;
CGP(0)

S
(6)

The portfolio position in a(0) represent the sale
of one call option at date 0, priced according
to the market price CM(0), and simultaneous
purchase of DGP(0) shares of stock at price S(0).
Since the stock purchase is wholly financed
by the combination of riskless borrowing and
proceeds from the sale of the call option, the
initial value of the replicating portfolio is ident-
ically zero, and thus

V(0) = VS(0) + VB(0) + VC(0) = 0 (7)

Now, using CGP to delta-hedge dynamically,
we can have a continuous-time portfolio
at(t P R+). However, since continuous-time
delta-hedging is infeasible in practice, it has
to be approximated by the discrete-time delta-
hedging. In the following discussion, we, there-



fore, consider a sequence of portfolios ati
(i = 0,1,2,%,n). In other words, we divide the
life of an option contract into n subintervals {
[ti−1,ti]}n

i=1, where tn = T. These intervals, as to be
discussed later, are not necessarily equally
spaced. Given the initial condition at0

, the GP-
based portfolio ati

can be updated as follows:

ati
= 3

VS(ti)

VC(ti)

VB(ti)
4

= 3
S(ti)DGP(ti)

−CM(ti)

erf (ti−ti−1)VB(ti−1) − S(ti)(DGP(ti) − DGP(ti−1))
4

(8)

where

DGP(ti) =
CGP

S
(ti) (9)

and i = 1,2,%,n.
DGP(t) as defined above may not be computed

analytically. Following Hutchinson et al. (1994),
we approximate D by a first-order finite differ-
ence with an increment S of size 1/1000 of
the range of S,

DGPSS
E

,tD <
CGPSS

E
(1 + h),t) − CGPSS

E
,tD

SS
EDh

(10)

where h = 0.001.
The tracking error of the replicating portfolio

is then defined to be the value of the replicating
portfolio V(T) at expiration date T. From this,
we obtain the following performance measure:

j ; e−rTE [uV(T)u] (11)

The quantity j is simply the present value
of the expected absolute tracking error of the
replicating portfolio. As mentioned above, if
the option pricing formula is correct and all
relevant assumptions are satisfied, then j
should be zero, i.e. the difference between ter-
minal value of the call and the terminal com-
bined value of the stock and bond positions is
identically 0. However, for the reasons listed
below, j can be positive in practice.

I The option pricing formula employed is inac-
curate.
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I Even though the model is accurate, due to
the discrete-time delta-hedging, j can be
positive.7

I Third, since DGP is numerically approximated
by a first-order finite difference, this can also
induce a positive j.

I Lastly, note that the j defined in
equation (11) is an expectation value, which
is unknown. In practice, it has to be esti-
mated by the sample statistics, which are
stochastic, and this creates another source
of errors.

Since we expect to observe a positive j, we
shall compare the GP tracking error with the
tracking error of discrete delta-hedging under
the exact Black–Scholes formula. Before we pro-
ceed further, note that the expectation of j is
taken over the parameter space (T,E), and

j = 0 (12)

implies

uV(T;E)u = 0, ∀ T and E (13)

In other words, the conditional j(jT,E) should
also be 0 for all T and E. Equation (13) suggests
that the performance comparison between GP
and the Black–Scholes model can be made
according to the following sample statistic:

SnT,E
i=1

e−rfTuV(T;E)iu
nT,E

(14)

where nT,E is the number of the option contracts
corresponding to the expiration date T and the
strike price E, and uV(T;E)iu is the absolute track-
ing error of the ith contract. Equation (14) is
the statistic we would like to calculate in this
paper.

Data Description

The data used to train and to test genetic pro-
gramming are daily closing prices of S&P 500
index options. The data is available from
Chicago Board Options Exchange.8 These are
standard European-style options, for which
exercise can occur only on the option expiration
date, and their payoffs are determined by the
level of the S&P 500 index on the option
maturity date. Each CBOE index option con-



tract represents $100 (the index multiplier)
times the current value of the index. For
example, when the index is at 550, the underly-
ing dollar value of 1 index option contract is
equal to $55,000 (550 × $100).

