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Studies of Forests

39



Chapter 4

On Enumeration of Plane Forests

A plane tree is an ordered tree with a designated vertex called the root. An n—plane
tree is a plane tree with n edges. A 2-ary tree is a plane tree where each vertex has
at most two children. A full binary tree is a plane tree where each internal vertex
has exactly two children. A short bush is a plane tree where no vertex has only one
child. A tall bush is a plane tree where the root has exactly one child and the other

internal vertices has at least two children.

For many results of plane trees, we refer to [7, 27, 63, 64, 65, 66, 74, 79]. Among
these results, several counting formulas are very useful. For example, the Catalan
number C,, counts n—plane trees or full binary trees with 2n edges (see [75]); the
Riordan number R, counts short bushes with n edges (see [7], p.85); the Motzkin
number M, counts 2—ary trees with n edges or plane bushes with n + 1 edges (see
[7], p.87); and the Narayana number N(n,i) counts n—plane trees with exactly i
leaves (see [28]).

A Dyck path begins at the origin, ends at the x—axis with rise step u = (1,1)
and fall step d = (1, —1), and never goes below the x—axis. An n—Dyck path is
a Dyck path ending at (2n,0). Consider a path P from the origin to (2n,0) with
rise and fall steps. We say that P is an n— Dyck path with k flaws if P has k fall
steps below the x—axis for £ > 0. A good reference for Dyck path enumeration is
a published paper by E. Deutsch [25]. In fact, an n—Dyck path has a one to one

correspondence to an n—plane tree or a full binary tree with 2n edges. It suggests
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that we may learn more results of plane trees through Dyck paths.

A forest is a graph of no cycle. A plane forest is a forest where each component
is a plane tree. In the literature, there are many articles studying labelled forests on
[n] (see [13, 14, 28, 35, 56, 58, 74, 78]). However, there are few papers investigating
plane forests. It is well known that the number P(r) of plane forests with n vertices

and k components of type r is given by

P(r) = E( ! m) (4.0.1)

n\7o, 71, --

where r = (rg,71,....,7) € N*™ with Y r; = n and Y (1 —i)r; = k > 0 (see
[74], Theorem 5.3.10). A typical application of this result is a proof of Lagrange

Inversion Formula.

A very useful formula in this topic is

k 2n — k
4.0.2
2n—k< n )’ ( )

which counts three families: n—Dyck paths with k returns [25], n—plane trees where

the root has k children, and plane forests with n vertices and k£ components.

In this chapter, our main purpose is to generalize some results on plane trees
to plane forests. In section 4.1, our main result is to evaluate the number of plane
forests with n edges and k vertices at level one (Theorem 4.1.1). Consequently,
we yield a new Catalan identity by means of two different methods to count plane
forests. Moreover, we can evaluate the number of plane forests of n edges with x;

vertices at level i for i =1,2,...,m (Theorem 4.1.3).

Shapiro [65] found the number of leaves is half of the number of vertices among
n—plane trees. In section 4.2, using a bijection, we can generalize this result to
plane forests (Theorem 4.2.1). In addition, we discover two facts on plane forests
with n edges and k nontrivial components: if n + k is odd, then the number of
plane forests with an odd number of leaves is equal to that with an even number of
leaves; otherwise, they have a difference relative to the Catalan number (Theorem
4.2.2). In Theorem 4.2.4, we offer a formula to count plane forests with n edges,
k components, and ¢ nontrivial leaves. In particular, it is the Narayana number
N(n,i) as k= 1.
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In section 4.3, Theorem 4.3.1 presents two relations between plane forests with
vertices allowing one child and plane forests without vertices having only one child
to yield four well-known identities. Example 4.3.2 generalizes a Motzkin-Catalan
identity and a Catalan-Riordan identity. Example 4.3.3 generalizes a Catalan-
Motzkin identity and a Riordan-Catalan identity. Therefore, we will obtain two
explicit formulas of M,, , and R, ; which are generalizations of the Moztkin number

and the Riordan number, respectively.

