2 Maximum gaps of mixed hypergraphs with *n* vertices

Definition 2.1 We say that a mixed hypergraph, \mathcal{H} , is spanned by a simple graph, G, if \mathcal{H} and G have the same vertex set, and each C-edge and D-edge of \mathcal{H} is a connected subgraph of G.

Observation 2.2 A mixed hypergraph with n vertices is spanned by the complete graph, K_n .

Definition 2.3 A mixed hypergraph, \mathcal{H} , is good if it has no gap, and we also say that it is gap-free. Otherwise, \mathcal{H} is bad. If each mixed hypergraph spanned by a simple graph, G, is good, then G is good. Otherwise, G is bad.

We know that K_5 is the only connected non-planar graph which is good, [3]. Hence, for any $n \ge 6$, K_n is bad. In order to find the maximum gap of a mixed hypergraph with n vertices, we have the following lemma:

Lemma 2.4 Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where $X = \{x_1, x_2, \dots, x_n\}$. If $\bar{\chi}(\mathcal{H}) \ge n - 1$, then \mathcal{H} is good.

Proof. Since $\bar{\chi}(\mathcal{H}) \leq n$, we have two cases:

First, if $\bar{\chi}(\mathcal{H}) = n$, then $\mathcal{C} = \phi$. Let c_1 be a strict k-coloring of \mathcal{H} , k < n, and $\{X_1, X_2, \ldots, X_k\}$ be the feasible partition with respect to c_1 . We may assume that $|X_1| > 1$ and $x_1 \in X_1$, then we define $Y_1 = X_1 - \{x_1\}, Y_i = X_i$ for $2 \le i \le k, Y_{k+1} = \{x_1\}$, then we plan to show that $\{Y_1, Y_2, \ldots, Y_{k+1}\}$ is another feasible partition of X with respect to a coloring, say c'_1 .

If c'_1 is not a strict coloring, then there exist a $C \in \mathcal{C}$ which is polychromatic or a $D \in \mathcal{D}$ which is monochromatic. Since $\mathcal{C} = \phi$, we only consider the other situation. If

there is a *D*-edge which the vertices in it get the same Y_i , then they get the same X_i , such implies c_1 is not a proper coloring of \mathcal{H} . This contradiction implies that for any $k \in S(\mathcal{H}), k < n$, then $k + 1 \in S(\mathcal{H})$. Hence, \mathcal{H} is no gap.

Second, we consider the case $\bar{\chi}(\mathcal{H}) = n - 1$. Let c_2 be the strict (n - 1)-coloring of \mathcal{H} . Suppose $c_2(x_i) = i$, for $1 \leq i \leq n - 1$, and $c_2(x_n) = n - 1$, then for all $C \in \mathcal{C}$, we get $x_{n-1}, x_n \in C$. Let $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}')$, where $X' = X - \{x_1, x_2\}, \mathcal{C}' = \{C \in \mathcal{C} \mid x_1, x_2 \notin C\}, \mathcal{D}' = \{D \in \mathcal{D} \mid x_1, x_2 \notin D\}$, then $\mathcal{C}' = \phi$. By the same arguments with case 1, $S(\mathcal{H}')$ has no gap and $\bar{\chi}(\mathcal{H}') = n - 2$. Set $\chi(\mathcal{H}') = t$, then $S(\mathcal{H}') = \{t, t + 1, \ldots, n - 2\}$. For any coloring of \mathcal{H}' using k colors, we add x_{n-1}, x_n to a new color, it becomes a coloring of \mathcal{H} using k + 1 colors. Hence, $t + 1, t + 2, \ldots, n - 1 \in S(\mathcal{H})$. Therefore, if \mathcal{H} has a gap, it must be less than t + 1, but if there is a coloring of \mathcal{H} using less than t colors, then there would be a coloring of \mathcal{H}' using less than t colors, and it is impossible because $\chi(\mathcal{H}') = t$. Hence, \mathcal{H} has no gap. \Box

Next, we construct a mixed hypergraph with 6 vertices which has a gap.

Lemma 2.5 Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where $X = \{x_1, x_2, \dots, x_6\}$,

 $\mathcal{C} = \{x_1 x_2 x_3, x_2 x_3 x_6, x_1 x_4 x_5, x_4 x_5 x_6, x_2 x_3 x_4, x_3 x_4 x_5\}, and$ $\mathcal{D} = \{x_1 x_2 x_3, x_2 x_3 x_6, x_1 x_4 x_5, x_4 x_5 x_6, x_2 x_5, x_1 x_6\}.$

Then $S(\mathcal{H}) = \{2, 4\}$ has a gap at 3. And we use $\mathcal{H}_{2,4}$ to denote this mixed hypergraph.

Proof. We consider x_1, x_2 , and x_3 first, since they form a C-edge and a D-edge, two of them must get the same color and the third one must have another color. Hence we have three cases:

Case 1: Let $c(x_1) = c(x_2) = 1$, $c(x_3) = 2$. Since $x_2x_3x_6$ is a C-edge and D-edge at the same time and x_1x_6 is a D-edge, we have $c(x_6) = 2$. And $x_2x_3x_4$, $x_1x_4x_5$ and $x_4x_5x_6$ are C-edges which implies $c(x_4), c(x_5) \in \{1, 2\}$. Because $x_1x_4x_5$, $x_4x_5x_6$ and x_2x_5 are D-edges, $c(x_5) = 2$ and $c(x_4) = 1$. Hence, c is a 2-coloring.

