Chapter 3

On Craigen-de Launey’s
Constructions of Hadamard

Matrices

In 1867, Sylvester [77] noted that the Kronecker product of two Hadamard matrices
is again an Hadamard matrix. In 1893, Hadamard [37] himself showed that if H and
K are Hadamard matrices of orders 4h and 4k, then H ® K is an Hadamard matrix
of order 2*hk. In 1992, for the above given Hadamard matrices H, K, R. Craigen
[20] gave a simpler proof of a result due to Agayan-Sarukhanyan which asserts the
existence of an Hadamard matrix of order 2°hk (see our Theorem 3.0.2). By use
of the above-mentioned Agayan-Sarukhanyan’s result, for any four Hadamard ma-
trices of orders 4h, 4k, 4m, 4n, there is an Hadamard matrix of order 2°hkmn. In
the same year 1992, Craigen, Seberry and Zhang [21] used orthogonal pairs and
weighing matrices to strengthen the result to obtain an Hadamard matrix of or-
der 2*hkmn (see our Theorem 3.0.4). Repeating Craigen-Seberry-Zhang’s method,
there exists an Hadamard matrix of order 2'%m;my---myy for any 12 Hadamard
matrices of orders 4my,4ms, ..., 4mys. In 1993, de Launey [22] further improved

Craigen-Seberry-Zhang’s method to yield the following result:

Theorem 3.0.1 (de Launey) If there are twelve Hadamard matrices of orders

4my, 4ma, ..., 4myo, then there exists an Hadamard matriz of order 2°mims...m1s.
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A natural problem arises: What happens to any ¢t Hadamard matrices of
orders 4my,4my, ...,4m;? In Section 3.1, we follow de Launey’s idea to yield t-
wo results, Theorem 3.1.1 and Theorem 3.1.2 which allow us to construct, for any
given t Hadamard matrices of orders 4my, 4mo, ..., 4m;, an Hadamard matrix of or-
der 2¥mymy - - -m, with k < t as small as possible. In Section 3.2, we introduce the
minimum exponent Fy, for any t, such that there exists, for any given ¢ Hadamard
matrices of orders 4my, 4ma, ..., 4m;, an Hadamard matrix of order 2%t mymqy - - - my
(for precise definition, see Section 3.2). Moreover, we explore some particular prop-
erties of the minimum exponent F; which turns out to be a monotonic increasing
step function with step jump 1 (Lemma 3.2.1). To obtain a calculable upper bound
for E;, we bring in another number ¢, which will be defined recursively using an al-
gorithm derived from our Theorem 3.1.1 and Theorem 3.1.2. Finally, for illustrating

the results, we give a list of g; for 1 < ¢ < 20.

For the sake of proving Theorem 3.1.1 and Theorem 3.1.2 and for fixing our
notation, we recall the definitions of orthogonal pairs and disjoint weighing matrices

and some well-known relevant results.

A pair (S, P), where S, P € Mypyan({£1}), is an orthogonal pair, notation:
(S, P) is an OP(4h), if it satisfies

SST + PPT = 8hly, and SPT = PST = Oy,,.

Following Craigen [20], Theorem 3, for any two Hadamard matrices H =
and K = ( K K, K K, ) where H; € My ({£1}) and K; € Mypr ({£1})
fort=1,2,3,4, put

1
S = 5{(H1 + HQ) X Kl + (H1 — HQ) X KQ} and

1
P — 5{(H3 + H4) ® K3 + (H3 - H4) ® K4},

then (S, P) is an OP(4hk). Combining this with Craigen’s Lemma 2,3 of [20], we

have:
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Theorem 3.0.2 (Craigen) If there are Hadamard matrices of orders 4h and 4k,
S P
then there is an OP(4hk) (S,P). Moreover, ( P s ) is an Hadamard matriz of

order 8hk.