An n— Motzkin path begins at the origin, ends at the xr—axis, and never goes
below the r—axis with n steps containing rise step u, fall step d, and level step
[ where | = (1,0). In section 4.4, we list six Riordan families consisting of four
classes of 2-ary trees and two classes of Motzkin paths. We use bijective proof
to show all results. Finally, using one of the six Riordan families, we can obtain

another formula of R, (Equation 4.4.1).

4.1 A Catalan Identity

Let the level number of each vertex x in a plane forest be the length of path from
its root to x. In this section, we focus on counting plane forests with x; vertices
at level 2. Our main purpose is to investigate the children of roots and derives a

Catalan identity.

For convenience, let F; be the set of plane forests with n edges and no trivial
components, I, , be the set of plane forests with n edges and k£ components, and
I, . be the subset of F;, with & components. Note that each component in F; has

n

at least one edges but each component in [, ; allows no edge.

Moreover, let D} be the set of n—Dyck paths with flaws. We define a component
of Dyck paths with flaws to be the maximal path all above (below) the x— axis and

denote the set of n—Dyck paths with flaws and k components as D, ;.

By equation (4.0.2), |F, x| equals to ﬁ(%;“k) Due to the fact that I}, (F;, )

has one-to-two correspondence to Dy (DD}, ;) (see Figure 5.2), it is obvious

1/2 1
== (") =2 e, (4.1.1)
2\ n 2
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Figure 4.1: Two 6-Dyck paths with flaws symmetric with respect to the x—axis and

their common corresponding plane forest of 6 edges
Touchard’s identity [41, 57, 64, 79] tells us that the (n + 1)** Catalan number

n
Chy1 = Z <2k> Qn_Qka.

k>0
This identity motivate us to derive another Catalan identity. By virtue of counting

plane forests in F; in two different methods, we obtain the following result.

Theorem 4.1.1 The number of plane forests in T with k vertices at level one

equals to 2;:: (Q"n_k) and thus
1 & k28 (on—k
C, = )
n+1 — 2n — k n

Proof. Set A, to be the subset of F! with k vertices at level one. Let By be

n

the set of plane forests with n vertices and & components where each vertex in
each component has the same color either black or white. Since each component
is 2-colored either black or white, by equation (4.0.2), |B;| = %(an—k) For each
plane forest in Ay, we alternately color all components either black or white and
let it be another set A}. We will use a bijection between By, and A} to prove that

|Ar| = 5|A}| = 1|By| (see Figure 4.2).

One the one hand, for a given plane forest in A}, if we delete the roots, then
the remaining is a plane forest in B;. One the other hand, for a given plane forest
in By, if we append a new black (white) vertex to connect roots of successive black
(white) components, then there yields a plane forest in A}. Hence, there is a

bijection between A’ and B, and the first part is proved.

The second part, a Catalan identity, is completed if we use two methods to

evaluate the cardinality of F:: One is to use equation (4.1.1) and the other is

RAES WAL b

k>1
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Figure 4.2: A plane forest of 10 edges with 5 vertices at level one and its two

corresponding forests with 10 vertices and 5 components

Lemma 4.1.2 The number of plane forests in ¥, ,, with x; vertices at level ¢ for

1=1,2,...,m is

T 2(n —x) — T\ 1o [(Ti 4+ Tiig — 1
2(n — ) — xp, n—x = T ’

1=

m—1

where x = Z x; and xg = k.

i=1

Proof. We use induction on m. For m =1, let f be a plane forest in I, ; with
x1 vertices at level one. If we delete the root of each component in f, then the

remaining f’ is a plane forest in F,_,, ,,. By equation (4.0.2), |F,_,, 4| equals to

T1 2n—x1 . ! r1+k—1 '
ﬁ( " ) However, given f' € F,_;, 4, there are ( J ) ways to enlarge f
. . o k-1

to f € F,, with x; vertices at level one. Therefore, there are Qn‘”%ml( "n"“) (“"1;1 )

plane forests in F,, , with x; vertices at level one. Hence the initial step holds.

