
2 Mardia, Kent, and Bibby’s and Chang’s Meth-

ods on Selection of Principal Components as

Discriminant Variables

2.1 Principal Component Analysis

Let X′ = [X1, X2, . . . , Xp] be a p dimensional random vector with covariance matrix

Σ(or correlation matrix ρ). Suppose λ1, λ2, . . . , λp are eigenvalues of Σ with λ1 ≥
λ2 ≥ · · · ≥ λp ≥ 0, and ei is the eigenvector of Σ corresponding to λi, i = 1, 2, . . . , p.

Then the ith principal component is given by

Yi = e′iX with Var (Yi) = λi i = 1, 2, . . . , p

and

Cov (Yi,Yk) = 0 i 6= k.

We have 


Proportion of total

population variance

due to kth Principal

component




=
λk

λ1 + λ2 + · · ·+ λp

.

Based on the proportion of total population variance, we often take the first k

principal components to replace the original p variables.

2.2 Selection of Principal Component Variables

In this section, we give two different methods to select the best principal component

variables for further discrimination.
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2.2.1 Mardia et al. Method

Suppose y is a p dimensional random variable with a mixture of two multi-normal

distributions with means µ1, µ2 and a common covariance matrix Σ. That is,

a random sample y11,y12, . . . ,y1n1 ∼ Np(µ1,Σ); independently, a random sample

y21,y22, . . . ,y2n2 ∼ Np (µ2,Σ). Suppose the mixing proportions are π and 1 − π,

and define ȳi =
1

ni

ni∑
j=1

yij, i = 1, 2; ȳ =
1

n

2∑
i=1

ni∑
j=1

yij. Then the total sum of

squares matrix of the yij about the overall mean ȳ is

T =
2∑

i=1

ni∑
j=1

(yij − ȳ)(yij − ȳ)′.

We can decompose T into within group and between group sums of squares

matrices, W and B respectively, that is

T = W + B,

where W =
2∑

i=1

ni∑
j=1

(yij − ȳi)(yij − ȳi)
′ and B =

2∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)′ = cdd′

with c = n1n2

n1+n2
and d =ȳ1 − ȳ2. Consider the discriminant problem between the

two multi-normal populations. The coefficients of the sample maximum likelihood

discriminant function (Mardia et al.1979) are given by β=(W
m

)−1d, with kth ele-

ment βk. Now, partition β′=(β′1, β′2), and d′=(d′1, d′2), where β1 and d1 have k

components. Suppose β2=0, that is suppose those variables yk,yk+1, . . . ,yp have

no discriminant power and hence can be safely discarded. And this is equivalent to

D2
p = D2

k, where :

D2
p = md′W−1d and D2

k = md′1W
−1d1.

Here, D2
p is the Mahalanobis distance computed based on the original p variables

and D2
k is the Mahalanobis distance computed based on some k variables. This test

uses the statistic, called M’s statistic,

ηk =
(m− p + 1)

(p− k)
c(D2

p −D2
k)/(m + cD2

k). (2.1)

3



And under the null hypothesis, this statistic has the Fp−k,m−p+1 distribution. If

ηk is small, it means that D2
k approaches D2

p. That is, all variables, except these

k variables have no discriminant power. When applying this method to select

principal components as discriminant variables, we can use the following procedure:

1. Partition β′=(β′1, β′2), such thatβ1∈ R and β2∈ Rp−1. Then compute

the M’s statistic η1(k) = (m−p+1)
(p−1)

c(D2
p − D2

k)/(m + cD2
k) corresponding to the kth

principal component, PCk, k = 1, 2, . . . , p. Let η1(i) be the smallest M’s statistic

value. We select PCi in this step.

2. Reset β=(βi, β1, . . . , βi−1, βi+1, . . . , βp)
′. Partition β′=(β′1, β′2), where β1

is a 2-dimensional vector with first component βi. Then compute the M’s statistic

η2(k) = (m−p+1)
(p−2)

c(D2
p−D2

k)/(m+cD2
k) of each set {PCi, PCk} ∀k = 1, 2, . . . , p, k 6= j.

Let η2(j) be the smallest M’s statistic value. We select PCi, PCj in this step.

3. Reset β=(βi, βj, . . . , βp)
′. Partition β′=(β′1, β′2), where β1 is a 3-dimensional

vector with first and second components βi and βj, respectively. Then compute the

M’s statistic η3(k) = (m−p+1)
(p−3)

c(D2
p − D2

k)/(m + cD2
k) of each set {PCi,PCj, PCk}

for k = 1, 2, . . . , p, k 6= i, j. Let η3(l) be the smallest M’s statistic value. We select

PCi, PCj and PCl in this step.

Continue this process until the smallest ηk is less than the critical value Fp−k,m−p+1(α).

All principal components selected in the last step will be taken as discriminant vari-

ables.

2.2.2 Chang’s Method

Let ∆ denote the sample Mahalanobis distance between the two sub-populations,

and V be the covariance matrix of y. Then we have

V = π(1− π)dd′ + W

∆2 = d′W−1d.
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Consider the Mahalanobis distance based on some (may not be all) principal compo-

nents. Let e1, e2, . . . , ep be the p eigenvectors of V, and their corresponding eigenval-

ues are λ1, λ2, . . . , λp, respectively. In the spectral representation, V =

p∑
i=1

λieie
′
i,

where e′iej = 1 if i = j, e′iej = 0 if i 6= j. Moreover, e′iVei = λi, e′iVej = 0. Let

Bm = (e1, e2, . . . , em) and ∆m be the Mahalanobis distance between the two popu-

lations using B′
my, where m ≤ p. That is, ∆m is the Mahalanobis distance based on

m principal component values. Chang (1983) gave the following proposition about

∆2
m.

Proposition

∆2
m =

m∑
i=1

(e′id)2

λi

/(1− π(1− π)
m∑

i=1

(e′id)2

λi

).

In particular, for m = 1,

∆2
1k =

(e′kd)2

λk

/(1− π(1− π)
(e′kd)2

λk

), where k = 1, 2, . . . , p.

Chang (1983) called this distance ∆m as ”the information contained in the vari-

ables.” Moreover, he generated 300 random observations in a 15 dimensional mix-

ture. He found that the discriminant result was the best when taking the first and

the last components as the discriminant variables.

When using this method to select principal components as discriminant vari-

ables, we can consider the Mahalanobis distance ∆2
1k computed based on the kth

principal component, k = 1, 2, . . . , p. We can reach a selection order of principal

components, based on the order (from the largest to the smallest) of ∆2
1k’s, where

k = 1, 2, . . . , p.
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