Chapter 2

The Model

2.1 Interarrival and Service Times

We assume that both interarrival and service times are of Coxian distribution with
k and m stages respectively. It means that an arrival may go through at most up to
k phases, and the length of phase j is exponentially distributed with a given rate A;
for j =1,...,k. After phase j, j = 1,2,...,k, the interarrival time comes to an end
with probability p;, and it enters the next phase with probability 1 —p;. Obviously,
pr = 1. A similar notation for p; and ¢;, 7 = 1,2, ..., m, in the service distribution

is assumed.

Let F,(t) be the interarrival time distribution with phase k£ and its mean by %

Then, it is known that
0 tn
F,(t) =1— 1iexp(Tit)e = — z;‘rlTTfe E

where the 7, is the initial probability of 1 x k vector
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is a squared matrix of order k, and € is a column vector of all entries equal to 1 in

a proper dimension depending on its multiplier.
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Similarly, the service time distribution Fy(-) has mean . and representation

(19, Ty) of dimension m, where
o =(1,0,...,0)

is a 1 x m vector and

—pr (1 =q)m 0
— 2 (1 —q2)po

—Hm—1 (1 T qm—l)ﬂm—l

0 —Hm

is the squared matrix of order m. The distribution is given by
o tn
Fyi(t) =1 — maexp(Tat)e = — ZITQTZe prt

The Laplace transform of the interarrival time has the form

Fr(z) = [Ce™dF,(t)
= fooo e " {—riexp(T t)T e }dt
= [7° —Tiexp{(T, — 21,)t}Tedt
= —1(T, —2I))exp(T, — 2I,)|°T e

= 7i(al; = Ty) 'y,

where v, = —T,€', and I is an identity matrix with proper dimension in equation.

Similarly, the Laplace transform of the service time has the form

Fs*(x) = T2(x12 - T2)71727



where v, = —Tse . The utilization factor is defined as

A
p=—
1
Since
1 o0 ,
— :/ tdF,(t) = —F; (0)
A Jo
and
1 o )
— = / tdFy(t) = —F; (0)
% 0
we have ,
Fr (0
_E©
Fx(0)

2.2 Matrix of Transition Rates

The Ck/Cy,/1/N queueing system may be studied as a Quasi-Birth-Death process.
A state of system is denoted by (n,i,j), where n is the number of customers in the
system, n > 0, and i (resp. j) is the phase of customer presents in the interarrival
fictitious center (resp. the service center), 1 < i < k, 1 < j < m. We arrange the
states (n,i,j) in lexicographic order and partition of the state space according to

the number of customers, n, i.e.
Sp={(n,5,j)]1<i<k, 1<j<m}, n=0,1,2,---,N.

For fixed n the state can be lexicographically in according with phase ¢ and j. The

state space can be organized into three groups:

So = {(0,1,0),(0,2,0),---,(0,%k,0)},

S, ={(n,1,1), (n1,2), ---, (n,1,m);
(n,2,1), (n,2,2), -+, (n,2,m);
(n,k,1), (n,k,2), ---, (n,k,m)},



where 1 <n < N —1,

Sy ={(N,1,1), (N,1,2), ---, (N,1,m);
(N,2,1), (N,2,2), ---, (N,2,m);
(N,k,1), (N,k,2), -+, (N, km}

Sy and Sy are defined for boundary states. Likewise, S,, 1 < n < N —1is
defined for unboundary state. Denoted by P the stationary probability row-vector

partitioned corresponding to S, as:
P - (PO,PI, .. .,PN),

where P, is a stationary probability row-vector when n customer in system. Define
Q the transition rate matrix of the chain according to the arrangement of S,,. Then

Q is of the block-tridiagonal form and written as

So S S -+ Sn2Sn-1SN

B~ [H %, ]
5 @, *B \A
5, C B A

Q:
{5 C B A
e C B A
Sy | e B

Ay is a k x km transition rate matrix from states of Sy to states of S;. Bpisa k x k
transition rate matrix among states of §;. Cy is a km X k transition rate matrix
from states of S; to states of Sp. A is a km x km transition rate matrix from states
of §, to states of S,41, 1 < n < N —1. Bis a km x km transition rate matrix
among states of S;,, 1 <n < N — 1. Cis a km x km transition rate matrix from
states of S, to states of S,,_1, 2 < n < N — 1. B; is a km X km transition rate

matrix among states of Sy.