Each observation in this dataset is defined
by list of variables shown in Table 1. Among
these variables, CM, St, E and t can be directly
downloaded from the CBOE dataset. The risk-
free interest rate (rf) is approximated by using
the 3-month Treasure-bill annual rate (Rf) on
the day of the initial activity in that option.
Within this dataset, we focus only on the year
1995 and use the sample of January 1995 as the
training sample. There are 9012 observations in
the whole sample and 758 observations in the
training sample. The basic statistics of these
variables in the in-sample period (January 1995)
is summarized in Table 2.

A subsample of the data of 1995 is chosen
to compute tracking errors. This consists of 36
strike prices, ranging from 430 to 625, and four
expiration dates on March, June, September and
December.9 Table 3 is a summary of this sub-
sample. The first and the sixth column in
Table 3 give the strike prices, other columns
give the number of observations with respect
to the expiration dates specified in the head of
these columns. The letters M, J, S and D denote
the months March, June, September and
December. For example, read the cell (430, M);
the number is 8, which means there are eight
observations whose strike price is 430 and
expiration date is March. These eight obser-
vations represent contracts initiated on eight

Table 1 Data description

Variables Content

CM The daily closing price of S&P 500
stock index option

St The daily closing price of S&P 500
on the trading day

ST The daily closing price of S&P 500
stock index on the expiration date

E The strike price of the index option
t The time to maturity in year
Rf The 3-month Treasure-bill annual

rate

Copyright  1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 237–251 (1999)

241HEDGING DERIVATIVE SECURITIES

Table 2 Basic statistics of data

Variables Max Min Mean S.D.

CM,j 46 0.0625 8.76 9.77
CM,95 166.34 0 13.69 18.81

Sj 470.42 459.11 465.16 3.79
S95 621.69 459.11 530.69 40.51

Ej 550 430 475 22.31
E95 625 430 529 40.68

0.10 0.0001 0.019 0.021CM

Ej

0.36 0 0.026 0.0371CM

E 2
95

1.09 0.83 0.98 0.04S
Ej

1.36 0.82 1.00 0.051S
E2

95

tj 0.964 0.015 0.226 0.238
t95 0.964 0 0.176 0.211

Rf,j 5.82 5.55 5.71 0.07
Rf,95 5.89 5.18 5.54 0.17

The subscript ‘j’ denotes January, and ‘95’ the whole year
of 1995.

Table 3 Strike price and expiration date

E M J S D E M J S D

430 8 0 0 0 440 8 6 0 0
445 9 0 0 0 450 38 28 23 20
455 29 9 0 0 460 47 13 3 4
465 47 19 0 0 470 50 28 8 0
475 51 55 36 36 480 48 52 9 0
485 49 65 4 4 490 49 75 19 0
495 41 65 5 0 500 38 91 87 80
505 18 59 33 17 510 15 77 45 10
515 5 74 36 26 520 10 57 61 23
525 14 77 109 108 530 0 59 78 66
535 0 42 64 58 540 0 29 82 63
545 0 20 51 36 550 0 57 122 130
555 0 0 70 44 560 0 0 68 93
565 0 0 61 45 570 0 0 61 78
575 0 7 87 121 580 0 0 53 105
585 0 0 48 74 590 0 0 33 104
595 0 0 0 54 600 0 0 64 63
610 0 0 0 11 625 0 0 0 27



different dates. In this case, there are 9, 19, 23
January, 9, 17, 22, 27 February and 17 March.
Also, the number shown in the cell (450, M) is
38, which means that there are 38 observations
whose strike price are 450 and expiration date
is March. These 38 observations are correspond-
ing to the contracts initiated on 3, 4, 6, 9, 11,
12, 16, 17, 18, 19, 23, 24, 27, 30, 31 January, 1,
2, 3, 7, 9, 10, 13, 14, 15, 16, 17, 21, 22, 23, 28
February and 3, 6, 7, 8, 13, 14, 16, 17 March.10

While our subsample consists of only four
expiration months, it occupies almost one half
of the whole dataset. In Table 4, we show the
number of observations corresponding to each
expiration month. The ratios shown in the third
row are the relative sizes of the number of
contracts expired on these four months. For
example, December has the largest number of
contracts expired—a total of 1500, which con-
tributes to 16.64% of all the contracts initiated
in 1995. By contrast, March has the smallest
number of contracts expired, only 574, 6.37%
of the total contracts. The basic statistics of this
subsample are also given in Table 2.