A matrix M € My wam ({0, £1}) is a weighing matriz of order 4m with weight
2m if MMT = 2ml,,. Two weighing matrices of order 4m, namely W = (w;)
and U = (uy;), are disjoint if w;;u;; = 0. For convenience, we say that (WW,U) is a
pair of DW (4m) if W and U are two disjoint weighing matrices of order 4m with
weight 2m. For the same H, K, S, and P as above, if we set W = %(5 + P) and
U = 3(S—P), it is easy to check that (W, U) is a pair of DW (4hk) (see e.g. Craigen
[20], Theorem 7). We formulate this important result as follows (see [22], Theorem
B):

Lemma 3.0.3 (Seberry and Zhang) If there are two Hadamard matrices of or-
ders 4m and 4n, there erists a pair of DW (4mn).

Combining Theorem 3.0.2 and Lemma 3.0.3, for four Hadamard matrices of orders
4h, 4k, 4m, 4n, then we gain an OP(4hk) (S, P) and a pair of DW (4mn) (X,Y),
respectively. [21], Theorem 1 asserts that H = X ® S +Y ® P is an Hadamard

matrix of order 2*hkmn.

Theorem 3.0.4 (Craigen, Seberry and Zhang) If there are four Hadamard ma-

trices of orders 4h, 4k, 4m, 4n, then there is an Hadamard matriz of order 2*hkmn.

3.1 Generalizations of Craigen’s Theorem and of

Craigen-Seberry-Zhang’s Theorem

To begin with, the following theorem is a generalization of Theorem 3.0.2 in which
the construction’s idea comes from de Launey [22]. In fact, de Launey’s Theorem
deals with twelve Hadamard matrices grouped into three groups consisting each
of four Hadamard matrices out of twelve Hadamard matrices of orders 4m;,1 =

1,2,...,12. The first group and the second group produce, by Theorem 3.0.4, two
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Hadamard matrices of orders 2*m;maomsmy and 2*msmegmyms, respectively. The
third group produces two different pairs of DW (4mgmyg) and DW (4my1mys), by
Lemma 3.0.3. The following result generalizes de Launey’s construction for [ = 4

to arbitrary /.

Theorem 3.1.1 If there are two Hadamard matrices H and K of orders 2'm and
2n, respectively, and there are | —2 different pairs of DW (4p;) fori=1,2,...,1—2,

then there is an OP (23 *mnpipy...pj_2) and hence an Hadamard matriz of order
23173

mnpip2---pi—2-

H,

: Hy
Proof. Following de Launey’s proof of Theorem ([6], p.126), set H = .

H2l
de:(ngg.u Ky»wmmm6NMMWQiummugGMMMQiu)
fori=1,2,...,2". Then

I, . ifi=j
HH = " R (3.1.1)
Om , otherwise,
and
KK" = Ki KT + KoK + -+ Ka K = 2o, (3.1.2)

Let (X;,Y;) be | — 2 different pairs of DW (4p;) for i = 1,2,...,1 — 2, and set
F={Z1072,0---®7Z 4| Z;=X;orY; fori=1,2,...,1 —2}. Clearly, the cardinal
number of F is 2/=2, and we have for F; € F for i = 1,2, ..., 2!72:
FFl = (Z107@ @ Za) (71 © 220+ ® Z1y)"

= Z1Z] @ ZaZy @@ Lo,

= 2pilay, @ 2palsy, @ - @ 2pi_olyy,_,,

= 2172271272 o 'p172I4l_2p1p2---p[,27
and generalizing de Launey’s proof, we define

ol—2

28 = ZFZ ® {(Hai—1 + Hai) @ Koj—1 + (Hai—1 — Hy;) ® Ky;}

=1
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2!*2
2P = Z Fi@{(Hy-140i—1+Hor149;) @Kot 95 1+ (Hy1 91— Hoio14.9;) @ Kgi-1,.9;}
i=1