Assume that the statement is true for m = [. For m = [+ 1, let f be a plane
forest in IF, , with x; vertices at level ¢ for s = 1,2,...,1 + 1. If we delete the root
of each component, then the remaining f’ is a plane forest in F,_,, ,, with x;4,

vertices at level ¢ for 1 = 1,2, ...,]. By inductive hypothesis, there are

Ti41 2(n—xy —2') — 214 ﬁ T +xi — 1
2(n —x1 — 2') — x4 n—ax —a T

1=2

plane forests in F,_,, , with z;; vertices at level ¢ for : = 1,2,...,1, where

!
7 = E T;.
=2
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However, given f' € F,,_,, ,,, there are (“;]f_l) ways to enlarge f' to f € F,

with x; vertices at level one, i.e., there are

r+k—1 Ti41 2(n—l')—$l+1 ﬁ T, +xi_1 — 1
T 2(n —x) — x4 n—x T

=2

!
plane forests in [, ,, with z; vertices at level ¢ for 7 = 1,2, ...,{+1, where x = Z Tj.
i=1

Hence,we complete the proof. U

Appending a vertex to connected the roots in I, ;, yields a plane tree with n+k
edges. Hence Lemma 4.1.2 has the other explanation as follows: The number of
n—plane trees with z; vertices at level 7 + 1 or the number of n—Dyck paths with
x; rise steps between y =i —1and y =i for+=20,1,2,...,m is

s ()

i=1

m—1
where x = E T;.
i=0

By Theorem 4.1.1 and Lemma 4.1.2, one easily obtains the following result.
m—1
Theorem 4.1.3 Let v = Z x;. Then,
=2
1. the number of plane forests in T, with x; vertices at level i for 1 =1,2,...,m,

2u1—ly 2(n — ) — Tm \ 1o (T Fxiq — 1
d
2(n—x)—xm< n—x H T > an

1=2

18

2. the number of n— Dyck paths with flaws with x; rise steps between y =i — 1

andy=1ory=—i+1andy=—i fori=1,2,....,m is

2%, 2(n —x) — oy ﬁ T+ a1 — 1
2(n — ) — xp, n—x T '

=2
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4.2 Some Results of Leaves

In this section we focus on studying the leaves of plane forests. In [66], Shapiro used
generating function to show that among the vertices of n—plane trees, exactly half
of them are leaves, offered it as a problem in [65]. Seo [63] presented an insightful

bijective proof via Dyck paths.

Earlier, there are some methods which may illustrate the Shapiro’s problem.
One of them is Theorem 2 in [23] which leads the fact: The number of n—plane
trees with 7 leaves is equal to the number of n—plane trees with i internal ver-
tices. Therefore, we may generalize the result to the plane forests, whose proof is a

modification of the second proof of Theorem 2 in [23].

Theorem 4.2.1 Among the vertices of plane forests in ¥, ;,

exactly half of them

are leaves for n > k.

In fact, for a given forest f,; with 7 leaves in IF;

%> using up/down walk, fy

corresponds to a full binary forest f;, , (a forest where each component is a full
binary tree) of n + k leaves in 3, . Since f, ;. has i leaves and n + k — 7 internal
vertices, f,,, has i left leaves and n + k — i right leaves. If we reflect f; ,, then
there yields a full binary forest gy, , with n + k — i left leaves and 4 right leaves in
I3, x- Similarly, gy, , corresponds to a forest g, x with n+k —i leaves and 7 internal

vertices in I ..
In what follows, we show that the above technique of proof can yield more

results: The following Theorem is a generalization of Theorem 4 in [33].

Theorem 4.2.2 In F ks let ey and oy, be the numbers of plane forests with even

number of leaves and odd number of leaves, respectively. Then ep; — o = 0, if
n+k p

n+k is odd; (—1) 2 E(é)v otherwise.