The submatrices could be written as Kronecker product and Kronecker sum,

defined in Bellman [1], which were denoted by ® and @, respectively. Kronecker



product and Kronecker sum were used to simplify the representation of the system
of balance equations for queues by many researchers, for example [8] and [9]. Here,

the submatrices Ay, By, Cy, A, B, C, and B, are given below:

Ay =711 0T B, =T, Co=1®7,
A=y110L B=T, 9T, C=1,®,7, (2.1)
B, =(T,+Ri)® T,

where Ry is diag(v1, Y2, 73, -+ 5 Vk)-

2.3 Balance Equations

For the balance equations PQ = 0 and the normalization condition Pe’ = 1, we

obtain the following equations:

;

P,B, + P,Cy =0 (2.2)
PyA,+P,B+P,C =0 (2.3)
P, \A+P,B+P,, ,C=0 2<n<N-1 (24)
Py_1A+PyB; =0 (2.5)
| Pe'=1 (2.6)

It is easy to rewrite the balance equations by substitute (2.1) into equations

(2.2)~(2.5):

PT; +Pi(I; ®7,) =0, (2.7)

Po(v 71 @ T2) + P (T @ T3) + Py(I1 @ v,72) = 0, (2.8)

P, 1(7i71®L) +Py(T1 & Ts) + Ppii (I ® v,72) =0, (2.9)
2<n<N -1,

Py (7,71 ® L) + Py((T:1 + Ry) ® Ty) = 0. (2.10)



2.4 Vector Product-Form Solutions

2.4.1 Case of Simple Roots

In [10], Wang expressed the unboundary stationary probabilities (P,,,n =1,..., N—
1) of Cy/C/1/N system can be written as a linear combination of product-forms.

We review an important results from [10].

Proposition 1 (p.12in [10]) The equation: F}(z)F(—x) =1 hast solutions which
we need. If p < 1, t equals m and the equation has m solutions with positive real

parts. If p > 1, t equals k and the equation has k solutions with negative real parts.

The proof is referred to [10].
According to Proposition 1, we assume the equation:
Fi(z)F}(-z) =1 (2.11)

has ¢ solutions. For simplicity, we first assume all roots of (2.11) are simple. When
the utilization factor, p, equals to one, we need to adjust equation (2.11) to avoid

x = 0. For example, we can rewrite (2.11) as

F*(x)F*(—x) = 1.000001.

Therefore, if p < 1, we need the roots of (2.11) with positive real parts. If
p > 1, we need the roots of (2.11) with negative real part. If p = 1, we need all

roots of (2.11) with small adjustment to avoid x = 0.

Let x4 be a solution of (2.11) which we need, « = 1,- -+ |t and set w, = F(z,),

for w, # 0. Given x,, we define u, and v, as follows,
U, = 0y, 71 (T, — 2,1,)7", (2.12)

Vo = avaTQ(TQ + l'aIQ)il, (213)



where ay,, ay, are constants such that u,e = vye = 1. Simply, set

[e3

Lo TaWa

Ay, = Ay, = for ws # 1.

Wo — 17

Since there are ¢ solution, we define a =1,2,...,t,

Wan=wl ' (Ua®v,), 1<n<N-1.

(07

(2.14)

Therefore, by [10], we define the unboundary state probabilities are of the form,

t
P,=> boWan, ba€C, 1<n<N-1,
a=1

where b, is the coefficients respect to w, .

