Abstract

A mixed hypergraph is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where X is the vertex set, and each of \mathcal{C}, \mathcal{D} is a list of subsets of X. A strict t-coloring is a onto mapping from X to $\{1, 2, \ldots, t\}$ such that each $C \in \mathcal{C}$ contains two vertices have a common value and each $D \in \mathcal{D}$ has two vertices have distinct values. If \mathcal{H} has a strict t-coloring, then $t \in S(\mathcal{H})$, such $S(\mathcal{H})$ is called the feasible set of \mathcal{H} , and k is a gap if there are a value larger than k and a value less than k in the feasible set but k is not.

We find the minimum and maximum gap of a mixed hypergraph with more than 5 vertices. Then we consider two special cases of the gap of mixed hypergraphs. First, if the mixed hypergraphs is spanned by a complete bipartite graph, then the gap is decided by the size of bipartition. Second, the (l,m)-uniform mixed hypergraphs has gaps if $l > \lceil \frac{m}{2} \rceil \ge 2$, and we prove that the minimum number of vertices of a (l,m)-uniform mixed hypergraph which has gaps is $\lceil \frac{m}{2} \rceil (l-1) + m$.