Proof. Let Ey and Oy be generating functions of plane forests with even number

of leaves and odd number of leaves in F; ;, respectively. Clearly,

E,=FEE;,_1+ 00,1 and O, = E104_1 + O1E,_4.
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By recursively enumerating, Ej, — Oy = (E; — Oy)*. In [23], p. 21, Theorem 4, we

know that there are L(sz_k

5 ) t—plane trees with root having degree k , i.e.

k 21—k
Fikp|=——— , .
Bk 22—k< 1 )

€2i,1 — 02,1 = 0

Combining this with

and
€2i+1,1 — 02i4+1,1 = (—1)i+10i ([33], P. 194, Theorem 4),
we obtain
enk — Oni = 0, if n 4+ k is odd
and

eng — Ong = (—1) 2 - (n-l—k)’ otherwise.
2

N

Remark. In case of even n+k, it is curious whether there is another combinatorial
proof. In fact, for odd n+ k, we can give a bijective proof as follows: Given a forest
f in I, , with even (odd) number of leaves, as above, f corresponds to a forest g
in F; , with even (odd) number of internal vertices, i.e. g has odd (even) number

of leaves due to n + k is odd.

Figure 4.3 is an example with n = 5 and £ = 2 to illustrate Theorem 4.2.1 and

Remark; compare Figure 4.3 with Fig. 3. on p. 13 of [23].

Figure 4.3: A plane forest with 4 leaves and its corresponding plane forest with 4

internal vertices.

As a direct consequence of Theorem 4.2.2, we obtain:
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Corollary 4.2.3 Among the peaks and valleys of n—Dyck paths with flaws and k

components,

1. if n+ k is odd, then the number of Dyck paths with an even number of peaks

and valleys equals to that with an odd number of peaks and valleys;

2. if n+k is even, then the difference between the number of Dyck paths with an

even number of peaks and valleys and that with an odd number of peaks and

n_—i—ka n
B
2

valleys is (—1)

Deutsch ([25], p. 174), by virtue of generating function, showed that the num-
(™)(,",), and it is also

i/ \1—1

equal to the number of n—plane trees with i leaves (see [23], Theorem 1). In what

ber of n—Dyck paths with ¢ peak is the Narayana number 1

n

follows, we use a bijection analogous to the proof of Theorem 5.3.10 in [74] to gen-
eralize the result to the case of plane forests. Note that the proof is an immediate

consequence of Lemma 4.7.12 in [73].
Theorem 4.2.4 The number of plane forests with i(> k) nontrivial leaves in F,
Efn\(n+k—1
n\i i—1 )
1

In particular, if k = 1, then there are E(?) (:1) n—plane trees of i leaves.

18

Proof. Let I, ;; be the set of forests in [, ;, with ¢ nontrivial leaves. Let W,, ; ;
be the set of sequences of length 2n + k& with n u's, n + k d’s and starting with «

such that all d's follow from exact u. Clearly,

n\(n+k—1
7 7—1

Define a map ¢ : F,x; X [n] — W, 4, x [k] as following (see Figure 4.4). Let
7 € Fp i and w € W, ., such that w is the bijective correspondence of 7. Then set
(1, 7) = (w;,1), where w; is a cyclic of w starting with the j u and the ;% u in

preorder appears at [ component of 7.

To define ¢! : W, x; x [k] = Fnxs X [n], we proceed the following process.
For (w,l) € W, x,; x [k], we choose w; € W,,;; and 7 € F, ;. satisfy the following

conditions:
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1. 7 is the correspondence of wj;
2. w; is a cyclic of w starting with the j% u; and

3. the j" u in preorder appears at I component of 7.

Then we set ¢~ (w,1) = (1, ]).

From the bijection, we obtain n|F, x| = k|W, x|, and we complete the proof.

d d
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d d
d d
® d u d
d U d
d d
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d d
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Figure 4.4: An illustration for the proof of Theorem 4.2.4.
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4.3 Generalizations of Motzkin-Catalan Identity

Bernhart ([7], p. 99), using linear operator, presented six identities including four
Motzkin-Catalan identities and two Catalan-Riordan identities. We herein gener-

alize four among these six identities.

For convenience, let F, x(§) be the subset of F,, such that every internal
vertex of each forest in F, ;(5) has s; children for some i = 1,2,...,m, where § =
(815825 oo S) € N and 1 < 51 < 59 < - -+ < 8,y < m. In particular, let C), ; count
plane forests F, ;. or full binary forests Fy, 1 (2), M, ; count plane forests F, (1, 2),

and R, ; count plane forests F, (2,3, ...,n).