- Case 2: If $c(x_1) = c(x_3) = 1$, $c(x_2) = 2$, then we also have $c(x_6) = 2$. As in case 1, c is a 2-coloring.
- **Case 3:** Let $c(x_1) = 1$, $c(x_2) = c(x_3) = 2$. Since $x_2x_3x_6$ and x_1x_6 are \mathcal{D} -edges, we have $c(x_6) \notin \{1, 2\}$. Set $c(x_6) = 3$. Then $x_1x_4x_5$, $x_4x_5x_6$ and $x_3x_4x_5$ are \mathcal{C} -edges which implies $c(x_4) = c(x_5) \notin \{1, 2, 3\}$. Hence, c is a 4-coloring.

Therefore, $S(\mathcal{H}) = \{2, 4\}$ and \mathcal{H} has a gap at 3. \Box

In lemma 2.4, we have proved that when $\bar{\chi}(\mathcal{H}) = n$ or $\bar{\chi}(\mathcal{H}) = n - 1$, \mathcal{H} is gap-free. Hence, if there is a gap of \mathcal{H} , $\bar{\chi}(\mathcal{H})$ must be less than or equal to n - 2. Then we have the following two theorems.

Theorem 2.6 The minimum number of vertices in a mixed hypergraph with a gap in its feasible set is 6.

Proof. We know that $\mathcal{H}_{2,4}$ is a mixed hypergraph with 6 vertices and $S(\mathcal{H}_{2,4}) = \{2,4\}$. Thus it suffices to show that there is no gap when n < 6.

Let \mathcal{H} be a mixed hypergraph with less than 6 vertices. By lemma 2.4, if \mathcal{H} has a gap at k, $\bar{\chi}(\mathcal{H})$ must be less than 4, then k < 3. But 1 can not be a gap, so we consider that if k = 2.

If k = 2 is a gap of \mathcal{H} , then $1 \in S(\mathcal{H})$, then $\mathcal{D} = \phi$. There is no gap when $\mathcal{D} = \phi$. Therefore, if $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ has a gap, then $|X| \ge 6$. \Box

Theorem 2.7 The maximum gap of a mixed hypergraph with n vertices is n-3, $n \ge 6$.

By lemma 2.4, the proof of above theorem is completed if we can find a mixed hypergraph with a gap at n-3. To find this mixed hypergraph, we need some definitions and theorems.

Definition 2.8 A mixed hypergraph, $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a clique if |X| = n, $\mathcal{C} = \phi$, and for any pair of vertices forms a \mathcal{D} -edge. Denote that $\mathcal{H} = \mathcal{H}_{(n)}$.

Observation 2.9 By definition, we have $S(\mathcal{H}_{(n)}) = \{n\}$.

Definition 2.10 Let $\mathcal{H}_1 = (X_1, \mathcal{C}_1, \mathcal{D}_1)$ and $\mathcal{H}_2 = (X_2, \mathcal{C}_2, \mathcal{D}_2)$ be two mixed hypergraphs. We say that $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is the join of \mathcal{H}_1 and \mathcal{H}_2 if $X = X_1 \cup X_2, \mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$, and $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup R$, where R is the all pairs consisting of one vertex from X_1 and one from X_2 . Denote that $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$.

Jiang et. al. (2003) have a lemma about join.

Lemma 2.11 [2] Let $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$, then $S(\mathcal{H}) = \{i + j | i \in S(\mathcal{H}_1), j \in S(\mathcal{H}_2)\}$.

Definition 2.12 Let \mathcal{H}_1 be a mixed hypergraph, a mixed hypergraph is a shifting of \mathcal{H}_1 if it is a join of \mathcal{H}_1 and a clique.

Observation 2.13 Let \mathcal{H}_1 and \mathcal{H}_2 be two mixed hypergraphs, and \mathcal{H}_1 be the join of \mathcal{H}_2 and $\mathcal{H}_{(n)}$ (i.e. \mathcal{H}_1 is a shifting of \mathcal{H}_2), then $S(\mathcal{H}_1) = \{i + n | i \in S(\mathcal{H}_2)\}$.

Finally, we take $\mathcal{H}_{2,4}$ again, it has 6 vertices and a gap at 3. For all n > 6, let $\mathcal{H}_n = \mathcal{H}_{2,4} \cup \mathcal{H}_{(n-6)}$, then \mathcal{H}_n is a mixed hypergraph with n vertices which has a gap at n-3. Then we complete the proof of theorem 2.7.

Therefore, we can deduce the following theorem from above way.

Theorem 2.14 For any $n \ge 6, 3 \le k \le n-3$, there is a mixed hypergraph with n vertices has a gap at k. In fact, the feasible set is $\{k - 1, k + 1\}$.

Proof. We take $\mathcal{H}_{2,4}$ first, then there are 6 vertices and $S(\mathcal{H}_{2,4}) = \{2,4\}$. For any $3 \leq k \leq n-3$, let $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}') = \mathcal{H}_{2,4} \cup \mathcal{H}_{(k-3)}$, then there are k+3 vertices and $S(\mathcal{H}') = \{k-1, k+1\}$.

Then choose a vertex, a, in X'. Let $A = \{x_1, x_2, \ldots, x_{n-k-3}\}$ and $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ where $X = X' \cup A$, $\mathcal{D} = \mathcal{D}'$, and $\mathcal{C} = \mathcal{C}' \cup \{\{a, x_i\} | x_i \in A\}$. Hence, all vertices in A get the same color with a. Then |X| = n and $S(\mathcal{H}) = \{k - 1, k + 1\}$. \Box Finally, according to theorem 2.7, we get the following corollary.

Corollary 2.15 For all $k \ge 3$, the minimum number of vertices of a mixed hypergraph which has a gap at k is k + 3.