THE DESIGN OF GENETIC PROGRAMMING

Terminal Set and Function Set

Genetic programming is an automatic parallel
search procedure conducted over a predefined
space J. Generally speaking, the search space J
is composed of computer programs. In genetic
programming, there is a standard way to rep-
resent these computer programs, i.e., the LISP
S-Expression.11 For example, consider the
Black–Scholes option pricing model as a com-
puter program. The LISP S-Expression of this
model is shown in Box 1.

The LISP S-Expression shown in Box 1 con-

Table 4 Number of contracts expired and its rela-
tive size.

Month C F I L Total

N 574 1064 1420 1500 4558
Size 6.37% 11.81% 15.76% 16.64% 50.58%

Total number of contracts initiated in 1995 is 9012.
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sists mainly of elements from two sets. The
first is called the terminal set (G1), and the
second is called the function set (G2). In the
example above,

G1 ; {S/E,s,t,rf,Constants} (15)

and

G2 ; {+,−,×,4,Exp,Log,Sqrt,F} (16)

The LISP S-Expression can also be depicted as
a parse tree. To see this, the parse tree of the
LISP S-Expression of the Black–Scholes model
is given in Figure 1. From the figure we can
see that all the leaves of the parse tree are
corresponding to elements of the terminal set
(G1), whereas all the roots of the parse tree are
elements of the function set (G2). We use this
example to illustrate that the search space J is
in effect spanned by G1 and G2 in the sense
that J is a collection of all parse trees that can
be reached syntactically by G1 and G2.12

J = SpanTree(G1,G2) (17)

Therefore, the first part of the design of genetic
programming is to determine the elements in
G1 and G2.

In the light of Black–Scholes option pricing
theory, three variables are included in the ter-
minal set (G1), namely, time to maturity (t), the
risk-free interest rate (Rf) and the ratio of the
stock price to the strike price of the option
(S/E) (Table 5). Our terminal set is different
from the one employed in Noe and Wang
(1997) and Trigueros (1997) in that the latter
does not take the risk-free interest rate into
account. In terms of the closure property, the
option pricing function they considered is:

C
E

= f St,
S
E

,1D (18)

Box 1 The LISP S-Expression of the Black–
Scholes Model

(− (× S/E (NCDF (4 (+ (ln S/E)
(× (+ rf (4 (× s s)2))
t)(× s (Î t))))) (× (Exp (× −rf t))
(NCDF (4 (+ (ln S/E)(× (+ rf (4 (× s s)2))
t)) (× s (Î t))))))

Ignoring the risk-free interest rate rf can be



Figure 1 The parse tree of the Black–Scholes model

justified only if rf is constant over the sample
period. However, as we have seen from Table 2,
Rf is not constant. Therefore, we decide to
include it in our terminal set.

The same argument suggests that we should
also include the variable volatility in the ter-
minal set, for a preponderance of evidence
points to volatility being time-varying
(Bollerslev, Chou, and Kroner, 1992). But for
the B–S model, the only input that is unobserv-
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able is the future volatility of the underlying
asset. Therefore, to include it, the volatility
input has to be modeled. However, modeling
volatility is not a simple task and we are not
ready to do it at this stage. We would leave this
possibility to future research.13 Furthermore, as
usual, our terminal set also includes the ephem-
eral random floating-point constant R ranging
over the interval [−9.99, 9.99]. By doing this,
we are essentially using genetic programming



