Introduction

In this thesis, we shall focus on two independent topics in combinatorics: One
is the constructions of Hadamard matrices and the other is the studies of forest-
s. In each topic, we reproduce three articles either already published, to appear
or submitted for publications. In Part I, Chapter 1 is our published article “On
Jm—Hadamard Matrices” [69], Chapter 2 is abridged of our accepted article “On
Marrero’s J,,—Hadamard Matrices” [70], and Chapter 3 is our paper “On Craigen-

de Launey’s Constructions of Hadamard Matrices” [71] to be submitted soon.

In Part II, Chapter 4 is our article “On Enumeration of Plane Forests” [16],
Chapter 5 is an extended version of the paper “The Chung-Feller Theorem Revisit-
ed” [17], and Chapter 6 extends our submitted paper “2-Caterpillars are graceful”
[18].

I. Constructions of Hadamard Matrices

In this topic, our main purpose is to construct Hadamard Matrices from a giv-
en one or given ones. One is to construct other Hadamard matrices from a given
Jn—Hadamard matrix (Definition 1.1.1), and the other is to construct an Hadamard
matrix of order 2¥m;m, - - - m, from given t Hadamard matrices of order 4my, 4mo, ...,

4m,, respectively, such that k is as small as possible.

A recent construction by Marrero [46] allows us to yield three other Hadamard

matrices from a given one as follows: Let H be any 2t x 2t Hadamard matrix. Then
H can be transformed into the following form:
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where ® is the Kronecker product, J € My, ({1}) and A, B € My (2—9) ({£1}).
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trices.

In Chapter 1 (see [69]), we aim to generalize Marrero’s result. The main results

are assorted as follows:

(i) For any J,—Hadamard matrix, we can generate 2™ — 1 other Hadamard

matrices (Theorem 1.1.2).

(ii) The Sylvester’s construction ensures the existence of a J,,—Hadamard matrix
provided that there is an Hadamard matrix of order m (Theorem 1.1.3 and
Corollary 1.1.4).

(iii) The Kronecker product of a J,—Hadamard matrix and an Hadamard matrices
with order h yields another Hadamard matrix equivalent to a J,,—Hadamard
matrix (Theorem 1.1.5).

(iv) Not all Hadamard matrices are Jy—Hadamard matrices (Example 1.2.1 and

Example 1.2.2).

In Chapter 2 (see [70]), we revisit and strengthen results in Chapter 1 and

introduce the concept of J,,—classes C'.J,,.
(i) For any .J,,—Hadamard matrix, we can generate 2™m! — 1 other Hadamard
matrices by allowing permutations on S, (Theorem 2.1.1).

(ii) From an Hadamard matrix of order 4h and a .Jy,—Hadmard matrix, there

exists a Jgp,—Hadamard matrix (Theorem 2.1.5).

(iii) All Hadamard matrices of order 12h and 20h don’t belong to C'Jy, (Example
2.2.1 and Example 2.2.2).

(iv) CJs G CJy G CJ; (Theorem 2.2.3).

The Kronecker product of ¢ Hadamard matrices is another important subject.
Sylvester [77], Hadamard [37], Agayan [1], and Craigen [20] formulated the result



for t = 2; Craigen-Seberry-Zhang [21] discussed the case for ¢ = 4, and finally de
Launey [22] studied the case for ¢ = 12. In Chapter 3 (see [71]), we study the case

for general ¢ and the main results are associated as follows:

(i) Using de Launey’s construction, we can generalize Craigen’s Theorem 1 in
[20] (Theorem 3.1.1).

(ii) Using our Theorem 3.1.1, we can generalize Craigen-Seberry-Zhang’s Theorem
1 in [21] (Theorem 3.1.2).

(iii) We study the minimum exponent E; of an Hadamard matrix resulting from ¢

Hadamard matrices which is an increasing step function (Lemma 3.2.1).

(iv) By suitably partitioning into three groups from the given Hadamard matrices,
we may yield an upper bound of the minimum exponent (Theorem 3.2.4 and
Corollary 3.2.5).

I1. Studies of Forests

In this topic, we devote ourselves to studying three subjects in forests. We first
generalize some results of plane trees to plane forests. Secondly, we are interested in
Chung-Feller Theorem and discuss some related results. Thirdly, we study graceful
labellings of some n—caterpillars. In particular, Latin squares are applied to yield

graceful labellings of 2" —caterpillars.

A great many of formulas about plane trees have been investigated, e.g., the
Catalan number C), counts plane trees of n edges. For more information of Catalan
families, we refer to [7, 74]. A famous Catalan identity is the Touchard’s identity
[79].