Proposition 2 ([6]) Given x4, Won,2 < n < N — 2 satisfies equation (2.9)

Proof :

(2.15)

(1) For any given «, rewriting (2.12) and multiplying it by (T} — z,I;), we have

U, (T1 —za11) = au, 71(T1 — $a11)71(T1 — zo1h)

= M, Dot @ 15 Tl

Similarly, rewriting (2.13), we have
v Ty =ay, To — TaVa.
Therefore, it is derived

u, T ®vy+u,®vyTe =0y, T1 @ Ve + Uy ® ay, To.

(2) For any given «, rewriting (2.12) and multiplying it by T;e’'(= —~,), we have

u,Ti€ = au,7(T) —2,1;)"'T1€

= aquTI(Tl - xaIl)_l(_’Yl)
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Similarly, rewriting (2.13), we have

voToe = ay, Ff(—24) =
Therefore, we can derive

w—la(ua R V) (Tie'T1 @ L) + wo(us @ vy)(I; @ Toe'Ts)

— w_la(auawaTl ® Va) -+ wa(ua ® ((:],_S)TQ).

3) Inserting (2.14) into (2.9) divided by w”~!, it becomes
( g a

W™ (ua ® Va)(717-1 ® 12) n “n—1 (ua ® Va)(Tl @ T2) n “n—1 (ua ® Va)(Il ® 727-2)
= (ua ® Va)(Tl EB TZ) - {w_a(ua ® Va)(Tle T1 ® IQ) + wa(ua ® Va)(Il ® TQe TZ)}
= u,Ti®vy,+u, ®v, Ty — {w—la(ua R Ve)(Tie/'T1 @ L) + wo(u, @ vy)(I; @ Toe'Ty)}

= g, T1®Va—+ Uy ® Gy, To — {w—la(auawarl ® Va) + Wa(u, ® (a"‘x )T2)}

Hence it balances the equation (2.9). O

We can rewrite the balance equations by substitute(2.15) into equations (2.2) ~
(2.6). According to Proposition 2, any linear combination of w,,,, 1 < n < N satis-
fies the balance equations (2.4). When we substitute (2.15) into balance equations,

we can ignore the equations (2.4) excepted n = N — 1.

.

PoBy+ (X, baw,a1)Co =0

PoAo+ (X baWa1)B + (3 baWa2)C =0

8 (0 baWan—2)A + (32 beWan_1)B+PyC =0

(22:1 baWa,N—l)A +PyB; =0

Poe + 3t baWai€ + 3t baWaoe + o+ 3 baWo yo1€ + Pye’ =1

\

After rewriting above equations:

f

PoBy + b1 (w1,1Cp) + ba(w2,1Cp) + -+ + by(w;,1Cp) =0
PoAg + b1 (w11B + w1 2C) + ba(we 1B + wy0C) + - - 4 by(w, 1B+ w,; ,C) =0
§ (Wi n—2A+winoiB)+ -+ b(Wn—2A+ W,y 1B)+PyC =0
bi(wWin_1A) + by(Won_1A)+ -+ b(Wwin_1A) + PyB; =0
| Poe’ +01(70, Wi @) +bo(70, Wae) + - + b1, wige!) + Prel =1

Since the system is stable, at least one of the coefficient b, must be nonull. Hence,

for an appropriate choice of b,, we can solve boundary probabilities.

11



2.4.2 A Simple Case of Multiple Roots

In this section, we discuss the situation when multiple roots occur in (2.11). If the
equation (2.11) has multiple roots, the expression of the unboundary state proba-

bilities will be very complicated.

Let xy, o3,..., s be the s distinct roots of (2.11) with multiplicity rq, rs,. ..,
rs. According to Proposition 1, we know (2.11) has ¢ solutions. We assume r; = 2
and r9 = r3 = ... = r; = 1, then we can get s + 1 = £. Since z; is a multiple
root of (2.11), we can not define the unboundary state probabilities as (2.15). In
[7], Liu provides the formula of vector product solution of unboundary stationary

probabilities for it.