Table 5 Tableau for genetic programming

Population size (N) 500
Method of generation Ramped half and half
Maximum depth for new individuals 6
Terminal set (G1) {t,Rf,S/E,R}
Function set (G2) {+,−,×,%,sin,cos,Exp,Rlog}
Truncation values 0, 0.2
Selection scheme Proportionate selection
Criterion of fitness (F) Sum of squared errors
Number of trees generated by reproduction 49
Number of trees generated by crossover 250
Number of trees generated by mutation 100
Number of new lives (immigrants) 100
Number of trees generated by elitism 1
Probability of mutation 0.0033
Mutation mode Point mutation
Termination criterion 200-generation evolution
Maximum length of the tree 17
Probability of leaf selection under crossover 0.5
Maximum number in the domain of Exp 1700

R appearing the terminal set is the ephemeral random floating-point constant ranging over the interval [−9.99, 9.99].

to evolve constants. Whether this is an effective
way to generate constants has been well noticed
and discussed by the GP society. For example,
Evett and Fernandez (1998) show that direct
perturbation may help the discovery of numeric
constants in genetic programming. This idea,
while not being pursued in this paper, is cer-
tainly an interesting direction to attempt in the
future study.

Our choice of the function set is also different
from the one considered by Noe and Wang
(1997) and Trigueros (1997), both of which are
model-driven. In their studies, the B–S formula
is assumed to be the true model and the goal
is to test whether GP can discover this model.
Our approach, in contrast, is data-driven and
there is no reason to bind us to the B–S model.
We therefore consider a very general function
set (Table 5) and do not use those specific func-
tions in the B–S model such as the normal
cumulative distribution function F(.) used by
Noe and Wang (1997) and Trigueros (1997).
However, in future studies, we would like to
see whether a larger terminal set may help.
Another related choice of the function set is
the truncation parameter. This parameter func-
tions as follows:
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CGP

E
= 5

CGP

E
, if 0 #

CGP

E
# 0.2,

0.2, if
CGP

E
. 0.2,

0 if
CGP

E
, 0

(19)

The parameter values 0 and 0.2 are determined
empirically by the data. In other words, from
empirical data, the C–E ratio (the Call
Price/Strike Price ratio) was between 0 and 0.2.
(See Table 2 above.) We therefore explicitly take
this factor into account.

GENETIC OPERATORS

Initialization Scheme

Once G1 and G2 are determined, genetic pro-
gramming will generate a sequence of finite
subsets of J, say, S1,S2,% by applying the
operation of Darwinian selection, crossover and
mutation. Typically the cardinality (N) of each
subset (population size) is exogenously given
and is fixed throughout the entire generation
process. In this paper, we set N to 500. This



initial population of 500 tress is randomly gen-
erated. The initialization scheme we use is the
‘ramped half and half’ method detailed in Koza
(1992). Under this scheme, equal numbers of
trees are generated using a maximum initial
depth that ranges from 2 to 6, so that 20%
(100) of all initial trees are generated under the
condition that the maximum depth is equal to
2, another 20% are generated under the con-
dition that the maximum depth is equal to 3,
etc. on up to a depth of 6. For each of the five
maximum depth levels, 50% (50) initial tress
are generated using the full method and the
other 50% (50) are generated using the grow
method.14 Thus, under our initialization
scheme, the full method is used to create one-
half (250) of the initial trees and the grow
method is used to create the other half (250) of
the initial trees, as we have indicated in Table 5.

Selection Scheme
The dynamic process of St is driven by a series
of genetic operations, each of which is run
according to a specific selection scheme. Among
many well-known schemes, we choose the pro-
portionate selection scheme, also known as the
roulette-wheel selection scheme. This scheme
requires a probability measure over St,pi,t,
where pi,t is the probability that the ith tree at
Generation t will be selected to generate St+1.
Moreover, pi,t is positively related to the per-
formance (fitness) of the parse tree gpi,t,
gpi,t P St. In other words, the better the parse
tree performs, the more likely it can be influen-
tial on the generation of St+1.