The following algebraic calculation shows that (S, P) is an OP(23 = *mnp;ps - - - p1_a).
In fact, first we calculate SST using Equation (3.1.1):

SST

ol—2

1
=1 Y FF @ {(Hy 1 Hyy o + HoHy) © Ko K, ) + (Hy  Hy, | + HyHy) ©
=1

1
KoK} + 7 Y FiF) @ {(Haioy + Ho) (Hojor + Hy)" @ Koi 1 Koy + -}
i#]

ol—2

1
=7 N FF @ {(HyHy, o + HyHy) ® Koin K3,y + (Hoon Hy, | + HyH3,) @
=1

Ko K11, since the mixed summation with i # j in the big parentheses is zero, by
Equation (3.1.1),

2172

1 _
= Z Z 2l 2p1p2 . 'pl—214l*2p1p2"'p1_2 ®2- QZmIm X {Kgi_lK’QZ;_l + KQzK,QZ; .
i=1

Analo_gously,
PP

2172

1 -
- Z Z 2l 2p1p2 o 'pl_214l’2p1p2-"191—2 ®2- QZmIm ®
i=1

{K2l—1+2i—1K2T171+2i—1 + K21_1+2iK§,1+2i}.
Using Equation (3.1.2), we get:

SST+ PPT
2!
1 _
=1 > 2 pipy sy oy, ® 2 2'mly, @ KK
=1
= 23l_3mnp1p2 SRRY Y TR P

Finally, a direct calculation, using Equation (3.1.1), proves that SPT = PST =
O3t 4ymmp1p-pr_o- This shows (S, P) is an OP (2% ~*mnpips...pi_») and this orthogo-

S P
nal pair (S, P) produces an Hadamard matrix ( s ) of order 23 3mnpips - - - pr_a,
by Craigen’s Theorem 3.0.2. U
By putting [ = 2 in Theorem 3.1.1, we obtain the above Theorem 3.0.2. To
illustrate how Theorem 3.1.1 yields a better result, we choose a special example
of 12 Hadamard matrices of orders 27my,27mo, 4ms, 4my, ..., 4mys: de Launey’s

Theorem 3.0.1 yields the existence of an Hadamard matrix of order 29m ms - - - mys.

However, we can improve the exponent 19 to 18, by Theorem 3.1.1.
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Our next following result seems to be unnoticed which is a generalization of
Theorem 3.0.4: If we are given [ — 1 different pairs of DW (4p;) fori =1,2,...,1—1
(instead of | — 2 different pairs), surprisingly we might construct, similar as in
Theorem 3.1.1, an Hadamard matrix of even smaller exponent using a combination

of Theorem 3.0.2 and Lemma 3.0.3. Pertinent examples will be given in the sequel.

Theorem 3.1.2 If there are two Hadamard matrices of orders 2'm and 2'n, and
there are 1 — 1 different pairs of DW (4p;) for i = 1,2,...,1 — 1, then there is an
231—2

Hadamard matriz of order mnpipa...pr-1-

Proof. As in the proof of Theorem 3.1.1, we obtain an OP (23 ‘mnpips - - - p1_o),
say (S, P), from the two given Hadamard matrices of orders 2'm and 2'n, and | — 2
different pairs of DW (4p;) for i = 1,2, ...,1 — 2., with (X,Y") being the [ — 1" pair
of DW (4p;_y).

Now put H=X ® S+ Y ® P. Then

HH" = XXT"98ST+vyYT @ PPT

= 2 11y, , ® (SST + PPT)
23[—2

mnplpg...pl_1]23l_2mnp1p2mpl71.