The following identities between |F, (1, 5)| and |F,(5)| are generalizations
of two of the four Motzkin-Catalan identity and the two Catalan-Riordan identity
obtained in [7]. However, our technique doesn’t seem to yield analogous generaliza-

tions of the rest two identities.

Theorem 4.3.1 Let § be a vector with each coordinate a positive integer greater
than one. Then

. n+k—1 .
1. |]Fn7k(1,s)|:2< , >|]F1-,k(s)| and

n—1

Proof.

1. Given a forest in F, (1, §), suppose that the forest has j vertices of exactly
one child. Then there are |F,_;(5)| plane forests with no vertex allowing one
child and there are n 4+ k — j positions, k positions of which are above each
root, to place j vertices of exactly one child; hence, there are ("J“;“*l) ways to
put these j vertices. Therefore,

Faadl = X (" T @

J=0

- X (" s

i>0
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2. With the same argument as above, if we add n —i(> 0) vertices to the plane
forests in F; (1, ) such that each new forest has at least n — i vertices with
one child, then there are ("7*~")|F, (1, 5)| possibilities. Each forest in this
construction repeats (") times if it contains exactly r(> n—1i) vertices with
one child. Let f € F, x(1,5) has r vertices with one child. Then f appears
(n’il) times among (":Zl)ﬂﬂk(l,g’ﬂ plane forests. Hence, the number of f
counted at the right side of the identity is ({) — (]) + (}) -+ -+ (=1)"(?) which
equals to the number of f counted at the left side of the identity and the proof

follows.

O

Example 4.3.2 and Example 4.3.3 are applications of Theorem 4.3.1-1 and
Theorem 4.3.1-2, respectively.

Example 4.3.2 It is well-known that M, = |F,x(1,2)] and Cpix = |Fani(2)].

Hence we immediately obtain the relation of My and C;y, i.e.

My = [Fnk(1,2)]
k—1
= <n N ) |F;x(2)] , by Theorem 4.3.1-1,
o v T
n+k—1
= F,:
S (") Eas )
>0

In particular, as k =1, we have M,, = Z (;) C;.
7

i>0
Similarly,
Cop = |Fni(1,5)], where§=(2,3,....,n),
-y <” Z ’j; 1) IF, ()|, by Theorem 4.3.1-1,
i>0

k—1
— ("“L , )Ri,k.
- n—1
>0

In particular, as k =1, we have C,, = Z (n) R;.

- 1
>0
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Example 4.3.3 With an analogous argument as above, we immediately obtain the

relation between C,, j and M;, i.e.

Cn,k — |F2n,k (2)|
(2 k—1
= Z(—1)2”2< n >|]F1-’k(1, 2)| ,by Theorem 4.3.1-2,

, 2n — 1
>0
(2n+k—1
— -1 2n—1 M ..
Z( ) ( o — i ) ok
>0
. 2n—1 Qn
In particular, as k = 1, we have C,, = Z(—l) .| M.
, 1
>0
Similarly,
R, = |Fok(5)|, where §=(2,3,...,n),
, k—1
= Z(—l)"" <n+ , >|]Fi’k(1,§)| , by Theorem 4.5.1-2,
i>0 n=t
moifm+k—1
= ) (-1 < , )q-,k.
: n—1
>0

In particular, as k = 1, we have R,, = Z(—l)"’i <n> C;.

- ]
>0

Eu-Liu-Yeh [32] show that the Motzkin number M, _; counts n—Dyck paths
without peaks over even heights in Theorem 1 and the Riordan number R, counts
n—Dyck paths without peaks over odd heights in Theorem 2, i.e., M,, ; and R,
count n—plane trees with odd and even lengths from root to each leaf, respectively.

Therefore, we have the following results. In I, j,

1. the number of forests with odd length from each root to each leaf equals to
Mnfk,k: and

2. the number of forests with even length from the root to each leaf equals to
R, k.