The fitness criterion considered in this paper
is a function of the inverse of the sum of
squared errors (SSE), i.e.

fi,t =
1

1 + SSEi,t
(20)

where

SSEi,t = OK
k=1

(CM,k − Ci,k)2

K
. (21)

CM,k is the kth observation of the true market
price, and Ci,k is the kth call price predicted by
the ith parse tree. The probability measure, also
known as the normalized fitness value, is then
given by
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pi,t =
fi,t

SN
i=1fi,t

(22)

Unlike Noe and Wang (1997), we do not reg-
ularize the complexity of the evolved GP pro-
grams by adding any penalty term to the per-
formance measure. In a noisy environment, this
may run the risk of overfitting, but, as we shall
indicate below, our GP does not tend to overfit.

Genetic Operations
The normalized fitness values pi,t are used to
determine the next generation of parse trees
Si,t+1 from the current generation Si,t through
application of the three primary genetic oper-
ators, i.e. reproduction, crossover, and
mutation. We now describe these three gen-
etic operators.

I Reproduction makes the copies of individual
parse trees. The criterion used in copying is
the normalized fitness value pi,t. If gpi,t is
an individual in the population St with the
normalized fitness value pi,t, it will be copied
into the next generation with probability pi,t.
The operation of reproduction does not cre-
ate anything new in the population and the
offspring generated by reproduction consti-
tute only part of the population St+1. As
specified in Table 5, reproduction is perfor-
med on only 9.8% (49 out of 500) of the
population. The rest of the offspring are gen-
erated by the other operators, such as cross-
over and mutation.

I The crossover operation for the genetic pro-
gramming paradigm is a sexual operation
that starts with two parental parse trees
which are randomly selected from popu-
lation St in accordance with the normalized
fitness described above. Next, by exchanging
the parts of these parents, two offspring are
produced. This exchange begins by randomly
and independently selecting one point in
each parental parse tree using a uniform
distribution described below.

By the syntax of LISP, each point (atom) of
a parse tree could be either a leaf (terminal)
or a root (function). Therefore, the point
(atom) selected could either be a leaf or a
root. As specified in Table 5, the probability
that the crossover point is a root or a leaf is



the same, i.e. one half. Given that a root or
a leaf is to be the point chosen for crossover,
the probability that any root or leaf is chosen
as the crossover point is uniformly distrib-
uted. For example, if the crossover point is
to be a root, and then there are three roots
in the parse tree, the probability that any
one of the three roots is chosen for the cross-
over point is one-third (1/3). Unlike repro-
duction, the crossover operation creates new
individuals in populations. As specified in
Table 5, 50% (250 out of 500) of the new-
generation population is created in this way.

I The operation of mutation also allows new
individuals to be created. It begins by sel-
ecting a parse tree gpi,t from the population
St based on pi,t. Once a particular gpi,t is
selected, mutation is a process of a random
change of the value of a point (atom) within
gpi,t. Each point (atom) has a small prob-
ability of being altered by mutation, which
is independent of other points (atoms). As
specified in Table 5, the probability used
throughout this paper is 0.0033. The altered
individual is then copied into the next gener-
ation of the population. 20% (100 out of 500)
of the new-generation population is created
in this way.

Non-genetic Operations
The three operators combined create 79.8% of
the population St+1. The rest of the parse tress
are created by using the immigration operator
and the elitism to be introduced below.

(1) Immigration: Another 20% of the offspring
are immigrants that are created by ran-
domly generating 50 parse trees. The motiv-
ation behind using the immigration oper-
ator is similar to that of using the mutation
operator. They are all designed to equip the
system with enough adaptability to avoid
being trapped into a local optimum. The
difference between mutation and immi-
gration is that the latter will function com-
pletely independent of the ancestors while
the former does not. Hence, immigration
allows the system to be even more flexible.

(2) Elitism: Finally, the elitist selection is also
introduced. This operation always save the
best discovered solution from the previous
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generation. The use of elitism is mainly
motivated by Rudolph (1996), who provides
the conditions under which evolutionary
algorithms with an elitist selection rule will
converge to the global optimum of some
function whose domain may be an arbi-
trary space.