Thus H is the desired Hadamard matrix of order 23 2mnp;pa...pi_1. O

Combining Lemma 3.0.3 and Theorem 3.1.2 for [ = 2, we gain easily Theo-
rem 3.0.4. Using Lemma 3.0.3, Theorem 3.0.4 and Theorem 3.1.1 for [ = 4, we
obtain Theorem 3.0.1. Similar to Theorem 3.0.2 visa-a-vis Theorem 3.0.1, our The-
orem 3.1.2 also yields a better bound than Theorem 3.0.1: For specially chosen 12
Hadamard matrices of orders 2%m,, 25mso, 4ms, 4my, ..., 4my2, Theorem 3.0.1 yields
an Hadamard matrix of order 2'"myms - - - my2, whereas, Theorem 3.1.2 allows us

to produce a better exponent 16.
3.2 Minimum Exponent of Hadamard Matrices
Resulting from ¢t Hadamard Matrices

Given any ¢ Hadamard matrices of orders 4my, 4mo, ...., 4my, t > 4, using Theorem

3.0.2 and Theorem 3.0.4 repeatedly, one gets a new Hadamard matrix of order
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2kmymsy - - -my with k < t. An interesting problem is how to minimize k. At the
end of this section, we will utilize Theorem 3.1.1 and Theorem 3.1.2 to find the

exponent k as small as possible.

To this end, we define the minimum exponent as follows:
E(4my,4ma, ..., 4m;) = min{k | Given any ¢t Hadamard matrices of orders 4m;, 4ma,

...,4my, there is an Hadamard matrix of order 2¥m;m - - -y}
and

E; = max{E(4my,4ma, ..., 4m;) | There are t Hadamard matrices of orders 4my, 4ms,
ceey 4mt }

Note that by Well-Ordering Principle, E(4mq,4ms,...,4m;) and E; are well
defined. Clearly, £} = 2,F, < 3,FE3 < 4 by Agayan-Sarukhanyan’s result (our
Theorem 3.0.2), and E; < t for ¢t > 4 as a consequence of Craigen’s result (Theorem
3.0.2 and Theorem 3.0.4). De Launey’s construction [22] leads to F1s < 9. An
important property of E; is that E; is a monotonic increasing step function of ¢

with step jump 1.

Lemma 3.2.1 1. By, > E; fort € N

2. EByyyn=FE, or By = Ey+ 1, i.e. Ey is a step function.
Proof.

1. By definition, there exists ¢ Hadamard matrices of orders 4mq, 4mo, ..., 4my
such that E; = E(4my,4ma, ..., 4m;). Obviously, this implies the existence of
t+ 1 Hadamard matrices of orders 4my, 4ms, ..., 4m,, 4, hence the existence of
an Hadamard matrix of order 2E#m4mz,dmed)yy im0 ...y, Now, on the one
hand, F(4my,4ma, ...,4m;) < E(4mq,4ms, ..., 4my, 4). On the other hand, by
definition, E(4mq,4ms, ...,4my, 4) < Eyq. This yields E; < Epg.

2. Partition the ¢ + 1 Hadamard matrices into two parts consisting of 1 and ¢
Hadamard matrices, respectively, which produce two Hadamard matrices of

orders 2?2m; and 2%*mgyms - - - m,1. This implies the existence of an Hadamard
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matrix of order 2Et*'mymsy---myy, by Theorem 3.0.2, which yields
E(4mq,4ma, ..., 4myq1) < Ey + 1, for any ¢t + 1 Hadamard matrices of orders
4m1, 4m2, . 4mt+1. ThUS, Et+1 S Et + 1, and hence Et S Et+1 S Et + 1.

O

Our next goal is to find E; which is difficult. First we give two examples to
illustrate how to find a bound of E; by use of Theorem 3.1.2 and Theorem 3.1.1,
respectively, and find out that Theorem 3.1.2 yields a better bound than Theorem
3.1.1 in Example 3.2.2, and the other way around in Example 3.2.3. However, in

most cases Theorem 3.1.2 yields a better bound than Theorem 3.1.1.

Example 3.2.2 E;; <8.