Shapiro [65] used generating functions to find that among the vertices of plane
trees, exactly half of them are leaves. Let e, and o, be the numbers of plane trees of
n edges with even and odd number of leaves, respectively. Eu-Liu-Yeh [33] also used
generating functions to prove that es, — 09, = 0 and egp 1 — 09pq1 = (—1)" 1 C,,.
Using bijection, Dershowitz-Zaks [23] discovered that the Narayana number N (n, 1)

counts plane trees with n edges and ¢ leaves.

Bernhart [7], using linear operator, presented 6 identities including four Motzkin-
Catalan identities and two Catalan-Riordan identities. Eu-Liu-Yeh [32] listed three



new Riordan families: n—Motzkin paths without level steps on the z—axis, (n —

1)—Motzkin paths with at least one level step on the x—axis, and n—Dyck paths

without peaks of odd heights, respectively.

Motivated by the above results, we will generalize them to plane forests in

Chapter 4 (see [16]). The main results are arranged as follows:

(i)

(iv)

(vi)

We study the number of plane forests with z; vertices at level 7 and get a new
Catalan identity (Theorem 4.1.3).

We generalize a Shapiro’s result: Among the vertices of plane forests with n

edges and k components, exactly half of them are leaves (Theorem 4.2.1).

Let ey and o, be the numbers of plane forests with even number of leaves
and odd number of leaves, respectively, where each forest has n edges and k
nontrivial components. Using generating function, we discover that
enj — Ong =0, if n+ k is odd; (—l)n_#%(fj), otherwise (Theorem 4.2.2).

2
Using a bijective proof, we provide a formula to count plane forests with n

edges, k components and i nontrivial leaves (Theorem 4.2.4).

We generalize Motzkin-Catalan identity and Catalan-Riordan identity by es-
tablishing the relation between plane forests with vertices allowing one child

and plane forests without vertices having one child (Theorem 4.3.1).

We present six new Riordan families by a bijective correspondence between

u, [, d labels and up, level, down steps (Theorem 4.4.1).

In Chapter 5, another combinatorial theme related to plane forests is Dyck

paths with flaws. The most famous result is the Chung-Feller Theorem [19]. Re-

cently, in 2005, Eu-Fu-Yeh [31] used Taylor expansion for Catalan number to reprove

Chung-Feller Theorem. The main results are classified as follows:

(1)

(i)

We reprove the Chung-Feller Theorem by a simple bijection (Theorem 5.1.1)
and the Catalan identity appeared in Theorem 4.1.1 (Theorem 5.1.2).

We study the relation between the Chung-Feller Theorem and bi-color plane
forests (Theorem 5.2.3).



(iii) We catch two results: One is the number of semi-standard tableaux of shape
2 x n with k decreasing columns is independent of k£ (Theorem 5.3.2), and
the other is the number of noncrossing semi-ordered pairs with n pairs and &

d—arcs only depends on n for k = 0,1,2,...,n (Theorem 5.3.4).

(iv) We study Chung-Feller Theorem for Motzkin number (Theorem 5.4.1) and
apply it to probability theory (Corollary 5.4.3).

(v) We study Chung-Feller Theorem for Riordan number (Theorem 5.4.4).

In Chapter 6 (see [18]), we discuss graceful labellings of n—caterpillars. In 1967,
Rosa [60] introduced the notion of graceful labelling originally called f— valuation
and was renamed as such by Golomb in [36]. It is an open problem that trees have
graceful labellings. This now notorious open problem has been known variously as
Rosa’s conjecture, Ringel’s conjecture, or the graceful tree conjecture. Kotzig [40]
has called it a disease of graph theory. A good reference for graceful labelling is a

survey paper by J. A. Gallian [34].

In 1979, Bermond [6] proposed a still open conjecture that lobsters are graceful.
Recently, in 2005, Mishra and Pangrahi [47] proved that some classes of lobsters have
graceful labelling. For other families of graceful lobsters, we refer to [15, 48, 53, 82].

The main results are assorted as follows:
(i) We make use of an algorithm by partitioning a 2-caterpillar into union of
2-stars to yield graceful labellings of 2-caterpillars (Theorem 6.1.2).

(ii) We use iterated steps to yield graceful labellings of regular n—caterpillars
(Theorem 6.2.3).

(iii) We prove that if the single path of a n—caterpillar 7" has no leg except in the
ni + 1% vertex, then T has a graceful labelling (Proposition 6.3.11).

(iv) Using iterated steps, we construct a symmetric graceful Latin square of order
2" for n € N (Theorem 6.4.4).

(v) Using (ii), Theorem 6.2.3 and (iv), Theorem 6.4.4, we present graceful la-
bellings of 2" —caterpillars (Theorem 6.4.9).



Concluding Remarks

In this part, we indicate some further directions of our research in coming years.