First, we set w, = Fr(z,), for « = 1,2,...,s, and define u, and v,, a =

2,...,8,as (2.12), (2.13). Second, we define ugl), vgl), u§°), v§°), u?), v§2), ©11, P10,

12 as follows,

) = ay, 71 (Ty — 21,) %,

VEI) =0y, T2(T2 + «T1I2)71a

1
ugo) = —ugl)(Tl e .CL'III)?I,
w1y

1
Y w—lvgl)(TQ + 1115) 7,

bu
UEZ) = _1ug1)(T1 —x )7,
w1

by
vi? = i (T 42 Ty)
w1
P11 = u?’ X Vgl),

eo=1u"@vi" —u’ @ v{’,

o= v —ull o

where
. —Clul w1
by, = 0 =
u, (Tl - «TlIl) Y1
by, = Gy

12



Third, since there are s solutions, we define w,,, @ = 2,...,s, as (2.14). By [7], we
can define the unboundary state probailities in the following.

If TI(TI — .1'111)_2‘)/1 = 0, then

s
Pn = buw?il(pn + buU)?ilgOlo —+ Zbawa,n, 1 S n S N — 1. (226)

a=2

If TI(TI — x111)7272 7£ 0, then

P, =¢n(w) + Y baWam, 1<n<N-1, (2.27)
a=2
where
Pr(wy) = b + biapie
Po(wy) = brwiprr + bia(wipia + p11)
U(wy) = bnw?*l%l - b12(wqffl<ﬂ12 + (n — 1)w?72g011).

From (2.16), (2.17), we show the complexity of the case of multiple roots. In
our numerical experience, we never find the multiple roots of (2.11). Therefore, In
this thesis, we focus on the case of simple roots and the algorithm in chapter 3 only

fits for the case of simple roots.

2.5 Boundary State Probabilities

In this section, we want to compare the product-form method with traditional
method. Note that Py and Py both are row vectors. Let

Py = (P10, o205+ 5 Poko)- (2.28)
and

Py = (Pnji1,Pni2s-  Pvims Pr2as-  Prijs s Prgm)- (2.29)

Therefore the total number of unknowns of product-form method are k& + ¢t + km.

Observe the equations (2.21) ~ (2.25). The total number of equations is k + 3km +

13



1. It is noted that the number of unknowns and equations are independent of
system size N. However, in the traditional method, the total number of unknowns
is k + kmN. Observe the equations (2.2) ~ (2.6), the total number of equations are
k+kmN +1. Obviously, the problem can be greatly reduced to a problem of solving
a linear nonhomogenous system independent of N. Hence, the computing efficiency
of the product-form method is much better than that of a traditional method when

N >> 3.

According to proposition 1, t depends on the condition of p. Whatever p > 1
or p < 1, the number ¢ is less or equal km. Therefore, the number of equations is
greater than unknowns. Instead of checking the independent vector in (2.21)~(2.25)
and solving by Gauss Elimination, the solution of this problem may be obtained by

using some numerical methods.

2.6 Performance Measures

We denote the expected number of people waiting in the queue by L,. Note that
if 0 or 1 customer is present in the system, then nobody is waiting in line, but if j
people are present(j > 1), there will be j — 1 people waiting in line. Thus, we have

j=N

L, = Z(] — Dm;.
j=1
where

ﬂj:Pjel, OSJSN

Also of interest is L, the expected number of customers in system. We have
j=N
L= (j)m

Often we are interested in the amount of time that a customer spends in a
queueing system. We define W, as the expected time a customer spends in the

queueing system, including time in line plus time in service, and W, as the expected

14



time a customer spends waiting in line. Both W and W, are computed under the
assumption that the steady state has been reached. By using a powerful result

known as Little’s queuing formula, W and W, may be easily computed from L, and

L,

Proposition 3 (Little queueing formula) For Cy/Cy,,/1/N queueing system, the
following relations hold: Ly = A1 — mn)W,, Ly = M1 — nn) Wi

Therefore, we can easily computed W, and W,.

15



