2 Maximum gaps of mixed hypergraphs with n vertices

Definition 2.1 We say that a mixed hypergraph, \mathcal{H}, is spanned by a simple graph, G, if \mathcal{H} and G have the same vertex set, and each \mathcal{C}-edge and \mathcal{D}-edge of \mathcal{H} is a connected subgraph of G.

Observation 2.2 A mixed hypergraph with n vertices is spanned by the complete graph, K_{n}.

Definition 2.3 A mixed hypergraph, \mathcal{H}, is good if it has no gap, and we also say that it is gap-free. Otherwise, \mathcal{H} is bad. If each mixed hypergraph spanned by a simple graph, G, is good, then G is good. Otherwise, G is bad.

We know that K_{5} is the only connected non-planar graph which is good, [3]. Hence, for any $n \geq 6, K_{n}$ is bad. In order to find the maximum gap of a mixed hypergraph with n vertices, we have the following lemma:

Lemma 2.4 Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. If $\bar{\chi}(\mathcal{H}) \geq n-1$, then \mathcal{H} is good.

Proof. Since $\bar{\chi}(\mathcal{H}) \leq n$, we have two cases:
First, if $\bar{\chi}(\mathcal{H})=n$, then $\mathcal{C}=\phi$. Let c_{1} be a strict k-coloring of $\mathcal{H}, k<n$, and $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be the feasible partition with respect to c_{1}. We may assume that $\left|X_{1}\right|>$ 1 and $x_{1} \in X_{1}$, then we define $Y_{1}=X_{1}-\left\{x_{1}\right\}, Y_{i}=X_{i}$ for $2 \leq i \leq k, Y_{k+1}=\left\{x_{1}\right\}$, then we plan to show that $\left\{Y_{1}, Y_{2}, \ldots, Y_{k+1}\right\}$ is another feasible partition of X with respect to a coloring, say c_{1}^{\prime}.

If c_{1}^{\prime} is not a strict coloring, then there exist a $C \in \mathcal{C}$ which is polychromatic or a $D \in \mathcal{D}$ which is monochromatic. Since $\mathcal{C}=\phi$, we only consider the other situation. If
there is a D-edge which the vertices in it get the same Y_{i}, then they get the same X_{i}, such implies c_{1} is not a proper coloring of \mathcal{H}. This contradiction implies that for any $k \in S(\mathcal{H}), k<n$, then $k+1 \in S(\mathcal{H})$. Hence, \mathcal{H} is no gap.

Second, we consider the case $\bar{\chi}(\mathcal{H})=n-1$. Let c_{2} be the strict $(n-1)$-coloring of \mathcal{H}. Suppose $c_{2}\left(x_{i}\right)=i$, for $1 \leq i \leq n-1$, and $c_{2}\left(x_{n}\right)=n-1$, then for all $C \in \mathcal{C}$, we get $x_{n-1}, x_{n} \in C$. Let $\mathcal{H}^{\prime}=\left(X^{\prime}, \mathcal{C}^{\prime}, \mathcal{D}^{\prime}\right)$, where $X^{\prime}=X-\left\{x_{1}, x_{2}\right\}, \mathcal{C}^{\prime}=\left\{C \in \mathcal{C} \mid x_{1}, x_{2} \notin C\right\}$, $\mathcal{D}^{\prime}=\left\{D \in \mathcal{D} \mid x_{1}, x_{2} \notin D\right\}$, then $\mathcal{C}^{\prime}=\phi$. By the same arguments with case $1, S\left(\mathcal{H}^{\prime}\right)$ has no gap and $\bar{\chi}\left(\mathcal{H}^{\prime}\right)=n-2$. Set $\chi\left(\mathcal{H}^{\prime}\right)=t$, then $S\left(\mathcal{H}^{\prime}\right)=\{t, t+1, \ldots, n-2\}$. For any coloring of \mathcal{H}^{\prime} using k colors, we add x_{n-1}, x_{n} to a new color, it becomes a coloring of \mathcal{H} using $k+1$ colors. Hence, $t+1, t+2, \ldots, n-1 \in S(\mathcal{H})$. Therefore, if \mathcal{H} has a gap, it must be less than $t+1$, but if there is a coloring of \mathcal{H} using less than t colors, then there would be a coloring of \mathcal{H}^{\prime} using less than t colors, and it is impossible because $\chi\left(\mathcal{H}^{\prime}\right)=t$. Hence, \mathcal{H} has no gap.