Some Comments

The design of genetic programming is summar-
ized in Table 5. There are some differences in
the setup of the selection scheme and genetic
operations between our paper and Noe and
Wang (1997) and Trigueros (1997). For example,
Trigueros (1997) does not have the mutation
operator and Noe and Wang (1997) used the
tournament selection scheme rather than the
proportionate selection scheme. Needless to
say, there are lots of variants one can play
with. To encourage interested readers to have
their own trial, the computer program used to
conduct the experiments reported in this paper
can be downloaded from the website:
http://econo.nccu.edu.tw/ai/staff/csh/
Software.htm

EXPERIMENT RESULTS

Motivated by Chen and Lee (1997b), we also
divide the samples into two parts, namely, in-
the-money (S/E . 1) and out-of-the-money
(S/E , 1).15 GP was first run eighteen times
each of the two parts. Based on the MSE (Mean
Squared Error) criterion, we choose the best
performer in the training phase.16 For the case
in-the-money, the best one is Program 7, and
for the case out-of-the-money, Program 3. By
uniting these two programs together (7 < 3),
the performance of genetic programming is
compared with the Black–Scholes model in
their performance of delta-hedging.

Since delta-hedging needs the market prices
of call options (CM), the intervals of discrete
delta-hedging are designed in a way such that
all values of CM are observable. For example,
consider the cell (430, M) in Table 3. There are
eight observations in this cell, and the initiated
dates of them are 9, 19, 23 January, 9, 17, 22,



27 February and 17 March. In this case, delta-
hedging can only be performed on 19, 23 Janu-
ary, 9, 17, 22, 27 February and 17 March. Only
in these seven days are CM available, and the
values of the replicated portfolio Vt can be
evaluated in accordance with equation (8). Due
to this data restriction, the frequency of delta-
hedging is exactly the same as the number of
observations in the cell (430, M). For con-
venience, we denote the number appearing in
the cell (E, P) by nE,P (P = M,J,S,D). Also, with
this data restriction, the delta-hedging interval
is not constant. To see this, let us denote the
eight market days mentioned above by i430,M

(i430,M = 0,1,2,%,7). Then, in terms of t (the time
to maturity in year), it is easy to see that

t0430,M
= 0.1944, t1430,M

= 0.1626, t2430,M
= 0.1547,

t3430,M
= 0.1031, t4430,M

= 0.0793, t5430,M
= 0.07142,

t6430,M
= 0.0595, and t7430,M

= 0. The difference
between the two consecutive values of t,

ut(i−1)430,M
− ti430,M

u

gives the following six lengths of the delta-
hedging interval, namely, 0.0317, 0.0079, 0.0515,
0.0238, 0,00794, 0.0119, and 0.0595. Tracing the
data sequence in this manner, the delta-hedging
intervals for other cells (E,P) is defined. Apply-
ing equation (11) to the hedging intervals of
each cell (E,P), we can calculate ĵE as:

ĵE,P = e−Rf%(t0E,P
−tnE,P

)uV(t0E,P
− tnE,P

;E)u

(23)

Given equation (23) above, the delta-hedging
error of GP and the Black–Scholes model, ĵE,P,
is computed for all Es and Ps available in
Table 3. The results are given in Tables 6 and 7.

To make these results more readable, we
divide the ĵE,P obtained by the GP program
‘7 < 3’ by the one obtained by the Black–
Scholes model, i.e.

rE,P =
ĵE,Pu7<3

ĵE,PuBS
. (24)

If rE,P is less than 1, then it means that GP
outperforms the B–S model in terms of delta-
hedging at the specified strike price and expir-
ation month. On the other hand, it means that
the B–S model is superior to GP in delta-hedg-
ing. The results of rs are exhibited in Table 8.
From Table 8, we can see that out of 97 tracks
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of options, GP can outperform the B–S model
in 18 cases. Approximately, this empirical study
shows that GP can have 20% chance to beat
the B–S model. How impressive or significant
is this result? To answer this question, it would
be quite useful to look at the empirical results
established by other studies.

