3 Mixed hypergraphs spanned by complete bipartite graphs

As mentioned in section 2 , since K_{5} is the only connected non-planar graph which is good, [3], we know that $K_{s, t}$ is bad for $3 \leq s \leq t$. So we consider $K_{2, t}$ first.

Theorem 3.1 For $t \in \mathbb{N}, K_{2, t}$ is good.

Proof. Let $A=\left\{a_{1}, a_{2}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ be the bipartition of $G=K_{2, t}$, and $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ be a mixed hypergraph spanned by $G, X=A \cup B$. Suppose c is a strict l coloring of $\mathcal{H}, l \geq 4$, and $\left\{X_{1}, X_{2}, \ldots, X_{l}\right\}$ is the feasible partition with respect to c. Since a_{1} and a_{2} belong to at most two of $\left\{X_{1}, X_{2}, \ldots, X_{l}\right\}$, we assume that $a_{1}, a_{2} \in X_{1} \cup X_{2}$.

Let $\left\{Y_{1}, Y_{2}, \ldots, Y_{l-1}\right\}$ be a feasible partition with respect to c^{\prime}, where $Y_{i}=X_{i}$ for $1 \leq i \leq l-2$ and $Y_{l-1}=X_{l-1} \cup X_{l}$. We plan to show that c^{\prime} is also a strict coloring of \mathcal{H}. For all $C \in \mathcal{C}$, there are two vertices $x_{1}, x_{2} \in C$ belong to X_{j} for some $1 \leq j \leq l$, if $1 \leq j \leq l-1$, then x_{1}, x_{2} belong to Y_{j}; if $j=l$, then x_{1}, x_{2} belong to Y_{l-1}. Hence, C is colored properly by c^{\prime}. If c^{\prime} is not a strict coloring, then there exist $D \in \mathcal{D}$ which D is not colored properly, it means that $D \subseteq Y_{i}$ for some i. But c is a strict coloring, $D \nsubseteq Y_{i}, 1 \leq i \leq l-2$. Therefore, $D \subseteq Y_{l-1}$. Since $a_{1}, a_{2} \in Y_{1} \cup Y_{2}$ and $l \geq 4, Y_{l-1} \subseteq B$ and D must be a connected subgraph of G, such D can not exist. Hence, c^{\prime} is a strict ($l-1$)-coloring of \mathcal{H}.

This is for $l \geq 4$, so we know that $\bar{\chi}(\mathcal{H}), \bar{\chi}(\mathcal{H})-1, \ldots, 4,3 \in S(\mathcal{H})$. Hence, \mathcal{H} has no gap.

Consider the maximum gap of a mixed hypergraph spanned by $K_{s, t}, 3 \leq s \leq t$, we have the following theorem.

Theorem 3.2 The maximum gap of a mixed hypergraph, \mathcal{H}, spanned by $K_{s, t}$ is $s, 3 \leq$ $s \leq t$.

Proof. By the same way as in the proof of thearem 3.1, for any strict l-coloring, $l \geq s+2$, we can find a strict ($l-1$)-coloring by combining two members of a feasible partition. So we know that if \mathcal{H} has a gap, it must be at most s.

Now we construct a mixed hypergraph to show that s is the best possible. Let $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ be the bipartition of $G=K_{s, t}$. Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ be a mixed hypergraph spanned by G,

$$
\begin{gathered}
\mathcal{C}=\left\{a_{1} a_{i} b_{i}, a_{i} b_{i} b_{1} \mid 2 \leq i \leq s\right\} \cup\left\{a_{i} b_{i} a_{j}, b_{i} a_{j} b_{j} \mid 2 \leq i<j \leq s\right\} \cup\left\{a_{s} b_{i} \mid s+1 \leq i \leq t\right\}, \\
\mathcal{D}=\left\{a_{1} a_{i} b_{i}, a_{i} b_{i} b_{1} \mid 2 \leq i \leq s\right\} \cup\left\{a_{i} b_{j} \mid 2 \leq i<j \leq s\right\} \cup\left\{a_{1} b_{1}\right\} .
\end{gathered}
$$

Let c be a coloring of \mathcal{H}. Since a_{1}, a_{2}, b_{2} form a \mathcal{C}-edge and a \mathcal{D}-edge at the same time, we have the following three cases:

Case 1: Let $c\left(a_{1}\right)=c\left(a_{2}\right)=1, c\left(b_{2}\right)=2$. Since $a_{1} b_{1}$ is a \mathcal{D}-edge and $a_{2} b_{2} b_{1}$ is a \mathcal{C}-edge, we have $c\left(b_{1}\right)=2$. If $c\left(a_{3}\right)=c\left(b_{3}\right)$, then $a_{1} a_{3} b_{3}, a_{3} b_{3} b_{1}$ are \mathcal{D}-edges will imply $c\left(a_{3}\right)=c\left(b_{3}\right) \notin\{1,2\}$ and force $c\left(a_{3}\right)=c\left(b_{3}\right)=3$. But $a_{2} b_{2} a_{3}$ is a \mathcal{C}-edge and a_{2}, b_{2}, a_{3} have different colors, this reaches a contradiction. Hence, $c\left(a_{3}\right) \neq c\left(b_{3}\right)$. Since $a_{1} a_{3} b_{3}, a_{3} b_{3} b_{1} \in \mathcal{C}$ and $a_{2} b_{3} \in \mathcal{D}$, we have $c\left(a_{3}\right)=1, c\left(b_{3}\right)=2$. Similarly, $c\left(a_{i}\right)=1, c\left(b_{i}\right)=2$ for all $i, 4 \leq i \leq s$. Finally, $c\left(b_{j}\right)=c\left(a_{s}\right)=1$ for all j, $s+1 \leq j \leq t$, this completes a 2 -coloring of \mathcal{H}.

Case 2: Let $c\left(a_{1}\right)=c\left(b_{2}\right)=1, c\left(a_{2}\right)=2$. As in case 1, we get $c\left(b_{1}\right)=2$, and $c\left(a_{i}\right)=$ $2, c\left(b_{i}\right)=1$ for all $i, 3 \leq i \leq s$. Set $c\left(b_{j}\right)=c\left(a_{s}\right)=2$ for all $j, s+1 \leq j \leq t$, then c is also a 2 -coloring of \mathcal{H}.

Case 3: Let $c\left(a_{1}\right)=1, c\left(a_{2}\right)=c\left(b_{2}\right)=2$. Since $a_{1} b_{1}, a_{2} b_{2} b_{1} \in \mathcal{D}, c\left(b_{1}\right) \notin\{1,2\}$. Set $c\left(b_{1}\right)=0$. Since $a_{1} a_{3} b_{3}, a_{3} b_{3} b_{1}$ and $b_{2} a_{3} b_{3}$ are \mathcal{C}-edges and \mathcal{D}-edges at the same time, $c\left(a_{3}\right)=c\left(b_{3}\right) \notin\{0,1,2\}$. Set $c\left(a_{3}\right)=c\left(b_{3}\right)=3$. Similarly, we can assume that $c\left(a_{i}\right)=c\left(b_{i}\right)=i$ for all $i, 4 \leq i \leq s$, and $c\left(a_{s}\right)=c\left(b_{j}\right)=s$ for all $j s+1 \leq j \leq t$. We obtain a $(s+1)$-coloring.

Therefore, $S(\mathcal{H})=\{2, s+1\}$ and \mathcal{H} has a gap at s. So s is the maximum gap of a mixed hypergraph spanned by a complete bipartite graph, $K_{s, t}$.

Actually, lemma 2.5 is a special case of this proof. Let $x_{1}=a_{1}, x_{2}=a_{2}, x_{3}=$ $b_{2}, x_{4}=a_{3}, x_{5}=b_{3}$ and $x_{6}=b_{1}$. Hence, $\mathcal{H}_{2,4}$ is a mixed hypergraph spanned by $K_{3,3}$ and satisfies above proof.

In the proof of theorem 3.2, we constructed a mixed hypergraph whose feasible set is $\{2, s+1\}$, hence for each $k, 3 \leq k \leq s, k$ is a gap of this mixed hypergrpah. We have a quick result:

Corollary 3.3 A mixed hypergraph which is spanned by $K_{s, t}$ for $3 \leq s \leq t$ has a gap at k if and only if $3 \leq k \leq s$.