Proof. It suffices to show that there is an Hadamard matrix of order 28mms - - - myq.
From the first six Hadamard matrices, we obtain two Hadamard matrices of or-
ders 23mims and 2*msmymsmg, respectively. The rest four Hadamard matrices
yield two pairs of DW (4mzymg) and DW (4mgmyg). By Theorem 3.1.2; there is an

Hadamard matrix of order 28mimqy - - - myq. O

Note that if we partition the 10 Hadamard matrices into three parts which
contain 3,3 and 4 Hadamard matrices, then we gain two Hadamard matrices of or-
ders 2*mymyms and 2*mymsme, and two pairs of DW (4mymg) and DW (4mgmyg).
Thus by Theorem 3.1.1, there exists an Hadamard matrix of order 2%mms - - - mqg

but not 28mi;ms - - - my,.

The next example is the well-known de Launey’s result (Theorem 3.0.1).

Example 3.2.3 E;, <9.

Here if we partition the 12 Hadamard matrices into three parts which con-
tain 3,3 and 6 Hadamard matrices, then we get two Hadamard matrices of orders
2'mymayms and 2%mymsme, and three pairs of DW (4mymg), DW (4mgmyg) and
DW (4my;my3). Thus by Theorem 3.1.2, there exists an Hadamard matrix of order

210, my - - - myy instead of 29myms - - - mys.
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Next we attempt to derive some upper bounds of F;. The first step is to
prove some recursive inequalities. It is easily shown that F;,3 < E; + 2 and E; <
E,+E_, —1forl <k <t—1. In order to make use of Theorem 3.1.1 and
Theorem 3.1.2, we have to partition the given ¢+ Hadamard matrices into suitable
three parts. The following result illustrates how to do it. For 1 < k <t —1, in
partitioning the ¢ Hadamard matrices into three parts, the first part consists of k
Hadamard matrices which yields the existence of an Hadamard matrices of order
QB (my dma,.Ami)yy my my, which, by Sylvester’s construction, can be enlarged to
an Hadamard matrix of order 2¥m;ms ---my. To utilize Theorem 3.1.1, we put
2(Fx — 2) Hadamard matrices into a group which yields Fj — 2 pairs of DWs, and
the number of the rest of Hadamard matrices is ¢t — k — 2(Ey, — 2) which is supposed
to be equal or greater than k. Analogously, to use Theorem 3.1.2, we proceed in
a similar way by partitioning 2(E) — 1) Hadamard matrices to yield E, — 1 DWs
instead of Fj — 2.

Theorem 3.2.4 Fort,k € N, we get the following results.

1. (a) By <2E, =3+ Ey_y_o(p,—2), where 1 <k <t—1andt > 2(k+ E}, —2).
(b) Eoyp,—2) < 3E; — 3.

2. (a) By <2Ey, =2+ Ey_j_o(,—1), where 1 <k <t—1andt>2(k+E,—1).
(b) Egtym—1) < 3E; —2.

Proof. Suppose there are t Hadamard matrices of orders 4mq, 4ma, ..., 4m,.

1. Partition the ¢ Hadamard matrices into three parts which contains k, 2( E,—2),
and t — k — 2(E) — 2) Hadamard matrices, respectively. Since t > 2(k +
Er —2), we get t — k — 2(Ey, — 2) > k. From the first part, there exists an
Hadamard matrix of order 2*m msy---my. The second part yields Ej, — 2
different pairs of DWs, by Lemma 3.0.3. From the third part, it yields an
Hadamard matrix of order 2Et*’°*2(’fk*2)mk+1mk+2 CME, o, ) Since t —
k — 2(Ey — 2) > k, we obtain, by Theorem 3.1.1, an Hadamard matrix of
order 23Fx=3(2Ft-r-2m=0"Fkyp my .. .m,), i.e. there is an Hadamard matrix

of order 22Fk =3+ Fi-k=2B -2 my - - - my. Then we finish the proof of part (a).
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If we partition 2(¢ 4+ F; — 2) Hadamard matrices into three parts consisting of
t,t, and 2(F; — 2) Hadamard matrices, then we get (b) using Theorem 3.1.1.