Next, we construct a mixed hypergraph with 6 vertices which has a gap.

Lemma 2.5 Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$,

$$
\begin{aligned}
\mathcal{C}= & \left\{x_{1} x_{2} x_{3}, x_{2} x_{3} x_{6}, x_{1} x_{4} x_{5}, x_{4} x_{5} x_{6}, x_{2} x_{3} x_{4}, x_{3} x_{4} x_{5}\right\}, \text { and } \\
& \mathcal{D}=\left\{x_{1} x_{2} x_{3}, x_{2} x_{3} x_{6}, x_{1} x_{4} x_{5}, x_{4} x_{5} x_{6}, x_{2} x_{5}, x_{1} x_{6}\right\} .
\end{aligned}
$$

Then $S(\mathcal{H})=\{2,4\}$ has a gap at 3 . And we use $\mathcal{H}_{2,4}$ to denote this mixed hypergraph.

Proof. We consider x_{1}, x_{2}, and x_{3} first, since they form a \mathcal{C}-edge and a \mathcal{D}-edge, two of them must get the same color and the third one must have another color. Hence we have three cases:

Case 1: Let $c\left(x_{1}\right)=c\left(x_{2}\right)=1, c\left(x_{3}\right)=2$. Since $x_{2} x_{3} x_{6}$ is a \mathcal{C}-edge and \mathcal{D}-edge at the same time and $x_{1} x_{6}$ is a \mathcal{D}-edge, we have $c\left(x_{6}\right)=2$. And $x_{2} x_{3} x_{4}, x_{1} x_{4} x_{5}$ and $x_{4} x_{5} x_{6}$ are \mathcal{C}-edges which implies $c\left(x_{4}\right), c\left(x_{5}\right) \in\{1,2\}$. Because $x_{1} x_{4} x_{5}, x_{4} x_{5} x_{6}$ and $x_{2} x_{5}$ are \mathcal{D}-edges, $c\left(x_{5}\right)=2$ and $c\left(x_{4}\right)=1$. Hence, c is a 2 -coloring.

Case 2: If $c\left(x_{1}\right)=c\left(x_{3}\right)=1, c\left(x_{2}\right)=2$, then we also have $c\left(x_{6}\right)=2$. As in case $1, c$ is a 2-coloring.

Case 3: Let $c\left(x_{1}\right)=1, c\left(x_{2}\right)=c\left(x_{3}\right)=2$. Since $x_{2} x_{3} x_{6}$ and $x_{1} x_{6}$ are \mathcal{D}-edges, we have $c\left(x_{6}\right) \notin\{1,2\}$. Set $c\left(x_{6}\right)=3$. Then $x_{1} x_{4} x_{5}, x_{4} x_{5} x_{6}$ and $x_{3} x_{4} x_{5}$ are \mathcal{C}-edges which implies $c\left(x_{4}\right)=c_{\left(x_{5}\right)} \notin\{1,2,3\}$. Hence, c is a 4 -coloring.

Therefore, $S(\mathcal{H})=\{2,4\}$ and \mathcal{H} has a gap at 3 .

In lemma 2.4, we have proved that when $\bar{\chi}(\mathcal{H})=n$ or $\bar{\chi}(\mathcal{H})=n-1, \mathcal{H}$ is gap-free. Hence, if there is a gap of $\mathcal{H}, \bar{\chi}(\mathcal{H})$ must be less than or equal to $n-2$. Then we have the following two theorems.

Theorem 2.6 The minimum number of vertices in a mixed hypergraph with a gap in its feasible set is 6 .

Proof. We know that $\mathcal{H}_{2,4}$ is a mixed hypergraph with 6 vertices and $S\left(\mathcal{H}_{2,4}\right)=$ $\{2,4\}$. Thus it suffices to show that there is no gap when $n<6$.

Let \mathcal{H} be a mixed hypergraph with less than 6 vertices. By lemma 2.4 , if \mathcal{H} has a gap at k, $\bar{\chi}(\mathcal{H})$ must be less than 4 , then $k<3$. But 1 can not be a gap, so we consider that if $k=2$.