Since I} . has two to one correspondence to I ., we obtain:

n,k?

1. 2M,,_j x, counts n—Dyck paths with flaws and k& components where peaks and

valleys are of odd height, and

52



2. 22(—1)i <n> R, ;—; counts n—Dyck paths with flaws and £ components
i
i>0
where peaks and valleys are of even height.

4.4 Some Riordan Families

In [7], p. 85, we learn that the Riordan number R,, counts four families: tall bushes
with n + 1 edges, short bushes with n edges, feasible non-crossing partitions, and
non-crossing partitions with no singletons, respectively. In Theorem 2 ([32], p.
456), Eu-Liu-Yeh list three Riordan families: n—Motzkin paths without level steps
on the r—axis, (n — 1)—Motzkin paths with at least one level step on the z—axis,
and n—Dyck paths without peaks of odd heights, respectively. Note that in the
origin article, the second result (n + 1)—Motzkin paths with at least one level step
on the z—axis should be (n — 1)—Motzkin paths with at least one level step on the

T—axis.
In this section, we shall present six different Riordan families using bijection:
four families of 2-ary trees and two families of Motzkin paths.
Theorem 4.4.1 The Riordan number R, counts the following families:
1. 2-ary trees with n edges where no verter in the path from the root to the
rightmost leave has only one child,
2. n—Motzkin paths without level steps before the first peak,

3. 2-ary trees with n edges where the last internal vertex has exactly 2 children

in preorder,

4. 2-ary trees with n — 1 edges where at least one vertex in the path from the root

to the rightmost leave has only one child,
5. (n — 1)—Motzkin paths with at least one level steps before the first peak, and

6. 2-ary trees with n—1 edges where the last internal vertex has exactly one child

in preorder.
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Proof.

1. For any short bush, we label the root 0. And we label the first child, the
last child, and the other with 2,0, and 1, respectively. Collect these numbers
in preorder and rearrange them in preorder by letting the labels denote the
number of children. This construction yield a 2-ary tree where no vertices
in the path from the root to the righmost leave have only one child. Figure

4.5-(a) is an example with n = 12 for illustrating this bijection.

2. By symmetry, the Riordan number also counts 2-ary trees where no vertex
in the path from the root to the leftmost leave has only one child. If we
correspond 2, 0 and 1 to rise step u, fall step d, and level step [, respectively,
then we get an n—Motzkin path without level steps before the first peak,
where u = (1,1), d = (1,—1), and [ = (1,0). Figure 4.5-(b) is an example
with n = 12 for illustrating this bijection.

3. By symmetry, the Riordan number counts n—Motzkin paths without level
steps after the last peak. As the above corresponding, n—Motzkin paths
without level steps after the last peak correspond to 2-ary trees with n edges
where the last internal vertex has exactly 2 children in preorder. Figure 4.5-(c)

is an example with n = 12 for illustrating this bijection.

Since the M, = R,.1 + R,, 4,5, and 6 follow from 1, 2, and 3, respectively.

O

Now we return to seek another formula of R, j, even if it is not a closed form.
On the one hand, since R, ; counts plane forests with n edges (n+k vertices) and &
components where each component is a 2-ary tree with the rightmost path having
no vertex with one child. If we delete the rightmost path of each component, then
the remaining is a plane forest with n — j vertices and j (> k) components and
vertices having degree at most 2. On the other hand, for a plane forest with n — j

vertices and 7 components where each component is a 2-ary tree, by Theorem 5.3.10

in [74], there are
Z J—=1 J n—j
k—1)n—j3\4i+j,n—25—2

i>0
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(a)

(c)
Figure 4.5: An illuatration for the proof of Theorem 4.4.1.

ways to form a plane forest with n edges (n + k vertices) and k& components where
each component is a 2-ary tree with a rightmost path having no vertex with one
child. Hence, we obtain

Ro =22 (J _1>n;] <i,i+j,nn_—j2i—2j>' (4.4.1)

3>k >0

In particular,

k n—~k
Zzn—k<2,2+k,n—2k—22> ( )

k>1 i>0
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