2. To use Theorem 3.1.2, we partition ¢ Hadamard matrices into three parts
consisting of k, 2(E;—1)) and t—k—2(F;—1) Hadamard matrices, respectively.
Since t > 2(k+ Ej, — 1), hence t —k —2(Ey — 1) > k. This partition yields the
inequality 2,(a). To prove 2,(b), analogous as in 1,(b), we partition 2(¢+ E;—1)
Hadamard matrices into three parts consisting of ¢, ¢, and 2(F; — 1) Hadamard

matrices, then we obtain (b) using Theorem 3.1.2.

O

The above Theorem gives some inequalities of F; which might be of no use in
calculating upper bounds of F;. For practical purposes, using the same strategy as
before, we develop the following methods for calculating explicit upper bounds of

E; whose proofs are similar to those of Theorem 3.2.4.
Corollary 3.2.5 Fort, k, ki, ko € N, we obtain the following results.

1. (a) [f Ek S kl,Et_k_Q(kl_Q) S k2, kl S ]{)2 and t Z Q(k + kl — 2), then
Ey <2k — 3+ ks.

(b) ]f Et S k, then E2(t+k—2) S 3k — 3.
2. (a) [f Ek S kl;Et—k—Q(kl—l) S k2, kl S ]{)2 and t Z Q(k + kl — 1), then
Ey <2k — 2+ k.
(b) ]f Et S k, then E2(t+k—1) S 3k — 2.

From Corollary 3.2.5,1,(b) with t = k = 4 and E; < 4, we immediately obtain de
Launey’s result: F15 < 9. As mentioned above, ¢ is an upper bound of F;. To get a

better upper bound for E;, we use Corollary 3.2.5 to define recursively &, as follows:

1. Set g1 = 2.

2. Using Corollary 3.2.5,1,(a), we replace ky and k; with e and &, o¢,—2),

respectively. Put oy = 1<r]£1<i£171{25k — 3+ E4h—2(cp—2) | Et—k—2(cp—2) > Ek}-
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3. Using Corollary 3.2.5,2,(a), we replace k; and k; with e and &, o¢, 1),

respectively. Put 3; = 1<Il£1<i£171{26k — 2+ &4 h—a(ep—1) | Et—k—2(cp—1) > Ek}-

4. g, = min{ay, B, }.

Note that F1 =1 =2, Fy <&y =3, F3<ez=4dand F; <e, <tfort>4. In
fact, by definition, E(4my,4ms,...,4m;) < &;, hence, F; < £;. On the other hand,
again by definition, we have: ¢, < oy <261 —3+¢, 1 =1+4¢_1 <14 (t—1), and
by inductive hypotheses for t — 1 > 4.

To illustrate the above calculation, we give a list below of ¢, for 1 < ¢ < 20.

t 123456 789 10 11 12 13 14 15 16 17 18 19 20
g 2344566 78 8 9 9 10 10 11 12 12 13 14 14

Finally as by-products of Corollary 3.2.5,1,(b) and Corollary 3.2.5,2,(b), by
starting e.g. with ¢ = 4 and k = 4, a series of various ¢ for which upper bounds ¢,

of F; can be calculated immediately.

t 4 12 14 38 40 120 122 374 376 1152 1154
ee 49 10 24 25 69 70 204 205 609 610

Remark. Referring to the above definitions of a; and (;, we can prove the following
result: Put a; = {26, — 3 + €1k 2¢,-2) | k is the maximum value satisfying
t—k—2(er—2) >k} and Bt = {2e; — 2+ g4_p—9(c,—1) | k is the maximum value
satisfying ¢ — k — 2(e, — 1) > k}, then &, = min{dy, 5,;}. Moreover, &, is also a
monotonic increasing step function of . Proofs of these assertions are tedious case

by case verifications, therefore, we omit it.
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