If $k=2$ is a gap of \mathcal{H}, then $1 \in S(\mathcal{H})$, then $\mathcal{D}=\phi$. There is no gap when $\mathcal{D}=\phi$. Therefore, if $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ has a gap, then $|X| \geq 6$.

Theorem 2.7 The maximum gap of a mixed hypergraph with n vertices is $n-3, n \geq 6$.

By lemma 2.4, the proof of above theorem is completed if we can find a mixed hypergraph with a gap at $n-3$. To find this mixed hypergraph, we need some definitions and theorems.

Definition 2.8 A mixed hypergraph, $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is a clique if $|X|=n, \mathcal{C}=\phi$, and for any pair of vertices forms a \mathcal{D}-edge. Denote that $\mathcal{H}=\mathcal{H}_{(n)}$.

Observation 2.9 By definition, we have $S\left(\mathcal{H}_{(n)}\right)=\{n\}$.

Definition 2.10 Let $\mathcal{H}_{1}=\left(X_{1}, \mathcal{C}_{1}, \mathcal{D}_{1}\right)$ and $\mathcal{H}_{2}=\left(X_{2}, \mathcal{C}_{2}, \mathcal{D}_{2}\right)$ be two mixed hypergraphs. We say that $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is the join of \mathcal{H}_{1} and \mathcal{H}_{2} if $X=X_{1} \cup X_{2}, \mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$, and $\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2} \cup R$, where R is the all pairs consisting of one vertex from X_{1} and one from X_{2}. Denote that $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$.

Jiang et. al. (2003) have a lemma about join.

Lemma 2.11 [2] Let $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$, then $S(\mathcal{H})=\left\{i+j \mid i \in S\left(\mathcal{H}_{1}\right), j \in S\left(\mathcal{H}_{2}\right)\right\}$.

Definition 2.12 Let \mathcal{H}_{1} be a mixed hypergraph, a mixed hypergraph is a shifting of \mathcal{H}_{1} if it is a join of \mathcal{H}_{1} and a clique.

Observation 2.13 Let \mathcal{H}_{1} and \mathcal{H}_{2} be two mixed hypergraphs, and \mathcal{H}_{1} be the join of \mathcal{H}_{2} and $\mathcal{H}_{(n)}$ (i.e. \mathcal{H}_{1} is a shifting of \mathcal{H}_{2}), then $S\left(\mathcal{H}_{1}\right)=\left\{i+n \mid i \in S\left(\mathcal{H}_{2}\right)\right\}$.

Finally, we take $\mathcal{H}_{2,4}$ again, it has 6 vertices and a gap at 3 . For all $n>6$, let $\mathcal{H}_{n}=\mathcal{H}_{2,4} \cup \mathcal{H}_{(n-6)}$, then \mathcal{H}_{n} is a mixed hypergraph with n vertices which has a gap at $n-3$. Then we complete the proof of theorem 2.7.

Therefore, we can deduce the following theorem from above way.

Theorem 2.14 For any $n \geq 6,3 \leq k \leq n-3$, there is a mixed hypergraph with n vertices has a gap at k. In fact, the feasible set is $\{k-1, k+1\}$.

Proof. We take $\mathcal{H}_{2,4}$ first, then there are 6 vertices and $S\left(\mathcal{H}_{2,4}\right)=\{2,4\}$. For any $3 \leq k \leq n-3$, let $\mathcal{H}^{\prime}=\left(X^{\prime}, \mathcal{C}^{\prime}, \mathcal{D}^{\prime}\right)=\mathcal{H}_{2,4} \cup \mathcal{H}_{(k-3)}$, then there are $k+3$ vertices and $S\left(\mathcal{H}^{\prime}\right)=\{k-1, k+1\}$.

Then choose a vertex, a, in X^{\prime}. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{n-k-3}\right\}$ and $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ where $X=X^{\prime} \cup A, \mathcal{D}=\mathcal{D}^{\prime}$, and $\mathcal{C}=\mathcal{C}^{\prime} \cup\left\{\left\{a, x_{i}\right\} \mid x_{i} \in A\right\}$. Hence, all vertices in A get the same color with a. Then $|X|=n$ and $S(\mathcal{H})=\{k-1, k+1\}$.

Finally, according to theorem 2.7, we get the following corollary.

Corollary 2.15 For all $k \geq 3$, the minimum number of vertices of a mixed hypergraph which has a gap at k is $k+3$.