In the literature, there are only two studies
producing delta-hedging errors, one is Trigu-
eros (1997) and the other is Hutchinson et al.
(1994). Trigueros (1997) applied the same tech-
nique, genetic programming, but did not dis-
tinguish the case in-the-money from the case
out-of-the-money. The data employed by Trigu-
eros is the simulated B–S data rather than the
real data. In his simulation, the parameter vola-
tility was set to be 0.2., and the riskless rate
was held constant at 0.2 and 0.05 respectively.17

With these and other few parameters, a path
{St} with S0 = 50 is simulated through 24 21-
day months, i.e. 504 observations. CBOE rules
as explained in Hull (1993) were used to create
CBSs and Es as stock price moved and existing
options expired. The training set size ranged
between 5000 and 7000 points. But only 2% of
were actually used. By this procedure, the high-
est winning rate obtained in Trigueros is 17.6%.

Following a similar procedure, while with a
much larger size of training sets, Hutchinson
et al. (1994) found that the winning rate of their
study is at best 38% for the radial basis function
and is 28% for the multilayer perceptrons, at
the case E = 50 and T = 0.25.

In these two studies, since the data is simu-
lated from the B–S model, the results may be
biased toward the support of the B–S model.
Therefore, these low winning rates may not be
surprised. In the second part of Hutchinson et
al. (1994), they also tried the real data. The
data for their empirical analysis are daily clos-
ing price of S&P 500 futures and options for
the 5-year period from January 1987 to
December 1991. They divide the S&P 500 data
into 10 nonoverlapping six-month subperiods
for training and testing. The total number of
data points per subperiod ranged from 4454 to
8301, with an average of 6246. They trained a
separate learning network on each of the first
9 subperiods, and tested those networks only
on data from the immediately following sub-



Table 6. Absolute delta-hedging errors: GP 7 < 3

E M J S D E M J S D

430 5.681 NA NA NA 440 3.676 12.160 NA NA
445 3.295 NA NA NA 450 1.110 10.529 21.113 30.808
455 0.323 8.045 NA NA 460 1.663 7.107 26.802 30.083
465 2.283 4.414 NA NA 470 1.943 4.504 18.534 NA
475 1.055 1.865 9.664 19.626 480 1.844 3.166 17.080 NA
485 8.897 0.389 15.892 28.681 490 0.538 0.060 17.015 NA
495 1.561 1.817 15.086 NA 500 0.824 2.504 3.622 10.906
505 0.819 1.074 6.664 40.040 510 0.496 0.359 3.463 31.886
515 0.246 1.921 3.340 15.353 520 0.707 3.316 0.892 11.740
525 0.807 7.556 4.366 0.721 530 NA 2.634 1.758 12.060
535 NA 0.099 2.440 3.858 540 NA 2.275 4.977 3.348
545 NA 0.700 7.444 2.638 550 NA 0.448 3.414 2.802
555 NA NA 12.920 6.057 560 NA NA 6.944 1.136
565 NA NA 1.532 0.523 570 NA NA 8.999 3.042
575 NA 0.854 2.489 8.482 580 NA NA 0.139 12.284
585 NA NA 1.595 9.762 590 NA NA 2.140 1.561
595 NA NA NA 0.482 600 NA NA 3.313 4.478
610 NA NA NA 7.606 625 NA NA NA 6.642

Table 7. Absolute delta-hedging errors: Black–Scholes model

E M J S D E M J S D

430 1.294 NA NA NA 440 0.113 2.330 NA NA
445 0.347 NA NA NA 450 1.531 1.285 2.785 5.219
455 1.963 3.259 NA NA 460 2.224 3.167 3.105 0.224
465 2.117 3.848 NA NA 470 1.875 2.979 1.721 NA
475 1.198 3.420 5.743 7.312 480 0.297 1.373 0.464 NA
485 1.008 2.534 0.717 0.945 490 0.763 2.905 1.698 NA
495 1.054 3.340 1.744 NA 500 0.568 2.180 4.658 7.082
505 0.365 0.563 1.798 21.136 510 0.135 0.941 1.629 14.122
515 0.103 0.285 0.063 1.007 520 0.065 1.731 0.972 2.372
525 0.066 1.596 0.115 3.872 530 NA 2.235 0.836 6.802
535 NA 1.531 0.200 0.877 540 NA 0.947 4.010 2.300
545 NA 0.297 5.467 0.245 550 NA 0.208 0.578 1.862
555 NA NA 5.913 0.025 560 NA NA 4.115 1.656
565 NA NA 1.582 0.435 570 NA NA 5.887 1.817
575 NA 1.009 0.761 0.564 580 NA NA 2.310 0.814
585 NA NA 0.995 3.070 590 NA NA 0.830 0.979
595 NA NA NA 0.004 600 NA NA 0.184 0.909
610 NA NA NA 4.352 625 NA NA NA 4.949

period. Their Table XIX shows that the learning
networks exhibit less hedging error than the
estimated Black–Scholes formula in a substan-
tial fraction of the options tested. The highest
winning rate is 64.9% observed in the July to
December 1990 testing period for the multilayer
perceptrons, and the lowest winning rate is
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only 21.8% in the July to December 1991 test-
ing period.

CONCLUSIONS

At present, existing studies are so limited and
so variant that it is difficult to give a



Table 8. Absolute delta-hedging errors: (Genetic Programming Model/Black–Scholes Model)

E M J S D E M J S D

430 4.389 NA NA NA 440 32.388 5.219 NA NA
445 9.476 NA NA NA 450 0.725 8.194 7.579 5.903
455 0.164 2.468 NA NA 460 0.747 2.244 8.630 134.303
465 1.078 1.146 NA NA 470 1.036 1.511 10.766 NA
475 0.881 0.545 1.682 2.683 480 6.198 2.305 36.771 NA
485 8.819 0.153 22.162 30.327 490 0.705 0.020 10.016 NA
495 1.481 0.544 8.647 NA 500 1.451 1.148 0.777 1.540
505 2.244 1.907 3.706 1.894 510 3.671 0.381 2.125 2.257
515 2.376 6.728 52.273 15.240 520 10.852 1.914 0.917 4.947
525 12.166 4.733 37.807 0.186 530 NA 1.178 2.101 1.773
535 NA 0.065 12.155 4.398 540 NA 2.402 1.241 1.455
545 NA 2.356 1.361 10.763 550 NA 2.156 5.904 1.504
555 NA NA 2.184 242.293 560 NA NA 1.687 0.686
565 NA NA 0.968 1.201 570 NA NA 1.528 1.673
575 NA 0.846 NA 15.026 580 NA NA 0.060 15.076
585 NA NA 1.603 3.179 590 NA NA 2.578 1.594
595 NA NA NA 102.6382 600 NA NA 17.956 4.921
610 NA NA NA 1.747 625 NA NA NA 1.341

For all the cases which genetic programming beats the Black–Scholes model in hedging performance, the cell fields are
emphasized by bold type.

thorough evaluation of our GP-based hedg-
ing portfolios.

First, in light of the Hutchinson et al. (1994),
a test based on a single year seems to be too
limited. We may say that the low winning rate
obtained in this paper is due to the bad luck
as what happened in Hutchinson et al. (1994),
when they ran the test over the July to
December 1990 testing period. Therefore, in the
future, we would like to extend this study to
cover a larger database. But, the side-issue
about the instability in machine learning tech-
niques should also be explored so that the
end-user can be informed about when these
machine learning techniques can be helpful.

Second, compared with the existing litera-
tures, our results seems to perform better than
those of Trigueros. But based on the limited
experiments, we cannot be sure whether this
improvement comes from the separation of the
case in-the-money and the case out-of-the-
money.

Finally, the use of machine learning tech-
nique in delta-hedging is still at a premature
stage, and more empirical studies are needed
to motivate useful designs so that we can drive
this research toward more complicated deriva-
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tives, such as American options and exotic
options, in the future.
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12To avoid ill-defined behavior, some function modi-
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the division (%) and the logarithm function (Log)
used are all protected. The protected division oper-
ator protects against division by zero by returning
the value 1 if its denominator argument is 0; other-
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argument (the numerator) by its second argument
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17In 1995, the historical volatility is 7.67%, and the
interest rate ranges from 0.0518 to 0.0589.


